1
|
Castelló-Lurbe D, Silvestre E, Andrés MV. Multifrequency nonlinear Schrödinger equation. OPTICS LETTERS 2024; 49:4713-4716. [PMID: 39146141 DOI: 10.1364/ol.528926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
The multifrequency character of nonlinearity dispersion is often dismissed because, in principle, it increases the computational load exceedingly rendering an impractical modeling and, typically, nonlinearities barely depend on frequency. Nonetheless, nonlinearity dispersion has recently enabled a solution to a long-standing challenge in optics. To explore the potential of this research avenue on solid theoretical grounds, we derive a propagation equation accounting for multifrequency nonlinearities rigorously that maintains the computational advantages of conventional models.
Collapse
|
2
|
Kunio K, Bogusławski J, Soboń G. Efficient multiphoton microscopy with picosecond laser pulses. OPTICS LETTERS 2024; 49:4597-4600. [PMID: 39146113 DOI: 10.1364/ol.533227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024]
Abstract
Multiphoton microscopes employ femtosecond lasers as light sources because the high peak power of the ultrashort pulse allows for multiphoton excitation of fluorescence in the examined sample. However, such short pulses are susceptible to broadening in a microscope's highly dispersive optical elements and require careful dispersion management, otherwise decreasing excitation efficiency. Here, we have developed a 10 nJ Yb:fiber picosecond laser with an integrated pulse picker unit and evaluated its performance in multiphoton microscopy. Our results show that performance comparable to femtosecond pulses can be obtained with picosecond pulses only by reducing the pulse repetition rate and that such pulses are significantly less prone to the effect of chromatic dispersion. These findings proved that the temporal pulse compression is not always efficient, and it can be omitted by using a smaller and easier-to-use all-fiber setup.
Collapse
|
3
|
Wang J, Chen R, Chang G. On the frequency spanning of SPM-enabled spectral broadening: analytical solutions. OPTICS EXPRESS 2022; 30:33664-33679. [PMID: 36242396 DOI: 10.1364/oe.466033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/07/2022] [Indexed: 06/16/2023]
Abstract
We present an analytical treatment of ultra-short pulses propagating in an optical fiber in the strong nonlinearity regime, in which the interaction between self-phase modulation (SPM) and group-velocity dispersion (GVD) substantially broadens the input spectrum. Supported by excellent agreement with the simulation results, these analytical solutions provide a convenient and reasonable accurate estimation of the peak position of the outermost spectral lobes as well as the full width at half maximum of the broadened spectrum. We show that our unified solutions are valid for either Gaussian pulse or hyperbolic secant pulse propagating inside an optical fiber with positive or negative GVD. Our findings shed light on the optimization of SPM-enabled spectral broadening in various applications.
Collapse
|
4
|
Van Le H, Hoang VT, Stępniewski G, Le Canh T, Thi Minh NV, Kasztelanic R, Klimczak M, Pniewski J, Dinh KX, Heidt AM, Buczyński R. Low pump power coherent supercontinuum generation in heavy metal oxide solid-core photonic crystal fibers infiltrated with carbon tetrachloride covering 930-2500 nm. OPTICS EXPRESS 2021; 29:39586-39600. [PMID: 34809320 DOI: 10.1364/oe.443666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
All-normal dispersion supercontinuum (ANDi SC) generation in a lead-bismuth-gallate glass solid-core photonic crystal fiber (PCF) with cladding air-holes infiltrated with carbon tetrachloride (CCl4) is experimentally investigated and numerically verified. The liquid infiltration results in additional degrees of freedom that are complimentary to conventional dispersion engineering techniques and that allow the design of soft-glass ANDi fibers with an exceptionally flat near-zero dispersion profile. The unique combination of high nonlinearity and low normal dispersion enables the generation of a coherent, low-noise SC covering 0.93-2.5 µm requiring only 12.5 kW of pump peak power delivered by a standard ultrafast erbium-fiber laser with 100 MHz pulse repetition rate (PRR). This is a much lower peak power level than has been previously required for the generation of ANDi SC with bandwidths exceeding one octave in silica- or soft-glass fibers. Our results show that liquid-composite fibers are a promising pathway for scaling the PRR of ANDi SC sources by making the concept accessible to pump lasers with hundreds of megahertz of gigahertz PRR that have limited peak power per pulse but are often required in applications such as high-speed nonlinear imaging, optical communications, or frequency metrology. Furthermore, due to the overlap of the SC with the major gain bands of many rare-earth fiber amplifiers, our source could serve as a coherent seed for low-noise ultrafast lasers operating in the short-wave infrared spectral region.
Collapse
|
5
|
Huang G, Fu M, Qi J, Pan J, Yi W, Li X. Design of Broadband Flat Optical Frequency Comb Based on Cascaded Sign-Alternated Dispersion Tellurite Microstructure Fiber. MICROMACHINES 2021; 12:mi12101252. [PMID: 34683303 PMCID: PMC8539913 DOI: 10.3390/mi12101252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
We designed a tellurite microstructure fiber (TMF) and proposed a broadband optical frequency comb generation scheme that was based on electro-optical modulation and cascaded sign-alternated dispersion TMF (CSAD-TMF). In addition, the influence of different nonlinear effects, the ultrashort pulse evolution in the CSAD-TMF with the anomalous dispersion (AD) zones and the normal dispersion (ND) zones were analyzed based on the generalized nonlinear Schrodinger equations (GNLSE) modelling. According to the simulations, when the input seed comb had a repetition rate of 20 GHz and had an input pulse peak power of 30 W, the generation scheme could generate optical frequency combs with a 6 dB spectral bandwidth spanning over 170 nm centered at 1550 nm. Furthermore, the generated combs showed good coherence in performance over the whole 6 dB spectral bandwidth. The highly coherent optical frequency combs can be used as high-repetition-rate, multi-wavelength light sources for various integrated microwave photonics and ultrafast optical signal processing applications.
Collapse
|
6
|
Wu JL, Wang T, Yang YD, Xiao JL, Huang YZ. Optical frequency comb and picosecond pulse generation based on a directly modulated microcavity laser. APPLIED OPTICS 2021; 60:4177-4184. [PMID: 33983170 DOI: 10.1364/ao.423912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Optical frequency comb (OFC) and picosecond pulse generation are demonstrated experimentally based on a directly modulated AlGaInAs/InP square microcavity laser. With the merit of a high electro-optics modulation response of the microcavity laser, power-efficient OFCs with good flatness are produced. Ten 8-GHz-spaced optical tones with power fluctuation less than 3 dB are obtained based on the laser modulated by a sinusoidal signal. Moreover, the comb line number is enhanced to 20 by eliminating the nonlinear dynamics through optical injection locking. Owing to the high coherence of the OFC originating from the directly modulated microcavity laser, a 6.8 ps transform-limited pulse is obtained through dispersion compensation. The optical pulse is further compressed to 1.3 ps through the self-phase modulation effect in high nonlinear fiber.
Collapse
|
7
|
Liu YZ, Renteria C, Courtney CD, Ibrahim B, You S, Chaney EJ, Barkalifa R, Iyer RR, Zurauskas M, Tu H, Llano DA, Christian-Hinman CA, Boppart SA. Simultaneous two-photon activation and imaging of neural activity based on spectral-temporal modulation of supercontinuum light. NEUROPHOTONICS 2020; 7:045007. [PMID: 33163545 PMCID: PMC7607614 DOI: 10.1117/1.nph.7.4.045007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/14/2020] [Indexed: 05/03/2023]
Abstract
SIGNIFICANCE Recent advances in nonlinear optics in neuroscience have focused on using two ultrafast lasers for activity imaging and optogenetic stimulation. Broadband femtosecond light sources can obviate the need for multiple lasers by spectral separation for chromatically targeted excitation. AIM We present a photonic crystal fiber (PCF)-based supercontinuum source for spectrally resolved two-photon (2P) imaging and excitation of GCaMP6s and C1V1-mCherry, respectively. APPROACH A PCF is pumped using a 20-MHz repetition rate femtosecond laser to generate a supercontinuum of light, which is spectrally separated, compressed, and recombined to image GCaMP6s (930 nm excitation) and stimulate the optogenetic protein, C1V1-mCherry (1060 nm excitation). Galvanometric spiral scanning is employed on a single-cell level for multiphoton excitation and high-speed resonant scanning is employed for imaging of calcium activity. RESULTS Continuous wave lasers were used to verify functionality of optogenetic activation followed by directed 2P excitation. Results from these experiments demonstrate the utility of a supercontinuum light source for simultaneous, single-cell excitation and calcium imaging. CONCLUSIONS A PCF-based supercontinuum light source was employed for simultaneous imaging and excitation of calcium dynamics in brain tissue. Pumped PCFs can serve as powerful light sources for imaging and activation of neural activity, and overcome the limited spectra and space associated with multilaser approaches.
Collapse
Affiliation(s)
- Yuan-Zhi Liu
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Carlos Renteria
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Connor D. Courtney
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Neuroscience Program, Urbana, Illinois, United States
| | - Baher Ibrahim
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Sixian You
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Computational Science and Engineering, Urbana, Illinois, United States
| | - Eric J. Chaney
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Ronit Barkalifa
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Rishyashring R. Iyer
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Mantas Zurauskas
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Haohua Tu
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Daniel A. Llano
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Neuroscience Program, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Molecular and Integrative Physiology, Urbana, Illinois, United States
| | - Catherine A. Christian-Hinman
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Neuroscience Program, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Molecular and Integrative Physiology, Urbana, Illinois, United States
| | - Stephen A. Boppart
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Neuroscience Program, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Computational Science and Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Carle Illinois College of Medicine, Urbana, Illinois, United States
| |
Collapse
|
8
|
Castelló-Lurbe D, Carrascosa A, Silvestre E, Díez A, Van Erps J, Vermeulen N, Andrés MV. Measurement of the soliton number in guiding media through continuum generation. OPTICS LETTERS 2020; 45:4432-4435. [PMID: 32796976 DOI: 10.1364/ol.399382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
No general approach is available yet to measure directly the ratio between chromatic dispersion and the nonlinear coefficient, and hence the soliton number for a given optical pulse, in an arbitrary guiding medium. Here we solve this problem using continuum generation. We experimentally demonstrate our method in polarization-maintaining and single-mode fibers with positive and negative chromatic dispersion. Our technique also offers new opportunities to determine the chromatic dispersion of guiding media over a broad spectral range while pumping at a fixed wavelength.
Collapse
|
9
|
Liu Y, Tu H, You S, Chaney EJ, Marjanovic M, Boppart SA. Label-free molecular profiling for identification of biomarkers in carcinogenesis using multimodal multiphoton imaging. Quant Imaging Med Surg 2019; 9:742-756. [PMID: 31281771 DOI: 10.21037/qims.2019.04.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Label-free molecular profiling, imaging, and analysis are of particular interest in cancer biology for detecting subtle biochemical changes during cancer progression and potentially during cancer treatment. Multimodal, multiphoton imaging that combines diverse molecular contrasts derived from different physical mechanisms can improve our understanding of the tumor microenvironment. Methods A label-free optical molecular profiling technique has been developed based on penta-modal multiphoton imaging to investigate mammary tumor progression in a pre-clinical rat model. Pulses from a coherent supercontinuum were tailored for two-photon (2PF) and three-photon fluorescence (3PF), second (SHG) and third harmonic generation (THG), and hyperspectral coherent anti-Stokes Raman scattering (CARS)-based imaging. A graphic multiphoton molecular profiling model was constructed to intuitively combine the co-registered quantitative, chemical, functional, and structural tissue information, enabling longitudinal in situ biomolecular analysis. Results Over a 9-week period of tumor progression, and even before the formation of solid tumor, we observed lipid-protein transitions, microenvironmental reorganization, and a shift from FAD to NAD(P)H fluorescence, which reflects the reprogramming of cellular metabolism in carcinogenesis. Conclusions Multimodal multiphoton imaging reveals and interrelates diverse carcinogenic signatures, identifying biomarkers that could serve as early molecular indicators for breast cancer diagnosis. This quantitative multimodal imaging methodology for molecular profiling of associated cancer biomarkers may have a broader impact in fundamental cancer research and future clinical applications.
Collapse
Affiliation(s)
- Yuan Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sixian You
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric J Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Electrical and Computer Engineeringe, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
10
|
Kearns NM, Jones AC, Kunz MB, Allen RT, Flach JT, Zanni MT. Two-Dimensional White-Light Spectroscopy Using Supercontinuum from an All-Normal Dispersion Photonic Crystal Fiber Pumped by a 70 MHz Yb Fiber Oscillator. J Phys Chem A 2019; 123:3046-3055. [DOI: 10.1021/acs.jpca.9b02206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicholas M. Kearns
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Andrew C. Jones
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Miriam Bohlmann Kunz
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ryan T. Allen
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jessica T. Flach
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
11
|
Chung HY, Greinert R, Kärtner FX, Chang G. Multimodal imaging platform for optical virtual skin biopsy enabled by a fiber-based two-color ultrafast laser source. BIOMEDICAL OPTICS EXPRESS 2019; 10:514-525. [PMID: 30800496 PMCID: PMC6377886 DOI: 10.1364/boe.10.000514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 05/07/2023]
Abstract
We demonstrate multimodal label-free nonlinear optical microscopy in human skin enabled by a fiber-based two-color ultrafast source. Energetic femtosecond pulses at 775 nm and 1250 nm are simultaneously generated by an Er-fiber laser source employing frequency doubling and self-phase modulation enabled spectral selection. The integrated nonlinear optical microscope driven by such a two-color femtosecond source enables the excitation of endogenous two-photon excitation fluorescence, second-harmonic generation, and third-harmonic generation in human skin. Such a 3-channel imaging platform constitutes a powerful tool for clinical application and optical virtual skin biopsy.
Collapse
Affiliation(s)
- Hsiang-Yu Chung
- Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607 Hamburg, Germany
- Physics Department, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Franz X Kärtner
- Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607 Hamburg, Germany
- Physics Department, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Guoqing Chang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
12
|
Parriaux A, Conforti M, Bendahmane A, Fatome J, Finot C, Trillo S, Picqué N, Millot G. Spectral broadening of picosecond pulses forming dispersive shock waves in optical fibers. OPTICS LETTERS 2017; 42:3044-3047. [PMID: 28957241 DOI: 10.1364/ol.42.003044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
We investigate analytically, numerically, and experimentally the spectral broadening of pulses that undergo the formation of dispersive shocks, addressing in particular pulses in the range of tens of ps generated via electro-optic modulation of a continuous-wave laser. We give an analytical estimate of the maximal spectral extension and show that super-Gaussian waveforms favor the generation of flat-topped spectra. We also show that the weak residual background of the modulator produces undesired spectral ripples. Spectral measurements confirm our estimates and agree well with numerical integration of the nonlinear Schrödinger equation.
Collapse
|
13
|
Nomura Y, Fuji T. Generation of watt-class, sub-50 fs pulses through nonlinear spectral broadening within a thulium-doped fiber amplifier. OPTICS EXPRESS 2017; 25:13691-13696. [PMID: 28788911 DOI: 10.1364/oe.25.013691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate direct generation of sub-50 fs pulses from a thulium-doped fiber amplifier. Broad spectra are obtained by exploiting nonlinear effects within the amplifier fiber itself. High fractional inversion densities of thulium ions achieved by a core-pumping scheme helped to extend spectra into the shorter wavelength region around 1.7 µm. Pulses with a duration of 48 fs are obtained at an average power of 2.5 W directly after the amplifier fiber, i.e., without using a compressor.
Collapse
|
14
|
Domingue SR, Bartels RA, Chicco AJ, Wilson JW. Transient absorption imaging of hemes with 2-color, independently tunable visible-wavelength ultrafast source. BIOMEDICAL OPTICS EXPRESS 2017; 8:2807-2821. [PMID: 28663908 PMCID: PMC5480431 DOI: 10.1364/boe.8.002807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 06/07/2023]
Abstract
Pump probe microscopy is a time-resolved multiphoton imaging technique capable of generating contrast between non-fluorescent pigments based on differences in excited-state lifetimes. Here we describe a fiber-based ultrafast system designed for imaging heme proteins with an independently-tunable pulse pair in the visible-wavelength regime. Starting with a 1060 nm fiber amplifier (1.3 W at 63 MHz, 140 fs pulses), visible pulses were produced in the vicinity of 488 nm and 532 nm by doubling the output of a short photonic crystal fiber with a pair of periodically-poled lithium niobate crystals, providing 5-20 mW power in each beam. This was sufficient for acquiring transient absorption images from unstained cryosectioned tissue.
Collapse
Affiliation(s)
- Scott R. Domingue
- Department of Electrical & Computer Engineering, Colorado State University, USA
- Current affiliation: KMLabs, Boulder, CO,
USA
| | - Randy A. Bartels
- Department of Electrical & Computer Engineering, Colorado State University, USA
- School of Biomedical Engineering, Colorado State University, USA
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, USA
- School of Biomedical Engineering, Colorado State University, USA
| | - Jesse W. Wilson
- Department of Electrical & Computer Engineering, Colorado State University, USA
- School of Biomedical Engineering, Colorado State University, USA
| |
Collapse
|
15
|
Liu W, Li C, Zhang Z, Kärtner FX, Chang G. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach. OPTICS EXPRESS 2016; 24:15328-40. [PMID: 27410809 DOI: 10.1364/oe.24.015328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.
Collapse
|
16
|
Xu G, Mussot A, Kudlinski A, Trillo S, Copie F, Conforti M. Shock wave generation triggered by a weak background in optical fibers. OPTICS LETTERS 2016; 41:2656-2659. [PMID: 27244438 DOI: 10.1364/ol.41.002656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We experimentally report the observation of dispersive shock waves from a short pulse superimposed onto a small continuous wave background in optical fibers. We show that the background allows us to strongly enhance the extension and contrast of the oscillatory wave train inherent to the dispersive shock. More than seven periods of oscillations with high contrast are observed experimentally and confirmed with numerical simulations. The dynamics of the process are simply explained from spectro-temporal representations.
Collapse
|
17
|
Al-Kadry A, Li L, El Amraoui M, North T, Messaddeq Y, Rochette M. Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires. OPTICS LETTERS 2015; 40:4687-4690. [PMID: 26469595 DOI: 10.1364/ol.40.004687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the first chalcogenide microwire designed with all-normal dispersion to generate supercontinuum by optical wave breaking, a low-noise nonlinear process. The chalcogenide (As2S3) microwire is coated with PMMA and tapered to a diameter of 0.58 μm to achieve the all-normal dispersion regime. The generated supercontinuum spectrum spans over an octave from 960 to >2500 nm using a microwire length of only 3 mm and a low pulse energy of 150 pJ.
Collapse
|
18
|
Castelló-Lurbe D, Silvestre E. Supercontinuum generation in silicon waveguides relying on wave-breaking. OPTICS EXPRESS 2015; 23:25462-25473. [PMID: 26480064 DOI: 10.1364/oe.23.025462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Four-wave-mixing processes enabled during optical wave-breaking (OWB) are exploited in this paper for supercontinuum generation. Unlike conventional approaches based on OWB, phase-matching is achieved here for these nonlinear interactions, and, consequently, new frequency production becomes more efficient. We take advantage of this kind of pulse propagation to obtain numerically a coherent octave-spanning mid-infrared supercontinuum generation in a silicon waveguide pumping at telecom wavelengths in the normal dispersion regime. This scheme shows a feasible path to overcome limits imposed by two-photon absorption on spectral broadening in silicon waveguides.
Collapse
|
19
|
Liu Y, Zhao Y, Lyngsø J, You S, Wilson WL, Tu H, Boppart SA. Suppressing Short-term Polarization Noise and Related Spectral Decoherence in All-normal Dispersion Fiber Supercontinuum Generation. JOURNAL OF LIGHTWAVE TECHNOLOGY : A JOINT IEEE/OSA PUBLICATION 2015; 33:1814-1820. [PMID: 26166939 PMCID: PMC4495961 DOI: 10.1109/jlt.2015.2397276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The supercontinuum generated exclusively in the normal dispersion regime of a nonlinear fiber is widely believed to possess low optical noise and high spectral coherence. The recent development of flattened all-normal dispersion fibers has been motivated by this belief to construct a general-purpose broadband coherent optical source. Somewhat surprisingly, we identify a large short-term polarization noise in this type of supercontinuum generation that has been masked by the total-intensity measurement in the past, but can be easily detected by filtering the supercontinuum with a linear polarizer. Fortunately, this hidden intrinsic noise and the accompanied spectral decoherence can be effectively suppressed by using a polarization-maintaining all-normal dispersion fiber. A polarization-maintaining coherent supercontinuum laser is thus built with a broad bandwidth (780-1300 nm) and high spectral power (~1 mW/nm).
Collapse
Affiliation(s)
- Yuan Liu
- Biophotonics Imaging Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Youbo Zhao
- Biophotonics Imaging Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jens Lyngsø
- NKT Photonics A/S, Blokken 84, 3460 Birkerød, Denmark
| | - Sixian You
- Biophotonics Imaging Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - William L. Wilson
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Haohua Tu
- Biophotonics Imaging Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A. Boppart
- Biophotonics Imaging Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Domingue SR, Bartels RA. Nearly transform-limited sub-20-fs pulses at 1065 nm and >10 nJ enabled by a flat field ultrafast pulse shaper. OPTICS LETTERS 2015; 40:253-6. [PMID: 25679857 DOI: 10.1364/ol.40.000253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Using a low-nonlinearity fiber and pulses from a nonlinear fiber amplifier seeded by a modelocked Yb-doped fiber oscillator, we generate 19-fs pulses centered at 1065 nm with 11.5 nJ of pulse energy (700 mW average power). The short (<15 cm) 10-μm core, polarization maintaining fiber minimizes deleterious nonlinear effects and eliminates fiber damage, while still producing pulse bandwidths well beyond the Yb gain bandwidth limit. A flat-field pulse shaper, utilizing a Plössl lens, compresses the pulse to within 92% of the transform-limited peak power. The total power transmission efficiency is as high as 67%, including fiber coupling losses and pulse shaper transmission, due to the novel pulse shaper design allowing the incorporation of a high-efficiency transmission grating.
Collapse
|
21
|
Sukhoivanov IA, Iakushev SO, Shulika OV, AndradeLucio JA, Díez A, Andrés M. Supercontinuum generation at 800 nm in all-normal dispersion photonic crystal fiber. OPTICS EXPRESS 2014; 22:30234-30250. [PMID: 25606954 DOI: 10.1364/oe.22.030234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have numerically investigated the supercontinuum generation and pulse compression in a specially designed all-normal dispersion photonic crystal fiber with a flat-top dispersion curve, pumped by typical pulses from state of the art Ti:Sapphire lasers at 800 nm. The optimal combination of pump pulse parameters for a given fiber was found, which provides a wide octave-spanning spectrum with superb spectral flatness (a drop in spectral intensity of ~1.7 dB). With regard to the pulse compression for these spectra, multiple-cycle pulses (~8 fs) can be obtained with the use of a simple quadratic compressor and nearly single-cycle pulses (3.3 fs) can be obtained with the application of full phase compensation. The impact of pump pulse wavelength-shifting relative to the top of the dispersion curve on the generated SC and pulse compression was also investigated. The optimal pump pulse wavelength range was found to be 750 nm < λp < 850 nm, where the distortions of pulse shape are quite small (< -3.3 dB). The influences of realistic fiber fabrication errors on the SC generation and pulse compression were investigated systematically. We propose that the spectral shape distortions generated by fiber fabrication errors can be significantly attenuated by properly manipulating the pump.
Collapse
|
22
|
Tu H, Boppart SA. Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation. JOURNAL OF BIOPHOTONICS 2014; 7:9-22. [PMID: 23674234 PMCID: PMC4486077 DOI: 10.1002/jbio.201300031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 05/07/2023]
Abstract
Clinical translation of coherent anti-Stokes Raman scattering microscopy is of great interest because of the advantages of noninvasive label-free imaging, high sensitivity, and chemical specificity. For this to happen, we have identified and review the technical barriers that must be overcome. Prior investigations have developed advanced techniques (features), each of which can be used to effectively overcome one particular technical barrier. However, the implementation of one or a small number of these advanced features in previous attempts for clinical translation has often introduced more tradeoffs than benefits. In this review, we outline a strategy that would integrate multiple advanced features to overcome all the technical barriers simultaneously, effectively reduce tradeoffs, and synergistically optimize CARS microscopy for clinical translation. The operation of the envisioned system incorporates coherent Raman micro-spectroscopy for identifying vibrational biomolecular markers of disease and single-frequency (or hyperspectral) Raman imaging of these specific biomarkers for real-time in vivo diagnostics and monitoring.
Collapse
Affiliation(s)
- Haohua Tu
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, USA
| | - Stephen A. Boppart
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
23
|
Castelló-Lurbe D, Andrés P, Silvestre E. Dispersion-to-spectrum mapping in nonlinear fibers based on optical wave-breaking. OPTICS EXPRESS 2013; 21:28550-28558. [PMID: 24514367 DOI: 10.1364/oe.21.028550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work we recognize new strategies involving optical wave-breaking for controlling the output pulse spectrum in nonlinear fibers. To this end, first we obtain a constant of motion for nonlinear pulse propagation in waveguides derived from the generalized nonlinear Schrödinger equation. In a second phase, using the above conservation law we theoretically analyze how to transfer in a simple manner the group-velocity-dispersion curve of the waveguide to the output spectral profile of pulsed light. Finally, the computation of several output spectra corroborates our proposition.
Collapse
|
24
|
Tu H, Lægsgaard J, Zhang R, Tong S, Liu Y, Boppart SA. Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses. OPTICS EXPRESS 2013; 21:23188-96. [PMID: 24104233 PMCID: PMC3796687 DOI: 10.1364/oe.21.023188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We predict and realize the targeted wavelength conversion from the 1550-nm band of a fs Er:fiber laser to an isolated band inside 370-850 nm, corresponding to a blue-shift of 700-1180 nm. The conversion utilizes resonant dispersive wave generation in widely available optical fibers with good efficiency (~7%). The converted band has a large pulse energy (~1 nJ), high spectral brightness (~1 mW/nm), and broad Gaussian-like spectrum compressible to clean transform-limited ~17 fs pulses. The corresponding coherent fiber sources open up portable applications of optical parametric oscillators and dual-output synchronized ultrafast lasers.
Collapse
Affiliation(s)
- Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
| | - Jesper Lægsgaard
- DTU Fotonik, Technical University of Denmark, DK-2800 Kgs. Lyngby,
Denmark
| | - Rui Zhang
- Calmar Laser, Inc., 575 N. Pastoria Avenue, Sunnyvale, California 94085,
USA
| | - Shi Tong
- Calmar Laser, Inc., 575 N. Pastoria Avenue, Sunnyvale, California 94085,
USA
| | - Yuan Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
| |
Collapse
|
25
|
Domingue SR, Bartels RA. Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation. OPTICS EXPRESS 2013; 21:13305-21. [PMID: 23736583 PMCID: PMC3686467 DOI: 10.1364/oe.21.013305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 05/02/2013] [Indexed: 05/30/2023]
Abstract
The intrinsic weak birefringence in all-normal dispersion highly nonlinear fiber, particularly ultra-high-numerical-aperture fiber, generates supercontinuum with long term polarization instabilities, even for seed pulses launched along the perceived slow axis of the fiber. Highly co/anti-correlated fluctuations in energy between regions of power spectral density mask the extent of the spectral noise in total integrated power measurements. The instability exhibits a seed pulse power threshold above which the output polarization state of the supercontinuum seeds from noise. Eliminating this instability through the utilization of nonlinear fiber with a large designed birefringence, encourages the exploration of compression schemes and seed sources. Here, we include an analysis of the difficulties for seeding supercontinuum with the highly attractive ANDi-type lasers. Lastly, we introduce an intuitive approach for understanding supercontinuum development and evolution. By modifying the traditional characteristic dispersion and nonlinear lengths to track pulse properties within the nonlinear fiber, we find simple, descriptive handles for supercontinuum evolution.
Collapse
Affiliation(s)
- Scott R Domingue
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
26
|
Liu Y, King MD, Tu H, Zhao Y, Boppart SA. Broadband nonlinear vibrational spectroscopy by shaping a coherent fiber supercontinuum. OPTICS EXPRESS 2013; 21:8269-75. [PMID: 23571917 PMCID: PMC3641023 DOI: 10.1364/oe.21.008269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/08/2013] [Accepted: 03/19/2013] [Indexed: 05/26/2023]
Abstract
Vibrational spectroscopy has been widely applied in different fields due to its label-free chemical-sensing capability. Coherent anti-Stokes Raman scattering (CARS) provides stronger signal and faster acquisition than spontaneous Raman scattering, making it especially suitable for molecular imaging. Coherently-controlled single-beam CARS simplifies the conventional multi-beam setup, but the vibrational bandwidth and non-trivial spectrum retrieval have been limiting factors. In this work, a coherent supercontinuum generated in an all-normal-dispersion nonlinear fiber is phase-shaped within a narrow bandwidth for broadband vibrational spectroscopy. The Raman spectra can be directly retrieved from the CARS measurements, covering the fingerprint regime up to 1750 cm(-1). The retrieved spectra of several chemical species agree with their spontaneous Raman data. The compact fiber supercontinuum source offers broad vibrational bandwidth with high stability and sufficient power, showing the potential for spectroscopic imaging in a wide range of applications.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA
| | - Matthew D. King
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA
- Department of Internal Medicine, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA
| | - Haohua Tu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA
- Department of Internal Medicine, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA
| | - Youbo Zhao
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA
- Department of Internal Medicine, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA
| | - Stephen A. Boppart
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA
- Department of Internal Medicine, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA
| |
Collapse
|
27
|
Wu R, Torres-Company V, Leaird DE, Weiner AM. Supercontinuum-based 10-GHz flat-topped optical frequency comb generation. OPTICS EXPRESS 2013; 21:6045-6052. [PMID: 23482172 DOI: 10.1364/oe.21.006045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The generation of high-repetition-rate optical frequency combs with an ultra-broad, coherent and smooth spectrum is important for many applications in optical communications, radio-frequency photonics and optical arbitrary waveform generation. Usually, nonlinear broadening techniques of comb-based sources do not provide the required flatness over the whole available bandwidth. Here we present a 10-GHz ultra-broadband flat-topped optical frequency comb (> 3.64-THz or 28 nm bandwidth with ~365 spectral lines within 3.5-dB power variation) covering the entire C-band. The key enabling point is the development of a pre-shaping-free directly generated Gaussian comb-based 10-GHz pulse train to seed a highly nonlinear fiber with normal dispersion profile. The combination of the temporal characteristics of the seed pulses with the nonlinear device allows the pulses to enter into the optical wave-breaking regime, thus achieving a smooth flat-topped comb spectral envelope. To further illustrate the high spectral coherence of the comb, we demonstrate high-quality pedestal-free short pulse compression to the transform-limited duration.
Collapse
Affiliation(s)
- Rui Wu
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
28
|
Liu Y, Tu H, Boppart SA. Wave-Breaking Extended Coherent Fiber: Supercontinuum Pulse Compression. OPTICS AND PHOTONICS NEWS 2012; 23:55. [PMID: 24587687 PMCID: PMC3938102 DOI: 10.1364/opn.23.12.000055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|