1
|
Molani A, Pennati F, Ravazzani S, Scarpellini A, Storti FM, Vegetali G, Paganelli C, Aliverti A. Advances in Portable Optical Microscopy Using Cloud Technologies and Artificial Intelligence for Medical Applications. SENSORS (BASEL, SWITZERLAND) 2024; 24:6682. [PMID: 39460161 PMCID: PMC11510803 DOI: 10.3390/s24206682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
The need for faster and more accessible alternatives to laboratory microscopy is driving many innovations throughout the image and data acquisition chain in the biomedical field. Benchtop microscopes are bulky, lack communications capabilities, and require trained personnel for analysis. New technologies, such as compact 3D-printed devices integrated with the Internet of Things (IoT) for data sharing and cloud computing, as well as automated image processing using deep learning algorithms, can address these limitations and enhance the conventional imaging workflow. This review reports on recent advancements in microscope miniaturization, with a focus on emerging technologies such as photoacoustic microscopy and more established approaches like smartphone-based microscopy. The potential applications of IoT in microscopy are examined in detail. Furthermore, this review discusses the evolution of image processing in microscopy, transitioning from traditional to deep learning methods that facilitate image enhancement and data interpretation. Despite numerous advancements in the field, there is a noticeable lack of studies that holistically address the entire microscopy acquisition chain. This review aims to highlight the potential of IoT and artificial intelligence (AI) in combination with portable microscopy, emphasizing the importance of a comprehensive approach to the microscopy acquisition chain, from portability to image analysis.
Collapse
|
2
|
He F, Luo X, Meng F, Chen J, Liang C, Zhang Y, Liu S, Yuan Z, Zhang W, He Y, Zhang J. Subcutaneous injection of hyaluronic acid leading to emboliom and recanalization process monitored in real time by three-dimensional photoacoustic imaging. Heliyon 2024; 10:e25066. [PMID: 38314292 PMCID: PMC10837626 DOI: 10.1016/j.heliyon.2024.e25066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/06/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
This study describes a method for real-time examination of the microvascular system based on the three-dimensional photoacoustic imaging system to prevent arterial complications, especially vascular embolism, during hyaluronic acid (HA) injections. Chicken embryos were used to simulate the superficial blood vessels of human skin, and then the target area was imaged by the photoacoustic imaging system for three-dimensional vascular imaging, and then the syringe and blood vessels were monitored, and the syringe angle and penetration depth were adjusted in time using an injection device to avoid puncturing the arterial vasculature and clogging the blood vessels. HA was then injected into smaller vessels on the dorsum of the tongue in mice and into thicker vessels on the dorsal portion of the tongue in rats to mimic embolization, and the post-operative recovery was reflected by the changes in the pixel dots of the extracted part of the blocked blood vessels, and it was observed that the blood flow in the area of the fine vessels was restored in about 3 days, whereas blood flow in the area of the large vessels was restored in only about 1 h. The method presented in this paper allows precise guidance of injectable filler HA, which has good application prospects in improving the safety of injection micro-plastic surgery and reducing the experience requirements for medical personnel.
Collapse
Affiliation(s)
- Fengbing He
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, China
| | - Xingzhi Luo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Fan Meng
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, China
| | - Jiarui Chen
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, China
| | - Chaohao Liang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, China
| | - Yiqing Zhang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, China
| | - Shutong Liu
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, China
| | - Zishan Yuan
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, China
| | - Wuyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yanping He
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, China
| | - Jian Zhang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, China
| |
Collapse
|
3
|
Li D, Yao Y, Zuo T, Xu J, Tao C, Qian X, Liu X. In vivo structural and functional imaging of human nailbed microvasculature using photoacoustic microscopy. OPTICS LETTERS 2023; 48:5711-5714. [PMID: 37910740 DOI: 10.1364/ol.502305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Monitoring microvascular structure and function is of great significance for the diagnosis of many diseases. In this study, we demonstrate the feasibility of OR-PAM to nailbed microcirculation detection as a new, to the best of our knowledge, application scenario in humans. We propose a dual-wavelength optical-resolution photoacoustic microscopy (OR-PAM) with improved local-flexible coupling to image human nailbed microvasculature. Microchip lasers with 532 nm wavelength are employed as the pump sources. The 558 nm laser is generated from the 532 nm laser through the stimulated Raman scattering effect. The flowing water, circulated by a peristaltic pump, maintains the acoustic coupling between the ultrasonic transducer and the sample. These designs improve the sensitivity, practicality, and stability of the OR-PAM system for human in vivo experiments. The imaging of the mouse ear demonstrates the ability of our system to acquire structural and functional information. Then, the system is applied to image human nailbed microvasculature. The imaging results reveal that the superficial capillaries are arranged in a straight sagittal pattern, approximately parallel to the long axis of the finger. The arterial and venular limbs are distinguished according to their oxygen saturation differences. Additionally, the images successfully discover the capillary loops with single or multiple twists, the oxygen release at the end of the capillary loop, and the changes when the nailbed is abnormal.
Collapse
|
4
|
Barulin A, Park H, Park B, Kim I. Dual-wavelength UV-visible metalens for multispectral photoacoustic microscopy: A simulation study. PHOTOACOUSTICS 2023; 32:100545. [PMID: 37645253 PMCID: PMC10461252 DOI: 10.1016/j.pacs.2023.100545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Photoacoustic microscopy is advancing with research on utilizing ultraviolet and visible light. Dual-wavelength approaches are sought for observing DNA/RNA- and vascular-related disorders. However, the availability of high numerical aperture lenses covering both ultraviolet and visible wavelengths is severely limited due to challenges such as chromatic aberration in the optics. Herein, we present a groundbreaking proposal as a pioneering simulation study for incorporating multilayer metalenses into ultraviolet-visible photoacoustic microscopy. The proposed metalens has a thickness of 1.4 µm and high numerical aperture of 0.8. By arranging cylindrical hafnium oxide nanopillars, we design an achromatic transmissive lens for 266 and 532 nm wavelengths. The metalens achieves a diffraction-limited focal spot, surpassing commercially available objective lenses. Through three-dimensional photoacoustic simulation, we demonstrate high-resolution imaging with superior endogenous contrast of targets with ultraviolet and visible optical absorption bands. This metalens will open new possibilities for downsized multispectral photoacoustic microscopy in clinical and preclinical applications.
Collapse
Affiliation(s)
- Aleksandr Barulin
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyemi Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Byullee Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Guo T, Xiong K, Yuan B, Zhang Z, Wang L, Zhang Y, Liang C, Liu Z. Homogeneous-resolution photoacoustic microscopy for ultrawide field-of-view neurovascular imaging in Alzheimer's disease. PHOTOACOUSTICS 2023; 31:100516. [PMID: 37313359 PMCID: PMC10258506 DOI: 10.1016/j.pacs.2023.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023]
Abstract
Neurovascular imaging is essential for investigating neurodegenerative diseases. However, the existing neurovascular imaging technology suffers from a trade-off between a field of view (FOV) and resolution in the whole brain, resulting in an inhomogeneous resolution and lack of information. Here, homogeneous-resolution arched-scanning photoacoustic microscopy (AS-PAM), which has an ultrawide FOV to cover the entire mouse cerebral cortex, was developed. Imaging of the neurovasculature was performed with a homogenous resolution of 6.9 µm from the superior sagittal sinus to the middle cerebral artery and caudal rhinal vein in an FOV of 12 × 12 mm2. Moreover, using AS-PAM, vascular features of the meninges and cortex were quantified in early Alzheimer's disease (AD) and wild-type (WT) mice. The results demonstrated high sensitivity to the pathological progression of AD on tortuosity and branch index. The high-fidelity imaging capability in large FOV enables AS-PAM to be a promising tool for precise brain neurovascular visualization and quantification.
Collapse
Affiliation(s)
- Ting Guo
- School of Medicine South China University of Technology, Guangzhou 510006, China
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
| | - Kedi Xiong
- MOE Key Laboratory of Laser Life Science Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Bo Yuan
- MOE Key Laboratory of Laser Life Science Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhenhui Zhang
- MOE Key Laboratory of Laser Life Science Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Lijuan Wang
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangzhou 510080, China
| | - Yuhu Zhang
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangzhou 510080, China
| | - Changhong Liang
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
| |
Collapse
|
6
|
Chen J, Zhang Y, Zhu J, Tang X, Wang L. Freehand scanning photoacoustic microscopy with simultaneous localization and mapping. PHOTOACOUSTICS 2022; 28:100411. [PMID: 36254241 PMCID: PMC9568868 DOI: 10.1016/j.pacs.2022.100411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 05/02/2023]
Abstract
Optical-resolution photoacoustic microscopy offers high-resolution, label-free hemodynamic and functional imaging to many biomedical applications. However, long-standing technical barriers, such as limited field of view, bulky scanning probes, and slow imaging speed, have limited the application of optical-resolution photoacoustic microscopy. Here, we present freehand scanning photoacoustic microscopy (FS-PAM) that can flexibly image various anatomical sites. We develop a compact handheld photoacoustic probe to acquire 3D images with high speed, and great flexibility. The high scanning speed not only enables video camera mode imaging but also allows for the first implementation of simultaneous localization and mapping (SLAM) in photoacoustic microscopy. We demonstrate fast in vivo imaging of some mouse organs, and human oral mucosa. The high imaging speed greatly reduces motion artifacts and distortions from tissue moving, breathing, and unintended handshaking. We demonstrate small-lesion localization in a large region of the brain. FS-PAM offers a flexible high-speed imaging tool with an extendable field of view, enabling more biomedical imaging applications.
Collapse
Affiliation(s)
- Jiangbo Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong Special Administrative Region of China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong Special Administrative Region of China
| | - Jingyi Zhu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong Special Administrative Region of China
| | - Xu Tang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong Special Administrative Region of China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong Special Administrative Region of China
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Shenzhen, Guang Dong 518057, China
- Corresponding author at: Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong Special Administrative Region of China.
| |
Collapse
|
7
|
Chen Q, Qin W, Qi W, Xi L. Progress of clinical translation of handheld and semi-handheld photoacoustic imaging. PHOTOACOUSTICS 2021; 22:100264. [PMID: 33868921 PMCID: PMC8040335 DOI: 10.1016/j.pacs.2021.100264] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 05/05/2023]
Abstract
Photoacoustic imaging (PAI), featuring rich contrast, high spatial/temporal resolution and deep penetration, is one of the fastest-growing biomedical imaging technology over the last decade. To date, numbers of handheld and semi-handheld photoacoustic imaging devices have been reported with corresponding potential clinical applications. Here, we summarize emerged handheld and semi-handheld systems in terms of photoacoustic computed tomography (PACT), optoacoustic mesoscopy (OAMes), and photoacoustic microscopy (PAM). We will discuss each modality in three aspects: laser delivery, scanning protocol, and acoustic detection. Besides new technical developments, we also review the associated clinical studies, and the advantages/disadvantages of these new techniques. In the end, we propose the challenges and perspectives of miniaturized PAI in the future.
Collapse
Affiliation(s)
- Qian Chen
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wei Qin
- School of Physics, University of Electronics Science and Technology of China, Chengdu, 610054, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
8
|
Wu S, Tao C, Zhang X, Lu F, Liu X. Simultaneous scattering-absorption dual-modal cell imaging in a single shot by a transmission-mode photoacoustic microscope. OPTICS LETTERS 2020; 45:5832-5835. [PMID: 33057296 DOI: 10.1364/ol.403537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
A microscopy scheme is proposed to simultaneously achieve optical scattering-absorption dual-contrast imaging of a transparent or semi-transparent specimen. This scheme is based on a transmission-mode photoacoustic microscope. We find that two peaks exist in the detected photoacoustic signal. One peak is caused by the optical absorption of the specimen, and the other is related to both the optical scattering and absorption of the specimen. Therefore, both the absorption and scattering information can be simultaneously extracted by analyzing the same photoacoustic signal excited by a single-shot laser pulse. After the microscope is validated by imaging a binary mixture consisting of particles with different optical properties, it successfully acquires dual images of red blood cells with different contrasts. Quantitative analysis reveals that the optical absorption and scattering properties of the specimen can be derived from the two images. The proposed dual-modal imaging method would be useful in revealing the structural and functional properties of tissues at the cell level or the clinical assessment of pathological sections.
Collapse
|
9
|
Ma Y, Lu C, Xiong K, Zhang W, Yang S. Spatial weight matrix in dimensionality reduction reconstruction for micro-electromechanical system-based photoacoustic microscopy. Vis Comput Ind Biomed Art 2020; 3:22. [PMID: 32996016 PMCID: PMC7524599 DOI: 10.1186/s42492-020-00058-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/04/2020] [Indexed: 12/23/2022] Open
Abstract
A micro-electromechanical system (MEMS) scanning mirror accelerates the raster scanning of optical-resolution photoacoustic microscopy (OR-PAM). However, the nonlinear tilt angular-voltage characteristic of a MEMS mirror introduces distortion into the maximum back-projection image. Moreover, the size of the airy disk, ultrasonic sensor properties, and thermal effects decrease the resolution. Thus, in this study, we proposed a spatial weight matrix (SWM) with a dimensionality reduction for image reconstruction. The three-layer SWM contains the invariable information of the system, which includes a spatial dependent distortion correction and 3D deconvolution. We employed an ordinal-valued Markov random field and the Harris Stephen algorithm, as well as a modified delay-and-sum method during a time reversal. The results from the experiments and a quantitative analysis demonstrate that images can be effectively reconstructed using an SWM; this is also true for severely distorted images. The index of the mutual information between the reference images and registered images was 70.33 times higher than the initial index, on average. Moreover, the peak signal-to-noise ratio was increased by 17.08% after 3D deconvolution. This accomplishment offers a practical approach to image reconstruction and a promising method to achieve a real-time distortion correction for MEMS-based OR-PAM.
Collapse
Affiliation(s)
- Yuanzheng Ma
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Chang Lu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Kedi Xiong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Wuyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|