1
|
Tang J, Cheng X, Kilic K, Devor A, Lee J, Boas DA. Imaging localized fast optical signals of neural activation with optical coherence tomography in awake mice. OPTICS LETTERS 2021; 46:1744-1747. [PMID: 33793533 PMCID: PMC8086197 DOI: 10.1364/ol.411897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/10/2021] [Indexed: 05/05/2023]
Abstract
We report optical coherence tomography (OCT) imaging of localized fast optical signals (FOSs) arising from whisker stimulation in awake mice. The activated voxels were identified by fitting the OCT intensity signal time course with a response function over a time scale of a few hundred milliseconds after the whisker stimulation. The significantly activated voxels were shown to be localized to the expected brain region for whisker stimulation. The ability to detect functional stimulus-evoked, depth-resolved FOS with intrinsic contrast from the cortex provides a new tool for neural activity studies.
Collapse
Affiliation(s)
- Jianbo Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Xiaojun Cheng
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Kivilcim Kilic
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Anna Devor
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Jonghwan Lee
- School of Engineering, Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, USA
| | - David A. Boas
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
2
|
Chen Q, Wang DN, Feng G, Wang QH, Niu YD. Optical fiber surface waveguide with Fabry-Perot cavity for sensing. OPTICS LETTERS 2020; 45:6186-6189. [PMID: 33186946 DOI: 10.1364/ol.411236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
A parallel structured optical fiber Fabry-Perot interferometer sensor is proposed and demonstrated for refractive index and strain sensing with low temperature cross sensitivity. The device consists of two Fabry-Perot cavities fabricated by a femtosecond laser: one is inscribed in the fiber surface waveguide and used for sensing, and the other one is located in the fiber core for referencing. Part of the light propagating in the fiber core can be directed to the fiber surface waveguide via an X coupler. Because of the evanescent field, the light traveling along the fiber surface waveguide interacts with the surrounding medium and enables external refractive index sensing. The measurement sensitivity of the device is enhanced due to the Vernier effect associated with the parallel structured two Fabry-Perot interferometers. The sensitivities of ∼843.3nm/RIU and ∼101.8pm/µε have been obtained for refractive index and strain, respectively, and the corresponding temperature cross sensitivities are ∼9.6×10-6RIU/∘C and ∼7.956×10-2µε/∘C, respectively. The device is featured with high robustness, compact size, and large sensitivity.
Collapse
|
3
|
Tang P, Li Y, Rakymzhan A, Xie Z, Wang RK. Measurement and visualization of stimulus-evoked tissue dynamics in mouse barrel cortex using phase-sensitive optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:699-710. [PMID: 32206393 PMCID: PMC7041479 DOI: 10.1364/boe.381332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 01/02/2020] [Indexed: 05/24/2023]
Abstract
We describe a method to measure tissue dynamics in mouse barrel cortex during functional activation via phase-sensitive optical coherence tomography (PhS-OCT). The method measures the phase changes in OCT signals, which are induced by the tissue volume change, upon which to localize the activated tissue region. Phase unwrapping, compensation and normalization are applied to increase the dynamic range of the OCT phase detection. To guide the OCT scanning, intrinsic optical signal imaging (IOSI) system equipped with a green light laser source (532 nm) is integrated with the PhS-OCT system to provide a full field time-lapsed images of the reflectance that is used to identify the transversal 2D localized tissue response in the mouse brain. The OCT results show a localized decrease in the OCT phase signal in the activated region of the mouse brain tissue. The decrease in the phase signal may be originated from the brain tissue compression caused by the vasodilatation in the activated region. The activated region revealed in the cross-sectional OCT image is consistent with that identified by the IOSI imaging, indicating the phase change in the OCT signals may associate with the changes in the corresponding hemodynamics. In vivo localized tissue dynamics in the barrel cortex at depth during whisker stimulation is observed and monitored in this study.
Collapse
|
4
|
Zhang Y, Yao L, Yang F, Yang S, Edathodathil A, Xi W, Roe AW, Li P. INS-fOCT: a label-free, all-optical method for simultaneously manipulating and mapping brain function. NEUROPHOTONICS 2020; 7:015014. [PMID: 32258220 PMCID: PMC7108754 DOI: 10.1117/1.nph.7.1.015014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Significance: Current approaches to stimulating and recording from the brain have combined electrical or optogenetic stimulation with recording approaches, such as two-photon, electrophysiology (EP), and optical intrinsic signal imaging (OISI). However, we lack a label-free, all-optical approach with high spatial and temporal resolution. Aim: To develop a label-free, all-optical method that simultaneously manipulates and images brain function using pulsed near-infrared light (INS) and functional optical coherence tomography (fOCT), respectively. Approach: We built a coregistered INS, fOCT, and OISI system. OISI and EP recordings were employed to validate the fOCT signals. Results: The fOCT signal was reliable and regional, and the area of fOCT signal corresponded with the INS-activated region. The fOCT signal was in synchrony with the INS onset time with a delay of ∼ 30 ms . The magnitude of fOCT signal exhibited a linear correlation with the INS radiant exposure. The significant correlation between the fOCT signal and INS was further supported by OISI and EP recordings. Conclusions: The proposed fiber-based, all-optical INS-fOCT method allows simultaneous stimulation and mapping without the risk of interchannel cross-talk and the requirement of contrast injection and viral transfection and offers a deep penetration depth and high resolution.
Collapse
Affiliation(s)
- Ying Zhang
- Zhejiang University, College of Optical Science and Engineering, State Key Lab of Modern Optical Instrumentation, Hangzhou, China
- Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, Zhejiang, China
| | - Lin Yao
- Zhejiang University, College of Optical Science and Engineering, State Key Lab of Modern Optical Instrumentation, Hangzhou, China
| | - Fen Yang
- Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, Zhejiang, China
| | - Shanshan Yang
- Zhejiang University, College of Optical Science and Engineering, State Key Lab of Modern Optical Instrumentation, Hangzhou, China
| | - Akshay Edathodathil
- Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, Zhejiang, China
| | - Wang Xi
- Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, Zhejiang, China
| | - Anna Wang Roe
- Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang University, Key Laboratory of Biomedical Engineering of Ministry of Education, Hangzhou, Zhejiang, China
- Oregon Health & Sciences University, Oregon National Primate Research Center, Division of Neuroscience, Beaverton, Oregon, United States
| | - Peng Li
- Zhejiang University, College of Optical Science and Engineering, State Key Lab of Modern Optical Instrumentation, Hangzhou, China
- Zhejiang University, International Research Center for Advanced Photonics, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Sun P, Li Q, Li H, Di L, Su X, Chen J, Zheng H, Chen Y, Zhou C, Chai X. Depth-Resolved Physiological Response of Retina to Transcorneal Electrical Stimulation Measured With Optical Coherence Tomography. IEEE Trans Neural Syst Rehabil Eng 2019; 27:905-915. [PMID: 31021770 DOI: 10.1109/tnsre.2019.2912168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transcorneal electrical stimulation (TES) has become an effective strategy to modulate retinal neural activities and partially restore visual function in ophthalmic diseases. However, the exact responses in different retinal layers still need to be clarified. This paper's goal was to evaluate the depth-resolved retinal physiological responses evoked by TES by using optical coherence tomography (OCT). A custom-built spectral-domain OCT system was used to record the intrinsic optical signals (IOSs) in different retinal layers. TES and flickers were used to stimulate the retina electrically and visually. Tetrodotoxin was used to inhibit the retinal neural activity for confirming the origin of TES-induced IOSs. We found both positive and negative IOSs could be evoked by TES in three segmented retinal layers, especially in the inner retina and subretinal space. The TES-induced IOSs correlated with the TES intensity. After tetrodotoxin injection, the IOSs evoked by TES were significantly declined, peculiarly in the inner retina. The IOSs elicited by flickers kept increasing during the stimulation, while those evoked by TES kept at a stable level. In conclusion, TES could elicit IOSs that originated from retinal neural activity in all segmented layers. The TES-induced IOSs were highly synchronized to the electrical field in the retina.
Collapse
|
6
|
Hartmann K, Stein KP, Neyazi B, Sandalcioglu IE. First in vivo visualization of the human subarachnoid space and brain cortex via optical coherence tomography. Ther Adv Neurol Disord 2019; 12:1756286419843040. [PMID: 31447933 PMCID: PMC6689907 DOI: 10.1177/1756286419843040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/10/2019] [Indexed: 11/17/2022] Open
Abstract
The present work explores optical coherence tomography (OCT) as a suitable in vivo neuroimaging modality of the subarachnoid space (SAS). Patients (n = 26) with frontolateral craniotomy were recruited. The temporal and frontal arachnoid mater and adjacent anatomical structures were scanned using microscope-integrated three-dimensional OCT, (iOCT). Analysis revealed a detailed depiction of the SAS (76.9%) with delineation of the internal microanatomical structures such as the arachnoid barrier cell membrane (ABCM; 96.2%), trabecular system (50.2%), internal blood vessels (96.2%), pia mater (26.9%) and the brain cortex (96.2%). Orthogonal distance measuring was possible. The SAS showed a mean depth of 570 µm frontotemporal. The ABCM showed a mean depth of 74 µm frontotemporal. These results indicate that OCT provides a dynamic, non-invasive tool for real-time imaging of the SAS and adjacent anatomical structures at micrometer spatial resolution. Further studies are necessary to evaluate the value of OCT during microsurgical procedures.
Collapse
Affiliation(s)
- Karl Hartmann
- Department of Neurosurgery, KRH Klinikum Nordstadt, Haltenhoffstraße 41, Hanover 30167, Germany
| | - Klaus-Peter Stein
- Department of Neurosurgery, KRH Klinikum Nordstadt, Hanover, Germany
| | - Belal Neyazi
- Department of Neurosurgery, KRH Klinikum Nordstadt, Hanover, Germany
| | | |
Collapse
|
7
|
Troiani F, Nikolic K, Constandinou TG. Simulating optical coherence tomography for observing nerve activity: A finite difference time domain bi-dimensional model. PLoS One 2018; 13:e0200392. [PMID: 29990346 PMCID: PMC6039043 DOI: 10.1371/journal.pone.0200392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/24/2018] [Indexed: 11/19/2022] Open
Abstract
We present a finite difference time domain (FDTD) model for computation of A line scans in time domain optical coherence tomography (OCT). The OCT output signal is created using two different simulations for the reference and sample arms, with a successive computation of the interference signal with external software. In this paper we present the model applied to two different samples: a glass rod filled with water-sucrose solution at different concentrations and a peripheral nerve. This work aims to understand to what extent time domain OCT can be used for non-invasive, direct optical monitoring of peripheral nerve activity.
Collapse
Affiliation(s)
- Francesca Troiani
- Centre for Bio-Inspired Technology, Imperial College London, London, United Kingdom
| | - Konstantin Nikolic
- Centre for Bio-Inspired Technology, Imperial College London, London, United Kingdom
| | | |
Collapse
|
8
|
Kuo WC, Kuo YM, Syu JP, Wang HL, Lai CM, Chen JW, Lo YC, Chen YY. The use of intensity-based Doppler variance method for single vessel response to functional neurovascular activation. JOURNAL OF BIOPHOTONICS 2018; 11:e201800017. [PMID: 29688625 DOI: 10.1002/jbio.201800017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/19/2018] [Indexed: 05/09/2023]
Abstract
This study presents 1 use of optical coherence tomography (OCT) angiography technique to examine neurovascular coupling effect. Repeated B-scans OCT recording is performed on the rat somatosensory cortex with cranial window preparation while its contralateral forepaw is electrically stimulated to activate the neurons in rest. We use an intensity-based Doppler variance (IBDV) algorithm mapped cerebral blood vessels in the cortex, and the temporal alteration in blood perfusion during neurovascular activation is analyzed using the proposed IBDV quantitative parameters. By using principal component analysis-based Fuzzy C Means clustering method, the stimulus-evoked vasomotion patterns were classified into 3 categories. We found that the response time of small vessels (resting diameter 14.9 ±6.6 μm), middle vessels (resting diameter 21.1 ±7.9 μm) and large vessels (resting diameter 50.7 ±6.5 μm) to achieve 5% change of vascular dilation after stimulation was 1.5, 2 and 5.5 seconds, respectively. Approximately 5% peak change of relative blood flow (RBF) in both small and middle vessels was observed. The large vessels react slowly and their responses nearly 4 seconds delayed, but no significant change in RBF of the large vessels was seen.
Collapse
Affiliation(s)
- Wen-Chuan Kuo
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Yue-Ming Kuo
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Pu Syu
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Han-Lin Wang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Ming Lai
- Department of Electronic Engineering, Ming-Chuan University, Taoyuan, Taiwan
| | - Jia-Wei Chen
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Mokbul MI. Optical Coherence Tomography: Basic Concepts and Applications in Neuroscience Research. J Med Eng 2017; 2017:3409327. [PMID: 29214158 PMCID: PMC5682075 DOI: 10.1155/2017/3409327] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/22/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022] Open
Abstract
Optical coherence tomography is a micrometer-scale imaging modality that permits label-free, cross-sectional imaging of biological tissue microstructure using tissue backscattering properties. After its invention in the 1990s, OCT is now being widely used in several branches of neuroscience as well as other fields of biomedical science. This review study reports an overview of OCT's applications in several branches or subbranches of neuroscience such as neuroimaging, neurology, neurosurgery, neuropathology, and neuroembryology. This study has briefly summarized the recent applications of OCT in neuroscience research, including a comparison, and provides a discussion of the remaining challenges and opportunities in addition to future directions. The chief aim of the review study is to draw the attention of a broad neuroscience community in order to maximize the applications of OCT in other branches of neuroscience too, and the study may also serve as a benchmark for future OCT-based neuroscience research. Despite some limitations, OCT proves to be a useful imaging tool in both basic and clinical neuroscience research.
Collapse
Affiliation(s)
- Mobin Ibne Mokbul
- Notre Dame College, Motijheel Circular Road, Arambagh, Motijheel, Dhaka 1000, Bangladesh
| |
Collapse
|
10
|
Tong MQ, Hasan MM, Lee SS, Haque MR, Kim DH, Islam MS, Adams ME, Park BH. OCT intensity and phase fluctuations correlated with activity-dependent neuronal calcium dynamics in the Drosophila CNS [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:726-735. [PMID: 28270979 PMCID: PMC5330578 DOI: 10.1364/boe.8.000726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 05/09/2023]
Abstract
Phase-resolved OCT and fluorescence microscopy were used simultaneously to examine stereotypic patterns of neural activity in the isolated Drosophila central nervous system. Both imaging modalities were focused on individually identified bursicon neurons known to be involved in a fixed action pattern initiated by ecdysis-triggering hormone. We observed clear correspondence of OCT intensity, phase fluctuations, and activity-dependent calcium-induced fluorescence.
Collapse
Affiliation(s)
- Minh Q. Tong
- Graduate Program in Neuroscience, University of California, Riverside, CA 92521, USA
| | - Md. Monirul Hasan
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA 92521, USA
| | - Sang Soo Lee
- Graduate Program in Neuroscience, University of California, Riverside, CA 92521, USA
| | - Md. Rezuanul Haque
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA 92521, USA
| | - Do-Hyoung Kim
- Department of Entomology, University of California, 900 University Ave, Riverside, CA 92521, USA
- Current Affiliation Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Md. Shahidul Islam
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA 92521, USA
| | - Michael E. Adams
- Graduate Program in Neuroscience, University of California, Riverside, CA 92521, USA
- Department of Entomology, University of California, 900 University Ave, Riverside, CA 92521, USA
- Department of Cell Biology & Neuroscience, University of California, 900 University Ave, Riverside, CA 92521, USA
| | - B. Hyle Park
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA 92521, USA
| |
Collapse
|
11
|
Men J, Huang Y, Solanki J, Zeng X, Alex A, Jerwick J, Zhang Z, Tanzi RE, Li A, Zhou C. Optical Coherence Tomography for Brain Imaging and Developmental Biology. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6803213. [PMID: 27721647 PMCID: PMC5049888 DOI: 10.1109/jstqe.2015.2513667] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) is a promising research tool for brain imaging and developmental biology. Serving as a three-dimensional optical biopsy technique, OCT provides volumetric reconstruction of brain tissues and embryonic structures with micrometer resolution and video rate imaging speed. Functional OCT enables label-free monitoring of hemodynamic and metabolic changes in the brain in vitro and in vivo in animal models. Due to its non-invasiveness nature, OCT enables longitudinal imaging of developing specimens in vivo without potential damage from surgical operation, tissue fixation and processing, and staining with exogenous contrast agents. In this paper, various OCT applications in brain imaging and developmental biology are reviewed, with a particular focus on imaging heart development. In addition, we report findings on the effects of a circadian gene (Clock) and high-fat-diet on heart development in Drosophila melanogaster. These findings contribute to our understanding of the fundamental mechanisms connecting circadian genes and obesity to heart development and cardiac diseases.
Collapse
Affiliation(s)
- Jing Men
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Yongyang Huang
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Jitendra Solanki
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Xianxu Zeng
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Aneesh Alex
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Jason Jerwick
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Zhan Zhang
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, 02129
| | - Airong Li
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, 02129
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| |
Collapse
|
12
|
Watanabe H, Rajagopalan UM, Nakamichi Y, Igarashi KM, Kadono H, Tanifuji M. Functional optical coherence tomography of rat olfactory bulb with periodic odor stimulation. BIOMEDICAL OPTICS EXPRESS 2016; 7:841-54. [PMID: 27231593 PMCID: PMC4866460 DOI: 10.1364/boe.7.000841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 05/30/2023]
Abstract
In rodent olfactory bulb (OB), optical intrinsic signal imaging (OISI) is commonly used to investigate functional maps to odorant stimulations. However, in such studies, the spatial resolution in depth direction (z-axis) is lost because of the integration of light from different depths. To solve this problem, we propose functional optical coherence tomography (fOCT) with periodic stimulation and continuous recording. In fOCT experiments of in vivo rat OB, propionic acid and m-cresol were used as odor stimulus presentations. Such a periodic stimulation enabled us to detect the specific odor-responses from highly scattering brain tissue. Swept source OCT operating at a wavelength of 1334 nm and a frequency of 20 kHz, was employed with theoretical depth and lateral resolutions of 6.7 μm and 15.4 μm, respectively. We succeeded in visualizing 2D cross sectional fOCT map across the neural layer structure of OCT in vivo. The detected fOCT signals corresponded to a few glomeruli of the medial and lateral parts of dorsal OB. We also obtained 3D fOCT maps, which upon integration across z-axis agreed well with OISI results. We expect such an approach to open a window for investigating and possibly addressing toward inter/intra-layer connections at high resolutions in the future.
Collapse
Affiliation(s)
- Hideyuki Watanabe
- Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
- Course of Health Science, Graduate school of Medicine, Osaka University, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Uma Maheswari Rajagopalan
- Department of Food Life Sciences, Faculty of Food Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Yu Nakamichi
- Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Kei M. Igarashi
- Department of Anatomy and Neurobiology School of Medicine University of California, Irvine Hall Room 112, California 92697, USA
| | - Hirofumi Kadono
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-08570, Japan
| | - Manabu Tanifuji
- Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| |
Collapse
|
13
|
Konecky SD, Wilson RH, Hagen N, Mazhar A, Tkaczyk TS, Frostig RD, Tromberg BJ. Hyperspectral optical tomography of intrinsic signals in the rat cortex. NEUROPHOTONICS 2015; 2:045003. [PMID: 26835483 PMCID: PMC4718192 DOI: 10.1117/1.nph.2.4.045003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/19/2015] [Indexed: 05/20/2023]
Abstract
We introduce a tomographic approach for three-dimensional imaging of evoked hemodynamic activity, using broadband illumination and diffuse optical tomography (DOT) image reconstruction. Changes in diffuse reflectance in the rat somatosensory cortex due to stimulation of a single whisker were imaged at a frame rate of 5 Hz using a hyperspectral image mapping spectrometer. In each frame, images in 38 wavelength bands from 484 to 652 nm were acquired simultaneously. For data analysis, we developed a hyperspectral DOT algorithm that used the Rytov approximation to quantify changes in tissue concentration of oxyhemoglobin ([Formula: see text]) and deoxyhemoglobin (ctHb) in three dimensions. Using this algorithm, the maximum changes in [Formula: see text] and ctHb were found to occur at [Formula: see text] and [Formula: see text] beneath the surface of the cortex, respectively. Rytov tomographic reconstructions revealed maximal spatially localized increases and decreases in [Formula: see text] and ctHb of [Formula: see text] and [Formula: see text], respectively, with these maximum changes occurring at [Formula: see text] poststimulus. The localized optical signals from the Rytov approximation were greater than those from modified Beer-Lambert, likely due in part to the inability of planar reflectance to account for partial volume effects.
Collapse
Affiliation(s)
- Soren D. Konecky
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612, United States
| | - Robert H. Wilson
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612, United States
| | - Nathan Hagen
- Rice University, Department of Biomedical Engineering, 6500 Main Street, Houston, Texas 77030, United States
| | - Amaan Mazhar
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612, United States
- University of California, Irvine, Department of Biomedical Engineering, 5200 Engineering Hall, Irvine, California 92697, United States
| | - Tomasz S. Tkaczyk
- Rice University, Department of Biomedical Engineering, 6500 Main Street, Houston, Texas 77030, United States
| | - Ron D. Frostig
- University of California, Irvine, Department of Neurobiology and Behavior, 2205 McGaugh Hall, Irvine, California 92697, United States
- University of California, Irvine, Department of Biomedical Engineering, 5200 Engineering Hall, Irvine, California 92697, United States
| | - Bruce J. Tromberg
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612, United States
- University of California, Irvine, Department of Biomedical Engineering, 5200 Engineering Hall, Irvine, California 92697, United States
- Address all correspondence to: Bruce J. Tromberg, E-mail:
| |
Collapse
|
14
|
He JW, Liu H, Peng YB. Hemodynamic and Light-Scattering Changes of Rat Spinal Cord and Primary Somatosensory Cortex in Response to Innocuous and Noxious Stimuli. Brain Sci 2015; 5:400-18. [PMID: 26426059 PMCID: PMC4701020 DOI: 10.3390/brainsci5040400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/20/2015] [Accepted: 09/24/2015] [Indexed: 12/28/2022] Open
Abstract
Neuroimaging technologies with an exceptional spatial resolution and noninvasiveness have become a powerful tool for assessing neural activity in both animals and humans. However, the effectiveness of neuroimaging for pain remains unclear partly because the neurovascular coupling during pain processing is not completely characterized. Our current work aims to unravel patterns of neurovascular parameters in pain processing. A novel fiber-optic method was used to acquire absolute values of regional oxy- (HbO) and deoxy-hemoglobin concentrations, oxygen saturation rates (SO₂), and the light-scattering coefficients from the spinal cord and primary somatosensory cortex (SI) in 10 rats. Brief mechanical and electrical stimuli (ranging from innocuous to noxious intensities) as well as a long-lasting noxious stimulus (formalin injection) were applied to the hindlimb under pentobarbital anesthesia. Interhemispheric comparisons in the spinal cord and SI were used to confirm functional activation during sensory processing. We found that all neurovascular parameters showed stimulation-induced changes; however, patterns of changes varied with regions and stimuli. Particularly, transient increases in HbO and SO₂ were more reliably attributed to brief stimuli, whereas a sustained decrease in SO₂ was more reliably attributed to formalin. Only the ipsilateral SI showed delayed responses to brief stimuli. In conclusion, innocuous and noxious stimuli induced significant neurovascular responses at critical centers (e.g., the spinal cord and SI) along the somatosensory pathway; however, there was no single response pattern (as measured by amplitude, duration, lateralization, decrease or increase) that was able to consistently differentiate noxious stimuli. Our results strongly suggested that the neurovascular response patterns differ between brief and long-lasting noxious stimuli, and can also differ between the spinal cord and SI. Therefore, a use of multiple-parameter strategy tailored by stimulus modality (brief or long-lasting) as well as region-dependent characteristics may be more effective in detecting pain using neuroimaging technologies.
Collapse
Affiliation(s)
- Ji-Wei He
- Departments of Psychology, University of Texas at Arlington, Arlington, TX 76019, USA.
- Department of Neurological Surgery, University of California San Francisco, 1700 Owens Street, San Francisco, CA 94158, USA.
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Yuan Bo Peng
- Departments of Psychology, University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
15
|
Yeh YJ, Black AJ, Landowne D, Akkin T. Optical coherence tomography for cross-sectional imaging of neural activity. NEUROPHOTONICS 2015. [PMID: 26217674 PMCID: PMC4509668 DOI: 10.1117/1.nph.2.3.035001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We report a functional optical coherence tomography cross-sectional scanner to detect neural activity using unmyelinated nerves dissected from squid. The nerves, unstained or stained with a voltage-sensitive dye, were imaged in a nerve chamber. Transient phase changes from backscattered light were detected during action potential propagation. The results show that the scanner can provide high spatiotemporal resolution cross-sectional images of neural activity ([Formula: see text]; [Formula: see text]; [Formula: see text] in [Formula: see text]). The advantage of this method compared to monitoring a single depth profile [Formula: see text] is a dramatic increase in the number of available sites that can be measured in two spatial dimensions [Formula: see text] with lateral scanning; therefore, the study demonstrates that two-dimensional monitoring of small-scale functional activity would also be feasible.
Collapse
Affiliation(s)
- Yi-Jou Yeh
- University of Minnesota, Department of Electrical and Computer Engineering, Minneapolis, Minnesota 55455, United States
- University of Minnesota, Department of Biomedical Engineering, 312 Church Street S.E., Minneapolis, Minnesota 55455, United States
| | - Adam J. Black
- University of Minnesota, Department of Biomedical Engineering, 312 Church Street S.E., Minneapolis, Minnesota 55455, United States
| | - David Landowne
- University of Miami, Department of Physiology and Biophysics, Miami, Florida 33101, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, 312 Church Street S.E., Minneapolis, Minnesota 55455, United States
- Address all correspondence to: Taner Akkin, E-mail:
| |
Collapse
|
16
|
Li F, Song Y, Dryer A, Cogguillo W, Berdichevsky Y, Zhou C. Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy. NEUROPHOTONICS 2014; 1:025002. [PMID: 25750928 PMCID: PMC4350448 DOI: 10.1117/1.nph.1.2.025002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 05/25/2023]
Abstract
Three-dimensional tissue cultures have been used as effective models for studying different diseases, including epilepsy. High-throughput, nondestructive techniques are essential for rapid assessment of disease-related processes, such as progressive cell death. An ultrahigh-resolution optical coherence microscopy (UHR-OCM) system with [Formula: see text] axial resolution and [Formula: see text] transverse resolution was developed to evaluate seizure-induced neuronal injury in organotypic rat hippocampal cultures. The capability of UHR-OCM to visualize cells in neural tissue was confirmed by comparison of UHR-OCM images with confocal immunostained images of the same cultures. In order to evaluate the progression of neuronal injury, UHR-OCM images were obtained from cultures on 7, 14, 21, and 28 days in vitro (DIVs). In comparison to DIV 7, statistically significant reductions in three-dimensional cell count and culture thickness from UHR-OCM images were observed on subsequent time points. In cultures treated with kynurenic acid, significantly less reduction in cell count and culture thickness was observed compared to the control specimens. These results demonstrate the capability of UHR-OCM to perform rapid, label-free, and nondestructive evaluation of neuronal death in organotypic hippocampal cultures. UHR-OCM, in combination with three-dimensional tissue cultures, can potentially prove to be a promising tool for high-throughput screening of drugs targeting various disorders.
Collapse
Affiliation(s)
- Fengqiang Li
- Lehigh University, Department of Electrical and Computer Engineering, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
- Lehigh University, Center for Photonics and Nanoelectronics, 7 ASA Drive, Bethlehem, Pennsylvania 18015, United States
| | - Yu Song
- Lehigh University, Bioengineering Program, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Alexandra Dryer
- Lehigh University, Department of Electrical and Computer Engineering, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - William Cogguillo
- Lehigh University, Bioengineering Program, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Yevgeny Berdichevsky
- Lehigh University, Department of Electrical and Computer Engineering, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
- Lehigh University, Center for Photonics and Nanoelectronics, 7 ASA Drive, Bethlehem, Pennsylvania 18015, United States
- Lehigh University, Bioengineering Program, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Chao Zhou
- Lehigh University, Department of Electrical and Computer Engineering, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
- Lehigh University, Center for Photonics and Nanoelectronics, 7 ASA Drive, Bethlehem, Pennsylvania 18015, United States
- Lehigh University, Bioengineering Program, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
17
|
Torricelli A, Contini D, Pifferi A, Caffini M, Re R, Zucchelli L, Spinelli L. Time domain functional NIRS imaging for human brain mapping. Neuroimage 2014; 85 Pt 1:28-50. [DOI: 10.1016/j.neuroimage.2013.05.106] [Citation(s) in RCA: 294] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/25/2013] [Accepted: 05/21/2013] [Indexed: 02/02/2023] Open
|
18
|
Tsytsarev V, Rao B, Maslov KI, Li L, Wang LV. Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts. J Neurosci Methods 2013; 216:142-5. [PMID: 23603664 DOI: 10.1016/j.jneumeth.2013.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 01/26/2023]
Abstract
Epilepsy mapping with high spatial and temporal resolution has great significance for both fundamental research on epileptic neurons and the clinical management of epilepsy. In this communication, we demonstrate for the first time in vivo epilepsy mapping with high spatial and temporal resolution and dual optical contrasts in an animal model. Through the variations of a depthresolved optical coherence tomography signal with optical scattering contrast, we observed that epileptic neuron activities modulated the optical refractive index of epileptic neurons and their surrounding tissue. Simultaneously, through neurovasculature coupling mechanisms and optical absorption contrast, we used photoacoustic signals to document the hemodynamic changes of the microvasculature surrounding the epileptic neurons. The epilepsy mapping results were confirmed by a simultaneously recorded electroencephalogram signal during epileptic seizure. Our new epilepsy mapping tool, with high temporal and spatial resolution and dual optical contrasts, may find many applications, such as drug development and epilepsy surgery.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
19
|
Tsytsarev V, Bernardelli C, Maslov KI. Living Brain Optical Imaging: Technology, Methods and Applications. ACTA ACUST UNITED AC 2012; 1:180-192. [PMID: 28251038 DOI: 10.1166/jnsne.2012.1020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within the last few decades, optical imaging methods have yielded revolutionary results when applied to all parts of the central nervous system. The purpose of this review is to analyze research possibilities and limitations of several novel imaging techniques and show some of the most interesting achievements obtained by these methods. Here we covered intrinsic optical imaging, voltage-sensitive dye, photoacoustic, optical coherence tomography, near-infrared spectroscopy and some other techniques. All of them are mainly applicable for experimental neuroscience but some of them also suitable for the clinical studies.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Room S251, 20 Penn Street, Baltimore, MD 21201-1075, USA
| | - Chad Bernardelli
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Room S251, 20 Penn Street, Baltimore, MD 21201-1075, USA
| | - Konstantin I Maslov
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| |
Collapse
|
20
|
Szu JI, Eberle MM, Reynolds CL, Hsu MS, Wang Y, Oh CM, Islam MS, Park BH, Binder DK. Thinned-skull cortical window technique for in vivo optical coherence tomography imaging. J Vis Exp 2012. [PMID: 23183913 DOI: 10.3791/50053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Optical coherence tomography (OCT) is a biomedical imaging technique with high spatial-temporal resolution. With its minimally invasive approach OCT has been used extensively in ophthalmology, dermatology, and gastroenterology. Using a thinned-skull cortical window (TSCW), we employ spectral-domain OCT (SD-OCT) modality as a tool to image the cortex in vivo. Commonly, an opened-skull has been used for neuro-imaging as it provides more versatility, however, a TSCW approach is less invasive and is an effective mean for long term imaging in neuropathology studies. Here, we present a method of creating a TSCW in a mouse model for in vivo OCT imaging of the cerebral cortex.
Collapse
Affiliation(s)
- Jenny I Szu
- Division of Biomedical Sciences, University of California, Riverside, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lenkov DN, Volnova AB, Pope ARD, Tsytsarev V. Advantages and limitations of brain imaging methods in the research of absence epilepsy in humans and animal models. J Neurosci Methods 2012; 212:195-202. [PMID: 23137652 DOI: 10.1016/j.jneumeth.2012.10.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to analyze research possibilities and limitations of several methods, technical tools and their combinations for elucidation of absence epilepsy mechanisms, particularly the childhood absences. Despite the notable collection of simultaneous recording of clinical electroencephalography (EEG) and behavioral changes in relation to absence seizures, shortcomings of scalp EEG in both spatial resolution and precise detection of subcortical centers have limited the understanding of the fundamental mechanisms of altered brain function during and after recurrent epileptic paroxysms. Therefore, in the past decade, EEG recordings have often been combined with simultaneous imaging methods in epilepsy studies. Among imaging methods, the following ones are used regularly: functional magnetic resonance imaging (fMRI), positron-emission tomography (PET), low-resolution electromagnetic tomography (LORETA), single photon emission spectroscopy (SPECT), near-infrared spectroscopy (NIRS), and optical imaging of intrinsic signals (IOS). In addition, voltage-sensitive dye optical imaging method and even photoacoustic microscopy can be applied to animal models of epilepsy. Samplings of some of the most relevant data obtained by the above methods are presented. It appears that the elaboration of more adequate animal models of the patterns of absence seizures during the early postnatal period is necessary for better correspondence of human and animal absence phenomena.
Collapse
Affiliation(s)
- Dmitry N Lenkov
- Nevsky Center of Scientific Collaboration-Saint Petersburg, Razjezshaya 43/1 Liter A, Suite 8N, Saint Petersburg 192119, Russia
| | | | | | | |
Collapse
|
22
|
Eberle MM, Reynolds CL, Szu JI, Wang Y, Hansen AM, Hsu MS, Islam MS, Binder DK, Park BH. In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2012; 3:2700-6. [PMID: 23162709 PMCID: PMC3493229 DOI: 10.1364/boe.3.002700] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/18/2012] [Accepted: 09/26/2012] [Indexed: 05/13/2023]
Abstract
The most common technology for seizure detection is with electroencephalography (EEG), which has low spatial resolution and minimal depth discrimination. Optical techniques using near-infrared (NIR) light have been used to improve upon EEG technology and previous research has suggested that optical changes, specifically changes in near-infrared optical scattering, may precede EEG seizure onset in in vivo models. Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth resolved cross-sectional images. In this study, OCT was used to detect changes in optical properties of cortical tissue in vivo in mice before and during the induction of generalized seizure activity. We demonstrated that a significant decrease (P < 0.001) in backscattered intensity during seizure progression can be detected before the onset of observable manifestations of generalized (stage-5) seizures. These results indicate the feasibility of minimally-invasive optical detection of seizures with OCT.
Collapse
Affiliation(s)
- Melissa M. Eberle
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Carissa L. Reynolds
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Jenny I. Szu
- Division of Biomedical Sciences, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Yan Wang
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Anne M. Hansen
- Department of Statistics, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Mike S. Hsu
- Division of Biomedical Sciences, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - M. Shahidul Islam
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Devin K. Binder
- Division of Biomedical Sciences, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - B. Hyle Park
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| |
Collapse
|
23
|
Devor A, Boas DA, Einevoll GT, Buxton RB, Dale AM. Neuronal Basis of Non-Invasive Functional Imaging: From Microscopic Neurovascular Dynamics to BOLD fMRI. NEURAL METABOLISM IN VIVO 2012. [DOI: 10.1007/978-1-4614-1788-0_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Hillman EMC, Amoozegar CB, Wang T, McCaslin AFH, Bouchard MB, Mansfield J, Levenson RM. In vivo optical imaging and dynamic contrast methods for biomedical research. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:4620-43. [PMID: 22006910 PMCID: PMC3263788 DOI: 10.1098/rsta.2011.0264] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This paper provides an overview of optical imaging methods commonly applied to basic research applications. Optical imaging is well suited for non-clinical use, since it can exploit an enormous range of endogenous and exogenous forms of contrast that provide information about the structure and function of tissues ranging from single cells to entire organisms. An additional benefit of optical imaging that is often under-exploited is its ability to acquire data at high speeds; a feature that enables it to not only observe static distributions of contrast, but to probe and characterize dynamic events related to physiology, disease progression and acute interventions in real time. The benefits and limitations of in vivo optical imaging for biomedical research applications are described, followed by a perspective on future applications of optical imaging for basic research centred on a recently introduced real-time imaging technique called dynamic contrast-enhanced small animal molecular imaging (DyCE).
Collapse
Affiliation(s)
- Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering, and Columbia University in the City of New York, New York, NY 10027, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
He JW, Kashyap D, Trevino LA, Liu H, Peng YB. Simultaneous absolute measures of glabrous skin hemodynamic and light-scattering change in response to formalin injection in rats. Neurosci Lett 2011; 492:59-63. [PMID: 21281696 DOI: 10.1016/j.neulet.2011.01.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 01/21/2011] [Accepted: 01/23/2011] [Indexed: 12/20/2022]
Abstract
Subcutaneous injection of formalin is a well-known model to study the nature of inflammatory pain. One of the cardinal signs of inflammation is redness, as a result of increased blood perfusion. We used an optical technology, light reflectance spectroscopy, to noninvasively obtain absolute measures of cutaneous hemodynamic components, including the concentrations of oxy- ([HbO]), deoxy- ([Hb]), total-hemoglobin ([HbT]), oxygen saturation (SO(2)), and the reduced light-scattering coefficient (μs'). The objective is to assess the effect of formalin-induced skin inflammation on the aforementioned parameters. Six rats were injected with formalin (50 μl, 3%) into left hind paw under pentobarbital anesthesia. Our results indicate prolonged increases in [HbO], [HbT], and SO(2) post injection only in the ipsilateral side. No statistically significant changes in [Hb] and μ(s)' occurred in either side. The arterial blood influx tends to be the major attribute of local hyperemia during inflammation. Thereby, [HbO] appears to be superior to [Hb] in measuring inflammation. In conclusion, the needle-probe-based light reflectance can be a feasible means to obtaining absolute measures of skin hemodynamic and light-scattering parameters when studying inflammatory pain.
Collapse
Affiliation(s)
- Ji-Wei He
- Department of Psychology, College of Science, University of Texas at Arlington, Arlington, TX 76019-0528, USA
| | | | | | | | | |
Collapse
|
26
|
Sato M, Nomura D, Tsunenari T, Nishidate I. In vivo rat brain measurements of changes in signal intensity depth profiles as a function of temperature using wide-field optical coherence tomography. APPLIED OPTICS 2010; 49:5686-96. [PMID: 20962931 DOI: 10.1364/ao.49.005686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In our previous study, we used optical coherence tomography (OCT) and reported an increase in signal intensity of depth profiles between euthanasia injection and cardiac arrest (CA), demonstrating the potential as a tool for monitoring/diagnosing brain tissue viability [Appl. Opt.48, 4354 (2009)]. Here, for the first time to our knowledge, we measured three-dimensional (3D) OCT images through a thinned skull changing temperatures in the rat brain. The measurements were made at 10 min intervals for 210 min to evaluate correlations of temperature with heart rate and ratios of signal intensity (RSI). The 3D image area was 4 mm × 4 mm × 2.8 mm. When the temperature was decreased from 28°C to 18°C to reduce tissue viability, the heart rate was found to decrease with an increase in RSI. Negative correlation coefficients (CCs) between temperatures and RSIs, and between heart rate and RSIs, were obtained. This indicates that OCT signals increase with reductions of viability caused by decreases in heart rates and temperatures in tissues. These observations correspond to estimations obtained by multiwavelength diffuse reflectance spectroscopy [Appl. Opt.47, 4164 (2008)]. CCs and stationary RSIs would depend upon measured positions in tissues. Without injections for euthanasia, a similar rapid increase in RSI has also been measured before CA.
Collapse
Affiliation(s)
- Manabu Sato
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Johnan, Yonezawa, Yamagata 992-8510, Japan. ‑u.ac.jp
| | | | | | | |
Collapse
|
27
|
Sato M, Nomura D, Tsunenari T, Nishidate I. Measurement of signal intensity depth profiles in rat brains with cardiac arrest maintaining primary temperature by wide-field optical coherence tomography. APPLIED OPTICS 2010; 49:4851-4858. [PMID: 20830172 DOI: 10.1364/ao.49.004851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have already reported that after an injection for euthanasia, the signal intensity of optical coherence tomography (OCT) images are 2.7 times increased before cardiac arrest (CA) using OCT and rat brains without temperature control to show the potential of OCT to monitor tissue viability in brains [Appl. Opt.48, 4354 (2009)APOPAI0003-693510.1364/AO.48.004354]. In this paper, we similarly measured maintaining the primary temperature of rat brains. It was confirmed that when maintaining the primary temperature, the time courses of the ratios of signal intensity (RSIs) were almost the same as those without temperature control. RSIs after CA varied from 1.6 to 4.5 and depended on positions measured in tissues. These results mean that the OCT technique has clinical potential for applications to monitor or diagnose a focal degraded area, such as cerebral infarctions due to focal ischemia in brains.
Collapse
Affiliation(s)
- Manabu Sato
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Johnan, Yonezawa, Yamagata 992-8510, Japan.
| | | | | | | |
Collapse
|
28
|
Wilt BA, Burns LD, Wei Ho ET, Ghosh KK, Mukamel EA, Schnitzer MJ. Advances in light microscopy for neuroscience. Annu Rev Neurosci 2009; 32:435-506. [PMID: 19555292 DOI: 10.1146/annurev.neuro.051508.135540] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the work of Golgi and Cajal, light microscopy has remained a key tool for neuroscientists to observe cellular properties. Ongoing advances have enabled new experimental capabilities using light to inspect the nervous system across multiple spatial scales, including ultrastructural scales finer than the optical diffraction limit. Other progress permits functional imaging at faster speeds, at greater depths in brain tissue, and over larger tissue volumes than previously possible. Portable, miniaturized fluorescence microscopes now allow brain imaging in freely behaving mice. Complementary progress on animal preparations has enabled imaging in head-restrained behaving animals, as well as time-lapse microscopy studies in the brains of live subjects. Mouse genetic approaches permit mosaic and inducible fluorescence-labeling strategies, whereas intrinsic contrast mechanisms allow in vivo imaging of animals and humans without use of exogenous markers. This review surveys such advances and highlights emerging capabilities of particular interest to neuroscientists.
Collapse
Affiliation(s)
- Brian A Wilt
- James H. Clark Center and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
29
|
Graf BW, Ralston TS, Ko HJ, Boppart SA. Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging. OPTICS EXPRESS 2009; 17:13447-57. [PMID: 19654752 PMCID: PMC2883318 DOI: 10.1364/oe.17.013447] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We demonstrate how optical coherence imaging techniques can detect intrinsic scattering changes that occur during action potentials in single neurons. Using optical coherence tomography (OCT), an increase in scattering intensity from neurons in the abdominal ganglion of Aplysia californica is observed following electrical stimulation of the connective nerve. In addition, optical coherence microscopy (OCM), with its superior transverse spatial resolution, is used to demonstrate a direct correlation between scattering intensity changes and membrane voltage in single cultured Aplysia bag cell neurons during evoked action potentials. While intrinsic scattering changes are small, OCT and OCM have potential use as tools in neuroscience research for non-invasive and non-contact measurement of neural activity without electrodes or fluorescent dyes. These techniques have many attractive features such as high sensitivity and deep imaging penetration depth, as well as high temporal and spatial resolution. This study demonstrates the first use of OCT and OCM to detect functionally-correlated optical scattering changes in single neurons.
Collapse
Affiliation(s)
- Benedikt W. Graf
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801
| | - Tyler S. Ralston
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801
| | - Han-Jo Ko
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801
| | - Stephen A. Boppart
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Bioengineering, Department of Medicine, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801
| |
Collapse
|
30
|
Sato M, Hrebesh MS, Nishidate I. Measurement of signal intensity depth profiles in rat brains with cardiac arrest using wide-field optical coherence tomography. APPLIED OPTICS 2009; 48:4354-4364. [PMID: 19649038 DOI: 10.1364/ao.48.004354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Three-dimensional (3D) optical coherence tomography (OCT) images of rat brain taken through the thinned skull were measured using quadrature fringe wide-field OCT (QF WF OCT) with a period of 10 min for total measurement time of 210 min stopping blood flow due to cardiac arrest, in order to investigate the potential of OCT to monitor tissue viability in brains. First, spatial resolution degradation was evaluated with QF WF OCT to demonstrate that the axial resolution was 390 microm at a thickness of 1000 microm. After cardiac arrest, the signal intensity in depth profiles increased 2.7 times compared with that before cardiac arrest. The ratio of signal intensity after euthanasia with an injection of pentobarbital sodium salt to that before sharply increased for 20 min, with stationary values of 2 to 4 overall. The trends of time variations of each position were similar. However, each stationary value depended on the 3D position.
Collapse
Affiliation(s)
- Manabu Sato
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Johnan, Yonezawa, Yamagata 992-8510, Japan.
| | | | | |
Collapse
|
31
|
Chen Y, Aguirre AD, Ruvinskaya L, Devor A, Boas DA, Fujimoto JG. Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation. J Neurosci Methods 2009; 178:162-73. [PMID: 19121336 PMCID: PMC3004397 DOI: 10.1016/j.jneumeth.2008.11.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 11/21/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022]
Abstract
Optical intrinsic signal imaging (OISI) provides two-dimensional, depth-integrated activation maps of brain activity. Optical coherence tomography (OCT) provides depth-resolved, cross-sectional images of functional brain activation. Co-registered OCT and OISI imaging was performed simultaneously on the rat somatosensory cortex through a thinned skull during forepaw electrical stimulation. Fractional signal change measurements made by OCT revealed a functional signal that correlates well with that of the intrinsic hemodynamic signals and provides depth-resolved, layer-specific dynamics in the functional activation patterns indicating retrograde vessel dilation. OCT is a promising a new technology which provides complementary information to OISI for functional neuroimaging.
Collapse
Affiliation(s)
- Yu Chen
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Aaron D. Aguirre
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lana Ruvinskaya
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Anna Devor
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Departments of Neurosciences and Radiology, University of California, San Diego, CA 92093, USA
| | - David A. Boas
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - James G. Fujimoto
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
32
|
Hillman EMC, Burgess SA. Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography. LASER & PHOTONICS REVIEWS 2009; 3:159-179. [PMID: 19844595 PMCID: PMC2763333 DOI: 10.1002/lpor.200810031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In-vivo imaging of optical contrast in living tissues can allow measurement of functional parameters such as blood oxygenation and detection of targeted and active fluorescent contrast agents. However, optical imaging must overcome the effects of light scattering, which limit the penetration depth and can affect quantitation and sensitivity. This article focuses on a technique for high-resolution, high-speed depth-resolved optical imaging of superficial living tissues called laminar optical tomography (LOT), which is capable of imaging absorbing and fluorescent contrast in living tissues to depths of 2-3 mm with 100-200 micron resolution. An overview of the advantages and challenges of in-vivo optical imaging is followed by a review of currently available techniques for high-resolution optical imaging of tissues. LOT is then described, including a description of the imaging system design and discussion of data analysis and image reconstruction approaches. Examples of recent applications of LOT are then provided and compared to other existing technologies.By measuring multiply-scattered light, Laminar Optical Tomography can probe beneath the surface of living tissues such as the skin and brain.
Collapse
|
33
|
Kothapalli SR, Wang LV. Ex vivo blood vessel imaging using ultrasound-modulated optical microscopy. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:014015. [PMID: 19256703 PMCID: PMC4291120 DOI: 10.1117/1.3076191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recently we developed ultrasound-modulated optical microscopy (UOM) based on a long-cavity confocal Fabry-Perot interferometer (CFPI). This interferometer is used for real-time detection of multiply scattered light modulated by high frequency (30 to 75 MHz) ultrasound pulses propagating in an optically, strongly scattering medium. In this work, we use this microscope to study the dependence of ultrasound-modulated optical signals on the optical absorption and scattering properties of objects embedded about 3 mm deep in tissue mimicking phantoms. These results demonstrate that UOM has the potential to map both optical absorption and scattering contrast. Most importantly, for the first time in the field of ultrasound-modulated optical imaging, we image blood vasculature in highly scattering tissue samples from a mouse and a rat. Therefore, UOM could be a promising tool to study the morphology of blood vasculature and blood-associated functional parameters, such as oxygen saturation.
Collapse
Affiliation(s)
- Sri-Rajasekhar Kothapalli
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130
| | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130
| |
Collapse
|
34
|
Ultrahigh resolution optical coherence tomography with femtosecond Ti:sapphire laser and photonic crystal fiber. Sci Bull (Beijing) 2008; 53:1963-1966. [PMID: 20396625 DOI: 10.1007/s11434-008-0235-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Optical coherence tomography (OCT) with ultrahigh axial resolution was achieved by the super-continuum generated by coupling femtosecond pulses from a commercial Ti:sapphire laser into an air-silica microstructure fiber. The visible spectrum of the super-continuum from 450 to 700 nm centered at 540 nm can be generated. A free-space axial OCT resolution of 0.64 μm was achieved. The sensitivity of OCT system was 108 dB with incident light power 3 mW at sample, only 7dB below the theoretical limit. Subcellular OCT imaging was also demonstrated, showing great potential for biomedical application.
Collapse
|
35
|
Hillman EMC. Optical brain imaging in vivo: techniques and applications from animal to man. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:051402. [PMID: 17994863 PMCID: PMC2435254 DOI: 10.1117/1.2789693] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical brain imaging has seen 30 years of intense development, and has grown into a rich and diverse field. In-vivo imaging using light provides unprecedented sensitivity to functional changes through intrinsic contrast, and is rapidly exploiting the growing availability of exogenous optical contrast agents. Light can be used to image microscopic structure and function in vivo in exposed animal brain, while also allowing noninvasive imaging of hemodynamics and metabolism in a clinical setting. This work presents an overview of the wide range of approaches currently being applied to in-vivo optical brain imaging, from animal to man. Techniques include multispectral optical imaging, voltage sensitive dye imaging and speckle-flow imaging of exposed cortex, in-vivo two-photon microscopy of the living brain, and the broad range of noninvasive topography and tomography approaches to near-infrared imaging of the human brain. The basic principles of each technique are described, followed by examples of current applications to cutting-edge neuroscience research. In summary, it is shown that optical brain imaging continues to grow and evolve, embracing new technologies and advancing to address ever more complex and important neuroscience questions.
Collapse
Affiliation(s)
- Elizabeth M C Hillman
- Columbia University, Laboratory for Functional Optical Imaging, Department of Biomedical Engineering, 351ET, 1210 Amsterdam Avenue, New York, New York 10027, USA.
| |
Collapse
|
36
|
Kothapalli SR, Sakadzić S, Kim C, Wang LV. Imaging optically scattering objects with ultrasound-modulated optical tomography. OPTICS LETTERS 2007; 32:2351-3. [PMID: 17700782 DOI: 10.1364/ol.32.002351] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We show the feasibility of imaging objects having different optical scattering coefficients relative to the surrounding scattering medium using ultrasound-modulated optical tomography (UOT). While the spatial resolution depends on ultrasound parameters, the image contrast depends on the difference in scattering coefficient between the object and the surrounding medium. Experimental measurements obtained with a CCD-based speckle contrast detection scheme are in agreement with Monte Carlo simulations and analytical calculations. This study complements previous UOT experiments that demonstrated optical absorption contrast.
Collapse
Affiliation(s)
- Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Optical Imaging Laboratory, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130-4899, USA
| | | | | | | |
Collapse
|