1
|
Sharma S, Gill D, Krishna J, Dewhurst JK, Shallcross S. Direct coupling of light to valley current. Nat Commun 2024; 15:7579. [PMID: 39217163 PMCID: PMC11365965 DOI: 10.1038/s41467-024-51968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The coupling of circularly polarized light to local band structure extrema ("valleys") in two dimensional semiconductors promises a new electronics based on the valley degree of freedom. Such pulses, however, couple only to valley charge and not to the valley current, precluding lightwave manipulation of this second vital element of valleytronic devices. Contradicting this established wisdom, we show that the few cycle limit of circularly polarized light is imbued with an emergent vectorial character that allows direct coupling to the valley current. The underlying physical mechanism involves the emergence of a momentum space valley dipole, the orientation and magnitude of which allows complete control over the direction and magnitude of the valley current. We demonstrate this effect via minimal tight-binding models both for the visible spectrum gaps of the transition metal dichalcogenides (generation time ~ 1 fs) as well as the infrared gaps of biased bilayer graphene ( ~ 14 fs); we further verify our findings with state-of-the-art time-dependent density functional theory incorporating transient excitonic effects. Our findings both mark a striking example of emergent physics in the ultrafast limit of light-matter coupling, as well as allowing the creation of valley currents on time scales that challenge quantum decoherence in matter.
Collapse
Affiliation(s)
- S Sharma
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A, 12489, Berlin, Germany.
- Institute for theoretical solid-state physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| | - D Gill
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A, 12489, Berlin, Germany
| | - J Krishna
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A, 12489, Berlin, Germany
| | - J K Dewhurst
- Max-Planck-Institut für Mikrostrukturphysik Weinberg 2, D-06120, Halle, Germany
| | - S Shallcross
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A, 12489, Berlin, Germany.
| |
Collapse
|
2
|
De-Eknamkul C, Huang W, Zhang X, Ren Y, Cubukcu E. Transport and Spatial Separation of Valley Coherence via Few Layer WS 2 Exciton-Polaritons. ACS PHOTONICS 2024; 11:1078-1084. [PMID: 38576862 PMCID: PMC10993736 DOI: 10.1021/acsphotonics.3c01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The optical response in two-dimensional transition-metal dichalcogenides (2D TMDCs) is dominated by excitons. The lack of spatial inversion symmetry in the hexagonal lattice within each TMDC layer leads to valley-dependent excitonic emission of photoluminescence. Here, we demonstrate experimentally the spatial separation of valley coherent emission into orthogonal directions through self-resonant exciton polaritons of a free-standing three-layer (3L) WS2 waveguide. This was achieved by patterning a photonic crystal consisting of a square array of holes allowing for the far field probing of valley coherence of engendered exciton-polaritons. Furthermore, we report detailed experimental modal characterization of this coupled system in good agreement with theory. Momentum space measurements reveal a degree of valley coherence in the range 30-60%. This work provides a platform for manipulation of valley excitons in coherent light-matter states for potential implementations of valley-coherent optoelectronics.
Collapse
Affiliation(s)
- Chawina De-Eknamkul
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Wenzhuo Huang
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407, United State
| | - Xingwang Zhang
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093-0448, United States
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People's Republic of China
| | - Yundong Ren
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Ertugrul Cubukcu
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093-0448, United States
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407, United State
| |
Collapse
|
3
|
Sharma S, Dewhurst JK, Shallcross S. Light-Shaping of Valley States. NANO LETTERS 2023; 23:11533-11539. [PMID: 38100087 DOI: 10.1021/acs.nanolett.3c03245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The established paradigm to create valley states, excitations at local band extrema ("valleys"), is through selective occupation of specific valleys via circularly polarized laser pulses. Here we show a second way exists to create valley states, not by valley population imbalance but by "light-shaping" in momentum space, i.e. controlling the shape of the distribution of excited charge at each valley. While noncontrasting in valley charge, such valley states are instead characterized by a valley current, identically zero at one valley and finite and large at the other. We demonstrate that these (i) are robust to quantum decoherence, (ii) allow lossless toggling of the valley state with successive femtosecond laser pulses, and (iii) permit valley contrasting excitation both with and without a gap. Our findings open a route to robust ultrafast and switchable valleytronics in a wide scope of 2d materials, bringing closer the promise of valley-based electronics.
Collapse
Affiliation(s)
- Sangeeta Sharma
- Max-Born-Institute for Non-linear Optics and Short Pulse Spectroscopy, Max-Born Strasse 2A, 12489 Berlin, Germany
- Institute for theoretical solid-state physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - John Kay Dewhurst
- Max-Planck-Institut fur Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
| | - Samuel Shallcross
- Max-Born-Institute for Non-linear Optics and Short Pulse Spectroscopy, Max-Born Strasse 2A, 12489 Berlin, Germany
| |
Collapse
|
4
|
Lininger A, Palermo G, Guglielmelli A, Nicoletta G, Goel M, Hinczewski M, Strangi G. Chirality in Light-Matter Interaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107325. [PMID: 35532188 DOI: 10.1002/adma.202107325] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The scientific effort to control the interaction between light and matter has grown exponentially in the last 2 decades. This growth has been aided by the development of scientific and technological tools enabling the manipulation of light at deeply sub-wavelength scales, unlocking a large variety of novel phenomena spanning traditionally distant research areas. Here, the role of chirality in light-matter interactions is reviewed by providing a broad overview of its properties, materials, and applications. A perspective on future developments is highlighted, including the growing role of machine learning in designing advanced chiroptical materials to enhance and control light-matter interactions across several scales.
Collapse
Affiliation(s)
- Andrew Lininger
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Giovanna Palermo
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Alexa Guglielmelli
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Giuseppe Nicoletta
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Madhav Goel
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Giuseppe Strangi
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| |
Collapse
|
5
|
Lin H, Wen T, Tang J, Ye L, Zhang G, Zhang W, Gu Y, Gong Q, Lu G. Directional emission of nanoscale chiral sources modified by gap plasmons. NANOTECHNOLOGY 2023; 34:245201. [PMID: 36893457 DOI: 10.1088/1361-6528/acc2c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Efficient manipulation of the emission direction of a chiral nanoscale light source is significant for information transmission and on-chip information processing. Here, we propose a scheme to control the directionality of nanoscale chiral light sources based on gap plasmons. The gap plasmon mode formed by a gold nanorod and a silver nanowire realizes the highly directional emission of chiral light sources. Based on the optical spin-locked light propagation, the hybrid structure enables the directional coupling of chiral emission to achieve a contrast ratio of 99.5%. The emission direction can be manipulated by tailoring the configuration of the structure, such as the positions, aspect ratios, and orientation of the nanorod. Besides, a great local field enhancement exists for highly enhanced emission rates within the nanogap. This chiral nanoscale light source manipulation scheme provides a way for chiral valleytronics and integrated photonics.
Collapse
Affiliation(s)
- Hai Lin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Te Wen
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Jinglin Tang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Lulu Ye
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Guanyu Zhang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Weidong Zhang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Ying Gu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
- Peking University, Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, People's Republic of China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
- Peking University, Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, People's Republic of China
| | - Guowei Lu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
- Peking University, Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Sharma S, Elliott P, Shallcross S. THz induced giant spin and valley currents. SCIENCE ADVANCES 2023; 9:eadf3673. [PMID: 36921048 PMCID: PMC10017034 DOI: 10.1126/sciadv.adf3673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Spin and valley indices represent the key quantum labels of quasi-particles in a wide class of two-dimensional materials and form the foundational elements of the fields of spintronics and valleytronics. Control over these degrees of freedom, therefore, remains the central challenge in these fields. Here, we show that femtosecond laser light combining optical frequency circularly polarized pulse and a terahertz (THz) frequency linearly polarized pulse, a so-called "hencomb" pulse, can generate precisely tailored and 90% pure spin currents for the dichalcogenide WSe2 and >75% pure valley currents for bilayer graphene with gaps greater than 120 millielectron volts (dephasing time, 20 femtoseconds). The frequency of the circular light component and the polarization vector of the THz light component are shown to represent the key control parameters of these pulses. Our results thus open a route toward light control over spin/valley current states at ultrafast times.
Collapse
|
7
|
Yang XC, Yu H, Yao W. Chiral Excitonics in Monolayer Semiconductors on Patterned Dielectrics. PHYSICAL REVIEW LETTERS 2022; 128:217402. [PMID: 35687445 DOI: 10.1103/physrevlett.128.217402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/10/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Monolayer transition metal dichalcogenides feature tightly bound bright excitons at the degenerate valleys, where electron-hole Coulomb exchange interaction strongly couples the valley pseudospin to the momentum of the exciton. Placed on a periodically structured dielectric substrate, the spatial modulation of the Coulomb interaction leads to the formation of exciton Bloch states with real-space valley pseudospin texture displayed in a mesoscopic supercell. We find this spatial valley texture in the exciton Bloch function is pattern locked to the propagation direction, enabling nano-optical excitation of directional exciton flow through the valley selection rule. The left-right directionality of the injected exciton current is controlled by the circular polarization of excitation, while the angular directionality is controlled by the excitation location, exhibiting a vortex pattern in a supercell. The phenomenon is reminiscent of the chiral light-matter interaction in nanophotonics structures, with the role of the guided electromagnetic wave now replaced by the valley-orbit coupled exciton Bloch wave in a uniform monolayer, which points to new excitonic devices with nonreciprocal functionalities.
Collapse
Affiliation(s)
- Xu-Chen Yang
- Department of Physics, The University of Hong Kong, Hong Kong, China
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, China
| | - Hongyi Yu
- Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing and School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China
| | - Wang Yao
- Department of Physics, The University of Hong Kong, Hong Kong, China
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, China
| |
Collapse
|
8
|
Yao Q, Bie YQ, Chen J, Li J, Li F, Cao Z. Anapole enhanced on-chip routing of spin-valley photons in 2D materials for silicon integrated optical communication. OPTICS LETTERS 2021; 46:4080-4083. [PMID: 34469944 DOI: 10.1364/ol.433457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Controlling the propagation direction of polarized light is crucial for optical communications and functional optical components. However, all-dielectric on-chip technology exploiting valley photon emission in transition metal dichalcogenides with enhanced emission has yet to be fully explored. Here, we report a design for enhancing valley emission and manipulating valley photon propagation based on degenerate non-radiating anapole states. By placing circularly polarized dipoles on top of a C4 symmetric cross-slotted silicon disk, the rotating anapole state is excited with a Purcell factor up to two orders. In addition, the photon coupled to the preferred direction of the waveguide are about 2 times larger than that to the opposite direction. Our design could pave the way for realizing on-chip valley-dependent optical communication.
Collapse
|
9
|
Yuan Z, Zhou Y, Qiao Z, Eng Aik C, Tu WC, Wu X, Chen YC. Stimulated Chiral Light-Matter Interactions in Biological Microlasers. ACS NANO 2021; 15:8965-8975. [PMID: 33988971 DOI: 10.1021/acsnano.1c01805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chiral light-matter interactions have emerged as a promising area in biophysics and quantum optics. Great progress in enhancing chiral light-matter interactions have been investigated through passive resonators or spontaneous emission. Nevertheless, the interaction between chiral biomolecules and stimulated emission remains unexplored. Here we introduce the concept of a biological chiral laser by amplifying chiral light-matter interactions in an active resonator through stimulated emission process. Green fluorescent proteins or chiral biomolecules encapsulated in Fabry-Perot microcavity served as the gain material while excited by either left-handed or right-handed circularly polarized pump laser. Owing to the nonlinear pump energy dependence of stimulated emission, significant enhancement of chiral light-matter interactions was demonstrated. Detailed experiments and theory revealed that a lasing dissymmetry factor is determined by molecular absorption dissymmetry factor at its excitation wavelength. Finally, chirality transfer was investigated under a stimulated emission process through resonance energy transfer. Our findings elucidate the mechanism of stimulated chiral light-matter interactions, providing better understanding of light-matter interaction in biophysics, chiral sensing, and quantum biophotonics.
Collapse
Affiliation(s)
- Zhiyi Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Yunke Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Zhen Qiao
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Chan Eng Aik
- Centre for Disruptive Photonic Technologies, TPI and SPMS, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Wei-Chen Tu
- Department of Electrical Engineering, National Cheng Kung University, Tainan City 701, Taiwan
| | - Xiaoqin Wu
- College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yu-Cheng Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| |
Collapse
|
10
|
Jiang H, Xu J, Li N, Wang J, Zhu C, Yang Y. Chiral interaction of an atom in a sandwiched waveguide. OPTICS EXPRESS 2021; 29:16182-16196. [PMID: 34154187 DOI: 10.1364/oe.425351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
The chiral interaction between light and matter is mainly caused by the spin-momentum locking and makes the chiral quantum optics enter a vigorous development stage. Here, we explore the condition of the perfect chiral interaction between an atom possessing circular dipole and the surface plasmon polariton (SPP) mode. The realization of the perfect chiral interaction must satisfy the following two conditions at the same time. First, the SPP mode should possess the transverse circular polarization; and second, the atom decays mainly into the SPP mode, while the decay through other channel can be ignored. In this paper, we adopt a simple but effective structure to satisfy both of requirements, which is the sandwiched waveguide made of metal. We found that the transverse circular polarization of SPP mode might be achieved within the structure possessing multiple interfaces instead of the interface separating two semi-infinite materials. In our model, the decay rate into SPP mode overwhelms that through traveling wave, which provides higher quantum efficiency. What's more, we found that only the symmetric TM-polarized SPP mode might get the transverse circular polarization. For the sandwiched structure containing metal, the existence of two SPP modes weakens the overall chiral interaction. However, the structure containing left-handed materials (LHMs), which can only support one symmetric TM-polarized SPP mode, can get the nearly perfect chiral interaction. We measure the chiral interaction through the decay rate, radiation field distribution and the unidirectional rate through the energy flux. Our work provides a reference for exploring the perfect chiral interaction in more complex structures and has potential and wide applicability to other optical processes.
Collapse
|
11
|
Woo A, Sung J, Gong SH. Long-range directional transport of valley information from transition metal dichalcogenides via a dielectric waveguide. OPTICS EXPRESS 2021; 29:10688-10697. [PMID: 33820198 DOI: 10.1364/oe.419711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Understanding the chiral light-matter interaction offers a new way to control the direction of light. Here, we present an unprecedently long-range transport of valley information of a 2D-layered semiconductor via the directional emission through a dielectric waveguide. In the evanescent near field region of the dielectric waveguide, robust and homogeneous transverse optical spin exists regardless of the size of the waveguide. The handedness of transverse optical spin, determined by the direction of guided light mode, leads to the chiral coupling of light with valley-polarized excitons. Experimentally, we demonstrated ultra-low propagation loss which enabled a 16 µm long propagation of directional emission from valley-polarized excitons through a ZnO waveguide. The estimated directionality of exciton emission from a valley was about 0.7. We confirmed that a dielectric waveguide leads to a better performance than does a plasmonic waveguide in terms of both the directional selectivity of guided emission and the efficiency of optical power reaching the ends of the waveguide when a propagation length is greater than ∼10 µm. The proposed dielectric waveguide system represents an essential platform for efficient spin/valley-photon interfaces.
Collapse
|