1
|
Menshikov E, Lazarenko P, Kovalyuk V, Dubkov S, Maslova N, Prokhodtsov A, Vorobyov A, Kozyukhin S, Goltsman G, Sinev IS. Reversible Laser Imprinting of Phase Change Photonic Structures in Integrated Waveguides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38345-38354. [PMID: 39010705 DOI: 10.1021/acsami.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Formation of laser-induced periodic surface structures (LIPSS) is known as a fast and robust method of functionalization of material surfaces. Of particular interest are LIPSS that manifest as periodic modulation of phase state of the material, as it implies reversibility of phase modification that constitute rewritable LIPSS, and recently was demonstrated for chalcogenide phase change materials (PCMs). Due to remarkable properties of chalcogenide PCMs─nonvolatality, prominent optical contrast and ns switching speed─such novel phase change LIPSS hold potential for exciting applications in all-optical tunable photonics. In this work we explore phase change LIPSS formation in thin films of Ge2Sb2Te5 (GST) integrated with planar and rib waveguides. We demonstrate that by fine-tuning laser radiation, the morphology of phase change LIPSS can be controlled, including their period and fill factor, and investigate the limitations of multicycle rewriting of the structures. We also demonstrate the formation of phase change LIPSS on a 1D waveguide, which has potential for use as tunable Bragg filters or structures for on-demand light decoupling into the far-field. The presented concept of applying phase change LIPSS offers a promising approach to enable fast and simple tuning in integrated photonic devices.
Collapse
Affiliation(s)
- Evgenii Menshikov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Department of Information Engineering, University of Brescia, Brescia 25123, Italy
- National Research University of Electronic Technology, Zelenograd 124498, Russia
| | - Petr Lazarenko
- National Research University of Electronic Technology, Zelenograd 124498, Russia
| | - Vadim Kovalyuk
- Laboratory of Photonic Gas Sensors, University of Science and Technology MISIS, Moscow 119049, Russia
- National Research University Higher School of Economics, Moscow 101000, Russia
| | - Sergey Dubkov
- National Research University of Electronic Technology, Zelenograd 124498, Russia
| | - Nadezhda Maslova
- IRC for Nanotechnology of the Science Park of St. Petersburg State University, St. Petersburg 199034, Russia
| | - Alexey Prokhodtsov
- National Research University of Electronic Technology, Zelenograd 124498, Russia
- Laboratory of Photonic Gas Sensors, University of Science and Technology MISIS, Moscow 119049, Russia
| | | | - Sergey Kozyukhin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Gregory Goltsman
- National Research University Higher School of Economics, Moscow 101000, Russia
- Russian Quantum Center, Skolkovo 143025, Russia
| | - Ivan S Sinev
- Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Tripathi D, Vyas HS, Kumar S, Panda SS, Hegde R. Recent developments in Chalcogenide phase change material-based nanophotonics. NANOTECHNOLOGY 2023; 34:502001. [PMID: 37595569 DOI: 10.1088/1361-6528/acf1a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/18/2023] [Indexed: 08/20/2023]
Abstract
There is now a deep interest in actively reconfigurable nanophotonics as they will enable the next generation of optical devices. Of the various alternatives being explored for reconfigurable nanophotonics, Chalcogenide phase change materials (PCMs) are considered highly promising owing to the nonvolatile nature of their phase change. Chalcogenide PCM nanophotonics can be broadly classified into integrated photonics (with guided wave light propagation) and Meta-optics (with free space light propagation). Despite some early comprehensive reviews, the pace of development in the last few years has shown the need for a topical review. Our comprehensive review covers recent progress on nanophotonic architectures, tuning mechanisms, and functionalities in tunable PCM Chalcogenides. In terms of integrated photonics, we identify novel PCM nanoantenna geometries, novel material utilization, the use of nanostructured waveguides, and sophisticated excitation pulsing schemes. On the meta-optics front, the breadth of functionalities has expanded, enabled by exploring design aspects for better performance. The review identifies immediate, and intermediate-term challenges and opportunities in (1) the development of novel chalcogenide PCM, (2) advance in tuning mechanism, and (3) formal inverse design methods, including machine learning augmented inverse design, and provides perspectives on these aspects. The topical review will interest researchers in further advancing this rapidly growing subfield of nanophotonics.
Collapse
Affiliation(s)
- Devdutt Tripathi
- Department of Electrical Engineering, IIT Gandhinagar, 382355, India
| | | | - Sushil Kumar
- Department of Electrical Engineering, IIT Gandhinagar, 382355, India
| | | | - Ravi Hegde
- Department of Electrical Engineering, IIT Gandhinagar, 382355, India
| |
Collapse
|
3
|
Ilie ST, Faneca J, Zeimpekis I, Bucio TD, Grabska K, Hewak DW, Chong HMH, Gardes FY. Thermo-optic tuning of silicon nitride microring resonators with low loss non-volatile [Formula: see text] phase change material. Sci Rep 2022; 12:17815. [PMID: 36280699 PMCID: PMC9592623 DOI: 10.1038/s41598-022-21590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
A new family of phase change material based on antimony has recently been explored for applications in near-IR tunable photonics due to its wide bandgap, manifested as broadband transparency from visible to NIR wavelengths. Here, we characterize [Formula: see text] optically and demonstrate the integration of this phase change material in a silicon nitride platform using a microring resonator that can be thermally tuned using the amorphous and crystalline states of the phase change material, achieving extinction ratios of up to 18 dB in the C-band. We extract the thermo-optic coefficient of the amorphous and crystalline states of the [Formula: see text] to be 3.4 x [Formula: see text] and 0.1 x 10[Formula: see text], respectively. Additionally, we detail the first observation of bi-directional shifting for permanent trimming of a non-volatile switch using continuous wave (CW) laser exposure ([Formula: see text] to 5.1 dBm) with a modulation in effective refractive index ranging from +5.23 x [Formula: see text] to [Formula: see text] x 10[Formula: see text]. This work experimentally verifies optical phase modifications and permanent trimming of [Formula: see text], enabling potential applications such as optically controlled memories and weights for neuromorphic architecture and high density switch matrix using a multi-layer PECVD based photonic integrated circuit.
Collapse
Affiliation(s)
- Stefan T. Ilie
- Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, SO17 1BJ UK
| | - Joaquin Faneca
- Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, SO17 1BJ UK
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, 08193 Bellaterra, Barcelona Spain
| | - Ioannis Zeimpekis
- Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, SO17 1BJ UK
| | - Thalía Domínguez Bucio
- Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, SO17 1BJ UK
| | - Katarzyna Grabska
- Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, SO17 1BJ UK
| | - Daniel W. Hewak
- Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, SO17 1BJ UK
| | - Harold M. H. Chong
- School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ UK
| | - Frederic Y. Gardes
- Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, SO17 1BJ UK
| |
Collapse
|
4
|
Tao C, Zhu H, Zhang Y, Luo S, Ling Q, Zhang B, Yu Z, Tao X, Chen D, Li Q, Zheng Z. Shortwave infrared single-pixel spectral imaging based on a GSST phase-change metasurface. OPTICS EXPRESS 2022; 30:33697-33707. [PMID: 36242398 DOI: 10.1364/oe.467994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/14/2022] [Indexed: 06/16/2023]
Abstract
Shortwave infrared (SWIR) spectral imaging obtains spectral fingerprints corresponding to overtones of molecular vibrations invisible to conventional silicon-based imagers. However, SWIR imaging is challenged by the excessive cost of detectors. Single-pixel imaging based on compressive sensing can alleviate the problem but meanwhile presents new difficulties in spectral modulations, which are prerequisite in compressive sampling. In this work, we theoretically propose a SWIR single-pixel spectral imaging system with spectral modulations based on a Ge2Sb2Se4Te1 (GSST) phase-change metasurface. The transmittance spectra of the phase-change metasurface are tuned through wavelength shifts of multipole resonances by varying crystallinities of GSST, validated by the multipole decompositions and electromagnetic field distributions. The spectral modulations constituted by the transmittance spectra corresponding to the 11 phases of GSST are sufficient for the compressive sampling on the spectral domain of SWIR hyperspectral images, indicated by the reconstruction in false color and point spectra. Moreover, the feasibility of optimization on phase-change metasurface via coherence minimization is demonstrated through the designing of the GSST pillar height. The concept of spectral modulation with phase-change metasurface overcomes the static limitation in conventional modulators, whose integratable and reconfigurable features may pave the way for high-efficient, low-cost, and miniaturized computational imaging based on nanophotonics.
Collapse
|
5
|
Song C, Gao Y, Wang G, Chen Y, Xu P, Gu C, Shi Y, Shen X. Compact nonvolatile 2×2 photonic switch based on two-mode interference. OPTICS EXPRESS 2022; 30:30430-30440. [PMID: 36242147 DOI: 10.1364/oe.467736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/20/2022] [Indexed: 06/16/2023]
Abstract
On-chip nonvolatile photonic switches enabled by phase change materials (PCMs) are promising building blocks for power-efficient programmable photonic integrated circuits. However, large absorption loss in conventional PCMs (such as Ge2Sb2Te5) interacting with weak evanescent waves in silicon waveguides usually leads to high insertion loss and a large device footprint. In this paper, we propose a 2×2 photonic switch based on two-mode interference in a multimode slot waveguide (MSW) with ultralow loss Sb2S3 integrated inside the slot region. The MSW supports two lowest order TE modes, i.e., symmetric TE00 and antisymmetric TE01 modes, and the phase of Sb2S3 could actively tune two-mode interference behavior. Owing to the enhanced electric field in the slot, the interaction strength between modal field and Sb2S3 could be boosted, and a photonic switch containing a ∼9.4 µm-long Sb2S3-MSW hybrid section could effectively alter the light transmission between bar and cross ports upon the phase change of Sb2S3 with a cross talk (CT) less than -13.6 dB and an insertion loss (IL) less than 0.26 dB in the telecommunication C-band. Especially at 1550 nm, the CT in the amorphous (crystalline) Sb2S3 is -36.1 dB (-31.1 dB) with a corresponding IL of 0.073 dB (0.055 dB). The proposed 2×2 photonic switch is compact in size and compatible with on-chip microheaters, which may find promising applications in reconfigurable photonic devices.
Collapse
|
6
|
Chen C, Dong D, Zhao L, Liu Y, Hu X, Li X, Fu Y. Reconfigurable chiral exceptional point and tunable non-reciprocity in a non-Hermitian system with phase-change material. OPTICS EXPRESS 2022; 30:27812-27824. [PMID: 36236943 DOI: 10.1364/oe.459860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/07/2022] [Indexed: 06/16/2023]
Abstract
Non-Hermitian optics has emerged as a feasible and versatile platform to explore many extraordinary wave phenomena and novel applications. However, owing to ineluctable systematic errors, the constructed non-Hermitian phenomena could be easily broken, thus leading to a compromising performance in practice. Here we theoretically proposed a dynamically tunable mechanism through GST-based phase-change material (PCM) to achieve a reconfigurable non-Hermitian system, which is robust to access the chiral exceptional point (EP). Assisted by PCM that provides tunable coupling efficiency, the effective Hamiltonian of the studied doubly-coupled-ring-based non-Hermitian system can be effectively modulated to resist the external perturbations, thus enabling the reconfigurable chiral EP and a tunable non-reciprocal transmission. Moreover, such tunable properties are nonvolatile and require no static power consumption. With these superior performances, our findings pave a promising way for reconfigurable non-Hermitian photonic devices, which may find applications in tunable on-chip sensors, isolators and so on.
Collapse
|
7
|
A Review of Capabilities and Scope for Hybrid Integration Offered by Silicon-Nitride-Based Photonic Integrated Circuits. SENSORS 2022; 22:s22114227. [PMID: 35684846 PMCID: PMC9185365 DOI: 10.3390/s22114227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022]
Abstract
In this review we present some of the recent advances in the field of silicon nitride photonic integrated circuits. The review focuses on the material deposition techniques currently available, illustrating the capabilities of each technique. The review then expands on the functionalisation of the platform to achieve nonlinear processing, optical modulation, nonvolatile optical memories and integration with III-V materials to obtain lasing or gain capabilities.
Collapse
|
8
|
Lee YJ, On MB, Xiao X, Proietti R, Yoo SJB. Photonic spiking neural networks with event-driven femtojoule optoelectronic neurons based on Izhikevich-inspired model. OPTICS EXPRESS 2022; 30:19360-19389. [PMID: 36221716 DOI: 10.1364/oe.449528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/16/2022] [Indexed: 06/16/2023]
Abstract
Photonic spiking neural networks (PSNNs) potentially offer exceptionally high throughput and energy efficiency compared to their electronic neuromorphic counterparts while maintaining their benefits in terms of event-driven computing capability. While state-of-the-art PSNN designs require a continuous laser pump, this paper presents a monolithic optoelectronic PSNN hardware design consisting of an MZI mesh incoherent network and event-driven laser spiking neurons. We designed, prototyped, and experimentally demonstrated this event-driven neuron inspired by the Izhikevich model incorporating both excitatory and inhibitory optical spiking inputs and producing optical spiking outputs accordingly. The optoelectronic neurons consist of two photodetectors for excitatory and inhibitory optical spiking inputs, electrical transistors' circuits providing spiking nonlinearity, and a laser for optical spiking outputs. Additional inclusion of capacitors and resistors complete the Izhikevich-inspired optoelectronic neurons, which receive excitatory and inhibitory optical spikes as inputs from other optoelectronic neurons. We developed a detailed optoelectronic neuron model in Verilog-A and simulated the circuit-level operation of various cases with excitatory input and inhibitory input signals. The experimental results closely resemble the simulated results and demonstrate how the excitatory inputs trigger the optical spiking outputs while the inhibitory inputs suppress the outputs. The nanoscale neuron designed in our monolithic PSNN utilizes quantum impedance conversion. It shows that estimated 21.09 fJ/spike input can trigger the output from on-chip nanolasers running at a maximum of 10 Gspike/second in the neural network. Utilizing the simulated neuron model, we conducted simulations on MNIST handwritten digits recognition using fully connected (FC) and convolutional neural networks (CNN). The simulation results show 90% accuracy on unsupervised learning and 97% accuracy on a supervised modified FC neural network. The benchmark shows our PSNN can achieve 50 TOP/J energy efficiency, which corresponds to 100 × throughputs and 1000 × energy-efficiency improvements compared to state-of-art electrical neuromorphic hardware such as Loihi and NeuroGrid.
Collapse
|
9
|
Zhou T, Gao Y, Wang G, Chen Y, Gu C, Bai G, Shi Y, Shen X. Reconfigurable hybrid silicon waveguide Bragg filter using ultralow-loss phase-change material. APPLIED OPTICS 2022; 61:1660-1667. [PMID: 35297842 DOI: 10.1364/ao.451078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Reconfigurable silicon photonic devices attract much research attention, and hybrid integration with tunable phase-change materials (PCMs) exhibiting large refractive index contrast between amorphous (Am) and crystalline (Cr) states is a promising way to achieve this goal. Here, we propose and numerically investigate a Sb2Se3-Si hybrid waveguide Bragg filter operating in the telecom C-band on the silicon-on-insulator (SOI) platform. The proposed device consists of a Bragg grating (BG) with a thin top layer of ultralow-loss Sb2Se3 PCM interacting with evanescent field of the silicon waveguide mode. By harnessing the ultralow-loss and reversible index change of Sb2Se3 film, the spectral response of the hybrid BGs could be dynamically tuned. We also theoretically investigate the reversible phase transitions between Am and Cr states of Sb2Se3 film that could be attained by applying voltage pulses on the indium-tin-oxide (ITO) strip heater covered on Sb2Se3 film. Thermal simulations show that a 2 V (4.5 V) pulse with a duration of 400 ns (55 ns) applied to electric contacts would produce crystallization (or amorphization). The proposed structure may find great potential for on-chip phase tunable devices on a silicon platform.
Collapse
|
10
|
Wang Y, Chen L, Tang S, Xu P, Ding F, Fang Z, Majumdar A. Helicity-dependent continuous varifocal metalens based on bilayer dielectric metasurfaces. OPTICS EXPRESS 2021; 29:39461-39472. [PMID: 34809310 DOI: 10.1364/oe.445344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Metasurfaces offer a unique platform to realize flat lenses, reducing the size and complexity of imaging systems and thus enabling new imaging modalities. In this paper, we designed a bilayer helicity-dependent continuous varifocal dielectric metalens in the near-infrared range. The first layer consists of silicon nanopillars and functions as a half-wave plate, providing the helicity-dependent metasurface by combining propagation phase and geometric phase. The second layer consists of phase-change material Sb2S3 nanopillars and provides tunable propagation phases. Upon excitation with the circularly polarized waves possessing different helicities, the metalens can generate helicity-dependent longitudinal focal spots. Under the excitation of linear polarized light, the helicity-dependent dual foci are generated. The focal lengths in this metalens can be continuously tuned by the crystallization fraction of Sb2S3. The zoom range is achieved from 32.5 µm to 37.2 µm for right circularly polarized waves and from 50.5 µm to 60.9 µm for left circularly polarized waves. The simulated focusing efficiencies are above 75% and 87% for the circularly and linearly polarized waves, respectively. The proposed metalens has potential applications in miniaturized devices, including compact optical communication systems, imaging, and medical devices.
Collapse
|
11
|
Wang Y, Zhang J, Jin H, Xu P. Reconfigurable and dual-polarization Bragg grating filter with phase change materials. APPLIED OPTICS 2021; 60:9989-9993. [PMID: 34807191 DOI: 10.1364/ao.439624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Fully reconfigurable optical filters are indispensable building blocks to realize reconfigurable photonic networks/systems. This paper proposes a reconfigurable and dual-polarization optical filter based on a subwavelength grating waveguide operating in the Bragg reflection mechanism and combined with a low-loss phase change material Ge2Sb2Se4Te1. Numerical simulations indicate that, for TE(TM) polarization, the presented Bragg grating filter offers up to 20 nm (17 nm) redshift with amplitude modulation of 6 dB (0.15 dB) at 1550 nm. Using the effective medium theory, we obtained the six-level crystallization performance of the optical filter. The proposed optical filter has potential applications in wavelength-division-multiplexing systems, optical signal processing, and optical communications.
Collapse
|
12
|
Abstract
Phase change materials present a unique type of materials that drastically change their electrical and optical properties on the introduction of an external electrical or optical stimulus. Although these materials have been around for some decades, they have only recently been implemented for on-chip photonic applications. Since their reinvigoration a few years ago, on-chip devices based on phase change materials have been making a lot of progress, impacting many diverse applications at a very fast pace. At present, they are found in many interesting applications including switches and modulation; however, phase change materials are deemed most essential for next-generation low-power memory devices and neuromorphic computational platforms. This review seeks to highlight the progress thus far made in on-chip devices derived from phase change materials including memory devices, neuromorphic computing, switches, and modulators.
Collapse
|
13
|
Qin S, Xu N, Huang H, Jie K, Liu H, Guo J, Meng H, Wang F, Yang X, Wei Z. Near-infrared thermally modulated varifocal metalens based on the phase change material Sb 2S 3. OPTICS EXPRESS 2021; 29:7925-7934. [PMID: 33726284 DOI: 10.1364/oe.420014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Focus-tunable metalenses play an indispensable role in the development of integrated optical systems. In this paper, the phase change material Sb2S3 is used in a thermally modulated varifocal metalens based on PB-phase for the first time. Sb2S3 not only has a real part of refractive index shift between the amorphous and crystalline state but also has low losses in both amorphous and crystalline states in the near-infrared region. By switching Sb2S3 between the two states, a metalens doublet with a variable focal length is proposed. Moreover, the full width at half maximum of each focal point is close to the diffraction limit. And the focusing efficiency can be over 50% for the two focal points. Together with the advantage of precise thermal control, the proposed metalens has great potential in the application of multi-functional devices, biomedical science, communication and imaging.
Collapse
|
14
|
Jiang S, Park CS, Lee WB, Zhou C, Lee SS. Light-driven diffraction grating based on a photothermal actuator incorporating femtosecond laser-induced GO/rGO. OPTICS EXPRESS 2020; 28:39552-39562. [PMID: 33379501 DOI: 10.1364/oe.411526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
A light-driven diffraction grating incorporating two grating patterns with different pitches atop a photothermal actuator (PTA) has been proposed. It is based on graphene oxide/reduced graphene oxide (GO/rGO) induced via femtosecond laser direct writing (FsLDW). The rGO, its controllable linewidth, and transmission support the formation of grating patterns; its noticeably small coefficient of thermal expansion (CTE), good flexibility, and thermal conductivity enable the fabrication of a PTA consisting of a polydimethylsiloxane layer with a relatively large CTE. Under different intensities of light stimuli, diffraction patterns can be efficiently tailored according to different gratings, which are selectively addressed by incident light beam hinging on the bending of the PTA. This is the first demonstration of combining gratings and PTA, wherein the GO plays the role of a bridge. The light-driven mechanism enables the contactless operation of the proposed device, which can be efficiently induced via FsLDW. The diffraction angle could be changed between 2° and 6° horizontally, and the deviation of side lobes from the main lobe could be altered vertically in a continuous range. The proposed device may provide powerful support for activating dynamic diffraction devices in photothermally contactless schemes.
Collapse
|
15
|
Tverjanovich A, Khomenko M, Bereznev S, Fontanari D, Sokolov A, Usuki T, Ohara K, Le Coq D, Masselin P, Bychkov E. Glassy GaS: transparent and unusually rigid thin films for visible to mid-IR memory applications. Phys Chem Chem Phys 2020; 22:25560-25573. [PMID: 33146174 DOI: 10.1039/d0cp04697c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phase-change materials based on tellurides are widely used for optical storage (DVD and Blu-ray disks), non-volatile random access memories and for development of neuromorphic computing. Narrow-gap tellurides are intrinsically limited in the telecom spectral window, where materials having a wider gap are needed. Here we show that gallium sulfide GaS thin films prepared by pulsed laser deposition reveal good transparency from the visible to the mid-IR spectral range with optical gap Eg = 2.34 eV, high refractive index nR = 2.50 over the 0.8 ≤ λ ≤ 2.5 μm range and, unlike canonical chalcogenide glasses, the absence of photo-structural transformations with a laser-induced peak power density damage threshold above 1.4 TW cm-2 at 780 nm. The origin of the excellent damage threshold under a high-power laser and UV light irradiation resides in the rigid tetrahedral structure of vitreous GaS studied by high-energy X-ray diffraction and Raman spectroscopy and supported by first-principles simulations. The average local coordination number appears to be m = 3.44, well above the optimal connectivity, 2.4 ≤ m ≤ 2.7, and the total volume of microscopic voids and cavities is 34.4%, that is, lower than for the vast majority of binary sulfide glasses. The glass-crystal phase transition in gallium sulfide thin films may be accompanied by a drastic change in the nonlinear optical properties, opening up a new dimension for memory applications in the visible to mid-IR spectral ranges.
Collapse
Affiliation(s)
- Andrey Tverjanovich
- Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|