1
|
Jeong H, Pan Y, Akhter F, Volkow ND, Zhu D, Du C. Evidence of cortical vascular impairments in early stage of Alzheimer's transgenic mice: Optical imaging. J Cereb Blood Flow Metab 2025; 45:960-976. [PMID: 39696904 PMCID: PMC12035375 DOI: 10.1177/0271678x241304893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/20/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024]
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder with progressive cognitive decline, remains clinically challenging with limited understanding of etiology and interventions. Clinical studies have reported vascular defects prior to other pathological manifestations of AD, leading to the "Vascular Hypothesis" for the disorder. However, in vivo assessments of cerebral vasculature in AD rodent models have been constrained by limited spatiotemporal resolution or field of view of conventional imaging. We herein employed two in vivo imaging technologies, Dual-Wavelength Imaging and Optical Coherence Doppler Tomography, to evaluate cerebrovascular reactivity (CVR) to vasoconstrictive cocaine and vasodilatory hypercapnia challenges and to detect resting 3D cerebral blood flow (CBF) in living transgenic AD mice at capillary resolution. Results showed that CVR to cocaine and hypercapnia was significantly attenuated in 7-10 months old AD mice vs controls, indicating reduced vascular flexibility and reactivity. Additionally, in the AD mice, arterial CBF velocities were slower and the microvascular density in cortex was decreased compared to controls. These results reveal significant vascular impairments including reduced CVR and resting CBF in early-staged AD mice. Hence, this cutting-edge in vivo optical imaging offers an innovative venue for detecting early neurovascular dysfunction in AD brain with translational potential.
Collapse
Affiliation(s)
- Hyomin Jeong
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Yingtian Pan
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Firoz Akhter
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Congwu Du
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
2
|
Song P, Song C, Zhang Y, Han X, Tang P, Duvvuri C, Xu J, Huang Y, Qin J, An L, Twa MD, Lan G. Air-pulse optical coherence elastography: how excitation angle affects mechanical wave propagation. BIOMEDICAL OPTICS EXPRESS 2025; 16:1371-1391. [PMID: 40322015 PMCID: PMC12047731 DOI: 10.1364/boe.557984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 05/08/2025]
Abstract
We evaluate the effect of excitation angles on the observation and characterization of surface wave propagations used to derive tissue's mechanical properties in optical coherence tomography (OCT)-based elastography (OCE). Air-pulse stimulation was performed at the center of the sample with excitation angles ranging from oblique (e.g., 70° or 45°) to perpendicular (0°). OCT scanning was conducted radially to record en face mechanical wave propagations in 360°, and the wave features (amplitude, attenuation, group and phase velocities) were calculated in the spatiotemporal or wavenumber-frequency domains. We conducted measurements on isotropic, homogeneous samples (1-1.6% agar phantoms), anisotropic samples (chicken breast), and samples with complex boundaries, coupling media, and stress conditions (ex vivo porcine cornea, intraocular pressure (IOP): 5-20 mmHg). Our findings indicate that mechanical wave velocities are less affected by excitation angles compared to displacement features, demonstrating the robustness of using mechanical waves for elasticity estimations. Agar and chicken breast sample measurements showed that all these metrics (particularly wave velocities) are relatively consistent when excitation angles are smaller than 45°. However, significant disparities were observed in the porcine cornea measurements across different excitation angles (even between 15° and 0°), particularly at high IOP levels (e.g., 20 mmHg). Our findings provide valuable insights for enhancing the accuracy of biomechanical assessments using air-pulse-based or other dynamic OCE approaches. This facilitates the refinement and clinical translation of the OCE technique and could ultimately improve diagnostic and therapeutic applications across various biomedical fields.
Collapse
Affiliation(s)
- Pengfei Song
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Chengjin Song
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Yubao Zhang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiao Han
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, China
- School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China
| | - Peijun Tang
- School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | | | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jia Qin
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Lin An
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Gongpu Lan
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| |
Collapse
|
3
|
Duvvuri C, Singh M, Lan G, Aglyamov SR, Larin KV, Twa MD. Determinants of Human Corneal Mechanical Wave Dispersion for In Vivo Optical Coherence Elastography. Transl Vis Sci Technol 2025; 14:26. [PMID: 39854195 PMCID: PMC11760281 DOI: 10.1167/tvst.14.1.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/10/2024] [Indexed: 01/26/2025] Open
Abstract
Purpose To characterize frequency-dependent wave speed dispersion in the human cornea using microliter air-pulse optical coherence elastography (OCE), and to evaluate the applicability of Lamb wave theory for determining corneal elastic modulus using high-frequency symmetric (S0) and anti-symmetric (A0) guided waves in cornea. Methods Wave speed dispersion analysis for transient (0.5 ms) microliter air-pulse stimulation was performed in four rabbit eyes ex vivo and compared to air-coupled ultrasound excitation. The effects of stimulation angle and sample geometry on the dispersion were evaluated in corneal phantoms. Corneal wave speed dispersion was measured in 36 healthy human eyes in vivo. Results Air-pulse-induced dispersion was comparable to ultrasound-induced dispersion between 0.7 and 5 kHz (mean-difference ± 1.96 × SD: 0.006 ± 0.5 m/s) in ex vivo rabbit corneas. Stimulation 0° relative to the surface normal generated A0 Lamb waves in corneal tissue phantoms, while oblique stimulation (35° and 65°) generated S0 waves. Stimulating normal to the human corneal apex in vivo (0°) induced A0 waves, plateauing at 10.87 to 13.63 m/s at 4 kHz, and when obliquely stimulated at the periphery (65°), produced S0 waves, plateauing at 13.10 to 15.98 m/s at 4 kHz. Conclusions Air-pulse OCE can be used to measure human corneal Lamb wave dispersion of A0 and S0 propagation modes in vivo. These modes are selectively excited by changing the stimulation angle. Accounting for wave speed dispersion enables reliable estimation of corneal elastic modulus in vivo. Translational Relevance This work demonstrates the feasibility of air-pulse stimulation for robust OCE measurements of corneal stiffness in vivo for disease detection and therapy evaluation.
Collapse
Affiliation(s)
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Gongpu Lan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong, China
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX, USA
| |
Collapse
|
4
|
Li J, Ayi Z, Lu G, Rao H, Yang F, Li J, Sun J, Lu J, Hu X, Zhang S, Hui X. Research progress on the use of the optical coherence tomography system for the diagnosis and treatment of central nervous system tumors. IBRAIN 2024; 11:3-18. [PMID: 40103695 PMCID: PMC11911102 DOI: 10.1002/ibra.12184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 03/20/2025]
Abstract
In central nervous system (CNS) surgery, the accurate identification of tumor boundaries, achieving complete resection of the tumor, and safeguarding healthy brain tissue remain paramount challenges. Despite the expertise of neurosurgeons, the infiltrative nature of the tumors into the surrounding brain tissue often hampers intraoperative differentiation between tumorous and non-tumorous tissue, thus hindering total tumor removal. Optical coherence tomography (OCT), with its unique advantages of high-resolution imaging, efficient image acquisition, real-time intraoperative detection, and radiation-free and noninvasive properties, offers accurate diagnostic capabilities and invaluable intraoperative guidance for minimally invasive CNS tumor diagnosis and treatment. Various OCT systems have been employed in neurological tumor research, including polarization-sensitive OCT systems, orthogonal polarization OCT systems, Doppler OCT systems, and OCT angiography systems. In addition, OCT-based diagnostic and therapeutic techniques have been explored for the surgical resection of CNS tumors. This review aims to compile and evaluate the research progress surrounding the principles of OCT systems and their applications in CNS tumors, providing insights into potential future research avenues and clinical applications.
Collapse
Affiliation(s)
- Jiuhong Li
- Department of Neurosurgery/Department of Cardiovascular SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Ziba Ayi
- West China School of MedicineSichuan UniversityChengduChina
| | - Gonggong Lu
- Department of Neurosurgery/Department of Cardiovascular SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Haibo Rao
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Feilong Yang
- Department of Neurosurgery/Department of Cardiovascular SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Jing Li
- Chengdu Incrpeak Optoelectronics Technology Co., Ltd.ChengduChina
| | - Jiachen Sun
- Department of Neurosurgery/Department of Cardiovascular SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Junlin Lu
- Department of Neurosurgery/Department of Cardiovascular SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Xulin Hu
- Clinical Medical College & Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduChina
| | - Si Zhang
- Department of Neurosurgery/Department of Cardiovascular SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Xuhui Hui
- Department of Neurosurgery/Department of Cardiovascular SurgeryWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
5
|
Shi G, Zhang Y, Ai S, Wang Y, Li Y, He X, Zheng X. In Vivo Imaging and Evaluation of Corneal Biomechanics After Corneal Transplantation by Optical Coherence Elastography. JOURNAL OF BIOPHOTONICS 2024:e202400207. [PMID: 39428441 DOI: 10.1002/jbio.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 10/22/2024]
Abstract
Postoperative corneal biomechanical evaluation is of great significance in clinical monitoring and management since corneal transplantation is one of the main methods to improve visual function. In this paper, we propose an OCE system based on a small ultrasound transducer to realize the in vivo detection of postoperative corneal elasticity in different directions. It was first validated and analyzed by different agar, and then the elasticity changes in normal cornea and post-transplant corneal implants and implant beds were further investigated. Compared with normal corneas, the shear wave velocity of the postoperative cornea decreased from 7.42 ± 1.71 m/s to 4.95 ± 0.35 m/s. Meanwhile, the shear wave velocity of the corneal implant bed was lower than that of the implanted sheet. Therefore, this study reports the first biomechanical measurement of corneal grafts based on the OCE technique, which might provide a potential tool for the postoperative evaluation of clinical patients.
Collapse
Affiliation(s)
- Gang Shi
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, P. R. China
| | - Yubao Zhang
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, P. R. China
| | - Sizhu Ai
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, P. R. China
| | - Yidi Wang
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, P. R. China
| | - Yingji Li
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, P. R. China
| | - Xingdao He
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, P. R. China
| | - Xinhe Zheng
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
6
|
Song C, He W, Song P, Feng J, Huang Y, Xu J, An L, Qin J, Gao K, Twa MD, Lan G. Chirp excitation for natural frequency optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2024; 15:5856-5871. [PMID: 39421777 PMCID: PMC11482180 DOI: 10.1364/boe.536685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
Optical coherence elastography (OCE) has recently been used to characterize the natural frequencies of delicate tissues (e.g., the in vivo human cornea) with sub-micron tissue oscillation magnitudes. Here, we investigate broadband spectrum sample stimulation using a contact-based piezoelectric transducer (PZT) chirp excitation and compare its performance with a non-contact, air-pulse excitation for OCE measurements on 1.0-7.5% agar phantoms and an ex vivo porcine cornea under intraocular pressures (IOPs) of 5-40 mmHg. The 3-ms duration air-pulse generated a ∼0-840 Hz excitation spectrum, effectively quantifying the first-order natural frequencies in softer samples (e.g., 1.0%-4.0% agar: 239-782 Hz, 198 Hz/%; porcine cornea: 68-414 Hz, 18 Hz/mmHg, IOP: 5-25 mmHg), but displayed limitations in measuring natural frequencies for stiffer samples (e.g., 4.5%-7.5% agar, porcine cornea: IOP ≥ 30 mmHg) or higher order natural frequency components. In contrast, the chirp excitation produced a much wider spectrum (e.g., 0-5000 Hz), enabling the quantification of both first-order natural frequencies (1.0%-7.5% agar: 253-1429 Hz, 181 Hz/%; porcine cornea: 76-1240 Hz, 32 Hz/mmHg, IOP: 5-40 mmHg) and higher order natural frequencies. A modified Bland-Altman analysis (mean versus relative difference in natural frequency) showed a bias of 20.4%, attributed to the additional mass and frequency introduced by the contact nature of the PZT probe. These findings, especially the advantages and limitations of both excitation methods, can be utilized to validate the potential application of natural frequency OCE, paving the way for the ongoing development of biomechanical characterization methods utilizing sub-micron tissue oscillation features.
Collapse
Affiliation(s)
- Chengjin Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Weichao He
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Pengfei Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Jinping Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Lin An
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jia Qin
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Kai Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong 510060, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| |
Collapse
|
7
|
Song Y, Wei S, Li Y, Zhang F, Zhu Z, Chou L, Jia W, Li R, Zhou Q, Chen Z. Real-time mapping of photo-sono therapy induced cavitation using Doppler optical coherence tomography. OPTICS LETTERS 2024; 49:4843-4846. [PMID: 39207978 PMCID: PMC11608091 DOI: 10.1364/ol.532993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
Photo-sono therapy (PST) is an innovative anti-vascular approach based on cavitation-induced spallation. Currently, passive cavitation detection (PCD) is the prevalent technique for cavitation monitoring during treatment. However, the limitations of PCD are the lack of spatial information of bubbles and the difficulty of integration with the PST system. To address this, we proposed a new, to the best of our knowledge, cavitation mapping method that integrates Doppler optical coherence tomography (OCT) with PST to visualize bubble dynamics in real time. The feasibility of the proposed system has been confirmed through experiments on vascular-mimicking phantoms and in vivo rabbit ear vessels, and the results are compared to high-speed camera observations and PCD data. The findings demonstrate that Doppler OCT effectively maps cavitation in real time and holds promise for guiding PST treatments and other cavitation-related clinical applications.
Collapse
Affiliation(s)
- Yuchen Song
- Beckman Laser Institute, University of California Irvine, Irvine, California 92612, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92612, USA
| | - Shuang Wei
- Beckman Laser Institute, University of California Irvine, Irvine, California 92612, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92612, USA
| | - Yan Li
- Beckman Laser Institute, University of California Irvine, Irvine, California 92612, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92612, USA
| | - Fengyi Zhang
- Beckman Laser Institute, University of California Irvine, Irvine, California 92612, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92612, USA
| | - Zhikai Zhu
- Beckman Laser Institute, University of California Irvine, Irvine, California 92612, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92612, USA
| | - Lidek Chou
- Beckman Laser Institute, University of California Irvine, Irvine, California 92612, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92612, USA
| | - Wancun Jia
- Beckman Laser Institute, University of California Irvine, Irvine, California 92612, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92612, USA
| | - Runze Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California Irvine, Irvine, California 92612, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92612, USA
| |
Collapse
|
8
|
Zhu Z, Yang H, Lei H, Miao Y, Philipopoulos G, Doosty M, Mukai D, Song Y, Lee J, Mahon S, Brenner M, Veress L, White C, Jung W, Chen Z. Quantitative assessment of chlorine gas inhalation injury based on endoscopic OCT and spectral encoded interferometric microscope imaging with deep learning. APL PHOTONICS 2024; 9:096109. [PMID: 39257867 PMCID: PMC11382286 DOI: 10.1063/5.0222153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024]
Abstract
Chlorine exposure can cause severe airway injuries. While the acute effects of chlorine inhalation are well-documented, the structural changes resulting from the post-acute, high-level chlorine exposure remain less understood. Airway sloughing is one of the standards for doctors to evaluate the lung function. Here, we report the application of a high-resolution swept-source optical coherence tomography system to investigate the progression of injury based on airway sloughing evaluation in a chlorine inhalation rabbit model. This system employs a 1.2 mm diameter flexible fiberoptic endoscopic probe via an endotracheal tube to capture in vivo large airway anatomical changes before and as early as 30 min after acute chlorine exposure. We conducted an animal study using New Zealand white rabbits exposed to acute chlorine gas (800 ppm, 6 min) during ventilation and monitored them using optical coherence tomography (OCT) for 6 h. To measure the volume of airway sloughing induced by chlorine gas, we utilized deep learning for the segmentation task on OCT images. The results showed that the volume of chlorine induced epithelial sloughing on rabbit tracheal walls initially increased, peaked around 30 min, and then decreased. Furthermore, we utilized a spectral encoded interferometric microscopy system to study ex vivo airway cilia beating dynamics based on Doppler shift, aiding in elucidating how chlorine gas affects cilia beating function. Cilia movability and beating frequency were decreased because of the epithelium damage. This quantitative approach has the potential to enhance the diagnosis and monitoring of injuries from toxic gas inhalation and to evaluate the efficacy of antidote treatments for these injuries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Livia Veress
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Carl White
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Woonggyu Jung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | | |
Collapse
|
9
|
Wang J, Ye Q, Chou L, Qiu S, Xu X, Chen Z. Miniaturized Head-Mount Doppler Optical Coherence Tomography Scope for Freely Moving Mouse. ACS PHOTONICS 2024; 11:3381-3389. [PMID: 39184188 PMCID: PMC11342407 DOI: 10.1021/acsphotonics.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
This study presents a miniaturized head-mount optical coherence tomography (OCT) system tailored for high-resolution brain imaging in freely moving mice, providing an advanced noninvasive imaging tool in neuroscience research. Leveraging optical coherence tomography technology, the system enables depth-resolved imaging and integrates functional OCT extensions, including angiography and Doppler imaging. Remarkably lightweight at 1.5 g, the device allows for the preservation of natural mouse behavior during imaging sessions. With a maximum 4 × 4 mm field of view and 7.4 μm axial resolution, the system offers reliable imaging capabilities. Noteworthy features include focal adjustability, rotary joint integration for fiber-twist-free operation, and a high-speed swept-source OCT laser at 200 kHz, facilitating real-time imaging. By providing insights into brain mechanisms and neurological disorders without disrupting natural behavior, this innovative system holds promise as a powerful tool in neuroscience research. Its compact design and comprehensive imaging capabilities make it well-suited for studying various brain regions and dynamic processes, contributing significantly to our understanding of brain function and pathology.
Collapse
Affiliation(s)
- Jingyi Wang
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
- Department
of Electrical Engineering and Computer Science, University of California Irvine, Irvine, California 92612, United States
| | - Qiao Ye
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92612, United States
- Department
of Anatomy and Neurobiology, University
of California Irvine, Irvine, California 92697, United States
| | - Lidek Chou
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
| | - Saijun Qiu
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92612, United States
| | - Xiangmin Xu
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92612, United States
- Department
of Anatomy and Neurobiology, University
of California Irvine, Irvine, California 92697, United States
| | - Zhongping Chen
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
- Department
of Electrical Engineering and Computer Science, University of California Irvine, Irvine, California 92612, United States
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92612, United States
| |
Collapse
|
10
|
Hong J, Zhu W, He K, Chen X, Lu J, Li P. Ergodic speckle contrast optical coherence tomography velocimetry of rapid blood flow. OPTICS LETTERS 2024; 49:3600-3603. [PMID: 38950219 DOI: 10.1364/ol.523063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024]
Abstract
Visualizing a 3D blood flow velocity field through noninvasive imaging is crucial for analyzing hemodynamic mechanisms in areas prone to disorders. However, traditional correlation-based optical coherence tomography (OCT) velocimetry techniques have a maximum measurable flow velocity depending on the A-line rate. We presented the ergodic speckle contrast OCT (ESCOCT) to break the bottleneck in measuring the rapid blood flow velocity. It achieved a measurement of blood flow velocity ranging from 9.5 to 280 mm/s using a 100 kHz swept-source (SS) OCT based on 100 A-repeats scanning mode. Addressing the non-ergodic problem of temporal OCT signals by integrating more consecutive A-scans, ESCOCT can enable the estimation for lower velocity flows by increasing A-repeats. ESCOCT provided a wide dynamic range with no upper limit on measuring blood flow velocity with an adequate signal-to-noise ratio and improved the sensitivity and accuracy of the hemodynamic assessment.
Collapse
|
11
|
Tajaldeen A, Alrashidi M, Alsaadi MJ, Alghamdi SS, Alshammari H, Alsleem H, Jafer M, Aljondi R, Alqahtani S, Alotaibi A, Alzandi AM, Alahmari AM. Photoacoustic imaging in prostate cancer: A new paradigm for diagnosis and management. Photodiagnosis Photodyn Ther 2024; 47:104225. [PMID: 38821240 DOI: 10.1016/j.pdpdt.2024.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The global health issue of prostate cancer (PCa) requires better diagnosis and treatment. Photoacoustic imaging (PAI) may change PCa management. This review examines PAI's principles, diagnostic role, and therapeutic guidance. PAI uses optical light excitation and ultrasonic detection for high-resolution functional and molecular imaging. PAI uses endogenous and exogenous contrast agents to distinguish cancerous and benign prostate tissues with greater sensitivity and specificity than PSA testing and TRUS-guided biopsy. In addition to diagnosing, PAI can guide and monitor PCa therapy. Its real-time imaging allows precise biopsies and brachytherapy seed placement. Photoacoustic temperature imaging allows non-invasive monitoring of thermal therapies like cryotherapy, improving treatment precision and success. Transurethral illumination probes, innovative contrast agents, integration with other imaging modalities, and machine learning analysis are being developed to overcome depth and data complexity restrictions. PAI could become an essential tool for PCa diagnosis and therapeutic guidance as the field advances.
Collapse
Affiliation(s)
- Abdulrahman Tajaldeen
- Department of Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia.
| | - Muteb Alrashidi
- Department of Radiological Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mohamed J Alsaadi
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Salem Saeed Alghamdi
- Department of Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Hamed Alshammari
- Department of Radiological Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Haney Alsleem
- Department of Radiological Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mustafa Jafer
- Department of Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Rowa Aljondi
- Department of Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Saeed Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Awatif Alotaibi
- Department of Radiological Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Abdulrahman M Alzandi
- Department of Radiological Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | | |
Collapse
|
12
|
Song C, He W, Feng J, Twa MD, Huang Y, Xu J, Qin J, An L, Wei X, Lan G. Dual-channel air-pulse optical coherence elastography for frequency-response analysis. BIOMEDICAL OPTICS EXPRESS 2024; 15:3301-3316. [PMID: 38855682 PMCID: PMC11161337 DOI: 10.1364/boe.520551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 06/11/2024]
Abstract
Microliter air-pulse optical coherence elastography (OCE) has recently been proposed for the characterization of soft-tissue biomechanics using transient, sub-nanometer to micrometer-scale natural frequency oscillations. However, previous studies have not been able to provide real-time air-pulse monitoring during OCE natural frequency measurement, which could lead to inaccurate measurement results due to the unknown excitation spectrum. To address this issue, we introduce a dual-channel air-pulse OCE method, with one channel stimulating the sample and the other being simultaneously measured with a pressure sensor. This allows for more accurate natural frequency characterization using the frequency response function, as proven by a comprehensive comparison under different conditions with a diverse range of excitation spectra (from broad to narrow, clean to noisy) as well as a diverse set of sample response spectra. We also demonstrate the capability of the frequency-response analysis in distinguishing samples with different stiffness levels: the dominant natural frequencies increased with agar concentrations (181-359 Hz, concentrations: 1-2%, and maximum displacements: 0.12-0.47 µm) and intraocular pressures (IOPs) for the silicone cornea (333-412 Hz, IOP: 5-40 mmHg, and maximum displacements: 0.41-0.52 µm) under a 200 Pa stimulation pressure. These frequencies remained consistent across different air-pulse durations (3 ms to 35 ms). The dual-channel OCE approach that uses transient, low-pressure stimulation and high-resolution imaging holds the potential to advance our understanding of sample frequency responses, especially when investigating delicate tissues such as the human cornea in vivo.
Collapse
Affiliation(s)
- Chengjin Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Weichao He
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Jinping Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jia Qin
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Lin An
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Xunbin Wei
- Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research, Peking University, Beijing 100142, China
- Biomedical Engineering Department, Peking University, Beijing 100081, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
- International Cancer Institute, Peking University, Beijing 100191, China
| | - Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| |
Collapse
|
13
|
Geng X, Liang X, Liu Y, Chen Y, Xue B, Wei X, Yuan Z. Natural Fat Nanoemulsions for Enhanced Optical Coherence Tomography Neuroimaging and Tumor Imaging in the Second Near-Infrared Window. ACS NANO 2024; 18:9187-9198. [PMID: 38466960 PMCID: PMC10976961 DOI: 10.1021/acsnano.4c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Optical coherence tomography (OCT) imaging mainly uses backscattered light to visualize the structural and functional information on biological tissues. In particular, OCT angiography can not only map the capillary networks but also capture the blood flow in the tissue microenvironment, making it a good candidate for neuroimaging and tumor imaging in vivo and in real time. To further improve the detection accuracy of cancer or brain disorders, it is essential to develop a natural and nontoxic contrast agent for enhanced OCT imaging in the second near-infrared (NIR-II) window. In this study, a superior biocompatible and highly scattering NIR-II fat nanoemulsion was constructed to improve OCT imaging contrast and depth for monitoring the vascular network changes of the cerebral cortex or tumor. In vivo experimental results demonstrated that a natural fat nanoemulsion can serve as an excellent probe for enhanced OCT neuroimaging and tumor imaging.
Collapse
Affiliation(s)
- Xiaorui Geng
- Cancer
Center, Faculty of Health Sciences, University
of Macau, Taipa, Macau SAR 999078, China
- Centre
for Cognitive and Brain Sciences, University
of Macau, Taipa, Macau SAR 999078, China
| | - Xiao Liang
- Cancer
Center, Faculty of Health Sciences, University
of Macau, Taipa, Macau SAR 999078, China
- Centre
for Cognitive and Brain Sciences, University
of Macau, Taipa, Macau SAR 999078, China
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen, 518055, China
| | - Yubin Liu
- College
of Photonics and Electric Engineering, Fuzhou
Normal University, Fuzhou, 350117, China
| | - Yuhao Chen
- Cancer
Center, Faculty of Health Sciences, University
of Macau, Taipa, Macau SAR 999078, China
- Centre
for Cognitive and Brain Sciences, University
of Macau, Taipa, Macau SAR 999078, China
| | - Bin Xue
- Cancer
Center, Faculty of Health Sciences, University
of Macau, Taipa, Macau SAR 999078, China
- Centre
for Cognitive and Brain Sciences, University
of Macau, Taipa, Macau SAR 999078, China
- Shenzhen
Key Laboratory of Ultraintense Laser and Advanced Material Technology,
Center for Advanced Material Diagnostic Technology, and College of
Engineering Physics, Shenzhen Technology
University, Shenzhen, 518118, China
| | - Xianyuan Wei
- Cancer
Center, Faculty of Health Sciences, University
of Macau, Taipa, Macau SAR 999078, China
- Centre
for Cognitive and Brain Sciences, University
of Macau, Taipa, Macau SAR 999078, China
| | - Zhen Yuan
- Cancer
Center, Faculty of Health Sciences, University
of Macau, Taipa, Macau SAR 999078, China
- Centre
for Cognitive and Brain Sciences, University
of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
14
|
Nolte DD. Coherent light scattering from cellular dynamics in living tissues. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:036601. [PMID: 38433567 DOI: 10.1088/1361-6633/ad2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
This review examines the biological physics of intracellular transport probed by the coherent optics of dynamic light scattering from optically thick living tissues. Cells and their constituents are in constant motion, composed of a broad range of speeds spanning many orders of magnitude that reflect the wide array of functions and mechanisms that maintain cellular health. From the organelle scale of tens of nanometers and upward in size, the motion inside living tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic molecules and the forces of molecular motors. Active transport can mimic the random walks of thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the average isotropic three-dimensional environment of cells and tissues, active cellular or intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for instance as organelle displacement persists along cytoskeletal tracks or as membranes displace along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent light scattering is a natural tool to characterize such tissue dynamics because persistent directed transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves from the complex and dynamic media interfere to produce dynamic speckle that reveals tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy. Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital holography offer coherent detection methods that shed light on intracellular processes. In health-care applications, altered states of cellular health and disease display altered cellular motions that imprint on the statistical fluctuations of the scattered light. For instance, the efficacy of medical therapeutics can be monitored by measuring the changes they induce in the Doppler spectra of livingex vivocancer biopsies.
Collapse
Affiliation(s)
- David D Nolte
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, United States of America
| |
Collapse
|
15
|
Zhang F, Li R, Li Y, Zhu Z, Zhou Q, Chen Z. Quantitative Optical Coherence Elastography of the Optic Nerve Head In Vivo. IEEE Trans Biomed Eng 2024; 71:732-737. [PMID: 37721876 PMCID: PMC11224776 DOI: 10.1109/tbme.2023.3316606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
OBJECTIVE Optical coherence elastography (OCE) was used to demonstrate the relationship between the elasticity of the optic nerve head (ONH) and different intraocular pressure (IOP) levels in an in-vivo rabbit model for the first time. METHOD Both ex-vivo and in-vivo rabbit ONH were imaged using OCE system. A mechanical shaker initiated the propagation of elastic waves, and the elasticity of the ONH was determined by tracking the wave propagation speed. The elasticity of the ONH under varying IOP levels was reconstructed based on the wave speed. Notably, the ONH exhibited increased stiffness with elevated IOP. RESULTS In the in-vivo rabbit models, the Young's modulus of ONH increased from 14 kPa to 81 kPa with the IOP increased from 15 mmHg to 35 mmHg. This revealed a positive correlation between the Young's modulus of the ONH and intraocular pressure. CONCLUSION The OCE system proved effective in measuring the mechanical properties of ONH at different IOP levels, with validation in an in-vivo rabbit model. SIGNIFICANCE Considering ONH plays a critical role in vision and eye diseases, the capability to image and quantify in vivo ONH biomechanical properties has great potential to advance vision science research and improve the clinical management of glaucoma patients.
Collapse
|
16
|
Zhang W, Zhou H, Tao Y, Zhu F, He B, Liu N, Chen J, Xue P. Size correction and deep image optimization in optical coherence tomography angiography with structural image-assisted common parts extraction method. JOURNAL OF BIOPHOTONICS 2024; 17:e202300259. [PMID: 37755063 DOI: 10.1002/jbio.202300259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
Tail artifact elimination is essential in optical coherence tomography angiography (OCTA) for the artifacts will prevent the reconstruction of the 3D vessel image. The tail artifacts of superficial vessels obscure the deep vascular signals and cause the signals at different depths to mix with each other. Most tail artifact elimination methods can shorten the tails but have difficulty in determining the lower boundary of the vessels. In this letter, we introduce a technique to extract vascular signals with more accurate vascular boundaries. With the help of structural image, our method can reconstruct the 3D image of the vascular network more precisely and perform better in deep areas. The images of vessels of palm are used to compare our new technique with previous common parts extraction method experimentally. The results show that our method removes the tail artifacts more thoroughly and has a significant advantage in imaging deep vessels.
Collapse
Affiliation(s)
- Wenxin Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, China
- State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Hong Zhou
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yuxiu Tao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Fu Zhu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Bin He
- State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Ning Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Junyi Chen
- Jiangsu Kunpeng Shengteng Ecological Innovation Center, Nanjing, Jiangsu, China
| | - Ping Xue
- State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| |
Collapse
|
17
|
Wang Q, Gong P, Afsharan H, Joo C, Morellini N, Fear M, Wood F, Ho H, Silva D, Cense B. In vivo burn scar assessment with speckle decorrelation and joint spectral and time domain optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:126001. [PMID: 38074217 PMCID: PMC10704265 DOI: 10.1117/1.jbo.28.12.126001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 12/18/2023]
Abstract
Significance Post-burn scars and scar contractures present significant challenges in burn injury management, necessitating accurate evaluation of the wound healing process to prevent or minimize complications. Non-invasive and accurate assessment of burn scar vascularity can offer valuable insights for evaluations of wound healing. Optical coherence tomography (OCT) and OCT angiography (OCTA) are promising imaging techniques that may enhance patient-centered care and satisfaction by providing detailed analyses of the healing process. Aim Our study investigates the capabilities of OCT and OCTA for acquiring information on blood vessels in burn scars and evaluates the feasibility of utilizing this information to assess burn scars. Approach Healthy skin and neighboring scar data from nine burn patients were obtained using OCT and processed with speckle decorrelation, Doppler OCT, and an enhanced technique based on joint spectral and time domain OCT. These methods facilitated the assessment of vascular structure and blood flow velocity in both healthy skin and scar tissues. Analyzing these parameters allowed for objective comparisons between normal skin and burn scars. Results Our study found that blood vessel distribution in burn scars significantly differs from that in healthy skin. Burn scars exhibit increased vascularization, featuring less uniformity and lacking the intricate branching network found in healthy tissue. Specifically, the density of the vessels in burn scars is 67% higher than in healthy tissue, while axial flow velocity in burn scar vessels is 25% faster than in healthy tissue. Conclusions Our research demonstrates the feasibility of OCT and OCTA as burn scar assessment tools. By implementing these technologies, we can distinguish between scar and healthy tissue based on its vascular structure, providing evidence of their practicality in evaluating burn scar severity and progression.
Collapse
Affiliation(s)
- Qiang Wang
- The University of Western Australia, Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, Perth, Western Australia, Australia
| | - Peijun Gong
- Harry Perkins Institute of Medical Research, BRITElab, QEII Medical Centre, Nedlands, Western Australia, Australia
- The University of Western Australia, Centre for Medical Research, Perth, Western Australia, Australia
- The University of Western Australia, School of Engineering, Department of Electrical, Electronic & Computer Engineering, Perth, Western Australia, Australia
| | - Hadi Afsharan
- The University of Western Australia, Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, Perth, Western Australia, Australia
- The University of Western Australia, Centre for Medical Research, Perth, Western Australia, Australia
| | - Chulmin Joo
- Yonsei University, Department of Mechanical Engineering, Seoul, Republic of Korea
| | - Natalie Morellini
- The University of Western Australia, Burn Injury Research Unit, School of Biomedical Sciences, Perth, Western Australia, Australia
- Fiona Stanley Hospital, Fiona Wood Foundation, Murdoch, Western Australia, Australia
| | - Mark Fear
- The University of Western Australia, Burn Injury Research Unit, School of Biomedical Sciences, Perth, Western Australia, Australia
- Fiona Stanley Hospital, Fiona Wood Foundation, Murdoch, Western Australia, Australia
| | - Fiona Wood
- The University of Western Australia, Burn Injury Research Unit, School of Biomedical Sciences, Perth, Western Australia, Australia
- Fiona Stanley Hospital, Fiona Wood Foundation, Murdoch, Western Australia, Australia
- Fiona Stanley Hospital, Burns Service of Western Australia, Western Australia Department of Health, Murdoch, Western Australia, Australia
| | - Hao Ho
- Harry Perkins Institute of Medical Research, BRITElab, QEII Medical Centre, Nedlands, Western Australia, Australia
- The University of Western Australia, Centre for Medical Research, Perth, Western Australia, Australia
- The University of Western Australia, School of Engineering, Department of Electrical, Electronic & Computer Engineering, Perth, Western Australia, Australia
| | - Dilusha Silva
- The University of Western Australia, Department of Electrical, Electronic and Computer Engineering, Microelectronics Research Group, Perth, Western Australia, Australia
| | - Barry Cense
- The University of Western Australia, Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, Perth, Western Australia, Australia
- Yonsei University, Department of Mechanical Engineering, Seoul, Republic of Korea
| |
Collapse
|
18
|
Jeong H, Pan Y, Akhter F, Volkow ND, Zhu D, Du C. Impairment of cerebral vascular reactivity and resting blood flow in early-staged transgenic AD mice: in vivo optical imaging studies. RESEARCH SQUARE 2023:rs.3.rs-3579916. [PMID: 37987006 PMCID: PMC10659553 DOI: 10.21203/rs.3.rs-3579916/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder with progressive cognitive decline in aging individuals that poses a significant challenge to patients due to an incomplete understanding of its etiology and lack of effective interventions. While "the Amyloid Cascade Hypothesis," the abnormal accumulation of amyloid-β in the brain, has been the most prevalent theory for AD, mounting evidence from clinical and epidemiological studies suggest that defects in cerebral vessels and hypoperfusion appear prior to other pathological manifestations and might contribute to AD, leading to "the Vascular Hypothesis." However, assessment of structural and functional integrity of the cerebral vasculature in vivo in the brain from AD rodent models has been challenging owing to the limited spatiotemporal resolution of conventional imaging technologies. Methods We employed two in vivo imaging technologies, i.e., Dual-Wavelength Imaging (DWI) and Optical Coherence Tomography (OCT), to evaluate cerebrovascular reactivity (CVR; responsiveness of blood vessels to vasoconstriction as triggered by cocaine) in a relatively large field of view of the cortex in vivo, and 3D quantitative cerebrovascular blood flow (CBF) imaging in living transgenic AD mice at single vessel resolution. Results Our results showed significantly impaired CVR and reduced CBF in basal state in transgenic AD mice compared to non-transgenic littermates in an early stage of AD progression. Changes in total hemoglobin (Δ[HbT]) in response to vasoconstriction were significantly attenuated in AD mice, especially in arteries and tissue, and the recovery time of Δ[HbT] after vasoconstriction was shorter for AD than WT in all types of vessels and cortical tissue, thereby indicating hypoperfusion and reduced vascular flexibility. Additionally, our 3D OCT images revealed that CBF velocities in arteries were slower and that the microvascular network was severely disrupted in the brain of AD mice. Conclusions These results suggest significant vascular impairment in basal CBF and dynamic CVR in the neurovascular network in a rodent model of AD at an early stage of the disease. These cutting-edge in vivo optical imaging tools offer an innovative venue for detecting early neurovascular dysfunction in relation to AD pathology and pave the way for clinical translation of early diagnosis and elucidation of AD pathogenesis in the future.
Collapse
Affiliation(s)
- Hyomin Jeong
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20857, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
19
|
Feng X, Li GY, Yun SH. Ultra-wideband optical coherence elastography from acoustic to ultrasonic frequencies. Nat Commun 2023; 14:4949. [PMID: 37587178 PMCID: PMC10432526 DOI: 10.1038/s41467-023-40625-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Visualizing viscoelastic waves in materials and tissues through noninvasive imaging is valuable for analyzing their mechanical properties and detecting internal anomalies. However, traditional elastography techniques have been limited by a maximum wave frequency below 1-10 kHz, which hampers temporal and spatial resolution. Here, we introduce an optical coherence elastography technique that overcomes the limitation by extending the frequency range to MHz. Our system can measure the stiffness of hard materials including bones and extract viscoelastic shear moduli for polymers and hydrogels in conventionally inaccessible ranges between 100 Hz and 1 MHz. The dispersion of Rayleigh surface waves across the ultrawide band allowed us to profile depth-dependent shear modulus in cartilages ex vivo and human skin in vivo with sub-mm anatomical resolution. This technique holds immense potential as a noninvasive measurement tool for material sciences, tissue engineering, and medical diagnostics.
Collapse
Affiliation(s)
- Xu Feng
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom St. BAR-8, Boston, MA, 02114, USA
| | - Guo-Yang Li
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom St. BAR-8, Boston, MA, 02114, USA
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom St. BAR-8, Boston, MA, 02114, USA.
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
20
|
Li Y, Blakeley JO, Ly I, Berman Y, Lau J, Wolkenstein P, Bergqvist C, Jia W, Milner TE, Katta N, Durkin AJ, Kennedy GT, Rowland R, Romo CG, Fleming J, Kelly KM. Current and Emerging Imaging Techniques for Neurofibromatosis Type 1-Associated Cutaneous Neurofibromas. J Invest Dermatol 2023; 143:1397-1405. [PMID: 37330718 DOI: 10.1016/j.jid.2023.03.1681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
A consistent set of measurement techniques must be applied to reliably and reproducibly evaluate the efficacy of treatments for cutaneous neurofibromas (cNFs) in people with neurofibromatosis type 1 (NF1). cNFs are neurocutaneous tumors that are the most common tumor in people with NF1 and represent an area of unmet clinical need. This review presents the available data regarding approaches in use or development to identify, measure, and track cNFs, including calipers, digital imaging, and high-frequency ultrasound sonography. We also describe emerging technologies such as spatial frequency domain imaging and the application of imaging modalities such as optical coherence tomography that may enable the detection of early cNFs and prevention of tumor-associated morbidity.
Collapse
Affiliation(s)
- Yingjoy Li
- Department of Dermatology, School of Medicine, University of California, Irvine, California, USA
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ina Ly
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yemima Berman
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, Australia
| | - Jonathan Lau
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, Australia; Sydney Medical School, The University of Sydney, Camperdown, Australia
| | - Pierre Wolkenstein
- Faculty of Medicine and Health, Université Paris-Est Créteil Val de Marne, Créteil, France; Department of Dermatology, National Referral Center for Neurofibromatoses, Henri-Mondor Hospital, Assistance Publique-Hôpital Paris (AP-HP), Créteil, France
| | - Christina Bergqvist
- Department of Dermatology, National Referral Center for Neurofibromatoses, Henri-Mondor Hospital, Assistance Publique-Hôpital Paris (AP-HP), Créteil, France
| | - Wangcun Jia
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA
| | - Thomas E Milner
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA; Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Nitesh Katta
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA
| | - Anthony J Durkin
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA; Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Gordon T Kennedy
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA
| | - Rebecca Rowland
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA
| | - Carlos G Romo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jane Fleming
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, Australia
| | - Kristen M Kelly
- Department of Dermatology, School of Medicine, University of California, Irvine, California, USA; Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA.
| |
Collapse
|
21
|
Pian Q, Alfadhel M, Tang J, Lee GV, Li B, Fu B, Ayata Y, Yaseen MA, Boas DA, Secomb TW, Sakadzic S. Cortical microvascular blood flow velocity mapping by combining dynamic light scattering optical coherence tomography and two-photon microscopy. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:076003. [PMID: 37484973 PMCID: PMC10362155 DOI: 10.1117/1.jbo.28.7.076003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023]
Abstract
Significance The accurate large-scale mapping of cerebral microvascular blood flow velocity is crucial for a better understanding of cerebral blood flow (CBF) regulation. Although optical imaging techniques enable both high-resolution microvascular angiography and fast absolute CBF velocity measurements in the mouse cortex, they usually require different imaging techniques with independent system configurations to maximize their performances. Consequently, it is still a challenge to accurately combine functional and morphological measurements to co-register CBF speed distribution from hundreds of microvessels with high-resolution microvascular angiograms. Aim We propose a data acquisition and processing framework to co-register a large set of microvascular blood flow velocity measurements from dynamic light scattering optical coherence tomography (DLS-OCT) with the corresponding microvascular angiogram obtained using two-photon microscopy (2PM). Approach We used DLS-OCT to first rapidly acquire a large set of microvascular velocities through a sealed cranial window in mice and then to acquire high-resolution microvascular angiograms using 2PM. The acquired data were processed in three steps: (i) 2PM angiogram coregistration with the DLS-OCT angiogram, (ii) 2PM angiogram segmentation and graphing, and (iii) mapping of the CBF velocities to the graph representation of the 2PM angiogram. Results We implemented the developed framework on the three datasets acquired from the mice cortices to facilitate the coregistration of the large sets of DLS-OCT flow velocity measurements with 2PM angiograms. We retrieved the distributions of red blood cell velocities in arterioles, venules, and capillaries as a function of the branching order from precapillary arterioles and postcapillary venules from more than 1000 microvascular segments. Conclusions The proposed framework may serve as a useful tool for quantitative analysis of large microvascular datasets obtained by OCT and 2PM in studies involving normal brain functioning, progression of various diseases, and numerical modeling of the oxygen advection and diffusion in the realistic microvascular networks.
Collapse
Affiliation(s)
- Qi Pian
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Mohammed Alfadhel
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Jianbo Tang
- Southern University of Science and Technology, Department of Biomedical Engineering, Shenzhen, China
| | - Grace V. Lee
- University of Arizona, Program in Applied Mathematics, Tucson, Arizona, United States
| | - Baoqiang Li
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Brain Cognition and Brain Disease Institute; Shenzhen Fundamental Research Institutions, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, Guangdong, China
| | - Buyin Fu
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Yagmur Ayata
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Mohammad Abbas Yaseen
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Timothy W. Secomb
- University of Arizona, Program in Applied Mathematics, Tucson, Arizona, United States
- University of Arizona, Department of Mathematics, Tucson, Arizona, United States
- University of Arizona, Department of Physiology, Tucson, Arizona, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|
22
|
Javed A, Khanna A, Palmer E, Wilde C, Zaman A, Orr G, Kumudhan D, Lakshmanan A, Panos GD. Optical coherence tomography angiography: a review of the current literature. J Int Med Res 2023; 51:3000605231187933. [PMID: 37498178 PMCID: PMC10387790 DOI: 10.1177/03000605231187933] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/09/2023] [Indexed: 07/28/2023] Open
Abstract
This narrative review presents a comprehensive examination of optical coherence tomography angiography (OCTA), a non-invasive retinal vascular imaging technology, as reported in the existing literature. Building on the coherence tomography principles of standard OCT, OCTA further delineates the retinal vascular system, thus offering an advanced alternative to conventional dye-based imaging. OCTA provides high-resolution visualisation of both the superficial and deep capillary networks, an achievement previously unattainable. However, image quality may be compromised by factors such as motion artefacts or media opacities, potentially limiting the utility of OCTA in certain patient cohorts. Despite these limitations, OCTA has various potential clinical applications in managing retinal and choroidal vascular diseases. Still, given its considerable cost implications relative to current modalities, further research is warranted to justify its broader application in clinical practice.
Collapse
Affiliation(s)
- Ahmed Javed
- Department of Ophthalmology, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Aishwarya Khanna
- Department of Ophthalmology, Royal Derby Hospital, Derby, United Kingdom
| | - Eleanor Palmer
- Department of Ophthalmology, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Craig Wilde
- Department of Ophthalmology, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Anwar Zaman
- Department of Ophthalmology, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Gavin Orr
- Department of Ophthalmology, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Dharmalingam Kumudhan
- Department of Ophthalmology, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Arun Lakshmanan
- Department of Ophthalmology, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Georgios D Panos
- Department of Ophthalmology, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham, United Kingdom
- Division of Ophthalmology and Visual Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
23
|
Guo X, Ren G, Tang J. Autocorrelation analysis-based OCT velocimetry for axial blood flow velocity imaging of the cerebral capillary network. OPTICS LETTERS 2023; 48:3599-3602. [PMID: 37390190 DOI: 10.1364/ol.493011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/03/2023] [Indexed: 07/02/2023]
Abstract
The accurate measurement of blood flow velocity in the capillary network is challenging due to the small size of the vessels and the slow flow of red blood cells (RBCs) within the vessel. Here, we introduce an autocorrelation analysis-based optical coherence tomography (OCT) method that takes less acquisition time to measure the axial blood flow velocity in the capillary network. The axial blood flow velocity was obtained from the phase change in the decorrelation period of the first-order field autocorrelation function (g1) of the OCT field data, which was acquired with M-mode acquisition (repeated A-scans). The rotation center of g1 in the complex plane was first re-centralized to the origin, then the phase change due to the movement of RBCs was extracted in the g1 decorrelation period which is usually 0.2-0.5 ms. In phantom experiments, the results suggest that the proposed method could accurately measure the axial speed with a wide range of 0.5-15 mm/s. We further tested the method on living animals. Compared with the phase-resolved Doppler optical coherence tomography (pr-DOCT), the proposed method can obtain robust axial velocity measurements with more than five times shorter acquisition time.
Collapse
|
24
|
Ai S, Zhang Y, Shi G, Wang Y, Liu G, Han X, Zhao Y, Yang H, He X. Acoustic radiation force optical coherence elastography: A preliminary study on biomechanical properties of trabecular meshwork. JOURNAL OF BIOPHOTONICS 2023; 16:e202200317. [PMID: 36602423 DOI: 10.1002/jbio.202200317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 05/17/2023]
Abstract
Evaluating biomechanical properties of trabecular meshwork (TM) is of great significance for understanding the mechanism of aqueous humor circulation and its relationship to some eye diseases such as glaucoma; however, there is almost no relevant study due to the lack of clinical measurement tool. In this paper, an acoustic radiation force optical coherence elastography (ARF-OCE) system is developed with the advantages of noninvasive detection, high resolution, high sensitivity, and high-speed imaging, by which elastic modulus of the porcine and human TMs is accurately quantified. As the first OCE imaging of TM, our study demonstrates that ARF-OCE may be an effective approach to advance the research of diseases related to aqueous humor circulation.
Collapse
Affiliation(s)
- Sizhu Ai
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, China
| | - Yubao Zhang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, China
| | - Gang Shi
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, China
| | - Yidi Wang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, China
| | - Guo Liu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, China
| | - Xiao Han
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, China
| | | | | | - Xingdao He
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, China
| |
Collapse
|
25
|
Lan G, Twa MD, Song C, Feng J, Huang Y, Xu J, Qin J, An L, Wei X. In vivo corneal elastography: A topical review of challenges and opportunities. Comput Struct Biotechnol J 2023; 21:2664-2687. [PMID: 37181662 PMCID: PMC10173410 DOI: 10.1016/j.csbj.2023.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Clinical measurement of corneal biomechanics can aid in the early diagnosis, progression tracking, and treatment evaluation of ocular diseases. Over the past two decades, interdisciplinary collaborations between investigators in optical engineering, analytical biomechanical modeling, and clinical research has expanded our knowledge of corneal biomechanics. These advances have led to innovations in testing methods (ex vivo, and recently, in vivo) across multiple spatial and strain scales. However, in vivo measurement of corneal biomechanics remains a long-standing challenge and is currently an active area of research. Here, we review the existing and emerging approaches for in vivo corneal biomechanics evaluation, which include corneal applanation methods, such as ocular response analyzer (ORA) and corneal visualization Scheimpflug technology (Corvis ST), Brillouin microscopy, and elastography methods, and the emerging field of optical coherence elastography (OCE). We describe the fundamental concepts, analytical methods, and current clinical status for each of these methods. Finally, we discuss open questions for the current state of in vivo biomechanics assessment techniques and requirements for wider use that will further broaden our understanding of corneal biomechanics for the detection and management of ocular diseases, and improve the safety and efficacy of future clinical practice.
Collapse
Affiliation(s)
- Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, United States
| | - Chengjin Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - JinPing Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jia Qin
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Lin An
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Xunbin Wei
- Biomedical Engineering Department, Peking University, Beijing 100081, China
- International Cancer Institute, Peking University, Beijing 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
26
|
Kang YG, Canoy RJE, Jang Y, Santos ARMP, Son I, Kim BM, Park Y. Optical coherence microscopy with a split-spectrum image reconstruction method for temporal-dynamics contrast-based imaging of intracellular motility. BIOMEDICAL OPTICS EXPRESS 2023; 14:577-592. [PMID: 36874497 PMCID: PMC9979675 DOI: 10.1364/boe.478264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Biomedical researchers use optical coherence microscopy (OCM) for its high resolution in real-time label-free tomographic imaging. However, OCM lacks bioactivity-related functional contrast. We developed an OCM system that can measure changes in intracellular motility (indicating cellular process states) via pixel-wise calculations of intensity fluctuations from metabolic activity of intracellular components. To reduce image noise, the source spectrum is split into five using Gaussian windows with 50% of the full bandwidth. The technique verified that F-actin fiber inhibition by Y-27632 reduces intracellular motility. This finding could be used to search for other intracellular-motility-associated therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Yong Guk Kang
- BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Republic of Korea
- These authors contributed equally to this work
| | - Raymart Jay E. Canoy
- Department of Biomicro System Technology, College of Engineering, Korea University, Seoul 02841, Republic of Korea
- These authors contributed equally to this work
| | - Yongjun Jang
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ana Rita M. P. Santos
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Inwoo Son
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Beop-Min Kim
- BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Republic of Korea
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Yongdoo Park
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
27
|
Koutsiaris AG, Batis V, Liakopoulou G, Tachmitzi SV, Detorakis ET, Tsironi EE. Optical Coherence Tomography Angiography (OCTA) of the eye: A review on basic principles, advantages, disadvantages and device specifications. Clin Hemorheol Microcirc 2022; 83:247-271. [PMID: 36502308 DOI: 10.3233/ch-221634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optical Coherence Tomography Angiography (OCTA) is a relatively new imaging technique in ophthalmology for the visualization of the retinal microcirculation and other tissues of the human eye. This review paper aims to describe the basic definitions and principles of OCT and OCTA in the most straightforward possible language without complex mathematical and engineering analysis. This is done to help health professionals of various disciplines improve their understanding of OCTA and design further clinical research more efficiently. First, the basic technical principles of OCT and OCTA and related terminology are described. Then, a list of OCTA advantages and disadvantages, with a special reference to blood flow quantification limitations. Finally, an updated list of the basic hardware and software specifications of some of the commercially available OCTA devices is presented.
Collapse
Affiliation(s)
- Aristotle G. Koutsiaris
- Medical Informatics Laboratory, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | - Vasilios Batis
- Jules Gonin Eye Hospital Lausanne, Switzerland
- Department of Ophthalmology, University Hospital of Heraklion, Crete, Greece
| | - Georgia Liakopoulou
- Medical Informatics Laboratory, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | | | | | - Evangelia E. Tsironi
- Department of Ophthalmology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
28
|
Li W, Feng J, Wang Y, Shi Q, Ma G, Aglyamov S, Larin KV, Lan G, Twa M. Micron-scale hysteresis measurement using dynamic optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2022; 13:3021-3041. [PMID: 35774312 PMCID: PMC9203113 DOI: 10.1364/boe.457617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 05/28/2023]
Abstract
We present a novel optical coherence elastography (OCE) method to characterize mechanical hysteresis of soft tissues based on transient (milliseconds), low-pressure (<20 Pa) non-contact microliter air-pulse stimulation and micrometer-scale sample displacements. The energy dissipation rate (sample hysteresis) was quantified for soft-tissue phantoms (0.8% to 2.0% agar) and beef shank samples under different loading forces and displacement amplitudes. Sample hysteresis was defined as the loss ratio (hysteresis loop area divided by the total loading energy). The loss ratio was primarily driven by the sample unloading response which decreased as loading energy increased. Samples were distinguishable based on their loss ratio responses as a function loading energy or displacement amplitude. Finite element analysis and mechanical testing methods were used to validate these observations. We further performed the OCE measurements on a beef shank tissue sample to distinguish the muscle and connective tissue components based on the displacement and hysteresis features. This novel, noninvasive OCE approach has the potential to differentiate soft tissues by quantifying their viscoelasticity using micron-scale transient tissue displacement dynamics. Focal tissue hysteresis measurements could provide additional clinically useful metrics for guiding disease diagnosis and tissue treatment responses.
Collapse
Affiliation(s)
- Wenjie Li
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, Guangdong, 528000, China
- Contributed equally
| | - Jinping Feng
- Hubei University of Science and Technology, Institute of Engineering and Technology, Xianning, Hubei, 437100, China
- Contributed equally
| | - Yicheng Wang
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, Guangdong, 528000, China
| | - Qun Shi
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, Guangdong, 528000, China
| | - Guoqin Ma
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, Guangdong, 528000, China
| | - Salavat Aglyamov
- University of Houston, Mechanical Engineering, Houston, TX 77204, USA
| | - Kirill V Larin
- University of Houston, Biomedical Engineering, Houston, TX 77204, USA
| | - Gongpu Lan
- Foshan University, School of Physics and Optoelectronic Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan, Guangdong 528000, China
- Innovation and Entrepreneurship Team of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, Guangdong, 528000, China
| | - Michael Twa
- University of Houston, College of Optometry, Houston, TX 77204, USA
| |
Collapse
|
29
|
Zhang J, Fan F, Zhu L, Wang C, Chen X, Xinxiao G, Zhu J. Elasticity measurements of ocular anterior and posterior segments using optical coherence elastography. OPTICS EXPRESS 2022; 30:14311-14318. [PMID: 35473177 DOI: 10.1364/oe.456065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The changes of biomechanical properties, especially the elasticity of the ocular tissues, are closely related to some ophthalmic diseases. Currently, the ophthalmic optical coherence elastography (OCE) systems are dedicated either to the anterior segment or to the retina. The elasticity measurements of the whole eye remain challenging. Here we demonstrated an acoustic radiation force optical coherence elastography (ARF-OCE) method to quantify the elasticity of the cornea and the retina. The experiment results show that the Young's moduli of the cornea and the retina were 16.66 ± 6.51 kPa and 207.96 ± 4.75 kPa, respectively. Our method can measure the elasticity of the anterior segment and the posterior segment, and provides a powerful tool to enhance ophthalmology research.
Collapse
|
30
|
Lan G, Shi Q, Wang Y, Ma G, Cai J, Feng J, Huang Y, Gu B, An L, Xu J, Qin J, Twa MD. Spatial Assessment of Heterogeneous Tissue Natural Frequency Using Micro-Force Optical Coherence Elastography. Front Bioeng Biotechnol 2022; 10:851094. [PMID: 35360399 PMCID: PMC8962667 DOI: 10.3389/fbioe.2022.851094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
Analysis of corneal tissue natural frequency was recently proposed as a biomarker for corneal biomechanics and has been performed using high-resolution optical coherence tomography (OCT)-based elastography (OCE). However, it remains unknown whether natural frequency analysis can resolve local variations in tissue structure. We measured heterogeneous samples to evaluate the correspondence between natural frequency distributions and regional structural variations. Sub-micrometer sample oscillations were induced point-wise by microliter air pulses (60–85 Pa, 3 ms) and detected correspondingly at each point using a 1,300 nm spectral domain common path OCT system with 0.44 nm phase detection sensitivity. The resulting oscillation frequency features were analyzed via fast Fourier transform and natural frequency was characterized using a single degree of freedom (SDOF) model. Oscillation features at each measurement point showed a complex frequency response with multiple frequency components that corresponded with global structural features; while the variation of frequency magnitude at each location reflected the local sample features. Silicone blocks (255.1 ± 11.0 Hz and 249.0 ± 4.6 Hz) embedded in an agar base (355.6 ± 0.8 Hz and 361.3 ± 5.5 Hz) were clearly distinguishable by natural frequency. In a beef shank sample, central fat and connective tissues had lower natural frequencies (91.7 ± 58.2 Hz) than muscle tissue (left side: 252.6 ± 52.3 Hz; right side: 161.5 ± 35.8 Hz). As a first step, we have shown the possibility of natural frequency OCE methods to characterize global and local features of heterogeneous samples. This method can provide additional information on corneal properties, complementary to current clinical biomechanical assessments, and could become a useful tool for clinical detection of ocular disease and evaluation of medical or surgical treatment outcomes.
Collapse
Affiliation(s)
- Gongpu Lan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
- *Correspondence: Gongpu Lan, ; Michael D. Twa,
| | - Qun Shi
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Yicheng Wang
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Guoqin Ma
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Jing Cai
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
| | - Jinping Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, China
| | - Yanping Huang
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
| | - Boyu Gu
- School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin, China
| | - Lin An
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
| | - Jingjiang Xu
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
| | - Jia Qin
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX, United States
- *Correspondence: Gongpu Lan, ; Michael D. Twa,
| |
Collapse
|
31
|
Veysset D, Ling T, Zhuo Y, Pandiyan VP, Sabesan R, Palanker D. Interferometric imaging of thermal expansion for temperature control in retinal laser therapy. BIOMEDICAL OPTICS EXPRESS 2022; 13:728-743. [PMID: 35284191 PMCID: PMC8884207 DOI: 10.1364/boe.448803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Precise control of the temperature rise is a prerequisite for proper photothermal therapy. In retinal laser therapy, the heat deposition is primarily governed by the melanin concentration, which can significantly vary across the retina and from patient to patient. In this work, we present a method for determining the optical and thermal properties of layered materials, directly applicable to the retina, using low-energy laser heating and phase-resolved optical coherence tomography (pOCT). The method is demonstrated on a polymer-based tissue phantom heated with a laser pulse focused onto an absorbing layer buried below the phantom's surface. Using a line-scan spectral-domain pOCT, optical path length changes induced by the thermal expansion were extracted from sequential B-scans. The material properties were then determined by matching the optical path length changes to a thermo-mechanical model developed for fast computation. This method determined the absorption coefficient with a precision of 2.5% and the temperature rise with a precision of about 0.2°C from a single laser exposure, while the peak did not exceed 8°C during 1 ms pulse, which is well within the tissue safety range and significantly more precise than other methods.
Collapse
Affiliation(s)
- David Veysset
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| | - Tong Ling
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
- Present address: School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Yueming Zhuo
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Sirotin MA, Romodina MN, Lyubin EV, Soboleva IV, Fedyanin AA. Single-cell all-optical coherence elastography with optical tweezers. BIOMEDICAL OPTICS EXPRESS 2022; 13:14-25. [PMID: 35154850 PMCID: PMC8803033 DOI: 10.1364/boe.444813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 06/01/2023]
Abstract
The elastic properties of cells are important for many of their functions, however the development of label free noninvasive cellular elastography method is a challenging topic. We present a novel single-cell all-optical coherence elastography method that combines optical tweezers producing mechanical excitation on the cell membrane or organelle and phase-sensitive optical coherence microscopy measuring sample response and determining its mechanical properties. The method allows living cells imaging with a lateral resolution of 0.5 μm and an axial resolution up to 10 nm, making it possible to detect nanometer displacements of the cell organelles and to record the propagation of mechanical wave along the cell membrane in response to optical tweezers excitation. We also demonstrate applicability of the method on single living red blood cells, yeast and cancer cells. The all-optical nature of the method developed makes it a promising and easily applicable tool for studying cellular and subcellular mechanics in vivo.
Collapse
Affiliation(s)
- Maxim A. Sirotin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Maria N. Romodina
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Evgeny V. Lyubin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina V. Soboleva
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Andrey A. Fedyanin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
33
|
Liu X, Wan Z, Zhang Y, Liu Y. Optically computed phase microscopy for quantitative dynamic imaging of label-free cells and nanoparticles. BIOMEDICAL OPTICS EXPRESS 2022; 13:514-524. [PMID: 35154889 PMCID: PMC8803025 DOI: 10.1364/boe.449034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Numerous drug delivery systems based on nanoparticles have been developed, such as those used in BioNTech/Pfizer's and Moderna's Covid vaccines. Knowledge on mechanical interactions between cells and nanoparticles is critical to advance the efficiency and safety of these drug delivery systems. To quantitatively track the motion of cell (transparent) and nanoparticles (nontransparent) with nanometer displacement sensitivity, we investigate a novel imaging technology, optically computed phase microscopy (OCPM) that processes 3D spatial-spectral data through optical computation. We demonstrate that OCPM has the capability to image the motion of cells and magnetic nanoparticles that are mechanically excited by an external magnetic field, quantitatively and in the en face plane.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA
| | - Zhaoxiong Wan
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA
| | - Yuanwei Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA
| | - Yuwei Liu
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA
| |
Collapse
|
34
|
Bouma B, de Boer J, Huang D, Jang I, Yonetsu T, Leggett C, Leitgeb R, Sampson D, Suter M, Vakoc B, Villiger M, Wojtkowski M. Optical coherence tomography. NATURE REVIEWS. METHODS PRIMERS 2022; 2:79. [PMID: 36751306 PMCID: PMC9901537 DOI: 10.1038/s43586-022-00162-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Optical coherence tomography (OCT) is a non-contact method for imaging the topological and internal microstructure of samples in three dimensions. OCT can be configured as a conventional microscope, as an ophthalmic scanner, or using endoscopes and small diameter catheters for accessing internal biological organs. In this Primer, we describe the principles underpinning the different instrument configurations that are tailored to distinct imaging applications and explain the origin of signal, based on light scattering and propagation. Although OCT has been used for imaging inanimate objects, we focus our discussion on biological and medical imaging. We examine the signal processing methods and algorithms that make OCT exquisitely sensitive to reflections as weak as just a few photons and that reveal functional information in addition to structure. Image processing, display and interpretation, which are all critical for effective biomedical imaging, are discussed in the context of specific applications. Finally, we consider image artifacts and limitations that commonly arise and reflect on future advances and opportunities.
Collapse
Affiliation(s)
- B.E. Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Institute for Medical Engineering and Physics, Massachusetts Institute of Technology, Cambridge, MA, USA,Harvard Medical School, Boston, MA, USA,Corresponding author:
| | - J.F. de Boer
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - D. Huang
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - I.K. Jang
- Harvard Medical School, Boston, MA, USA,Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - T. Yonetsu
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | - C.L. Leggett
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - R. Leitgeb
- Institute of Medical Physics, University of Vienna, Wien, Austria
| | - D.D. Sampson
- School of Physics and School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - M. Suter
- Harvard Medical School, Boston, MA, USA,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - B. Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - M. Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - M. Wojtkowski
- Institute of Physical Chemistry and International Center for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland,Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
35
|
Han X, Zhang Y, Zhu Y, Zhao Y, Yang H, Liu G, Ai S, Wang Y, Xie C, Shi J, Zhang T, Huang G, He X. Quantification of biomechanical properties of human corneal scar using acoustic radiation force optical coherence elastography. Exp Biol Med (Maywood) 2021; 247:462-469. [PMID: 34861122 PMCID: PMC8943333 DOI: 10.1177/15353702211061881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biomechanical properties of corneal scar are strongly correlated with many corneal diseases and some types of corneal surgery, however, there is no elasticity information available about corneal scar to date. Here, we proposed an acoustic radiation force optical coherence elastography system to evaluate corneal scar elasticity. Elasticity quantification was first conducted on ex vivo rabbit corneas, and the results validate the efficacy of our system. Then, experiments were performed on an ex vivo human scarred cornea, where the structural features, the elastic wave propagations, and the corresponding Young's modulus of both the scarred region and the normal region were achieved and based on this, 2D spatial distribution of Young's modulus of the scarred cornea was depicted. Up to our knowledge, we realized the first elasticity quantification of corneal scar, which may provide a potent tool to promote clinical research on the disorders and surgery of the cornea.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Yubao Zhang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Yirui Zhu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Yanzhi Zhao
- The Third Affiliated Hospital of Nanchang University, Nanchang 330008, P. R. China
| | - Hongwei Yang
- The Third Affiliated Hospital of Nanchang University, Nanchang 330008, P. R. China
| | - Guo Liu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Sizhu Ai
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Yidi Wang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Chengfeng Xie
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Jiulin Shi
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Tianyu Zhang
- Key Laboratory of Geophysical Exploration Equipment, Ministry of Education, College of Instrumentation & Electrical Engineering, 12510Jilin University, Changchun 130012, P. R. China
| | - Guofu Huang
- The Third Affiliated Hospital of Nanchang University, Nanchang 330008, P. R. China
| | - Xingdao He
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| |
Collapse
|
36
|
Li Y, Murthy RS, Zhu Y, Zhang F, Tang J, Mehrabi JN, Kelly KM, Chen Z. 1.7-Micron Optical Coherence Tomography Angiography for Characterization of Skin Lesions-A Feasibility Study. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2507-2512. [PMID: 33999817 PMCID: PMC8834583 DOI: 10.1109/tmi.2021.3081066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Optical coherence tomography (OCT) is a non-invasive diagnostic method that offers real-time visualization of the layered architecture of the skin in vivo. The 1.7-micron OCT system has been applied in cardiology, gynecology and dermatology, demonstrating an improved penetration depth in contrast to conventional 1.3-micron OCT. To further extend the capability, we developed a 1.7-micron OCT/OCT angiography (OCTA) system that allows for visualization of both morphology and microvasculature in the deeper layers of the skin. Using this imaging system, we imaged human skin with different benign lesions and described the corresponding features of both structure and vasculature. The significantly improved imaging depth and additional functional information suggest that the 1.7-micron OCTA system has great potential to advance both dermatological clinical and research settings for characterization of benign and cancerous skin lesions.
Collapse
|
37
|
Doppler Optical Coherence Tomography for Otology Applications: From Phantom Simulation to In Vivo Experiment. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In otology, visualization and vibratory analysis have been crucial to enhance the success of diagnosis and surgical operation. Optical coherence tomography (OCT) has been employed in otology to obtain morphological structure of tissues non-invasively, owing to the ability of measuring the entire region of tympanic membrane, which compensates the limitations of conventional methods. As a functional extension of OCT, Doppler OCT, which enables the measurement of the motion information with structural data of tissue, has been applied in otology. Over the years, Doppler OCT systems have been evolved in various forms to enhance the measuring sensitivity of phase difference. In this review, we provide representative algorithms of Doppler OCT and various applications in otology from preclinical analysis to clinical experiments and discuss future developments.
Collapse
|
38
|
Hepburn MS, Foo KY, Wijesinghe P, Munro PRT, Chin L, Kennedy BF. Speckle-dependent accuracy in phase-sensitive optical coherence tomography. OPTICS EXPRESS 2021; 29:16950-16968. [PMID: 34154247 DOI: 10.1364/oe.417954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/26/2021] [Indexed: 05/25/2023]
Abstract
Phase-sensitive optical coherence tomography (OCT) is used to measure motion in a range of techniques, such as Doppler OCT and optical coherence elastography (OCE). In phase-sensitive OCT, motion is typically estimated using a model of the OCT signal derived from a single reflector. However, this approach is not representative of turbid samples, such as tissue, which exhibit speckle. In this study, for the first time, we demonstrate, through theory and experiment that speckle significantly lowers the accuracy of phase-sensitive OCT in a manner not accounted for by the OCT signal-to-noise ratio (SNR). We describe how the inaccuracy in speckle reduces phase difference sensitivity and introduce a new metric, speckle brightness, to quantify the amount of constructive interference at a given location in an OCT image. Experimental measurements show an almost three-fold degradation in sensitivity between regions of high and low speckle brightness at a constant OCT SNR. Finally, we apply these new results in compression OCE to demonstrate a ten-fold improvement in strain sensitivity, and a five-fold improvement in contrast-to-noise by incorporating independent speckle realizations. Our results show that speckle introduces a limit to the accuracy of phase-sensitive OCT and that speckle brightness should be considered to avoid erroneous interpretation of experimental data.
Collapse
|
39
|
Comparison of Pulse Wave Signal Monitoring Techniques with Different Fiber-Optic Interferometric Sensing Elements. PHOTONICS 2021. [DOI: 10.3390/photonics8050142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pulse wave (PW) measurement is a highly prominent technique, used in biomedical diagnostics. Development of novel PW sensors with increased accuracy and reduced susceptibility to motion artifacts will pave the way to more advanced healthcare technologies. This paper reports on a comparison of performance of fiber optic pulse wave sensors, based on Fabry–Perot interferometer, fiber Bragg grating, optical coherence tomography (OCT) and singlemode-multimode-singlemode intermodal interferometer. Their performance was tested in terms of signal to noise ratio, repeatability of demodulated signals and suitability of demodulated signals for extraction of information about direct and reflected waves. It was revealed that the OCT approach of PW monitoring provided the best demodulated signal quality and was most robust against motion artifacts. Advantages and drawbacks of all compared PW measurement approaches in terms of practical questions, such as multiplexing capabilities and abilities to be interrogated by portable hardware are discussed.
Collapse
|
40
|
Kumar A, Georgiev S, Salas M, Leitgeb RA. Digital adaptive optics based on digital lateral shearing of the computed pupil field for point scanning retinal swept source OCT. BIOMEDICAL OPTICS EXPRESS 2021; 12:1577-1592. [PMID: 33796374 PMCID: PMC7984793 DOI: 10.1364/boe.416569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
A novel non-iterative digital adaptive optics technique is presented in which the wavefront error is calculated using the phase difference between the pupil field and its digital copies translated by a pixel along the horizontal and vertical direction in the pupil plane. This method provides slope data per pixel, thus can generate > 50k local slope data samples for a circular pupil of diameter 256 pixels with high accuracy and dynamic range. It offers more than 12x faster computational speed in comparison to the sub-aperture based digital adaptive optics method. Furthermore, it is independent of any system parameters, the light distribution in the pupil plane, or the intensity of the image. The technique is useful in applications such as interferometric or digital holography based microscopy, metrology, and as digital wavefront sensor in adaptive optics, where focusing of light in the sample is involved that creates a guide star or where the sample itself exhibits guide star-like structures. This technique is implemented in a point scanning swept-source OCT at 1060 nm, and a large wavefront error with a peak to valley of 20 radians and root mean square error of 0.71 waves is detected and corrected in case of a micro-beads phantom sample. Also, human photoreceptor images are recovered from aberrated retinal OCT volumes acquired at eccentricities of 2 and 2.5 degrees from the fovea in vivo.
Collapse
Affiliation(s)
- Abhishek Kumar
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Wavesense Engineering GmbH, Vienna, Austria
- These authors contributed equally to this work
| | - Stefan Georgiev
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Vienna Institute for Research in Ocular Surgery, Austria
- These authors contributed equally to this work
| | - Matthias Salas
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Rainer A. Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to Medicine, Medical University of Vienna, Austria
| |
Collapse
|
41
|
Li A, Du C, Volkow ND, Pan Y. A deep-learning-based approach for noise reduction in high-speed optical coherence Doppler tomography. JOURNAL OF BIOPHOTONICS 2020; 13:e202000084. [PMID: 32649059 PMCID: PMC7722172 DOI: 10.1002/jbio.202000084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 05/30/2023]
Abstract
Optical coherence Doppler tomography (ODT) increasingly attracts attention because of its unprecedented advantages with respect to high contrast, capillary-level resolution and flow speed quantification. However, the trade-off between the signal-to-noise ratio of ODT images and A-scan sampling density significantly slows down the imaging speed, constraining its clinical applications. To accelerate ODT imaging, a deep-learning-based approach is proposed to suppress the overwhelming phase noise from low-sampling density. To handle the issue of limited paired training datasets, a generative adversarial network is performed to implicitly learn the distribution underlying Doppler phase noise and to generate the synthetic data. Then a 3D based convolutional neural network is trained and applied for the image denoising. We demonstrate this approach outperforms traditional denoise methods in noise reduction and image details preservation, enabling high speed ODT imaging with low A-scan sampling density.
Collapse
Affiliation(s)
- Ang Li
- Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Congwu Du
- Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yingtian Pan
- Biomedical Engineering, Stony Brook University, Stony Brook, New York
| |
Collapse
|
42
|
Du C, Volkow ND, You J, Park K, Allen CP, Koob GF, Pan Y. Cocaine-induced ischemia in prefrontal cortex is associated with escalation of cocaine intake in rodents. Mol Psychiatry 2020; 25:1759-1776. [PMID: 30283033 PMCID: PMC6447479 DOI: 10.1038/s41380-018-0261-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/13/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
Abstract
Cocaine-induced vasoconstriction reduces blood flow, which can jeopardize neuronal function and in the prefrontal cortex (PFC) it may contribute to compulsive cocaine intake. Here, we used integrated optical imaging in a rat self-administration and a mouse noncontingent model, to investigate whether changes in the cerebrovascular system in the PFC contribute to cocaine self-administration, and whether they recover with detoxification. In both animal models, cocaine induced severe vasoconstriction and marked reductions in cerebral blood flow (CBF) in the PFC, which were exacerbated with chronic exposure and with escalation of cocaine intake. Though there was a significant proliferation of blood vessels in areas of vasoconstriction (angiogenesis), CBF remained reduced even after 1 month of detoxification. Treatment with Nifedipine (Ca2+ antagonist and vasodilator) prevented cocaine-induced CBF decreases and neuronal Ca2+ changes in the PFC, and decreased cocaine intake and blocked reinstatement of drug seeking. These findings provide support for the hypothesis that cocaine-induced CBF reductions lead to neuronal deficits that contribute to hypofrontality and to compulsive-like cocaine intake in addiction, and document that these deficits persist at least one month after detoxification. Our preliminary data showed that nifedipine might be beneficial in preventing cocaine-induced vascular toxicity and in reducing cocaine intake and preventing relapse.
Collapse
Affiliation(s)
- Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism,
National Institutes of Health, Bethesda, MD 20857
| | - Jiang You
- Department of Biomedical Engineering, Stony Brook
University, Stony Brook, NY 11794
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook
University, Stony Brook, NY 11794
| | - Craig P. Allen
- Department of Biomedical Engineering, Stony Brook
University, Stony Brook, NY 11794
| | - George F. Koob
- National Institute on Drug Abuse, National Institutes of
Health, Bethesda, MD 20892
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
43
|
Braaf B, Donner S, Uribe-Patarroyo N, Bouma BE, Vakoc BJ. A Neural Network Approach to Quantify Blood Flow from Retinal OCT Intensity Time-Series Measurements. Sci Rep 2020; 10:9611. [PMID: 32541887 PMCID: PMC7295995 DOI: 10.1038/s41598-020-66158-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/12/2020] [Indexed: 12/31/2022] Open
Abstract
Many diseases of the eye are associated with alterations in the retinal vasculature that are possibly preceded by undetected changes in blood flow. In this work, a robust blood flow quantification framework is presented based on optical coherence tomography (OCT) angiography imaging and deep learning. The analysis used a forward signal model to simulate OCT blood flow data for training of a neural network (NN). The NN was combined with pre- and post-processing steps to create an analysis framework for measuring flow rates from individual blood vessels. The framework’s accuracy was validated using both blood flow phantoms and human subject imaging, and across flow speed, vessel angle, hematocrit levels, and signal-to-noise ratio. The reported flow rate of the calibrated NN framework was measured to be largely independent of vessel angle, hematocrit levels, and measurement signal-to-noise ratio. In vivo retinal flow rate measurements were self-consistent across vascular branch points, and approximately followed a predicted power-law dependence on the vessel diameter. The presented OCT-based NN flow rate estimation framework addresses the need for a robust, deployable, and label-free quantitative retinal blood flow mapping technique.
Collapse
Affiliation(s)
- Boy Braaf
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | - Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Brett E Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin J Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Lan G, Larin KV, Aglyamov S, Twa MD. Characterization of natural frequencies from nanoscale tissue oscillations using dynamic optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2020; 11:3301-3318. [PMID: 32637256 PMCID: PMC7316029 DOI: 10.1364/boe.391324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 05/09/2023]
Abstract
We demonstrate the use of OCT-based elastography for soft-tissue characterization using natural frequency oscillations. Sub-micrometer to sub-nanometer oscillations were induced in tissue phantoms and human cornea in vivo by perpendicular air-pulse stimulation and observed by common-path OCT imaging (sensitivity: 0.24 nm). Natural frequency and damping ratio were acquired in temporal and frequency domains using a single degree of freedom method. The dominant natural frequency was constant for different stimulation pressures (4-32 Pa) and measured distances (0.3-5.3 mm), and decreased as the sample thickness increased. The dominant natural frequencies of 0.75-2% agar phantoms were 127-774 Hz (mean coefficient of variation [CV]: 0.9%), and correlated with the square root of Young's moduli (16.5-117.8 kPa, mean CV: 5.8%). These preliminary studies show repeatable in vivo corneal natural frequency measurements (259 Hz, CV: 1.9%). This novel OCE approach can distinguish tissues and materials with different mechanical properties using the small-amplitude tissue oscillation features, and is suitable for characterizing delicate tissues in vivo such as the eye.
Collapse
Affiliation(s)
- Gongpu Lan
- Foshan University, School of Physics and Optoelectronic Engineering, Foshan, Guangdong, 528000, China
- University of Alabama at Birmingham, School of Optometry, Birmingham, AL 35290, USA
- University of Houston, College of Optometry, Houston, TX 77204, USA
| | - Kirill V. Larin
- University of Houston, Biomedical Engineering, Houston, TX 77204, USA
| | - Salavat Aglyamov
- University of Houston, Mechanical Engineering, Houston, TX 77204, USA
| | - Michael D. Twa
- University of Alabama at Birmingham, School of Optometry, Birmingham, AL 35290, USA
- University of Houston, College of Optometry, Houston, TX 77204, USA
| |
Collapse
|
45
|
Li Y, Moon S, Chen JJ, Zhu Z, Chen Z. Ultrahigh-sensitive optical coherence elastography. LIGHT, SCIENCE & APPLICATIONS 2020; 9:58. [PMID: 32337022 PMCID: PMC7154028 DOI: 10.1038/s41377-020-0297-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 05/07/2023]
Abstract
The phase stability of an optical coherence elastography (OCE) system is the key determining factor for achieving a precise elasticity measurement, and it can be affected by the signal-to-noise ratio (SNR), timing jitters in the signal acquisition process, and fluctuations in the optical path difference (OPD) between the sample and reference arms. In this study, we developed an OCE system based on swept-source optical coherence tomography (SS-OCT) with a common-path configuration (SS-OCECP). Our system has a phase stability of 4.2 mrad without external stabilization or extensive post-processing, such as averaging. This phase stability allows us to detect a displacement as small as ~300 pm. A common-path interferometer was incorporated by integrating a 3-mm wedged window into the SS-OCT system to provide intrinsic compensation for polarization and dispersion mismatch, as well as to minimize phase fluctuations caused by the OPD variation. The wedged window generates two reference signals that produce two OCT images, allowing for averaging to improve the SNR. Furthermore, the electrical components are optimized to minimize the timing jitters and prevent edge collisions by adjusting the delays between the trigger, k-clock, and signal, utilizing a high-speed waveform digitizer, and incorporating a high-bandwidth balanced photodetector. We validated the SS-OCECP performance in a tissue-mimicking phantom and an in vivo rabbit model, and the results demonstrated a significantly improved phase stability compared to that of the conventional SS-OCE. To the best of our knowledge, we demonstrated the first SS-OCECP system, which possesses high-phase stability and can be utilized to significantly improve the sensitivity of elastography.
Collapse
Affiliation(s)
- Yan Li
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92612 USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617 USA
| | - Sucbei Moon
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92612 USA
- Department of Physics, Kookmin University, Seoul, 02707 South Korea
| | - Jason J. Chen
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92612 USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617 USA
| | - Zhikai Zhu
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92612 USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617 USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92612 USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617 USA
| |
Collapse
|
46
|
Lan G, Gu B, Larin KV, Twa MD. Clinical Corneal Optical Coherence Elastography Measurement Precision: Effect of Heartbeat and Respiration. Transl Vis Sci Technol 2020; 9:3. [PMID: 32821475 PMCID: PMC7401940 DOI: 10.1167/tvst.9.5.3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/30/2019] [Indexed: 01/29/2023] Open
Abstract
Purpose Normal physiological movements (e.g., respiration and heartbeat) induce eye motions during clinical measurements of human corneal biomechanical properties using optical coherence elastography (OCE). We quantified the effects of respiratory and cardiac-induced eye motions on clinical corneal OCE measurement precision and repeatability. Methods Corneal OCE was performed using low-force, micro-air-pulse tissue stimulation and high-resolution phase-sensitive optical coherence tomography (OCT) imaging. Axial surface displacements of the corneal apex were measured (M-mode) at a 70-kHz sampling rate and three different stimulation pressures (20-60 Pa). Simultaneously, the axial corneal position was tracked with structural OCT imaging, while the heartrate and respiration were monitored over a 90 second period. Results Respiratory- and cardiac-induced eye motions have distinctly lower frequency (0.1-1 Hz) and much greater amplitude (up to ± 50 µm movements) than air-pulse-induced corneal tissue deformations (∼250 Hz, <1 µm). The corneal displacements induced during OCE measurements in vivo were -0.41 ± 0.06 µm (n = 22 measurements, coefficient of variation [CV]: 14.6%) and -0.44 ± 0.07 µm (n = 50 measurements, CV: 15.9%), respectively, from two human subjects at 40 Pa stimulation pressure. Observed variation in corneal tissue displacements were not associated with tissue stimulation magnitude, or the amplitude of physiologically induced axial eye motion. Conclusions The microsecond timescale and submicron tissue displacements observed during corneal OCE measurements are separable from normal involuntary physiological movements, such as the oculocardiac pulse and respiratory movements. Translational Relevance This work advances innovations in biomedical imaging and engineering for clinical diagnostic applications for soft-tissue biomechanical testing.
Collapse
Affiliation(s)
- Gongpu Lan
- Department of Photoelectric Technology, Foshan University, Foshan, Guangdong, China.,School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Boyu Gu
- Department of Ophthalmology, Doheny Eye Institute, University of California -Los Angeles, Los Angeles, CA, USA
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Michael D Twa
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA.,College of Optometry, University of Houston, Houston, TX, USA
| |
Collapse
|
47
|
Ferris NG, Cannon TM, Villiger M, Bouma BE, Uribe-Patarroyo N. Forward multiple scattering dominates speckle decorrelation in whole-blood flowmetry using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:1947-1966. [PMID: 32341859 PMCID: PMC7173878 DOI: 10.1364/boe.384539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 05/22/2023]
Abstract
Quantitative blood flow measurements using optical coherence tomography (OCT) have a wide potential range of medical research and clinical applications. Flowmetry based on the temporal dynamics of the OCT signal may have the ability to measure three-dimensional flow profiles regardless of the flow direction. State-of-the-art models describing the OCT signal temporal statistics are based on dynamic light scattering (DLS), a model which is inherently limited to single scattering regimes. DLS methods continue to be applied to OCT despite the knowledge that red blood cells produce strong forward multiple scattering. Here, we postulate that forward multiple scattering is the primary mechanism causing the rate of speckle-decorrelation derived from data acquired in vivo to deviate from the rate of decorrelation determined in phantom experiments. We also postulate that multiple scattering contributions to decorrelation are only present when the sample exhibits velocity field inhomogeneities larger than the scale of a resolution volume and are thus absent in rigid bulk motion. To test these hypotheses, we performed a systematic study of the effects of forward multiple scattering on OCT signal decorrelation with phantom experiments under physiologically relevant flow conditions and relative bulk motion. Our experimental results confirm that the amount of forward multiple scattering affects the proportionality between lateral flow and decorrelation. We propose that multiply scattered light carries information from different locations in the sample and each location imprints scattering dynamics on the scattered light causing increased decorrelation rates. Our analysis confirms that the detection of forward scattered light inside the vessel lumen causes an increase in the rate of decorrelation which results in an overestimation of blood flow velocities at depths as shallow as 40 µm into whole blood for OCT systems with typical numerical apertures used in retinal imaging.
Collapse
Affiliation(s)
- Natalie G. Ferris
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Harvard Graduate Program in Biophysics, Harvard University Cambridge, Massachusetts 02139, USA
| | - Taylor M. Cannon
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Brett E. Bouma
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Institute for Medical Engineering and Science, MIT, Massachusetts 02139, USA
| | - Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
48
|
Yoshioka T, Song Y, Kawai M, Tani T, Takahashi K, Ishiko S, Lavinsky F, Wollstein G, Ishikawa H, Schuman JS, Yoshida A. Retinal blood flow reduction in normal-tension glaucoma with single-hemifield damage by Doppler optical coherence tomography. Br J Ophthalmol 2020; 105:124-130. [PMID: 32217540 DOI: 10.1136/bjophthalmol-2019-315616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/31/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
Abstract
AIMS To evaluate the associations between retinal blood flow (RBF) and optical coherence tomography (OCT) structural measurements in normal-tension glaucoma (NTG) eyes with single-hemifield visual field (VF) damage by the Doppler OCT. METHODS The Doppler OCT was used to measure temporal artery (TA) RBF and temporal vein (TV) RBF. Retinal nerve fibre layer thickness (RNFLT) was measured by spectral-domain OCT. RESULTS Forty-three consecutive eyes of 43 patients with NTG with VF defect confined to a single hemifield and 24 eyes of 24 age-matched healthy subjects were studied. TA and TV RBF and RNFLT were reduced in the damaged hemisphere compared with the normal hemisphere (mean (SD), 3.61 (1.68) vs 5.86 (2.59) µL/min, p<0.001; 5.61 (2.51) vs 6.94 (2.83) µL/min, p=0.010; 69.0 (19.7) vs 99.7 (22.8) µm, p<0.001). Those values in the normal hemisphere of NTG eyes also decreased compared with the healthy hemisphere of the healthy eyes (8.40 (3.36) µL/min, p<0.001; 9.28 (4.47) µL/min, p<0.002; 122.8 (20.2) µm, p<0.001). Multivariate model showed that normal and damaged hemispheres and RNFLT were associated with RBF reduction. In addition, the RBF in the normal hemisphere was lower than that in the healthy hemisphere even after adjusting for RNFLT. CONCLUSION In NTG eyes with single-hemifield damage, the RBF was significantly reduced in the damaged hemisphere compared with the normal one. The RBF decreased in the normal and damaged hemispheres of NTG eyes compared with the healthy hemisphere independent from RNFLT.
Collapse
Affiliation(s)
- Takafumi Yoshioka
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Youngseok Song
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Motofumi Kawai
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Tomofumi Tani
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kengo Takahashi
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Satoshi Ishiko
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | | | - Gadi Wollstein
- NYU Langone Eye Center, New York University School of Medicine, New York, New York, USA
| | - Hiroshi Ishikawa
- NYU Langone Eye Center, New York University School of Medicine, New York, New York, USA
| | - Joel S Schuman
- NYU Langone Eye Center, New York University School of Medicine, New York, New York, USA
| | - Akitoshi Yoshida
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
49
|
Pijewska E, Sylwestrzak M, Gorczynska I, Tamborski S, Pawlak MA, Szkulmowski M. Blood flow rate estimation in optic disc capillaries and vessels using Doppler optical coherence tomography with 3D fast phase unwrapping. BIOMEDICAL OPTICS EXPRESS 2020; 11:1336-1353. [PMID: 32206414 PMCID: PMC7075620 DOI: 10.1364/boe.382155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 05/25/2023]
Abstract
The retinal volumetric flow rate contains useful information not only for ophthalmology but also for the diagnosis of common civilization diseases such as diabetes, Alzheimer's disease, or cerebrovascular diseases. Non-invasive optical methods for quantitative flow assessment, such as Doppler optical coherence tomography (OCT), have certain limitations. One is the phase wrapping that makes simultaneous calculations of the flow in all human retinal vessels impossible due to a very large span of flow velocities. We demonstrate that three-dimensional Doppler OCT combined with three-dimensional four Fourier transform fast phase unwrapping (3D 4FT FPU) allows for the calculation of the volumetric blood flow rate in real-time by the implementation of the algorithms in a graphics processing unit (GPU). The additive character of the flow at the furcations is proven using a microfluidic device with controlled flow rates as well as in the retinal veins bifurcations imaged in the optic disc area of five healthy volunteers. We show values of blood flow rates calculated for retinal capillaries and vessels with diameters in the range of 12-150 µm. The potential of quantitative measurement of retinal blood flow volume includes noninvasive detection of carotid artery stenosis or occlusion, measuring vascular reactivity and evaluation of vessel wall stiffness.
Collapse
Affiliation(s)
- Ewelina Pijewska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, 87-100 Torun, Poland
| | - Marcin Sylwestrzak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, 87-100 Torun, Poland
| | - Iwona Gorczynska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, 87-100 Torun, Poland
| | - Szymon Tamborski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, 87-100 Torun, Poland
| | - Mikolaj A. Pawlak
- Department of Neurology and Cerebrovascular Disorders, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznań, Poland
- Department of Clinical Genetics, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Maciej Szkulmowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, 87-100 Torun, Poland
| |
Collapse
|
50
|
You J, Pan C, Park K, Li A, Du C. In vivo detection of tumor boundary using ultrahigh-resolution optical coherence angiography and fluorescence imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e201960091. [PMID: 31778294 PMCID: PMC7446292 DOI: 10.1002/jbio.201960091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/22/2019] [Accepted: 11/17/2019] [Indexed: 06/01/2023]
Abstract
Accurate detection of early tumor margin is of great preclinical and clinical implications for predicting the survival rate of subjects and assessing the response of tumor microenvironment to chemotherapy or radiation therapy. Here, we report a multimodality optical imaging study on in vivo detection of tumor boundary by analyzing neoangiogenesis of tumor microenvironment (microangiography), microcirculatory blood flow (optical Doppler tomography) and tumor proliferation (green fluorescent protein [GFP] fluorescence). Microangiography demonstrates superior sensitivity (77.7 ± 6.4%) and specificity (98.2 ± 1.7%) over other imaging technologies (eg, optical coherence tomography) for tumor margin detection. Additionally, we report longitudinal in vivo imaging of tumor progression and show that the abrupt tumor cell proliferation did not occur until local capillary density and cerebral blood flow reached their peak approximately 2 weeks after tumor implantation. The unique capability of longitudinal multimodality imaging of tumor angiogenesis may provide new insights in tumor biology and in vivo assessment of the treatment effects on anti-angiogenesis therapy for brain cancer.
Collapse
Affiliation(s)
- Jiang You
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Chelsea Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Ang Li
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| |
Collapse
|