1
|
Kodgirwar S, Loetgering L, Liu C, Joseph A, Licht L, Penagos Molina DS, Eschen W, Rothhardt J, Habeck M. Bayesian multi-exposure image fusion for robust high dynamic range ptychography. OPTICS EXPRESS 2024; 32:28090-28099. [PMID: 39538632 DOI: 10.1364/oe.524284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 11/16/2024]
Abstract
The limited dynamic range of the detector can impede coherent diffractive imaging (CDI) schemes from achieving diffraction-limited resolution. To overcome this limitation, a straightforward approach is to utilize high dynamic range (HDR) imaging through multi-exposure image fusion (MEF). This method involves capturing measurements at different exposure times, spanning from under to overexposure and fusing them into a single HDR image. The conventional MEF technique in ptychography typically involves subtracting the background noise, ignoring the saturated pixels and then merging the acquisitions. However, this approach is inadequate under conditions of low signal-to-noise ratio (SNR). Additionally, variations in illumination intensity significantly affect the phase retrieval process. To address these issues, we propose a Bayesian MEF modeling approach based on a modified Poisson distribution that takes the background and saturation into account. The expectation-maximization (EM) algorithm is employed to infer the model parameters. As demonstrated with synthetic and experimental data, our approach outperforms the conventional MEF method, offering superior phase retrieval under challenging experimental conditions. This work underscores the significance of robust multi-exposure image fusion for ptychography, particularly in imaging shot-noise-dominated weakly scattering specimens or in cases where access to HDR detectors with high SNR is limited. Furthermore, the applicability of the Bayesian MEF approach extends beyond CDI to any imaging scheme that requires HDR treatment. Given this versatility, we provide the implementation of our algorithm as a Python package.
Collapse
|
2
|
Dejkameh A, Nebling R, Locans U, Kim HS, Mochi I, Ekinci Y. Recovery of spatial frequencies in coherent diffraction imaging in the presence of a central obscuration. Ultramicroscopy 2024; 258:113912. [PMID: 38217894 DOI: 10.1016/j.ultramic.2023.113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
Coherent diffraction imaging (CDI) and its scanning version, ptychography, are lensless imaging approaches used to iteratively retrieve a sample's complex scattering amplitude from its measured diffraction patterns. These imaging methods are most useful in extreme ultraviolet (EUV) and X-ray regions of the electromagnetic spectrum, where efficient imaging optics are difficult to manufacture. CDI relies on high signal-to-noise ratio diffraction data to recover the phase, but increasing the flux can cause saturation effects on the detector. A conventional solution to this problem is to place a beam stop in front of the detector. The pixel masking method is a common solution to the problem of missing frequencies due to a beam stop. This paper describes the information redundancy in the recorded data set and expands on how the reconstruction algorithm can exploit this redundancy to estimate the missing frequencies. Thereafter, we modify the size of the beam stop in experimental and simulation data to assess the impact of the missing frequencies, investigate the extent to which the lost portion of the diffraction spectrum can be recovered, and quantify the effect of the beam stop on the image quality. The experimental findings and simulations conducted for EUV imaging demonstrate that when using a beam stop, the numerical aperture of the condenser is a crucial factor in the recovery of lost frequencies. Our thorough investigation of the reconstructed images provides information on the overall quality of reconstruction and highlights the vulnerable frequencies if the beam stop size is larger than the extent of the illumination NA. The outcome of this study can be applied to other sources of frequency loss, and it will contribute to the improvement of experiments and reconstruction algorithms in CDI.
Collapse
Affiliation(s)
- Atoosa Dejkameh
- ETH Zürich, Rämistrasse 101, Zürich, 8092, Switzerland; Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen, 5232, Switzerland.
| | - Ricarda Nebling
- ETH Zürich, Rämistrasse 101, Zürich, 8092, Switzerland; Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Uldis Locans
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Hyun-Su Kim
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Iacopo Mochi
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Yasin Ekinci
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen, 5232, Switzerland
| |
Collapse
|
3
|
Carulla M, Barten R, Baruffaldi F, Bergamaschi A, Borghi G, Boscardin M, Brückner M, Butcher TA, Centis Vignali M, Dinapoli R, Ebner S, Ficorella F, Fröjdh E, Greiffenberg D, Hammad Ali O, Hasanaj S, Heymes J, Hinger V, King T, Kozlowski P, Lopez Cuenca C, Mezza D, Moustakas K, Mozzanica A, Paternoster G, Paton KA, Ronchin S, Ruder C, Schmitt B, Sieberer P, Thattil D, Vogelsang K, Xie X, Zhang J. Quantum Efficiency Measurement and Modeling of Silicon Sensors Optimized for Soft X-ray Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:942. [PMID: 38339659 PMCID: PMC10856868 DOI: 10.3390/s24030942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Hybrid pixel detectors have become indispensable at synchrotron and X-ray free-electron laser facilities thanks to their large dynamic range, high frame rate, low noise, and large area. However, at energies below 3 keV, the detector performance is often limited because of the poor quantum efficiency of the sensor and the difficulty in achieving single-photon resolution due to the low signal-to-noise ratio. In this paper, we address the quantum efficiency of silicon sensors by refining the design of the entrance window, mainly by passivating the silicon surface and optimizing the dopant profile of the n+ region. We present the measurement of the quantum efficiency in the soft X-ray energy range for silicon sensors with several process variations in the fabrication of planar sensors with thin entrance windows. The quantum efficiency for 250 eV photons is increased from almost 0.5% for a standard sensor to up to 62% as a consequence of these developments, comparable to the quantum efficiency of backside-illuminated scientific CMOS sensors. Finally, we discuss the influence of the various process parameters on quantum efficiency and present a strategy for further improvement.
Collapse
Affiliation(s)
- Maria Carulla
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Rebecca Barten
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Filippo Baruffaldi
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Anna Bergamaschi
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Giacomo Borghi
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Maurizio Boscardin
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Martin Brückner
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Tim A. Butcher
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Matteo Centis Vignali
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Roberto Dinapoli
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Simon Ebner
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Francesco Ficorella
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Erik Fröjdh
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Dominic Greiffenberg
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Omar Hammad Ali
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Shqipe Hasanaj
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Julian Heymes
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Viktoria Hinger
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Thomas King
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Pawel Kozlowski
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Carlos Lopez Cuenca
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Davide Mezza
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Konstantinos Moustakas
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Aldo Mozzanica
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Giovanni Paternoster
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Kirsty A. Paton
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Sabina Ronchin
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Christian Ruder
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Bernd Schmitt
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Patrick Sieberer
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Dhanya Thattil
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Konrad Vogelsang
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Xiangyu Xie
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Jiaguo Zhang
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| |
Collapse
|
4
|
Reinhard J, Kaleta S, Abel JJ, Wiesner F, Wünsche M, Seemann E, Westermann M, Weber T, Nathanael J, Iliou A, Fiedorowicz H, Hillmann F, Eggeling C, Paulus GG, Fuchs S. Laboratory-Based Correlative Soft X-ray and Fluorescence Microscopy in an Integrated Setup. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2014-2025. [PMID: 37944034 DOI: 10.1093/micmic/ozad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Correlative microscopy is a powerful technique that combines the advantages of multiple imaging modalities to achieve a comprehensive understanding of investigated samples. For example, fluorescence microscopy provides unique functional contrast by imaging only specifically labeled components, especially in biological samples. However, the achievable structural information on the sample in its full complexity is limited. Here, the intrinsic label-free carbon contrast of water window soft X-ray microscopy can complement fluorescence images in a correlative approach ultimately combining nanoscale structural resolution with functional contrast. However, soft X-ray microscopes are complex and elaborate, and are usually installed on large-scale synchrotron radiation sources due to the demanding photon flux requirements. Yet, with modern high-power lasers it has become possible to generate sufficient photon flux from laser-produced plasmas, thus enabling laboratory-based setups. Here, we present a compact table-top soft X-ray microscope with an integrated epifluorescence modality for "in situ" correlative imaging. Samples remain in place when switching between modalities, ensuring identical measurement conditions and avoiding sample alteration or destruction. We demonstrate our new method by multimodal images of several exemplary samples ranging from nanoparticles to various multicolor labeled cell types. A structural resolution of down to 50 nm was reached.
Collapse
Affiliation(s)
- Julius Reinhard
- Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, Max-Wien-Platz 107743 Jena, Germany
- Helmholtz Institute Jena, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Fraunhofer Str. 8, 07743 Jena, Germany
| | - Sophia Kaleta
- Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, Max-Wien-Platz 107743 Jena, Germany
| | - Johann Jakob Abel
- Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, Max-Wien-Platz 107743 Jena, Germany
| | - Felix Wiesner
- Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, Max-Wien-Platz 107743 Jena, Germany
| | - Martin Wünsche
- Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, Max-Wien-Platz 107743 Jena, Germany
- Helmholtz Institute Jena, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Fraunhofer Str. 8, 07743 Jena, Germany
| | - Eric Seemann
- Institute of Biochemistry I, Jena University Hospital, Nonnenplan 2, 07743 Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center, Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - Thomas Weber
- Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, Max-Wien-Platz 107743 Jena, Germany
| | - Jan Nathanael
- Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, Max-Wien-Platz 107743 Jena, Germany
- Helmholtz Institute Jena, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Fraunhofer Str. 8, 07743 Jena, Germany
| | - Alexander Iliou
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz- HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany
| | - Henryk Fiedorowicz
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
| | - Falk Hillmann
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz- HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany
- Biochemistry/Biotechnology, Faculty of Engineering, Hochschule Wismar University of Applied Sciences Technology, Business and Design, Philipp-Müller-Str. 14, 23966 Wismar, Germany
| | - Christian Eggeling
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein Strasse 9, 07745 Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Gerhard G Paulus
- Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, Max-Wien-Platz 107743 Jena, Germany
- Helmholtz Institute Jena, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Fraunhofer Str. 8, 07743 Jena, Germany
| | - Silvio Fuchs
- Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, Max-Wien-Platz 107743 Jena, Germany
- Helmholtz Institute Jena, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Fraunhofer Str. 8, 07743 Jena, Germany
- Laserinstitut Hochschule Mittweida, University of Applied Science Mittweida, Technikumplatz 17, 09648 Mittweida, Germany
| |
Collapse
|
5
|
Vijayakumar J, Yuan H, Mille N, Stanescu S, Swaraj S, Favre-Nicolin V, Najafi E, Hitchcock AP, Belkhou R. Soft X-ray spectro-ptychography of boron nitride nanobamboos, carbon nanotubes and permalloy nanorods. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:746-757. [PMID: 37145139 PMCID: PMC10325009 DOI: 10.1107/s1600577523003399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Spectro-ptychography offers improved spatial resolution and additional phase spectral information relative to that provided by scanning transmission X-ray microscopes. However, carrying out ptychography at the lower range of soft X-ray energies (e.g. below 200 eV to 600 eV) on samples with weakly scattering signals can be challenging. Here, results of soft X-ray spectro-ptychography at energies as low as 180 eV are presented, and its capabilities are illustrated with results from permalloy nanorods (Fe 2p), carbon nanotubes (C 1s) and boron nitride bamboo nanostructures (B 1s, N 1s). The optimization of low-energy X-ray spectro-ptychography is described and important challenges associated with measurement approaches, reconstruction algorithms and their effects on the reconstructed images are discussed. A method for evaluating the increase in radiation dose when using overlapping sampling is presented.
Collapse
Affiliation(s)
- Jaianth Vijayakumar
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France
| | - Hao Yuan
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada V8W 2Y2
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada L8S 4M1
| | - Nicolas Mille
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France
| | - Stefan Stanescu
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France
| | - Sufal Swaraj
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France
| | - Vincent Favre-Nicolin
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | | | - Adam P. Hitchcock
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada V8W 2Y2
| | - Rachid Belkhou
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France
| |
Collapse
|
6
|
Loetgering L, Witte S, Rothhardt J. Advances in laboratory-scale ptychography using high harmonic sources [Invited]. OPTICS EXPRESS 2022; 30:4133-4164. [PMID: 35209658 DOI: 10.1364/oe.443622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Extreme ultraviolet microscopy and wavefront sensing are key elements for next-generation ultrafast applications, such as chemically-resolved imaging, focal spot diagnostics in pump-and-probe experiments, and actinic metrology for the state-of-the-art lithography node at 13.5 nm wavelength. Ptychography offers a robust solution to the aforementioned challenges. Originally adapted by the electron and synchrotron communities, advances in the stability and brightness of high-harmonic tabletop sources have enabled the transfer of ptychography to the laboratory. This review covers the state of the art in tabletop ptychography with high harmonic generation sources. We consider hardware options such as illumination optics and detector concepts as well as algorithmic aspects in the analysis of multispectral ptychography data. Finally, we review technological application cases such as multispectral wavefront sensing, attosecond pulse characterization, and depth-resolved imaging.
Collapse
|
7
|
Ignatenko A, Assalauova D, Bobkov SA, Gelisio L, Teslyuk AB, Ilyin VA, Vartanyants IA. Classification of diffraction patterns in single particle imaging experiments performed at x-ray free-electron lasers using a convolutional neural network. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/abd916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Single particle imaging (SPI) is a promising method of native structure determination, which has undergone fast progress with the development of x-ray free-electron lasers. Large amounts of data are collected during SPI experiments, driving the need for automated data analysis. The necessary data analysis pipeline has a number of steps including binary object classification (single versus non-single hits). Classification and object detection are areas where deep neural networks currently outperform other approaches. In this work, we use the fast object detector networks YOLOv2 and YOLOv3. By exploiting transfer learning, a moderate amount of data is sufficient to train the neural network. We demonstrate here that a convolutional neural network can be successfully used to classify data from SPI experiments. We compare the results of classification for the two different networks, with different depth and architecture, by applying them to the same SPI data with different data representation. The best results are obtained for diffracted intensity represented by color images on a linear scale using YOLOv2 for classification. It shows an accuracy of about 95% with precision and recall of about 50% and 60%, respectively, in comparison to manual data classification.
Collapse
|
8
|
Gebhardt M, Heuermann T, Klas R, Liu C, Kirsche A, Lenski M, Wang Z, Gaida C, Antonio-Lopez JE, Schülzgen A, Amezcua-Correa R, Rothhardt J, Limpert J. Bright, high-repetition-rate water window soft X-ray source enabled by nonlinear pulse self-compression in an antiresonant hollow-core fibre. LIGHT, SCIENCE & APPLICATIONS 2021; 10:36. [PMID: 33579895 PMCID: PMC7881106 DOI: 10.1038/s41377-021-00477-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 05/31/2023]
Abstract
Bright, coherent soft X-ray radiation is essential to a variety of applications in fundamental research and life sciences. To date, a high photon flux in this spectral region can only be delivered by synchrotrons, free-electron lasers or high-order harmonic generation sources, which are driven by kHz-class repetition rate lasers with very high peak powers. Here, we establish a novel route toward powerful and easy-to-use SXR sources by presenting a compact experiment in which nonlinear pulse self-compression to the few-cycle regime is combined with phase-matched high-order harmonic generation in a single, helium-filled antiresonant hollow-core fibre. This enables the first 100 kHz-class repetition rate, table-top soft X-ray source that delivers an application-relevant flux of 2.8 × 106 photon s-1 eV-1 around 300 eV. The fibre integration of temporal pulse self-compression (leading to the formation of the necessary strong-field waveforms) and pressure-controlled phase matching will allow compact, high-repetition-rate laser technology, including commercially available systems, to drive simple and cost-effective, coherent high-flux soft X-ray sources.
Collapse
Affiliation(s)
- M Gebhardt
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Str. 15, 07745, Jena, Germany.
- Helmholtz-Institute Jena, Fröbelstieg 3, 07743, Jena, Germany.
| | - T Heuermann
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Str. 15, 07745, Jena, Germany
- Helmholtz-Institute Jena, Fröbelstieg 3, 07743, Jena, Germany
| | - R Klas
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Str. 15, 07745, Jena, Germany
- Helmholtz-Institute Jena, Fröbelstieg 3, 07743, Jena, Germany
| | - C Liu
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Str. 15, 07745, Jena, Germany
- Helmholtz-Institute Jena, Fröbelstieg 3, 07743, Jena, Germany
| | - A Kirsche
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Str. 15, 07745, Jena, Germany
- Helmholtz-Institute Jena, Fröbelstieg 3, 07743, Jena, Germany
| | - M Lenski
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Str. 15, 07745, Jena, Germany
| | - Z Wang
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Str. 15, 07745, Jena, Germany
| | - C Gaida
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Str. 15, 07745, Jena, Germany
- Active Fiber Systems GmbH, Ernst-Ruska-Ring 17, 07745, Jena, Germany
| | - J E Antonio-Lopez
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - A Schülzgen
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - R Amezcua-Correa
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - J Rothhardt
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Str. 15, 07745, Jena, Germany
- Helmholtz-Institute Jena, Fröbelstieg 3, 07743, Jena, Germany
- Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Str. 7, 07745, Jena, Germany
| | - J Limpert
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Str. 15, 07745, Jena, Germany
- Helmholtz-Institute Jena, Fröbelstieg 3, 07743, Jena, Germany
- Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Str. 7, 07745, Jena, Germany
| |
Collapse
|
9
|
Marras A, Correa J, Lange S, Vardanyan V, Gerhardt T, Kuhn M, Krivan F, Shevyakov I, Zimmer M, Hoesch M, Bagschik K, Scholz F, Guerrini N, Marsh B, Sedgwick I, Cautero G, Giuressi D, Iztok G, Menk RH, Scarcia M, Stebel L, Nicholls T, Nichols W, Pedersen UK, Shikhaliev P, Tartoni N, Hyun H, Kim S, Kim K, Rah S, Dawiec A, Orsini F, Pinaroli G, Greer A, Aplin S, Jewell AD, Jones TJ, Nikzad S, Hoenk ME, Okrent F, Graafsma H, Wunderer CB. Characterization of the Percival detector with soft X-rays. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:131-145. [PMID: 33399562 PMCID: PMC7842225 DOI: 10.1107/s1600577520013958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
In this paper the back-side-illuminated Percival 2-Megapixel (P2M) detector is presented, along with its characterization by means of optical and X-ray photons. For the first time, the response of the system to soft X-rays (250 eV to 1 keV) is presented. The main performance parameters of the first detector are measured, assessing the capabilities in terms of noise, dynamic range and single-photon discrimination capability. Present limitations and coming improvements are discussed.
Collapse
Affiliation(s)
- Alessandro Marras
- Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg, Germany
- Center for Free Electron Laser Science (CFEL), Hamburg, Germany
| | - Jonathan Correa
- Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg, Germany
- Center for Free Electron Laser Science (CFEL), Hamburg, Germany
| | - Sabine Lange
- Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg, Germany
- Center for Free Electron Laser Science (CFEL), Hamburg, Germany
| | - Vahagn Vardanyan
- Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg, Germany
- Center for Free Electron Laser Science (CFEL), Hamburg, Germany
| | - Tim Gerhardt
- Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg, Germany
- Center for Free Electron Laser Science (CFEL), Hamburg, Germany
| | - Manuela Kuhn
- Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg, Germany
| | - Frantisek Krivan
- Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg, Germany
| | - Igor Shevyakov
- Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg, Germany
| | - Manfred Zimmer
- Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg, Germany
| | - Moritz Hoesch
- Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg, Germany
| | - Kai Bagschik
- Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg, Germany
| | - Frank Scholz
- Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg, Germany
| | - Nicola Guerrini
- Science and Technology Faculties (STFC), Rutherford Appleton Laboratory (RAL), Didcot, United Kingdom
| | - Ben Marsh
- Science and Technology Faculties (STFC), Rutherford Appleton Laboratory (RAL), Didcot, United Kingdom
| | - Iain Sedgwick
- Science and Technology Faculties (STFC), Rutherford Appleton Laboratory (RAL), Didcot, United Kingdom
| | - Giuseppe Cautero
- Elettra Sincrotrone Trieste, Trieste, Italy
- INFN Trieste, Trieste, Italy
| | - Dario Giuressi
- Elettra Sincrotrone Trieste, Trieste, Italy
- INFN Trieste, Trieste, Italy
| | | | - Ralf H. Menk
- Elettra Sincrotrone Trieste, Trieste, Italy
- INFN Trieste, Trieste, Italy
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A2
| | | | | | - Tim Nicholls
- Science and Technology Faculties (STFC), Rutherford Appleton Laboratory (RAL), Didcot, United Kingdom
| | | | | | | | | | - HyoJung Hyun
- Pohang Accelerator Laboratory (PAL), Pohang, Gyeongbuk 37673, Republic of Korea
| | - SeongHan Kim
- Pohang Accelerator Laboratory (PAL), Pohang, Gyeongbuk 37673, Republic of Korea
| | - KyungSook Kim
- Pohang Accelerator Laboratory (PAL), Pohang, Gyeongbuk 37673, Republic of Korea
| | - SeungYu Rah
- Pohang Accelerator Laboratory (PAL), Pohang, Gyeongbuk 37673, Republic of Korea
| | | | | | - Giovanni Pinaroli
- Instrumentation Division, Brookhaven National Laboratory (BNL), Upton, NY 11973, USA
| | - Alan Greer
- Observatory Sciences Ltd, Cambridge, United Kingdom
| | | | - April D. Jewell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Todd J. Jones
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Shouleh Nikzad
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Michael E. Hoenk
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Heinz Graafsma
- Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg, Germany
- Center for Free Electron Laser Science (CFEL), Hamburg, Germany
- Mid Sweden University, Sundsvall, Sweden
| | - Cornelia B. Wunderer
- Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg, Germany
- Center for Free Electron Laser Science (CFEL), Hamburg, Germany
| |
Collapse
|
10
|
Moxham TEJ, Parsons A, Zhou T, Alianelli L, Wang H, Laundy D, Dhamgaye V, Fox OJL, Sawhney K, Korsunsky AM. Hard X-ray ptychography for optics characterization using a partially coherent synchrotron source. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1688-1695. [PMID: 33147195 PMCID: PMC7642961 DOI: 10.1107/s1600577520012151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/02/2020] [Indexed: 06/08/2023]
Abstract
Ptychography is a scanning coherent diffraction imaging technique which provides high resolution imaging and complete spatial information of the complex electric field probe and sample transmission function. Its ability to accurately determine the illumination probe has led to its use at modern synchrotrons and free-electron lasers as a wavefront-sensing technique for optics alignment, monitoring and correction. Recent developments in the ptychography reconstruction process now incorporate a modal decomposition of the illuminating probe and relax the restriction of using sources with high spatial coherence. In this article a practical implementation of hard X-ray ptychography from a partially coherent X-ray source with a large number of modes is demonstrated experimentally. A strongly diffracting Siemens star test sample is imaged using the focused beam produced by either a Fresnel zone plate or beryllium compound refractive lens. The recovered probe from each optic is back propagated in order to plot the beam caustic and determine the precise focal size and position. The power distribution of the reconstructed probe modes also allows the quantification of the beams coherence and is compared with the values predicted by a Gaussian-Schell model and the optics exit intensity.
Collapse
Affiliation(s)
- Thomas E. J. Moxham
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Aaron Parsons
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Tunhe Zhou
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Lucia Alianelli
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Hongchang Wang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - David Laundy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Vishal Dhamgaye
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Synchrotron Utilisation Section, Raja Ramanna Centre for Advanced Technology, Indore, India
| | - Oliver J. L. Fox
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Kawal Sawhney
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Alexander M. Korsunsky
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| |
Collapse
|
11
|
Makarov S, Pikuz S, Ryazantsev S, Pikuz T, Buzmakov A, Rose M, Lazarev S, Senkbeil T, von Gundlach A, Stuhr S, Rumancev C, Dzhigaev D, Skopintsev P, Zaluzhnyy I, Viefhaus J, Rosenhahn A, Kodama R, Vartanyants IA. Soft X-ray diffraction patterns measured by a LiF detector with sub-micrometre resolution and an ultimate dynamic range. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:625-632. [PMID: 32381762 PMCID: PMC7285683 DOI: 10.1107/s1600577520002192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/17/2020] [Indexed: 06/11/2023]
Abstract
The unique diagnostic possibilities of X-ray diffraction, small X-ray scattering and phase-contrast imaging techniques applied with high-intensity coherent X-ray synchrotron and X-ray free-electron laser radiation can only be fully realized if a sufficient dynamic range and/or spatial resolution of the detector is available. In this work, it is demonstrated that the use of lithium fluoride (LiF) as a photoluminescence (PL) imaging detector allows measuring of an X-ray diffraction image with a dynamic range of ∼107 within the sub-micrometre spatial resolution. At the PETRA III facility, the diffraction pattern created behind a circular aperture with a diameter of 5 µm irradiated by a beam with a photon energy of 500 eV was recorded on a LiF crystal. In the diffraction pattern, the accumulated dose was varied from 1.7 × 105 J cm-3 in the central maximum to 2 × 10-2 J cm-3 in the 16th maximum of diffraction fringes. The period of the last fringe was measured with 0.8 µm width. The PL response of the LiF crystal being used as a detector on the irradiation dose of 500 eV photons was evaluated. For the particular model of laser-scanning confocal microscope Carl Zeiss LSM700, used for the readout of the PL signal, the calibration dependencies on the intensity of photopumping (excitation) radiation (λ = 488 nm) and the gain have been obtained.
Collapse
Affiliation(s)
- Sergey Makarov
- Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya Street 13 Bd 2, Moscow 125412, Russian Federation
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie gory, GSP-1, Moscow 119991, Russian Federation
| | - Sergey Pikuz
- Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya Street 13 Bd 2, Moscow 125412, Russian Federation
- Moscow Engineering Physics Institute (MEPhI), Kashirskoe shosse 31, Moscow 115409, Russian Federation
| | - Sergey Ryazantsev
- Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya Street 13 Bd 2, Moscow 125412, Russian Federation
| | - Tatiana Pikuz
- Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya Street 13 Bd 2, Moscow 125412, Russian Federation
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Alexey Buzmakov
- Russian Academy of Sciences, Federal Research Centre – Crystallography and Photonics, Leninskii pr-t 59, Moscow 119333, Russian Federation
| | - Max Rose
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - Sergey Lazarev
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
- National Research Tomsk Polytechnic University (TPU), 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Tobias Senkbeil
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, Universitatsstrasse 150, Bochum 44780, Germany
| | - Andreas von Gundlach
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, Universitatsstrasse 150, Bochum 44780, Germany
| | - Susan Stuhr
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, Universitatsstrasse 150, Bochum 44780, Germany
| | - Christoph Rumancev
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, Universitatsstrasse 150, Bochum 44780, Germany
| | - Dmitry Dzhigaev
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Petr Skopintsev
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - Ivan Zaluzhnyy
- Moscow Engineering Physics Institute (MEPhI), Kashirskoe shosse 31, Moscow 115409, Russian Federation
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - Jens Viefhaus
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - Axel Rosenhahn
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, Universitatsstrasse 150, Bochum 44780, Germany
| | - Ryosuke Kodama
- Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ivan A. Vartanyants
- Moscow Engineering Physics Institute (MEPhI), Kashirskoe shosse 31, Moscow 115409, Russian Federation
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| |
Collapse
|
12
|
Du M, Loetgering L, Eikema KSE, Witte S. Measuring laser beam quality, wavefronts, and lens aberrations using ptychography. OPTICS EXPRESS 2020; 28:5022-5034. [PMID: 32121731 DOI: 10.1364/oe.385191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
We report on an approach for quantitative characterization of laser beam quality, wavefronts, and lens aberrations using ptychography with a near-infrared supercontinuum laser. Ptychography is shown to offer a powerful alternative for both beam propagation ratio M2 and wavefront measurements compared with existing techniques. In addition, ptychography is used to recover the transmission function of a microlens array for aberration analysis. The results demonstrate ptychography's flexibility in wavefront metrology and optical shop testing.
Collapse
|
13
|
Pham M, Rana A, Miao J, Osher S. Semi-implicit relaxed Douglas-Rachford algorithm (sDR) for ptychography. OPTICS EXPRESS 2019; 27:31246-31260. [PMID: 31684360 DOI: 10.1364/oe.27.031246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Alternating projection based methods, such as ePIE and rPIE, have been used widely in ptychography. However, they only work well if there are adequate measurements (diffraction patterns); in the case of sparse data (i.e. fewer measurements) alternating projection underperforms and might not even converge. In this paper, we propose semi-implicit relaxed Douglas-Rachford (sDR), an accelerated iterative method, to solve the classical ptychography problem. Using both simulated and experimental data, we show that sDR improves the convergence speed and the reconstruction quality relative to extended ptychographic iterative engine (ePIE) and regularized ptychographic iterative engine (rPIE). Furthermore, in certain cases when sparsity is high, sDR converges while ePIE and rPIE fail or encounter slow convergence. To facilitate others to use the algorithm, we post the Matlab source code of sDR on a public website (www.physics.ucla.edu/research/imaging/sDR/index.html). We anticipate that this algorithm can be generally applied to the ptychographic reconstruction of a wide range of samples in the physical and biological sciences.
Collapse
|
14
|
Morrison GR, Zhang F, Gianoncelli A, Robinson IK. X-ray ptychography using randomized zone plates. OPTICS EXPRESS 2018; 26:14915-14927. [PMID: 30114796 DOI: 10.1364/oe.26.014915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
We have developed a randomized grating condenser zone plate (GCZP) that provides a µm-scale probe for use in x-ray ptychography. This delivers a significantly better x-ray throughput than probes defined by pinhole apertures, while providing a clearly-defined level of phase diversity to the illumination on the sample, and helping to reduce the dynamic range of the detected signal by spreading the zero-order light over an extended area of the detector. The first use of this novel x-ray optical element has been demonstrated successfully for both amplitude and phase contrast imaging using soft x-rays on the TwinMic beamline at the Elettra synchrotron.
Collapse
|