1
|
Shirmohammad M, Short MA, Zeng H. Collision Enhanced Raman Scattering (CERS): An Ultra-High Efficient Raman Enhancement Technique for Hollow Core Photonic Crystal Fiber Based Raman Spectroscopy Gas Analyzer. BIOSENSORS 2023; 13:979. [PMID: 37998154 PMCID: PMC10669419 DOI: 10.3390/bios13110979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Raman enhancement techniques are essential for gas analysis to increase the detection sensitivity of a Raman spectroscopy system. We have developed an efficient Raman enhancement technique called the collision-enhanced Raman scattering (CERS), where the active Raman gas as the analyte is mixed with a buffer gas inside the hollow-core photonic-crystal fiber (HCPCF) of a fiber-enhanced Raman spectroscopy (FERS) system. This results in an enhanced Raman signal from the analyte gas. In this study, we first showed that the intensity of the 587 cm-1 stimulated Raman scattering (SRS) peak of H2 confined in an HCPCF is enhanced by as much as five orders of magnitude by mixing with a buffer gas such as helium or N2. Secondly, we showed that the magnitudes of Raman enhancement depend on the type of buffer gas, with helium being more efficient compared to N2. This makes helium a favorable buffer gas for CERS. Thirdly, we applied CERS for Raman measurements of propene, a metabolically interesting volatile organic compound (VOC) with an association to lung cancer. CERS resulted in a substantial enhancement of propene Raman peaks. In conclusion, the CERS we developed is a simple and efficient Raman-enhancing mechanism for improving gas analysis. It has great potential for application in breath analysis for lung cancer detection.
Collapse
Affiliation(s)
- Maryam Shirmohammad
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada;
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
| | - Michael A. Short
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
| | - Haishan Zeng
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada;
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC V5Z 4E8, Canada
| |
Collapse
|
2
|
Ayyanar N, Thavasi Raja G, Y S S, Monfared YE, A A Z, A A S, Yu GA. Hollow-Core Microstructured Optical Fiber Based Refractometer: Numerical Simulation and Experimental Studies. IEEE Trans Nanobioscience 2022; 21:194-198. [PMID: 35041611 DOI: 10.1109/tnb.2022.3144313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this paper, we numerically and experimentally propose a novel hollow-core microstructured optical fiber (HC-MOF) biosensor for refractive index determination. The sensing mechanism of the proposed sensor is based on photonic bandgap effect and the location of transmission maxima of the fiber, which is strongly depend on the liquid analyte RI filled in the fiber core. The proposed HC-MOF biosensor demonstrates the spectral sensitivity of 5636.3 nm/RIU with a RI detection range of 1.333 to 1.3385 for different ratios of plasma in blood serum in our experimental studies. The HC-MOF proposed here can detect similar liquid analytes with RI close to 1.33. The proposed sensor with a high sensitivity, ease of operation and the possibility of real-time sensing has a strong potential for detection of liquid analytes and biomolecules with possible applications in medicine, chemistry, and biology.
Collapse
|
3
|
Zhu X, Wu D, Wang Y, Yu F, Li Q, Qi Y, Knight J, Chen S, Hu L. Delivery of CW laser power up to 300 watts at 1080 nm by an uncooled low-loss anti-resonant hollow-core fiber. OPTICS EXPRESS 2021; 29:1492-1501. [PMID: 33726363 DOI: 10.1364/oe.415494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
In this paper, we report the use of a 3-meter low-loss anti-resonant hollow-core fiber (AR-HCF) to deliver up to 300 W continuous-wave laser power at 1080 nm wavelength from a commercial fiber laser source. A near-diffraction-limited beam is measured at the output of the AR-HCF and no damage to the uncooled AR-HCF is observed for several hours of laser delivery operation. The limit of AR-HCF coupling efficiency and laser-induced thermal effects that were observed in our experiment are also discussed.
Collapse
|
4
|
Amrani F, Osório JH, Delahaye F, Giovanardi F, Vincetti L, Debord B, Gérôme F, Benabid F. Low-loss single-mode hybrid-lattice hollow-core photonic-crystal fibre. LIGHT, SCIENCE & APPLICATIONS 2021; 10:7. [PMID: 33408320 PMCID: PMC7788080 DOI: 10.1038/s41377-020-00457-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Remarkable recent demonstrations of ultra-low-loss inhibited-coupling (IC) hollow-core photonic-crystal fibres (HCPCFs) established them as serious candidates for next-generation long-haul fibre optics systems. A hindrance to this prospect and also to short-haul applications such as micromachining, where stable and high-quality beam delivery is needed, is the difficulty in designing and fabricating an IC-guiding fibre that combines ultra-low loss, truly robust single-modeness, and polarisation-maintaining operation. The design solutions proposed to date require a trade-off between low loss and truly single-modeness. Here, we propose a novel IC-HCPCF for achieving low-loss and effective single-mode operation. The fibre is endowed with a hybrid cladding composed of a Kagome-tubular lattice (HKT). This new concept of a microstructured cladding allows us to significantly reduce the confinement loss and, at the same time, preserve truly robust single-mode operation. Experimental results show an HKT-IC-HCPCF with a minimum loss of 1.6 dB/km at 1050 nm and a higher-order mode extinction ratio as high as 47.0 dB for a 10 m long fibre. The robustness of the fibre single-modeness is tested by moving the fibre and varying the coupling conditions. The design proposed herein opens a new route for the development of HCPCFs that combine robust ultra-low-loss transmission and single-mode beam delivery and provides new insight into IC guidance.
Collapse
Affiliation(s)
- Foued Amrani
- GPPMM Group, XLIM Institute, CNRS UMR 7252, University of Limoges, Limoges, 87060, France
- GLOphotonics, 123 Avenue Albert Thomas, Limoges, 87060, France
| | - Jonas H Osório
- GPPMM Group, XLIM Institute, CNRS UMR 7252, University of Limoges, Limoges, 87060, France
| | - Frédéric Delahaye
- GPPMM Group, XLIM Institute, CNRS UMR 7252, University of Limoges, Limoges, 87060, France
- GLOphotonics, 123 Avenue Albert Thomas, Limoges, 87060, France
| | - Fabio Giovanardi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Luca Vincetti
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Benoît Debord
- GPPMM Group, XLIM Institute, CNRS UMR 7252, University of Limoges, Limoges, 87060, France
- GLOphotonics, 123 Avenue Albert Thomas, Limoges, 87060, France
| | - Frédéric Gérôme
- GPPMM Group, XLIM Institute, CNRS UMR 7252, University of Limoges, Limoges, 87060, France
- GLOphotonics, 123 Avenue Albert Thomas, Limoges, 87060, France
| | - Fetah Benabid
- GPPMM Group, XLIM Institute, CNRS UMR 7252, University of Limoges, Limoges, 87060, France.
- GLOphotonics, 123 Avenue Albert Thomas, Limoges, 87060, France.
| |
Collapse
|
5
|
Wu S, Siwicki B, Carter RM, Biancalana F, Shephard JD, Hand DP. Impact of nonlinear effects on transmission losses of hollow-core antiresonant negative curvature optical fiber. APPLIED OPTICS 2020; 59:4988-4996. [PMID: 32543496 DOI: 10.1364/ao.382350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/04/2020] [Indexed: 06/11/2023]
Abstract
We investigate the impact of input pulse duration and peak power of a femtosecond laser on pulse broadening and propagation losses in selected hollow-core antiresonant fiber (HC-ARF). The mixed effects of strong self-phase modulation and relatively weak Raman scattering broaden the spectral width, which in turn causes a portion of the output spectrum to exceed the transmission band of the fiber, resulting in transmission losses. By designing and setting up a gas flow control system and a vacuum system, the nonlinear behavior of the fiber filled with different pressurized gases is investigated. The experimental results show that replacing the air molecules in the fiber core with argon can weaken pulse broadening and increase the transmittable peak power by 14 MW for a given 122 MW input, while a vacuum system can reduce the nonlinearity to a larger extent, therefore enhancing the transmission of HC-ARF by at least 26 MW.
Collapse
|
6
|
Jung Y, Kim H, Chen Y, Bradley TD, Davidson IA, Hayes JR, Jasion G, Sakr H, Rikimi S, Poletti F, Richardson DJ. Compact micro-optic based components for hollow core fibers. OPTICS EXPRESS 2020; 28:1518-1525. [PMID: 32121860 DOI: 10.1364/oe.28.001518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Using micro-optic collimator technology, we present compact, low-loss optical interconnection devices for hollow core fibers (HCFs). This approach is one of the key manufacturing platforms for commercially available fiber optic components and most forms of HCFs can readily be incorporated into this platform without the need for any substantial or complicated adaptation or physical deformation of the fiber structure. Furthermore, this technique can provide for very low Fresnel reflection interconnection between solid-core fiber and HCF and in addition provides a hermetic seal for HCFs, which can be a critical issue for many HCF applications. In this paper, several exemplar HCF components are fabricated with low insertion loss (0.5-2 dB), low Fresnel reflection (-45 dB) and high modal purity (>20 dB) using various state-of-the-art HCFs.
Collapse
|
7
|
Andreana M, Le T, Drexler W, Unterhuber A. Ultrashort pulse Kagome hollow-core photonic crystal fiber delivery for nonlinear optical imaging. OPTICS LETTERS 2019; 44:1588-1591. [PMID: 30933097 DOI: 10.1364/ol.44.001588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report ultrashort pulse delivery through a hypocycloid-core inhibited-coupling Kagome hollow-core photonic crystal fiber (HC-PCF). Undistorted 10 fs and 6.6 nJ pulses were launched through 1 m long fiber without fiber dispersion pre-compensation and 80% efficiency. The performance of this technology for biomedical imaging is demonstrated on a biological sample by incorporating the fiber into a two-photon excited fluorescence (TPEF) laser scanning microscope (LSM) achieving a pulse width of 15 fs at the sample location. To the best of our knowledge, this is the first report on undistorted TPEF imaging in a LSM with 15 fs pulses delivered through a 1 m long Kagome HC-PCF with high throughput.
Collapse
|
8
|
Abstract
Since their inception, about 20 years ago, hollow-core photonic crystal fiber and its gas-filled form are now establishing themselves both as a platform in advancing our knowledge on how light is confined and guided in microstructured dielectric optical waveguides, and a remarkable enabler in a large and diverse range of fields. The latter spans from nonlinear and coherent optics, atom optics and laser metrology, quantum information to high optical field physics and plasma physics. Here, we give a historical account of the major seminal works, we review the physics principles underlying the different optical guidance mechanisms that have emerged and how they have been used as design tools to set the current state-of-the-art in the transmission performance of such fibers. In a second part of this review, we give a nonexhaustive, yet representative, list of the different applications where gas-filled hollow-core photonic crystal fiber played a transformative role, and how the achieved results are leading to the emergence of a new field, which could be coined “Gas photonics”. We particularly stress on the synergetic interplay between glass, gas, and light in founding this new fiber science and technology.
Collapse
|
9
|
|
10
|
Maurel M, Chafer M, Amsanpally A, Adnan M, Amrani F, Debord B, Vincetti L, Gérôme F, Benabid F. Optimized inhibited-coupling Kagome fibers at Yb-Nd:Yag (8.5 dB/km) and Ti:Sa (30 dB/km) ranges. OPTICS LETTERS 2018; 43:1598-1601. [PMID: 29601039 DOI: 10.1364/ol.43.001598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
We report on the development of hypocycloid core-contour inhibited-coupling (IC) Kagome hollow-core photonic crystal fibers (HC-PCFs) with record transmission loss and spectral coverage that include the common industrial laser wavelengths. Using the scaling of the confinement loss with the core-contour negative curvature and the silica strut thickness, we fabricated an IC Kagome HC-PCF for Yb and Nd:Yag laser guidance with record loss level of 8.5 dB/km associated with a 225-nm-wide 3-dB bandwidth. A second HC-PCF is fabricated with reduced silica strut thickness while keeping the hypocycloid core contour. It exhibits a fundamental transmission window spanning down to the Ti:Sa spectral range and a loss figure of 30 dB/km at 750 nm. The fibers' modal properties and bending sensitivity show these HC-PCFs to be ideal for ultralow-loss, flexible, and robust laser beam delivery.
Collapse
|
11
|
Resan B, Auchli R, Villamaina V, Holtz R. Dynamic fiber delivery of 3 W 160 fs pulses with photonic crystal hollow core fiber patchcord. OPTICS EXPRESS 2017; 25:24553-24558. [PMID: 29041399 DOI: 10.1364/oe.25.024553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
We report output characteristics of a connectorized hollow core photonics crystal fiber when it is subjected to coiling down to a 50 mm radius, bending, and torsion. We achieved coupling efficiency up to 73% with an output average power of 2 W and 24 nJ pulse energy. With optimized coupling, depolarization was as low as 7%. Coiling and bending of the photonic crystal patchcord introduces little distortion; torsion, however, changes the polarization drastically. To our knowledge, this is the first report on dynamic fiber delivery of fs pulses.
Collapse
|
12
|
Conkey DB, Kakkava E, Lanvin T, Loterie D, Stasio N, Morales-Delgado E, Moser C, Psaltis D. High power, ultrashort pulse control through a multi-core fiber for ablation. OPTICS EXPRESS 2017; 25:11491-11502. [PMID: 28788714 DOI: 10.1364/oe.25.011491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ultrashort pulse ablation has become a useful tool for micromachining and biomedical surgical applications. Implementation of ultrashort pulse ablation in confined spaces has been limited by endoscopic delivery and focusing of a high peak power pulse. Here we demonstrate ultrashort pulse ablation through a thin multi-core fiber (MCF) using wavefront shaping, which allows for focusing and scanning the pulse without requiring distal end optics and enables a smaller ablation tool. The intensity necessary for ablation is significantly higher than for multiphoton imaging. We show that the ultimate limitations of the MCF based ablation are the nonlinear effects induced by the pulse in the MCFs cores. We characterize and compare the performance of two devices utilizing a different number of cores and demonstrate ultrashort pulse ablation on a thin film of gold.
Collapse
|
13
|
Bock V, Plötner M, De Vries O, Nold J, Haarlammert N, Schreiber T, Eberhardt R, Tünnermann A. Modal content measurements (S 2) of negative curvature hollow-core photonic crystal fibers. OPTICS EXPRESS 2017; 25:3006-3012. [PMID: 28241518 DOI: 10.1364/oe.25.003006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present modal content measurements (S2) of two different negative curvature hollow-core photonic crystal fibers: a kagome fiber and an ice cream cone fiber. Their sensitivity towards mode matching, bending and polarization is analyzed. For the kagome fiber, a higher order mode suppression of 17dB under optimal conditions was achieved, and for the ice cream cone fiber there was a suppression of up to 42dB. Polarization turned out to be a critical parameter for good higher order mode suppression in both fibers.
Collapse
|
14
|
Hasan MI, Akhmediev N, Chang W. Positive and negative curvatures nested in an antiresonant hollow-core fiber. OPTICS LETTERS 2017; 42:703-706. [PMID: 28198844 DOI: 10.1364/ol.42.000703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We propose a negative curvature hollow-core fiber that has a nested elliptical element in the antiresonant tubes. The additional elliptical element effectively adds two curvatures, namely, a positive and a negative curvature. Our numerical study shows that it enhances the confinement of the light in the core. Moreover, the nested elements provided an extra degree of freedom that can be exploited to suppress higher-order modes through the change of the ellipticity. The resulting low confinement loss and single-mode guidance properties of the proposed fiber make it a suitable candidate for applications in ultrashort pulse delivery and gas-based nonlinear systems.
Collapse
|
15
|
Subramanian K, Gabay I, Ferhanoğlu O, Shadfan A, Pawlowski M, Wang Y, Tkaczyk T, Ben-Yakar A. Kagome fiber based ultrafast laser microsurgery probe delivering micro-Joule pulse energies. BIOMEDICAL OPTICS EXPRESS 2016; 7:4639-4653. [PMID: 27896003 PMCID: PMC5119603 DOI: 10.1364/boe.7.004639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 05/22/2023]
Abstract
We present the development of a 5 mm, piezo-actuated, ultrafast laser scalpel for fast tissue microsurgery. Delivery of micro-Joules level energies to the tissue was made possible by a large, 31 μm, air-cored inhibited-coupling Kagome fiber. We overcome the fiber's low NA by using lenses made of high refractive index ZnS, which produced an optimal focusing condition with 0.23 NA objective. The optical design achieved a focused laser spot size of 4.5 μm diameter covering a 75 × 75 μm2 scan area in a miniaturized setting. The probe could deliver the maximum available laser power, achieving an average fluence of 7.8 J/cm2 on the tissue surface at 62% transmission efficiency. Such fluences could produce uninterrupted, 40 μm deep cuts at translational speeds of up to 5 mm/s along the tissue. We predicted that the best combination of speed and coverage exists at 8 mm/s for our conditions. The onset of nonlinear absorption in ZnS, however, limited the probe's energy delivery capabilities to 1.4 μJ for linear operation at 1.5 picosecond pulse-widths of our fiber laser. Alternatives like broadband CaF2 crystals should mitigate such nonlinear limiting behavior. Improved opto-mechanical design and appropriate material selection should allow substantially higher fluence delivery and propel such Kagome fiber-based scalpels towards clinical translation.
Collapse
Affiliation(s)
- Kaushik Subramanian
- Department of Mechanical Engineering, The University of Texas at Austin, Texas 78712, USA
- These authors contributed equally to this work
| | - Ilan Gabay
- Department of Mechanical Engineering, The University of Texas at Austin, Texas 78712, USA
- These authors contributed equally to this work
| | - Onur Ferhanoğlu
- Department of Mechanical Engineering, The University of Texas at Austin, Texas 78712, USA
| | - Adam Shadfan
- Department of Bioengineering, Rice University, Houston 77005, USA
| | - Michal Pawlowski
- Department of Bioengineering, Rice University, Houston 77005, USA
| | - Ye Wang
- Department of Bioengineering, Rice University, Houston 77005, USA
| | - Tomasz Tkaczyk
- Department of Bioengineering, Rice University, Houston 77005, USA
| | - Adela Ben-Yakar
- Department of Mechanical Engineering, The University of Texas at Austin, Texas 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Texas 78712, USA
| |
Collapse
|
16
|
Bradley TD, Wheeler NV, Jasion GT, Gray D, Hayes J, Gouveia MA, Sandoghchi SR, Chen Y, Poletti F, Richardson D, Petrovich M. Modal content in hypocycloid Kagomé hollow core photonic crystal fibers. OPTICS EXPRESS 2016; 24:15798-15812. [PMID: 27410850 DOI: 10.1364/oe.24.015798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The modal content of 7 and 19 cell Kagomé anti resonant hollow core fibers (K-ARF) with hypocycloid core surrounds is experimentally investigated through the spectral and spatial (S2) imaging technique. It is observed that the 7 and 19 cell K-ARF reported here, support 4 and 7 LP mode groups respectively, however the observation that K-ARF support few mode groups is likely to be ubiquitous to 7 and 19 cell K-ARFs. The transmission loss of the higher order modes (HOMs) was measured via S2 and a cutback method. In the 7 cell K-ARF it is found that the LP11 and LP21 modes have approximately 3.6 and 5.7 times the loss of the fundamental mode (FM), respectively. In the 19 cell it is found that the LP11 mode has approximately 2.57 times the loss of the FM, while the LP02 mode has approximately 2.62 times the loss of the FM. Additionally, bend loss in these fibers is studied for the first time using S2 to reveal the effect of bend on modal content. Our measurements demonstrate that K-ARFs support a few mode groups and indicate that the differential loss of the HOMs is not substantially higher than that of the FM, and that bending the fiber does not induce significant inter modal coupling. A study of three different input beam coupling configurations demonstrates increased HOM excitation at output and a non-Gaussian profile of the output beam if poor mode field matching is achieved.
Collapse
|
17
|
A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre. Nat Commun 2015; 6:6117. [PMID: 25625549 PMCID: PMC4317490 DOI: 10.1038/ncomms7117] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/18/2014] [Indexed: 11/09/2022] Open
Abstract
Over the past decade intense laser fields with a single-cycle duration and even shorter, subcycle multicolour field transients have been generated and applied to drive attosecond phenomena in strong-field physics. Because of their extensive bandwidth, single-cycle fields cannot be emitted or amplified by laser sources directly and, as a rule, are produced by external pulse compression-a combination of nonlinear optical spectral broadening followed up by dispersion compensation. Here we demonstrate a simple robust driver for high-field applications based on this Kagome fibre approach that ensures pulse self-compression down to the ultimate single-cycle limit and provides phase-controlled pulses with up to a 100 μJ energy level, depending on the filling gas, pressure and the waveguide length.
Collapse
|
18
|
Kolyadin A, Alagashev G, Pryamikov A, Mouradian L, Zeytunyan A, Toneyan H, Kosolapov A, Bufetov I. Negative Curvature Hollow-core Fibers: Dispersion Properties and Femtosecond Pulse Delivery. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.phpro.2015.09.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Schneider W, Ryabov A, Lombosi C, Metzger T, Major Z, Fülöp JA, Baum P. 800-fs, 330-μJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO₃. OPTICS LETTERS 2014; 39:6604-7. [PMID: 25490632 DOI: 10.1364/ol.39.006604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Yb:YAG thin-disk lasers offer extraordinary output power, but systems delivering femtosecond pulses at a repetition rate of hundreds of kilohertz are scarce, even though this regime is ideal for ultrafast electron diffraction, coincidence imaging, attosecond science, and terahertz (THz) spectroscopy. Here we describe a regenerative Yb:YAG amplifier based on thin-disk technology, producing 800-fs pulses at a repetition rate adjustable between 50 and 400 kHz. The key design elements are a short regenerative cavity and fast-switching Pockels cell. The average output power is 130 W before the compressor and 100 W after compression, which at 300 kHz corresponds to pulse energies of 430 and 330 μJ, respectively. This is sufficient for a wide range of nonlinear conversions and broadening/compression schemes. As a first application, we use optical rectification in LiNbO₃ to produce 30-nJ single-cycle THz pulses with 6 W pump power. The electric field exceeds 10 kV/cm at a central frequency of 0.3 THz, suitable for driving structural dynamics or controlling electron beams.
Collapse
|
20
|
Ding W, Wang Y. Analytic model for light guidance in single-wall hollow-core anti-resonant fibers. OPTICS EXPRESS 2014; 22:27242-27256. [PMID: 25401875 DOI: 10.1364/oe.22.027242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report an analytic model for quantitatively calculating the transmission attenuation of single-wall hollow-core anti-resonant fibers. Our calculations unveil the light leakage dependences on azimuthal angle, polarization, and geometrical shape and have been examined in a variety of fiber geometries. Based on our model, a simple and clear picture about light guidance in hollow-core lattice fibers is presented. Formation of equiphase surface at fiber's outermost boundary and light emission ruled by Helmholtz equation in transverse plane constitute the basis of this picture. Using this picture, we explain how the geometrical shape of a single-wall hollow-core fiber influences its transmission properties.
Collapse
|
21
|
Improving femtosecond laser pulse delivery through a hollow core photonic crystal fiber for temporally focused two-photon endomicroscopy. Sci Rep 2014; 4:6626. [PMID: 25316120 PMCID: PMC4894416 DOI: 10.1038/srep06626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/25/2014] [Indexed: 11/09/2022] Open
Abstract
In this paper, we present a strategy to improve delivery of femtosecond laser pulses from a regenerative amplifier through a hollow core photonic crystal fiber for temporally focused wide-field two-photon endomicroscopy. For endomicroscope application, wide-field two-photon excitation has the advantage of requiring no scanning in the distal end. However, wide-field two-photon excitation requires peak power that is 10(4)-10(5) times higher than the point scanning approach corresponding to femtosecond pulses with energy on the order of 1-10 μJ at the specimen plane. The transmission of these high energy pulses through a single mode fiber into the microendoscope is a significant challenge. Two approaches were pursued to partially overcome this limitation. First, a single high energy pulse is split into a train of pulses with energy below the fiber damage threshold better utilizing the available laser energy. Second, stretching the pulse width in time by introducing negative dispersion was shown to have the dual benefit of reducing fiber damage probability and compensating for the positive group velocity dispersion induced by the fiber. With these strategy applied, 11 fold increase in the two photon excitation signal has been demonstrated.
Collapse
|
22
|
Ferhanoglu O, Yildirim M, Subramanian K, Ben-Yakar A. A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery. BIOMEDICAL OPTICS EXPRESS 2014; 5:2023-36. [PMID: 25071946 PMCID: PMC4102346 DOI: 10.1364/boe.5.002023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 05/05/2023]
Abstract
Towards developing precise microsurgery tools for the clinic, we previously developed image-guided miniaturized devices using low repetition rate amplified ultrafast lasers for surgery. To improve the speed of tissue removal while reducing device diameter, here we present a new 5-mm diameter device that delivers high-repetition rate laser pulses for high speed ultrafast laser microsurgery. The device consists of an air-core photonic bandgap fiber (PBF) for the delivery of high energy pulses, a piezoelectric tube actuator for fiber scanning, and two aspheric lenses for focusing the light. Its inline optical architecture provides easy alignment and substantial size reduction to 5 mm diameter as compared to our previous MEMS-scanning devices while realizing improved intensity squared (two-photon) lateral and axial resolutions of 1.16 μm and 11.46 μm, respectively. Our study also sheds light on the maximum pulse energies that can be delivered through the air-core PBF and identifies cladding damage at the input facet of the fiber as the limiting factor. We have achieved a maximum energy delivery larger than 700 nJ at 92% coupling efficiency. An in depth analysis reveals how this value is greatly affected by possible slight misalignments of the beam during coupling and the measured small beam pointing fluctuations. In the absence of these imperfections, self-phase modulation becomes the limiting factor for the maximum energy delivery, setting the theoretical upper bound to near 2 μJ for a 1-m long, 7-μm, air-core PBF. Finally, the use of a 300 kHz repetition rate fiber laser enabled rapid ablation of 150 µm x 150 µm area within only 50 ms. Such ablation speeds can now allow the surgeons to translate the surgery device as fast as ~4 mm/s to continuously remove a thin layer of a 150 µm wide tissue. Thanks to a high optical transmission efficiency of the in-line optical architecture of the device and improved resolution, we could successfully perform ablation of scarred cheek pouch tissue, drilling through a thin slice. With further development, this device can serve as a precise and high speed ultrafast laser scalpel in the clinic.
Collapse
|
23
|
Gebert F, Frosz MH, Weiss T, Wan Y, Ermolov A, Joly NY, Schmidt PO, Russell PSJ. Damage-free single-mode transmission of deep-UV light in hollow-core PCF. OPTICS EXPRESS 2014; 22:15388-15396. [PMID: 24977799 DOI: 10.1364/oe.22.015388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Transmission of UV light with high beam quality and pointing stability is desirable for many experiments in atomic, molecular and optical physics. In particular, laser cooling and coherent manipulation of trapped ions with transitions in the UV require stable, single-mode light delivery. Transmitting even ~2 mW CW light at 280 nm through silica solid-core fibers has previously been found to cause transmission degradation after just a few hours due to optical damage. We show that photonic crystal fiber of the kagomé type can be used for effectively single-mode transmission with acceptable loss and bending sensitivity. No transmission degradation was observed even after >100 hours of operation with 15 mW CW input power. In addition it is shown that implementation of the fiber in a trapped ion experiment increases the coherence time of the internal state transfer due to an increase in beam pointing stability.
Collapse
|
24
|
Debord B, Alharbi M, Vincetti L, Husakou A, Fourcade-Dutin C, Hoenninger C, Mottay E, Gérôme F, Benabid F. Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining. OPTICS EXPRESS 2014; 22:10735-46. [PMID: 24921775 DOI: 10.1364/oe.22.010735] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report on damage-free fiber-guidance of milli-Joule energy-level and 600-femtosecond laser pulses into hypocycloid core-contour Kagome hollow-core photonic crystal fibers. Up to 10 meter-long fibers were used to successfully deliver Yb-laser pulses in robustly single-mode fashion. Different pulse propagation regimes were demonstrated by simply changing the fiber dispersion and gas. Self-compression to ~50 fs, and intensity-level nearing petawatt/cm(2) were achieved. Finally, free focusing-optics laser-micromachining was also demonstrated on different materials.
Collapse
|
25
|
Bidinger J, Ackermann R, Cattaneo G, Kammel R, Nolte S. A feasibility study on femtosecond laser thrombolysis. Photomed Laser Surg 2013; 32:17-22. [PMID: 24328610 DOI: 10.1089/pho.2013.3581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE In this feasibility study, we investigate possible femtosecond laser thrombolysis. BACKGROUND DATA Because of low pulse energies, femtosecond laser surgery inherently minimizes side effects on the surrounding tissue. Moreover, current femtosecond laser sources as well as fiber technology allow consideration of catheter-based treatments. METHODS Two femtosecond laser systems (λ=800 nm, λ=1030 nm) along with a three dimensional (3D) scanner system (NA ~0.1) were used in this study. In vitro experiments were performed on porcine thrombi and blood vessels. Ablation thresholds were determined in air, by determining the pulse energy at which single shot ablation was visible under the optical microscope. Ablation rates were determined in physiological saline. Additionally, ablation of thrombi and blood vessels was monitored by means of a fiber spectrometer. RESULTS Depending upon the scan velocity, typical ablation rates for thrombi were ~0.04 mm(3)/sec. Ablation thresholds of thrombi and blood vessels differ by factors of 3 and 1.5 at laser wavelengths of 800 and 1030 nm, respectively. At a distance of 5 mm above the surface, second harmonic generation was observed in blood vessels, but not within thrombi. CONCLUSIONS The results show that a typical thrombus volume can be destroyed within a reasonable time frame. Because of the higher threshold difference of thrombi and blood vessels, the use of a laser wavelength of 800 nm is preferable. Furthermore, the detection of the second harmonic could provide a feedback mechanism to protect the vascular wall from mechanical and laser damage.
Collapse
Affiliation(s)
- Johannes Bidinger
- 1 Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena , Jena, Germany
| | | | | | | | | |
Collapse
|
26
|
Debord B, Alharbi M, Bradley T, Fourcade-Dutin C, Wang YY, Vincetti L, Gérôme F, Benabid F. Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss. OPTICS EXPRESS 2013; 21:28597-28608. [PMID: 24514371 DOI: 10.1364/oe.21.028597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report on numerical and experimental studies showing the influence of arc curvature on the confinement loss in hypocycloid-core Kagome hollow-core photonic crystal fiber. The results prove that with such a design the optical performances are strongly driven by the contour negative curvature of the core-cladding interface. They show that the increase in arc curvature results in a strong decrease in both the confinement loss and the optical power overlap between the core mode and the silica core-surround, including a modal content approaching true single-mode guidance. Fibers with enhanced negative curvature were then fabricated with a record loss-level of 17 dB/km at 1064 nm.
Collapse
|
27
|
Alharbi M, Bradley T, Debord B, Fourcade-Dutin C, Ghosh D, Vincetti L, Gérôme F, Benabid F. Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss. OPTICS EXPRESS 2013; 21:28609-28616. [PMID: 24514372 DOI: 10.1364/oe.21.028609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report on numerical and experimental studies on the influence of cladding ring-number on the confinement and bend loss in hypocycloid-shaped Kagome hollow core photonic crystal fiber. The results show that beyond the second ring, the ring number has a minor effect on confinement loss whereas the bend loss is strongly reduced with the ring-number increase. Finally, the results show that the increase in the cladding ring-number improves the modal content of the fiber.
Collapse
|
28
|
Emaury F, Dutin CF, Saraceno CJ, Trant M, Heckl OH, Wang YY, Schriber C, Gerome F, Südmeyer T, Benabid F, Keller U. Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber. OPTICS EXPRESS 2013; 21:4986-94. [PMID: 23482031 DOI: 10.1364/oe.21.004986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We present two experiments confirming that hypocycloid Kagome-type hollow-core photonic crystal fibers (HC-PCFs) are excellent candidates for beam delivery of MW peak powers and pulse compression down to the sub-50 fs regime. We demonstrate temporal pulse compression of a 1030-nm Yb:YAG thin disk laser providing 860 fs, 1.9 µJ pulses at 3.9 MHz. Using a single-pass grating pulse compressor, we obtained a pulse duration of 48 fs (FWHM), a spectral bandwidth of 58 nm, and an average output power of 4.2 W with an overall power efficiency into the final polarized compressed pulse of 56%. The pulse energy was 1.1 µJ. This corresponds to a peak power of more than 10 MW and a compression factor of 18 taking into account the exact temporal pulse profile measured with a SHG FROG. The compressed pulses were close to the transform limit of 44 fs. Moreover, we present transmission of up to 97 µJ pulses at 10.5 ps through 10-cm long fiber, corresponding to more than twice the critical peak power for self-focusing in silica.
Collapse
Affiliation(s)
- Florian Emaury
- Department of Physics, Institute of Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cubillas AM, Unterkofler S, Euser TG, Etzold BJM, Jones AC, Sadler PJ, Wasserscheid P, Russell PSJ. Photonic crystal fibres for chemical sensing and photochemistry. Chem Soc Rev 2013; 42:8629-48. [PMID: 23753016 DOI: 10.1039/c3cs60128e] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ana M Cubillas
- Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1/Bldg. 24, 91058 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|