1
|
Seesan T, Mukherjee P, Abd El-Sadek I, Lim Y, Zhu L, Makita S, Yasuno Y. Optical-coherence-tomography-based deep-learning scatterer-density estimator using physically accurate noise model. BIOMEDICAL OPTICS EXPRESS 2024; 15:2832-2848. [PMID: 38855681 PMCID: PMC11161371 DOI: 10.1364/boe.519743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 06/11/2024]
Abstract
We demonstrate a deep-learning-based scatterer density estimator (SDE) that processes local speckle patterns of optical coherence tomography (OCT) images and estimates the scatterer density behind each speckle pattern. The SDE is trained using large quantities of numerically simulated OCT images and their associated scatterer densities. The numerical simulation uses a noise model that incorporates the spatial properties of three types of noise, i.e., shot noise, relative-intensity noise, and non-optical noise. The SDE's performance was evaluated numerically and experimentally using two types of scattering phantom and in vitro tumor spheroids. The results confirmed that the SDE estimates scatterer densities accurately. The estimation accuracy improved significantly when compared with our previous deep-learning-based SDE, which was trained using numerical speckle patterns generated from a noise model that did not account for the spatial properties of noise.
Collapse
Affiliation(s)
- Thitiya Seesan
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Department of Physics, Faculty of Science, Damietta University, New Damietta City 34517, Damietta, Egypt
| | - Yiheng Lim
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Lida Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
2
|
Kurokawa K, Nemeth M. Multifunctional adaptive optics optical coherence tomography allows cellular scale reflectometry, polarimetry, and angiography in the living human eye. BIOMEDICAL OPTICS EXPRESS 2024; 15:1331-1354. [PMID: 38404344 PMCID: PMC10890865 DOI: 10.1364/boe.505395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
Clinicians are unable to detect glaucoma until substantial loss or dysfunction of retinal ganglion cells occurs. To this end, novel measures are needed. We have developed an optical imaging solution based on adaptive optics optical coherence tomography (AO-OCT) to discern key clinical features of glaucoma and other neurodegenerative diseases at the cellular scale in the living eye. Here, we test the feasibility of measuring AO-OCT-based reflectance, retardance, optic axis orientation, and angiogram at specifically targeted locations in the living human retina and optic nerve head. Multifunctional imaging, combined with focus stacking and global image registration algorithms, allows us to visualize cellular details of retinal nerve fiber bundles, ganglion cell layer somas, glial septa, superior vascular complex capillaries, and connective tissues. These are key histologic features of neurodegenerative diseases, including glaucoma, that are now measurable in vivo with excellent repeatability and reproducibility. Incorporating this noninvasive cellular-scale imaging with objective measurements will significantly enhance existing clinical assessments, which is pivotal in facilitating the early detection of eye disease and understanding the mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Kazuhiro Kurokawa
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Morgan Nemeth
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| |
Collapse
|
3
|
Veysset D, Zhuo Y, Hattori J, Buckhory M, Palanker D. Interferometric thermometry of ocular tissues for retinal laser therapy. BIOMEDICAL OPTICS EXPRESS 2023; 14:37-53. [PMID: 36698667 PMCID: PMC9842005 DOI: 10.1364/boe.475705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Controlling the tissue temperature rise during retinal laser therapy is highly desirable for predictable and reproducible outcomes of the procedure, especially with non-damaging settings. In this work, we demonstrate a method for determining the optical absorption, the thermal conductivity, and the thermal expansion coefficients of RPE and choroid using phase-resolved optical coherence tomography (pOCT). These parameters are extracted from the measured changes in the optical path length (ΔOPL) using an axisymmetric thermo-mechanical model. This allows the calculation of the temperature rise during hyperthermia, which was further validated by imaging the temperature-sensitive fluorescence at the same location. We demonstrate that, with a temperature uncertainty of ±0.9°C and a peak heating of about 17°C following a laser pulse of 20 ms, this methodology is expected to be safe and sufficiently precise for calibration of the non-damaging retinal laser therapy. The method is directly translatable to in-vivo studies, where we expect a similar precision.
Collapse
Affiliation(s)
- David Veysset
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| | - Yueming Zhuo
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Junya Hattori
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan
| | - Mohajeet Buckhory
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Nair A, Singh M, Aglyamov SR, Larin KV. Multimodal Heartbeat and Compression Optical Coherence Elastography for Mapping Corneal Biomechanics. Front Med (Lausanne) 2022; 9:833597. [PMID: 35479957 PMCID: PMC9037093 DOI: 10.3389/fmed.2022.833597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
The biomechanical properties of the cornea have a profound influence on the health, structural integrity, and function of the eye. Understanding these properties may be critical for diagnosis and identifying disease pathogenesis. This work demonstrates how two different elastography techniques can be combined for a multimodal approach to measuring corneal biomechanical properties. Heartbeat optical coherence elastography (Hb-OCE) and compression OCE were performed simultaneously to measure the stiffness of the cornea in an in vivo rabbit model. Measurements were further performed after collagen crosslinking to demonstrate how the combined technique can be used to measure changes in corneal stiffness and map mechanical contrast. The results of this work further suggest that measurements from Hb-OCE and compression OCE are comparable, meaning that Hb-OCE and compression OCE may be used interchangeably despite distinct differences in both techniques.
Collapse
Affiliation(s)
- Achuth Nair
- Biomedical Engineering, University of Houston, Houston TX, United States
| | - Manmohan Singh
- Biomedical Engineering, University of Houston, Houston TX, United States
| | | | - Kirill V. Larin
- Biomedical Engineering, University of Houston, Houston TX, United States
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
5
|
Seesan T, Abd El-Sadek I, Mukherjee P, Zhu L, Oikawa K, Miyazawa A, Shen LTW, Matsusaka S, Buranasiri P, Makita S, Yasuno Y. Deep convolutional neural network-based scatterer density and resolution estimators in optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:168-183. [PMID: 35154862 PMCID: PMC8803045 DOI: 10.1364/boe.443343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/03/2021] [Accepted: 11/25/2021] [Indexed: 05/02/2023]
Abstract
We present deep convolutional neural network (DCNN)-based estimators of the tissue scatterer density (SD), lateral and axial resolutions, signal-to-noise ratio (SNR), and effective number of scatterers (ENS, the number of scatterers within a resolution volume). The estimators analyze the speckle pattern of an optical coherence tomography (OCT) image in estimating these parameters. The DCNN is trained by a large number (1,280,000) of image patches that are fully numerically generated in OCT imaging simulation. Numerical and experimental validations were performed. The numerical validation shows good estimation accuracy as the root mean square errors were 0.23%, 3.65%, 3.58%, 3.79%, and 6.15% for SD, lateral and axial resolutions, SNR, and ENS, respectively. The experimental validation using scattering phantoms (Intralipid emulsion) shows reasonable estimations. Namely, the estimated SDs were proportional to the Intralipid concentrations, and the average estimation errors of lateral and axial resolutions were 1.36% and 0.68%, respectively. The scatterer density estimator was also applied to an in vitro tumor cell spheroid, and a reduction in the scatterer density during cell necrosis was found.
Collapse
Affiliation(s)
- Thitiya Seesan
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Physics, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok, Thailand
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Physics, Faculty of Science, Damietta University, New Damietta City, Damietta, Egypt
| | - Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Lida Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kensuke Oikawa
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Arata Miyazawa
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Sky Technology Inc., Tsukuba, Ibaraki, Japan
| | - Larina Tzu-Wei Shen
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Prathan Buranasiri
- Department of Physics, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok, Thailand
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Real-Time Strain and Elasticity Imaging in Phase-Sensitive Optical Coherence Elastography Using a Computationally Efficient Realization of the Vector Method. PHOTONICS 2021. [DOI: 10.3390/photonics8120527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a real-time realization of OCT-based elastographic mapping local strains and distribution of the Young’s modulus in biological tissues, which is in high demand for biomedical usage. The described variant exploits the principle of Compression Optical Coherence Elastography (C-OCE) and uses processing of phase-sensitive OCT signals. The strain is estimated by finding local axial gradients of interframe phase variations. Instead of the popular least-squares method for finding these gradients, we use the vector approach, one of its advantages being increased computational efficiency. Here, we present a modified, especially fast variant of this approach. In contrast to conventional correlation-based methods and previously used phase-resolved methods, the described method does not use any search operations or local calculations over a sliding window. Rather, it obtains local strain maps (and then elasticity maps) using several transformations represented as matrix operations applied to entire complex-valued OCT scans. We first elucidate the difference of the proposed method from the previously used correlational and phase-resolved methods and then describe the proposed method realization in a medical OCT device, in which for real-time processing, a “typical” central processor (e.g., Intel Core i7-8850H) is sufficient. Representative examples of on-flight obtained elastographic images are given. These results open prospects for broad use of affordable OCT devices for high-resolution elastographic vitalization in numerous biomedical applications, including the use in clinic.
Collapse
|
7
|
Hepburn MS, Foo KY, Wijesinghe P, Munro PRT, Chin L, Kennedy BF. Speckle-dependent accuracy in phase-sensitive optical coherence tomography. OPTICS EXPRESS 2021; 29:16950-16968. [PMID: 34154247 DOI: 10.1364/oe.417954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/26/2021] [Indexed: 05/25/2023]
Abstract
Phase-sensitive optical coherence tomography (OCT) is used to measure motion in a range of techniques, such as Doppler OCT and optical coherence elastography (OCE). In phase-sensitive OCT, motion is typically estimated using a model of the OCT signal derived from a single reflector. However, this approach is not representative of turbid samples, such as tissue, which exhibit speckle. In this study, for the first time, we demonstrate, through theory and experiment that speckle significantly lowers the accuracy of phase-sensitive OCT in a manner not accounted for by the OCT signal-to-noise ratio (SNR). We describe how the inaccuracy in speckle reduces phase difference sensitivity and introduce a new metric, speckle brightness, to quantify the amount of constructive interference at a given location in an OCT image. Experimental measurements show an almost three-fold degradation in sensitivity between regions of high and low speckle brightness at a constant OCT SNR. Finally, we apply these new results in compression OCE to demonstrate a ten-fold improvement in strain sensitivity, and a five-fold improvement in contrast-to-noise by incorporating independent speckle realizations. Our results show that speckle introduces a limit to the accuracy of phase-sensitive OCT and that speckle brightness should be considered to avoid erroneous interpretation of experimental data.
Collapse
|
8
|
Li J, Hepburn MS, Chin L, Mowla A, Kennedy BF. Analysis of sensitivity in quantitative micro-elastography. BIOMEDICAL OPTICS EXPRESS 2021; 12:1725-1745. [PMID: 33796383 PMCID: PMC7984799 DOI: 10.1364/boe.417829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 05/11/2023]
Abstract
Quantitative micro-elastography (QME), a variant of compression optical coherence elastography (OCE), is a technique to image tissue elasticity on the microscale. QME has been proposed for a range of applications, most notably tumor margin assessment in breast-conserving surgery. However, QME sensitivity, a key imaging metric, has yet to be systematically analyzed. Consequently, it is difficult to optimize imaging performance and to assess the potential of QME in new application areas. To address this, we present a framework for analyzing sensitivity that incorporates the three main steps in QME image formation: mechanical deformation, its detection using optical coherence tomography (OCT), and signal processing used to estimate elasticity. Firstly, we present an analytical model of QME sensitivity, validated by experimental data, and demonstrate that sub-kPa elasticity sensitivity can be achieved in QME. Using silicone phantoms, we demonstrate that sensitivity is dependent on friction, OCT focus depth, and averaging methods in signal processing. For the first time, we show that whilst lubrication of layer improves accuracy by reducing surface friction, it reduces sensitivity due to the time-dependent effect of lubricant exudation from the layer boundaries resulting in increased friction. Furthermore, we demonstrate how signal processing in QME provides a trade-off between sensitivity and resolution that can be used to optimize imaging performance. We believe that our framework to analyze sensitivity can help to sustain the development of QME and, also, that it can be readily adapted to other OCE techniques.
Collapse
Affiliation(s)
- Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- Australian Research Council Centre for Personalized Therapeutics Technologies, Australia
| | - Matt S. Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Lixin Chin
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- Australian Research Council Centre for Personalized Therapeutics Technologies, Australia
| |
Collapse
|
9
|
Zaitsev VY, Matveyev AL, Matveev LA, Sovetsky AA, Hepburn MS, Mowla A, Kennedy BF. Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances. JOURNAL OF BIOPHOTONICS 2021; 14:e202000257. [PMID: 32749033 DOI: 10.1002/jbio.202000257] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 05/20/2023]
Abstract
Quantitative mapping of deformation and elasticity in optical coherence tomography has attracted much attention of researchers during the last two decades. However, despite intense effort it took ~15 years to demonstrate optical coherence elastography (OCE) as a practically useful technique. Similarly to medical ultrasound, where elastography was first realized using the quasi-static compression principle and later shear-wave-based systems were developed, in OCE these two approaches also developed in parallel. However, although the compression OCE (C-OCE) was proposed historically earlier in the seminal paper by J. Schmitt in 1998, breakthroughs in quantitative mapping of genuine local strains and the Young's modulus in C-OCE have been reported only recently and have not yet obtained sufficient attention in reviews. In this overview, we focus on underlying principles of C-OCE; discuss various practical challenges in its realization and present examples of biomedical applications of C-OCE. The figure demonstrates OCE-visualization of complex transient strains in a corneal sample heated by an infrared laser beam.
Collapse
Affiliation(s)
- Vladimir Y Zaitsev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Alexander L Matveyev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Lev A Matveev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Alexander A Sovetsky
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Miyazawa A, Makita S, Li E, Yamazaki K, Kobayashi M, Sakai S, Yasuno Y. Polarization-sensitive optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2019; 10:5162-5181. [PMID: 31646039 PMCID: PMC6788587 DOI: 10.1364/boe.10.005162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 05/05/2023]
Abstract
Polarization-sensitive optical coherence elastography (PS-OCE) is developed for improved tissue discrimination. It integrates Jones matrix-based PS-optical coherence tomography (PS-OCT) with compression OCE. The method simultaneously measures the OCT intensity, attenuation coefficient, birefringence, and microstructural deformation (MSD) induced by tissue compression. Ex vivo porcine aorta and esophagus tissues were investigated by PS-OCE and histological imaging. The tissue properties measured by PS-OCE are shown as cross-sectional images and a three-dimensional (3-D) depth-trajectory plot. In this trajectory plot, the average attenuation coefficient, birefringence, and MSD were computed at each depth, and the trajectory in the depth direction was plotted in a 3-D feature space of these three properties. The tissue boundaries in a histological image corresponded with the depth-trajectory inflection points. Histogram analysis and t-distributed stochastic neighbour embedding (t-SNE) visualization of the three tissue properties indicated that the PS-OCE measurements provide sufficient information to discriminate porcine esophagus tissues.
Collapse
Affiliation(s)
- Arata Miyazawa
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
| | - En Li
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kohei Yamazaki
- Biological Science Research, Kao Corporation, 5-3-28, Kotobukicho, Odawara, Kanagawa, 250-0002, Japan
| | - Masaki Kobayashi
- Biological Science Research, Kao Corporation, 5-3-28, Kotobukicho, Odawara, Kanagawa, 250-0002, Japan
| | - Shingo Sakai
- Skin Care Product Research, Kao Corporation, 5-3-28, Kotobukicho, Odawara, Kanagawa, 250-0002, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
11
|
Meng F, Chen C, Hui S, Wang J, Feng Y, Sun C. Three-dimensional static optical coherence elastography based on inverse compositional Gauss-Newton digital volume correlation. JOURNAL OF BIOPHOTONICS 2019; 12:e201800422. [PMID: 31008547 DOI: 10.1002/jbio.201800422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
The three-dimensional (3D) mechanical properties characterization of tissue is essential for physiological and pathological studies, as biological tissue is mostly heterogeneous and anisotropic. A digital volume correlation (DVC)-based 3D optical coherence elastography (OCE) method is developed to measure the 3D displacement and strain tensors. The DVC algorithm includes a zero-mean normalized cross-correlation criterion-based coarse search regime, an inverse compositional Gauss-Newton fine search algorithm and a local ternary quadratic polynomial fitting strain calculation method. A 3D optical coherence tomography (OCT) scanning protocol is proposed through theoretical analysis and experimental verification. Measurement errors of the DVC-based 3D OCE method are evaluated to be less than 2.0 μm for displacements and 0.30% for strains by rigid body motion experiments. The 3D displacements and strains of a phantom and a specimen of chicken breast tissue under compression are measured. Results of the phantom show a good agreement with theoretical analysis and tensile testing. The strains of the chicken breast tissue indicate anisotropic biomechanical properties. This study provides an effective method for 3D biomechanical property studies of soft tissue and improves the development of 3D OCE techniques.
Collapse
Affiliation(s)
- Fanchao Meng
- Department of Mechanical Engineering, Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin University, Tianjin, China
| | - Cheng Chen
- Department of Mechanical Engineering, Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin University, Tianjin, China
| | - Shun Hui
- Department of Mechanical Engineering, Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin University, Tianjin, China
| | - Jingbo Wang
- Department of Mechanical Engineering, Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin University, Tianjin, China
| | - Yvlong Feng
- Department of Mechanical Engineering, Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin University, Tianjin, China
| | - Cuiru Sun
- Department of Mechanical Engineering, Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin University, Tianjin, China
| |
Collapse
|
12
|
Pelivanov I, Gao L, Pitre J, Kirby MA, Song S, Li D, Shen TT, Wang RK, O’Donnell M. Does group velocity always reflect elastic modulus in shear wave elastography? JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31342691 PMCID: PMC6650747 DOI: 10.1117/1.jbo.24.7.076003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/08/2019] [Indexed: 05/04/2023]
Abstract
Dynamic elastography is an attractive method to evaluate tissue biomechanical properties. Recently, it was extended from US- and MR-based modalities to optical ones, such as optical coherence tomography for three-dimensional (3-D) imaging of propagating mechanical waves in subsurface regions of soft tissues, such as the eye. The measured group velocity is often used to convert wave speed maps into 3-D images of the elastic modulus distribution based on the assumption of bulk shear waves. However, the specific geometry of OCE measurements in bounded materials such as the cornea and skin calls into question elasticity reconstruction assuming a simple relationship between group velocity and shear modulus. We show that in layered media the bulk shear wave assumption results in highly underestimated shear modulus reconstructions and significant structural artifacts in modulus images. We urge the OCE community to be careful in using the group velocity to evaluate tissue elasticity and to focus on developing robust reconstruction methods to accurately reconstruct images of the shear elastic modulus in bounded media.
Collapse
Affiliation(s)
- Ivan Pelivanov
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- Address all correspondence to Ivan Pelivanov, E-mail:
| | - Liang Gao
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - John Pitre
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Mitchell A. Kirby
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Shaozhen Song
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - David Li
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Chemical Engineering, Seattle, Washington, United States
| | - Tueng T. Shen
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Matthew O’Donnell
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| |
Collapse
|
13
|
Lo WCY, Uribe-Patarroyo N, Hoebel K, Beaudette K, Villiger M, Nishioka NS, Vakoc BJ, Bouma BE. Balloon catheter-based radiofrequency ablation monitoring in porcine esophagus using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:2067-2089. [PMID: 31086717 PMCID: PMC6484999 DOI: 10.1364/boe.10.002067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 05/05/2023]
Abstract
We present a microscopic image guidance platform for radiofrequency ablation (RFA) using a clinical balloon-catheter-based optical coherence tomography (OCT) system, currently used in the surveillance of Barrett's esophagus patients. Our integrated thermal therapy delivery and monitoring platform consists of a flexible, customized bipolar RFA electrode array designed for use with a clinical balloon OCT catheter and a processing algorithm to accurately map the thermal coagulation process. Non-uniform rotation distortion was corrected using a feature tracking-based technique, which enables robust, frame-to-frame analysis of the temporal fluctuation of the complex OCT signal. With proper noise calibration, precise delineation of the thermal therapy zone was demonstrated using cumulative complex differential variance in porcine esophagus ex vivo with the integrated OCT-RFA system, as validated by nitroblue tetrazolium chloride (NBTC) histology. The ability to directly and accurately visualize the thermal coagulation process at high resolution is critical to the precise delivery of thermal energy to a wide range of epithelial lesions.
Collapse
Affiliation(s)
- William C Y Lo
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Katharina Hoebel
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Kathy Beaudette
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Norman S Nishioka
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Department of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Benjamin J Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Brett E Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
14
|
3D Strain and Elasticity Measurement of Layered Biomaterials by Optical Coherence Elastography based on Digital Volume Correlation and Virtual Fields Method. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The three-dimensional (3D) mechanical property characterization of biological tissues is essential for physiological and pathological studies. A digital volume correlation (DVC) and virtual fields method (VFM) based 3D optical coherence elastography (OCE) method is developed to quantitatively measure the 3D full-field displacements, strains and elastic parameters of layered biomaterials assuming the isotropy and homogeneity of each layer. The integrated noise-insensitive DVC method can obtain the 3D strain tensor with an accuracy of 10%. Automatic segmentation of the layered materials is realized based on the full field strain and strain gradient. With the strain tensor as input, and in combination with the segmented geometry, the Young’s modulus and Poison’s ratio of each layer of a double-layered material and a pork specimen are obtained by the VFM. This study provides a powerful experimental method for the differentiation of various components of heterogeneous biomaterials, and for the measurement of biomechanics.
Collapse
|
15
|
Li E, Makita S, Azuma S, Miyazawa A, Yasuno Y. Compression optical coherence elastography with two-dimensional displacement measurement and local deformation visualization. OPTICS LETTERS 2019; 44:787-790. [PMID: 30767987 DOI: 10.1364/ol.44.000787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/07/2019] [Indexed: 05/22/2023]
Abstract
Current compression-based optical coherence elastography (OCE) only measures the axial displacement of a tissue, although the tissue also undergoes lateral displacement and microstructural alteration by the compression. In this Letter, we demonstrate a new compression-based OCE method that visualizes not only axial displacement, but also lateral displacement and microstructural decorrelation (MSD). This method employs complex correlation-based displacement and MSD measurements. It is implemented in a swept-source optical coherence tomography system with an active submicrometer compression. The performance of the method was demonstrated by measuring the porcine carotid artery and esophagus. The results showed significant axial and lateral displacements in the tissues by compression. An MSD map demonstrates high-contrast mechanical-property imaging.
Collapse
|
16
|
Liu X, Zaki F, Garg H, Rodriguez J. OCE quantification of Poisson's ratio through 2D speckle tracking. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10880:108801J. [PMID: 32713988 PMCID: PMC7378589 DOI: 10.1117/12.2503856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We describe a real-time 2D motion tracking method based on speckle analysis. We implemented this method in real-time using graphic s processing unit (GPU). The capability to track both axial and lateral motions will enable more comprehensive characterization of tissue mechanical properties including Poisson's ratio.
Collapse
Affiliation(s)
- Xuan Liu
- Dept. of Electrical and Computer Engineering, New Jersey Institute of Technology University Heights, Newark, New Jersey, USA, 07102
| | - Farzana Zaki
- Dept. of Electrical and Computer Engineering, New Jersey Institute of Technology University Heights, Newark, New Jersey, USA, 07102
| | - Harshita Garg
- Dept. of Electrical and Computer Engineering, New Jersey Institute of Technology University Heights, Newark, New Jersey, USA, 07102
| | - Jonathan Rodriguez
- Dept. of Electrical and Computer Engineering, New Jersey Institute of Technology University Heights, Newark, New Jersey, USA, 07102
| |
Collapse
|
17
|
Kirby MA, Pelivanov I, Song S, Ambrozinski Ł, Yoon SJ, Gao L, Li D, Shen TT, Wang RK, O’Donnell M. Optical coherence elastography in ophthalmology. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-28. [PMID: 29275544 PMCID: PMC5745712 DOI: 10.1117/1.jbo.22.12.121720] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/14/2017] [Indexed: 05/03/2023]
Abstract
Optical coherence elastography (OCE) can provide clinically valuable information based on local measurements of tissue stiffness. Improved light sources and scanning methods in optical coherence tomography (OCT) have led to rapid growth in systems for high-resolution, quantitative elastography using imaged displacements and strains within soft tissue to infer local mechanical properties. We describe in some detail the physical processes underlying tissue mechanical response based on static and dynamic displacement methods. Namely, the assumptions commonly used to interpret displacement and strain measurements in terms of tissue elasticity for static OCE and propagating wave modes in dynamic OCE are discussed with the ultimate focus on OCT system design for ophthalmic applications. Practical OCT motion-tracking methods used to map tissue elasticity are also presented to fully describe technical developments in OCE, particularly noting those focused on the anterior segment of the eye. Clinical issues and future directions are discussed in the hope that OCE techniques will rapidly move forward to translational studies and clinical applications.
Collapse
Affiliation(s)
- Mitchell A. Kirby
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Ivan Pelivanov
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Shaozhen Song
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Łukasz Ambrozinski
- Akademia Górniczo-Hutnicza University of Science and Technology, Krakow, Poland
| | - Soon Joon Yoon
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Liang Gao
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - David Li
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Chemical Engineering, Seattle, Washington, United States
| | - Tueng T. Shen
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Matthew O’Donnell
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- Address all correspondence to: Matthew O’Donnell, E-mail:
| |
Collapse
|
18
|
Makita S, Yasuno Y. Detection of local tissue alteration during retinal laser photocoagulation of ex vivo porcine eyes using phase-resolved optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:3067-3080. [PMID: 28663927 PMCID: PMC5480450 DOI: 10.1364/boe.8.003067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 05/03/2023]
Abstract
Retinal laser photocoagulation is used to treat several ophthalmic diseases. However, it is associated with damage to surrounding healthy tissue. Local tissue alteration during coagulation laser illumination was measured using phase-resolved optical coherence tomography (OCT) M-mode scan as a change in the local optical path length (LOPL). A metric that represents global net tissue alteration was defined using the LOPL change. The visibility of a laser lesion was assessed by three-dimensional OCT volume measurement. Multiple logistic regression analysis was performed to investigate the association between the introduced metric and the laser lesion visibility. The metric was found to be a statistically significant predictor of the laser lesion visibility independent to laser condition. The proposed method based on an LOPL change is thus promising for retinal photocoagulation monitoring.
Collapse
|
19
|
Larin KV, Sampson DD. Optical coherence elastography - OCT at work in tissue biomechanics [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:1172-1202. [PMID: 28271011 PMCID: PMC5330567 DOI: 10.1364/boe.8.001172] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 05/18/2023]
Abstract
Optical coherence elastography (OCE), as the use of OCT to perform elastography has come to be known, began in 1998, around ten years after the rest of the field of elastography - the use of imaging to deduce mechanical properties of tissues. After a slow start, the maturation of OCT technology in the early to mid 2000s has underpinned a recent acceleration in the field. With more than 20 papers published in 2015, and more than 25 in 2016, OCE is growing fast, but still small compared to the companion fields of cell mechanics research methods, and medical elastography. In this review, we describe the early developments in OCE, and the factors that led to the current acceleration. Much of our attention is on the key recent advances, with a strong emphasis on future prospects, which are exceptionally bright.
Collapse
Affiliation(s)
- Kirill V Larin
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd., Houston, Texas 77204-5060, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA;
| | - David D Sampson
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia;
| |
Collapse
|
20
|
Kurokawa K, Makita S, Yasuno Y. Investigation of Thermal Effects of Photocoagulation on Retinal Tissue Using Fine-Motion-Sensitive Dynamic Optical Coherence Tomography. PLoS One 2016; 11:e0156761. [PMID: 27271952 PMCID: PMC4894600 DOI: 10.1371/journal.pone.0156761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/19/2016] [Indexed: 11/26/2022] Open
Abstract
To enable an objective evaluation of photocoagulation, we characterize thermal tissue changes induced by laser irradiation with different laser parameters using optical coherence tomography (OCT). Spectral-domain OCT with a newly developed image processing method was used to monitor the thermal changes of ex vivo porcine retina. A sequence of OCT B-scans was obtained at the same retinal position simultaneously with the photocoagulation. Cross-sectional tissue displacement maps with respect to an OCT image taken before laser irradiation were computed for images taken before, during, and after laser irradiation, by using a correlation-based custom algorithm. Cross-sectional correlation maps (OCT correlation maps) were also computed from an OCT image taken before laser irradiation as a base-line to visualize alterations of tissue microstructure induced by laser irradiation. By systematically controlling laser power and exposure times, tissue displacements and structural changes of 200 retinal regions of 10 porcine eyes were characterized. Thermal tissue changes were characterized by B-scan images, OCT correlation maps, and tissue displacement maps. Larger tissue deformation was induced with higher laser power and shorter exposure time, while the same total laser energy (10 mJ) was applied. The measured tissue displacements revealed the complicated dynamics of tissue displacements. Three types of dynamics were observed; lateral expansion, lateral constriction, and a type showing more complicated dynamics. The results demonstrated the ability of this OCT-based method to evaluate retinal changes induced by laser irradiation. This evaluation could lead to further understanding of thermal effects, and increasing reproducibility of photocoagulation therapy.
Collapse
Affiliation(s)
- Kazuhiro Kurokawa
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
21
|
Wang Y, Wang Y, Akansu A, Belfield KD, Hubbi B, Liu X. Robust motion tracking based on adaptive speckle decorrelation analysis of OCT signal. BIOMEDICAL OPTICS EXPRESS 2015; 6:4302-16. [PMID: 26600996 PMCID: PMC4646540 DOI: 10.1364/boe.6.004302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 05/19/2023]
Abstract
Speckle decorrelation analysis of optical coherence tomography (OCT) signal has been used in motion tracking. In our previous study, we demonstrated that cross-correlation coefficient (XCC) between Ascans had an explicit functional dependency on the magnitude of lateral displacement (δx). In this study, we evaluated the sensitivity of speckle motion tracking using the derivative of function XCC(δx) on variable δx. We demonstrated the magnitude of the derivative can be maximized. In other words, the sensitivity of OCT speckle tracking can be optimized by using signals with appropriate amount of decorrelation for XCC calculation. Based on this finding, we developed an adaptive speckle decorrelation analysis strategy to achieve motion tracking with optimized sensitivity. Briefly, we used subsequently acquired Ascans and Ascans obtained with larger time intervals to obtain multiple values of XCC and chose the XCC value that maximized motion tracking sensitivity for displacement calculation. Instantaneous motion speed can be calculated by dividing the obtained displacement with time interval between Ascans involved in XCC calculation. We implemented the above-described algorithm in real-time using graphic processing unit (GPU) and demonstrated its effectiveness in reconstructing distortion-free OCT images using data obtained from a manually scanned OCT probe. The adaptive speckle tracking method was validated in manually scanned OCT imaging, on phantom as well as in vivo skin tissue.
Collapse
Affiliation(s)
- Yuewen Wang
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Yahui Wang
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Ali Akansu
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kevin D. Belfield
- College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Basil Hubbi
- Department of Radiology, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Xuan Liu
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|