1
|
Schenkman KA, Ciesielski WA, Gernsheimer TB, Arakaki LSL. Myoglobin saturation as an intracellular indicator for transfusion need in oncology patients. Transfus Med 2024. [PMID: 39191463 DOI: 10.1111/tme.13090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 04/19/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES This study aims to demonstrate the potential of myoglobin saturation as an indicator of oxygen delivery adequacy to help determine the need for red cell transfusion. BACKGROUND Modern blood management approaches have been established to optimise use of red blood cells for transfusions in patients with anaemia. However, most approaches make recommendations to transfuse based on haemoglobin or haematocrit levels and do not directly address adequacy of oxygen delivery. Intracellular oxygen determined by myoglobin saturation directly measures oxygen delivery at the tissue level. METHODS/MATERIALS A custom built spectrometer system with an optical fibre probe was used in this pilot study to measure muscle cell myoglobin saturation noninvasively from the first digital interosseous muscles in patients undergoing planned red blood cell transfusion. Patients were recruited from both the in-patient and out-patient oncology service at a major university medical centre. Measurements were made immediately before, immediately after, and 24 h following transfusion. Clinical data and tissue oxygen values from the Somanetics INVOS system were also collected. RESULTS Myoglobin saturation, and thus cellular oxygen increased in some, but not all patients receiving a transfusion, and was most pronounced in patients who initially had low myoglobin saturation compared with the group as a whole. CONCLUSION Clinical decisions to transfuse based on haemoglobin or haematocrit thresholds alone are likely insufficient to optimise use of red blood cell transfusions. The combination of haemoglobin or haematocrit with myoglobin saturation may optimally determine who will benefit physiologically from a transfusion.
Collapse
Affiliation(s)
- Kenneth A Schenkman
- Departments of Pediatrics, Bioengineering, and Anesthesiology, University of Washington, Seattle, Washington, USA
| | - Wayne A Ciesielski
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | | | - Lorilee S L Arakaki
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Bourdillon N, Subudhi AW, Fan JL, Evero O, Elliott JE, Lovering AT, Roach RC, Kayser B. AltitudeOmics: effects of 16 days acclimatization to hypobaric hypoxia on muscle oxygen extraction during incremental exercise. J Appl Physiol (1985) 2023; 135:823-832. [PMID: 37589059 PMCID: PMC10642515 DOI: 10.1152/japplphysiol.00100.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
Acute altitude exposure lowers arterial oxygen content ([Formula: see text]) and cardiac output ([Formula: see text]) at peak exercise, whereas O2 extraction from blood to working muscles remains similar. Acclimatization normalizes [Formula: see text] but not peak [Formula: see text] nor peak oxygen consumption (V̇o2peak). To what extent acclimatization impacts muscle O2 extraction remains unresolved. Twenty-one sea-level residents performed an incremental cycling exercise to exhaustion near sea level (SL), in acute (ALT1) and chronic (ALT16) hypoxia (5,260 m). Arterial blood gases, gas exchange at the mouth and oxy- (O2Hb) and deoxyhemoglobin (HHb) of the vastus lateralis were recorded to assess arterial O2 content ([Formula: see text]), [Formula: see text], and V̇o2. The HHb-V̇o2 slope was taken as a surrogate for muscle O2 extraction. During moderate-intensity exercise, HHb-V̇o2 slope increased to a comparable extent at ALT1 (2.13 ± 0.94) and ALT16 (2.03 ± 0.88) compared with SL (1.27 ± 0.12), indicating increased O2 extraction. However, the HHb/[Formula: see text] ratio increased from SL to ALT1 and then tended to go back to SL values at ALT16. During high-intensity exercise, HHb-V̇o2 slope reached a break point beyond which it decreased at SL and ALT1, but not at ALT16. Increased muscle O2 extraction during submaximal exercise was associated with decreased [Formula: see text] in acute hypoxia. The significantly greater muscle O2 extraction during maximal exercise in chronic hypoxia is suggestive of an O2 reserve.NEW & NOTEWORTHY During incremental exercise muscle deoxyhemoglobin (HHb) and oxygen consumption (V̇o2) both increase linearly, and the slope of their relationship is an indirect index of local muscle O2 extraction. The latter was assessed at sea level, in acute and during chronic exposure to 5,260 m. The demonstrated presence of a muscle O2 extraction reserve during chronic exposure is coherent with previous studies indicating both limited muscle oxidative capacity and decrease in motor drive.
Collapse
Affiliation(s)
- Nicolas Bourdillon
- Institute of Sports Sciences, University of Lausanne, Lausanne, Switzerland
| | - Andrew W Subudhi
- Hybl Sports Medicine and Performance Center, Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, Colorado, United States
| | - Jui-Lin Fan
- Department of Physiology, Faculty of Medical & Health Sciences, Manaaki Manawa-The Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Oghenero Evero
- Altitude Research Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Jonathan E Elliott
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Robert C Roach
- Altitude Research Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Bengt Kayser
- Institute of Sports Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Koirala B, Concas A, Sun Y, Gladden LB, Lai N. Relationship between muscle venous blood oxygenation and near-infrared spectroscopy: quantitative analysis of the Hb and Mb contributions. J Appl Physiol (1985) 2023; 134:1063-1074. [PMID: 36927143 PMCID: PMC10125031 DOI: 10.1152/japplphysiol.00406.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
A linear relationship between skeletal muscle venous ([Formula: see text]) and oxygenated (ΔHbMbO2,N) or deoxygenated (ΔHHbMbN) near-infrared spectroscopy (NIRS) signals suggest a main hemoglobin (Hb) contribution to the NIRS signal. However, experimental, and computational evidence supports a significant contribution of myoglobin (Mb) to the NIRS. Venous and NIRS measurements from a canine model of muscle oxidative metabolism (Sun Y, Ferguson BS, Rogatzki MJ, McDonald JR, Gladden LB. Med Sci Sports Exerc 48(10):2013-2020, 2016) were integrated into a computational model of muscle O2 transport and utilization to evaluate whether the relationship between venous and NIRS oxygenation can be affected by a significant Mb contribution to the NIRS signals. The mathematical model predicted well the measure of the changes of [Formula: see text] and NIRS signals for different O2 delivery conditions (blood flow, arterial O2 content) in muscle at rest (T1, T2) and during contraction (T3). Furthermore, computational analysis indicates that for adequate O2 delivery, Mb contribution to NIRS signals was significant (20%-30%) even in the presence of a linear [Formula: see text]-NIRS relationship; for a reduced O2 delivery the nonlinearity of the [Formula: see text]-NIRS relationship was related to the Mb contribution (50%). In this case (T3), the deviation from linearity is observed when O2 delivery is reduced from 1.3 to 0.7 L kg-1·min-1 ([Formula: see text] < 10 mLO2 100 mL-1) and Mb saturation decreased from 85% to 40% corresponding to an increase of the Mb contribution to ΔHHbMbN from 15% to 50% and the contribution to ΔHbMbO2,N from 0% to 30%. In contrast to a common assumption, our model indicates that both NIRS signals (ΔHHbMbN and ΔHbMbO2,N are significantly affected by Hb and Mb oxygenation changes.NEW & NOTEWORTHY Within the near-infrared spectroscopy (NIRS) signal, the contribution from hemoglobin is indistinguishable from that of myoglobin. A computation analysis indicates that a linear relationship between muscle venous oxygen content and NIRS signals does not necessarily indicate a negligible myoglobin contribution to the NIRS signal. A reduced oxygen delivery increases the myoglobin contribution to the NIRS signal. The integrative approach proposed is a powerful way to assist in interpreting the elements from which the NIRS signals are derived.
Collapse
Affiliation(s)
- Bhabuk Koirala
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia United States
- Biomedical Engineering Institute, Old Dominion University, Norfolk, Virginia, United States
| | - Alessandro Concas
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Italy
| | - Yi Sun
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Physical Education & Health Care, East China Normal University, Shanghai, People's Republic of China
| | - L Bruce Gladden
- School of Kinesiology, Auburn University, Auburn, Alabama United States
| | - Nicola Lai
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Italy
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia United States
- Biomedical Engineering Institute, Old Dominion University, Norfolk, Virginia, United States
| |
Collapse
|
4
|
Lam JH, Hill B, Quang T, Amelard R, Kim S, Yazdi HS, Warren RV, Cutler KB, Tromberg BJ. Multi-modal diffuse optical spectroscopy for high-speed monitoring and wide-area mapping of tissue optical properties and hemodynamics. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210158RR. [PMID: 34390234 PMCID: PMC8362892 DOI: 10.1117/1.jbo.26.8.085002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/30/2021] [Indexed: 05/15/2023]
Abstract
SIGNIFICANCE Diffuse optical spectroscopic imaging (DOSI) is a versatile technology sensitive to changes in tissue composition and hemodynamics and has been used for a wide variety of clinical applications. Specific applications have prompted the development of versions of the DOSI technology to fit specific clinical needs. This work describes the development and characterization of a multi-modal DOSI (MM-DOSI) system that can acquire metabolic, compositional, and pulsatile information at multiple penetration depths in a single hardware platform. Additionally, a 3D tracking system is integrated with MM-DOSI, which enables registration of the acquired data to the physical imaging area. AIM We demonstrate imaging, layered compositional analysis, and metabolism tracking capabilities using a single MM-DOSI system on optical phantoms as well as in vivo human tissue. APPROACH We characterize system performance with a silicone phantom containing an embedded object. To demonstrate multi-layer sensitivity, we imaged human calf tissue with a 4.8-mm skin-adipose thickness. Human thenar tissue was also measured using a combined broadband DOSI and continuous-wave near-infrared spectroscopy method (∼15 Hz acquisition rate). RESULTS High-resolution optical property maps of absorption (μa) and reduced scattering (μs ' ) were recovered on the phantom by capturing over 1000 measurement points in under 5 minutes. On human calf tissue, we show two probing depth layers have significantly different (p < 0.001) total-hemo/myoglobin and μs ' composition. On thenar tissue, we calculate tissue arterial oxygen saturation, venous oxygen saturation, and tissue metabolic rate of oxygen consumption during baseline and after release of an arterial occlusion. CONCLUSIONS The MM-DOSI can switch between collection of broadband spectra, high-resolution images, or multi-depth hemodynamics without any hardware reconfiguration. We conclude that MM-DOSI enables acquisition of high resolution, multi-modal data consolidated in a single platform, which can provide a more comprehensive understanding of tissue hemodynamics and composition for a wide range of clinical applications.
Collapse
Affiliation(s)
- Jesse H. Lam
- University of California, Irvine, Beckman Laser Institute, Department of Biomedical Engineering, Irvine, California, United States
- Dankook University, Beckman Laser Institute Korea, School of Medicine, Cheonan, Chungnam, Republic of Korea
| | - Brian Hill
- National Institutes of Health, National Institute of Child Health and Human Development, Bethesda, Maryland, United States
| | - Timothy Quang
- National Institutes of Health, National Institute of Child Health and Human Development, Bethesda, Maryland, United States
| | - Robert Amelard
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada
| | - Sehwan Kim
- University of California, Irvine, Beckman Laser Institute, Department of Biomedical Engineering, Irvine, California, United States
- Dankook University, Beckman Laser Institute Korea, School of Medicine, Cheonan, Chungnam, Republic of Korea
| | - Hossein S. Yazdi
- University of California, Irvine, Beckman Laser Institute, Department of Biomedical Engineering, Irvine, California, United States
| | - Robert V. Warren
- University of California, Irvine, Beckman Laser Institute, Department of Biomedical Engineering, Irvine, California, United States
| | - Kyle B. Cutler
- University of California, Irvine, Beckman Laser Institute, Department of Biomedical Engineering, Irvine, California, United States
| | - Bruce J. Tromberg
- University of California, Irvine, Beckman Laser Institute, Department of Biomedical Engineering, Irvine, California, United States
- National Institutes of Health, National Institute of Biomedical Imaging and Bioengineering, Bethesda, Maryland, United States
- Address all correspondence to Bruce J. Tromberg,
| |
Collapse
|
5
|
Guerraty M, Bhargava A, Senarathna J, Mendelson AA, Pathak AP. Advances in translational imaging of the microcirculation. Microcirculation 2021; 28:e12683. [PMID: 33524206 PMCID: PMC8647298 DOI: 10.1111/micc.12683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
The past few decades have seen an explosion in the development and use of methods for imaging the human microcirculation during health and disease. The confluence of innovative imaging technologies, affordable computing power, and economies of scale have ushered in a new era of "translational" imaging that permit us to peer into blood vessels of various organs in the human body. These imaging techniques include near-infrared spectroscopy (NIRS), positron emission tomography (PET), and magnetic resonance imaging (MRI) that are sensitive to microvascular-derived signals, as well as computed tomography (CT), optical imaging, and ultrasound (US) imaging that are capable of directly acquiring images at, or close to microvascular spatial resolution. Collectively, these imaging modalities enable us to characterize the morphological and functional changes in a tissue's microcirculation that are known to accompany the initiation and progression of numerous pathologies. Although there have been significant advances for imaging the microcirculation in preclinical models, this review focuses on developments in the assessment of the microcirculation in patients with optical imaging, NIRS, PET, US, MRI, and CT, to name a few. The goal of this review is to serve as a springboard for exploring the burgeoning role of translational imaging technologies for interrogating the structural and functional status of the microcirculation in humans, and highlight the breadth of current clinical applications. Making the human microcirculation "visible" in vivo to clinicians and researchers alike will facilitate bench-to-bedside discoveries and enhance the diagnosis and management of disease.
Collapse
Affiliation(s)
- Marie Guerraty
- Division of Cardiovascular Medicine, Department of
Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - Akanksha Bhargava
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janaka Senarathna
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asher A. Mendelson
- Department of Medicine, Section of Critical Care, Rady
Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Arvind P. Pathak
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins
University School of Medicine, Baltimore, MD, USA
- Department of Electrical Engineering, Johns Hopkins
University, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns
Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Fan JL, Wu TY, Lovering AT, Nan L, Bang WL, Kayser B. Differential Brain and Muscle Tissue Oxygenation Responses to Exercise in Tibetans Compared to Han Chinese. Front Physiol 2021; 12:617954. [PMID: 33716766 PMCID: PMC7943468 DOI: 10.3389/fphys.2021.617954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
The Tibetans’ better aerobic exercise capacity at altitude remains ill-understood. We tested the hypothesis that Tibetans display better muscle and brain tissue oxygenation during exercise in hypoxia. Using near-infrared spectrometry (NIRS) to provide indices of tissue oxygenation, we measured oxy- and deoxy-hemoglobin ([O2Hb] and [HHb], respectively) responses of the vastus lateralis muscle and the right prefrontal cortex in ten Han Chinese and ten Tibetans during incremental cycling to exhaustion in a pressure-regulated chamber at simulated sea-level (air at 1 atm: normobaric normoxia) and 5,000 m (air at 0.5 atm: hypobaric hypoxia). Hypoxia reduced aerobic capacity by ∼22% in both groups (d = 0.8, p < 0.001 vs. normoxia), while Tibetans consistently outperformed their Han Chinese counterpart by ∼32% in normoxia and hypoxia (d = 1.0, p = 0.008). We found cerebral [O2Hb] was higher in Tibetans at normoxic maximal effort compared Han (p = 0.001), while muscle [O2Hb] was not different (p = 0.240). Hypoxic exercise lowered muscle [O2Hb] in Tibetans by a greater extent than in Han (interaction effect: p < 0.001 vs. normoxic exercise). Muscle [O2Hb] was lower in Tibetans when compared to Han during hypoxic exercise (d = 0.9, p = 0.003), but not during normoxic exercise (d = 0.4, p = 0.240). Muscle [HHb] was not different between the two groups during normoxic and hypoxic exercise (p = 0.778). Compared to Han, our findings revealed a higher brain tissue oxygenation in Tibetans during maximal exercise in normoxia, but lower muscle tissue oxygenation during exercise in hypoxia. This would suggest that the Tibetans privileged oxygenation of the brain at the expense of that of the muscle.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tian Yi Wu
- Research Center for High Altitude Medicine, Tibet University Medical College, Lhasa, China.,National Key Laboratory of High Altitude Medicine, Xining, China
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Liya Nan
- National Key Laboratory of High Altitude Medicine, Xining, China
| | - Wang Liang Bang
- National Key Laboratory of High Altitude Medicine, Xining, China
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Hamaoka T, McCully KK. Review of early development of near-infrared spectroscopy and recent advancement of studies on muscle oxygenation and oxidative metabolism. J Physiol Sci 2019; 69:799-811. [PMID: 31359263 PMCID: PMC10717702 DOI: 10.1007/s12576-019-00697-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
Near-infrared spectroscopy (NIRS) has become an increasingly valuable tool to monitor tissue oxygenation (Toxy) in vivo. Observations of changes in the absorption of light with Toxy have been recognized as early as 1876, leading to a milestone NIRS paper by Jöbsis in 1977. Changes in the absorption and scatting of light in the 700-850-nm range has been successfully used to evaluate Toxy. The most practical devices use continuous-wave light providing relative values of Toxy. Phase-modulated or pulsed light can monitor both absorption and scattering providing more accurate signals. NIRS provides excellent time resolution (~ 10 Hz), and multiple source-detector pairs can be used to provide low-resolution imaging. NIRS has been applied to a wide range of populations. Continued development of NIRS devices in terms of lower cost, better detection of both absorption and scattering, and smaller size will lead to a promising future for NIRS studies.
Collapse
Affiliation(s)
- Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Kevin K McCully
- Department of Kinesiology, University of Georgia, 115 Ramsey Center, 330 River Road, Athens, GA, 30602, USA
| |
Collapse
|
8
|
Ross FJ, Arakaki LSL, Ciesielski WA, McMullan DM, Richards MJ, Geiduschek J, Latham G, Hsieh V, Schenkman KA. Assessment of muscle oxygenation in children with congenital heart disease. Paediatr Anaesth 2019; 29:850-857. [PMID: 31125476 DOI: 10.1111/pan.13668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/08/2019] [Accepted: 05/21/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Adaptive responses to congenital heart disease result in altered muscle perfusion and muscle metabolism. Such changes may be detectable using noninvasive spectroscopic monitors. AIMS In this study we aimed to determine if resting muscle oxygen saturation (MOx) is lower in children with acyanotic or cyanotic congenital heart disease than in healthy children and to identify differences in muscle oxygen consumption in children with cyanotic and acyanotic congenital heart disease. METHODS Using a custom fiber optic spectrometer system, optical measurements were obtained from the calf or forearm of 49 patients (17 with acyanotic congenital heart disease, 18 with cyanotic congenital heart disease, and 14 control). Twenty additional control patients were used to develop the analytic model. Spectra were used to determine MOx at baseline, during arterial occlusion, and during reperfusion. The rate of muscle desaturation during arterial occlusion was also evaluated. Two-sample t-tests were used to compare each heart disease group with the controls. RESULTS Patients with acyanotic and cyanotic congenital heart disease had lower baseline MOx than controls. Baseline MOx was 91.3% (CI 85.9%, 96.7%) for acyanotic patients, 91.1% (CI 86.3%, 95.9%) for cyanotic patients, and 98.9% (CI 96.7%, 101.1%) for controls. Similarly, MOx was lower in the acyanotic and cyanotic groups than the controls after reperfusion (84.6% [CI 74.1%, 95.1%] and 82.1% [CI 74.5%, 89.7%] vs 98.9% [96.5%, 101.3%]). The rate of decline in oxygenation was significantly greater in cyanotic patients versus controls (0.46%/s (CI 0.30%, 0.62%/s) vs 0.17%/s (0.13%, 0.21%/s)). CONCLUSION This study demonstrates that muscle oxygenation is abnormal in children with both cyanotic and acyanotic congenital heart disease. This suggests that noninvasive monitoring of muscle oxygenation may provide valuable information in situations where children with congenital heart disease may be at risk of hemodynamic compromise.
Collapse
Affiliation(s)
- Faith J Ross
- Department of Anesthesiology and Pain Medicine, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | | | | | - D Michael McMullan
- Department of Cardiothoracic Surgery, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Michael J Richards
- Department of Anesthesiology and Pain Medicine, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Jeremy Geiduschek
- Department of Anesthesiology and Pain Medicine, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Gregory Latham
- Department of Anesthesiology and Pain Medicine, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Vincent Hsieh
- Department of Anesthesiology and Pain Medicine, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Kenneth A Schenkman
- Department of Anesthesiology and Pain Medicine, Seattle Children's Hospital, University of Washington, Seattle, Washington.,Department of Pediatrics, University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Interpretation of Near-Infrared Spectroscopy (NIRS) Signals in Skeletal Muscle. J Funct Morphol Kinesiol 2019; 4:jfmk4020028. [PMID: 33467344 PMCID: PMC7739319 DOI: 10.3390/jfmk4020028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Near-infrared spectroscopy (NIRS) uses the relative absorption of light at 850 and 760 nm to determine skeletal muscle oxygen saturation. Previous studies have used the ratio of both signals to report muscle oxygen saturation. PURPOSE The purpose of this pilot study is to assess the different approaches used to represent muscle oxygen saturation and to evaluate the pulsations of oxygenated hemoglobin/myoglobin (O2heme) and deoxygenated hemoglobin/myoglobin (Heme) signals. METHOD Twelve participants, aged 20-29 years, were tested on the forearm flexor muscles using continuous-wave NIRS at rest. Measurements were taken during 2-3 min rest, physiological calibration (5 min ischemia), and reperfusion. Ten participants were included in the study analysis. RESULTS There was a significant difference in pulse size between O2heme and Heme signals at the three locations (p < 0.05). Resting oxygen saturation was 58.8% + 9.2%, 69.6% + 3.9%, and 89.2% + 6.9% when calibrated using O2heme, the tissue oxygenation/saturation index (TSI), and Heme, respectively. CONCLUSION The difference in magnitude of O2heme and Heme pulses with each heartbeat might suggest different anatomical locations of these signals, for which calibrating with just one of the signals instead of the ratio of both is proposed. Calculations of physiological calibration must account for increased blood volume in the tissue because of the changes in blood volume, which appear to be primarily from the O2heme signal. Resting oxygen levels calibrated with Heme agree with theoretical oxygen saturation.
Collapse
|
10
|
Barstow TJ. Understanding near infrared spectroscopy and its application to skeletal muscle research. J Appl Physiol (1985) 2019; 126:1360-1376. [PMID: 30844336 DOI: 10.1152/japplphysiol.00166.2018] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Near infrared spectroscopy (NIRS) is a powerful noninvasive tool with which to study the matching of oxygen delivery to oxygen utilization and the number of new publications utilizing this technique has increased exponentially in the last 20 yr. By measuring the state of oxygenation of the primary heme compounds in skeletal muscle (hemoglobin and myoglobin), greater understanding of the underlying control mechanisms that couple perfusive and diffusive oxygen delivery to oxidative metabolism can be gained from the laboratory to the athletic field to the intensive care unit or emergency room. However, the field of NIRS has been complicated by the diversity of instrumentation, the inherent limitations of some of these technologies, the associated diversity of terminology, and a general lack of standardization of protocols. This Cores of Reproducibility in Physiology (CORP) will describe in basic but important detail the most common methodologies of NIRS, their strengths and limitations, and discuss some of the potential confounding factors that can affect the quality and reproducibility of NIRS data. Recommendations are provided to reduce the variability and errors in data collection, analysis, and interpretation. The goal of this CORP is to provide readers with a greater understanding of the methodology, limitations, and best practices so as to improve the reproducibility of NIRS research in skeletal muscle.
Collapse
Affiliation(s)
- Thomas J Barstow
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
11
|
Jeffries O, Waldron M, Pattison JR, Patterson SD. Enhanced Local Skeletal Muscle Oxidative Capacity and Microvascular Blood Flow Following 7-Day Ischemic Preconditioning in Healthy Humans. Front Physiol 2018; 9:463. [PMID: 29867526 PMCID: PMC5954802 DOI: 10.3389/fphys.2018.00463] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/13/2018] [Indexed: 01/05/2023] Open
Abstract
Ischemic preconditioning (IPC), which involves intermittent periods of ischemia followed by reperfusion, is an effective clinical intervention that reduces the risk of myocardial injury and confers ischemic tolerance to skeletal muscle. Repeated bouts of IPC have been shown to stimulate long-term changes vascular function, however, it is unclear what metabolic adaptations may occur locally in the muscle. Therefore, we investigated 7 days of bilateral lower limb IPC (4 × 5 min) above limb occlusion pressure (220 mmHg; n = 10), or sham (20 mmHg; n = 10), on local muscle oxidative capacity and microvascular blood flow. Oxidative capacity was measured using near-infrared spectroscopy (NIRS) during repeated short duration arterial occlusions (300 mmHg). Microvascular blood flow was assessed during the recovery from submaximal isometric plantar flexion exercises at 40 and 60% of maximal voluntary contraction (MVC). Following the intervention period, beyond the late phase of protection (72 h), muscle oxidative recovery kinetics were speeded by 13% (rate constant pre 2.89 ± 0.47 min-1 vs. post 3.32 ± 0.69 min-1; P < 0.05) and resting muscle oxygen consumption (m O2) was reduced by 16.4% (pre 0.39 ± 0.16%.s-1 vs. post 0.33 ± 0.14%.s-1; P < 0.05). During exercise, changes in deoxygenated hemoglobin (HHb) from rest to steady state were reduced at 40 and 60% MVC (16 and 12%, respectively, P < 0.05) despite similar measures of total hemoglobin (tHb). At the cessation of exercise, the time constant for recovery in oxygenated hemoglobin (O2Hb) was accelerated at 40 and 60% MVC (by 33 and 43%, respectively) suggesting enhanced reoxygenation in the muscle. No changes were reported for systemic measures of resting heart rate or blood pressure. In conclusion, repeated bouts of IPC over 7 consecutive days increased skeletal muscle oxidative capacity and microvascular muscle blood flow. These findings are consistent with enhanced mitochondrial and vascular function following repeated IPC and may be of clinical or sporting interest to enhance or offset reductions in muscle oxidative capacity.
Collapse
Affiliation(s)
- Owen Jeffries
- School of Sport, Health and Applied Science, St Mary's University, London, United Kingdom.,School of Biomedical Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mark Waldron
- School of Sport, Health and Applied Science, St Mary's University, London, United Kingdom.,School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - John R Pattison
- School of Sport, Health and Applied Science, St Mary's University, London, United Kingdom
| | - Stephen D Patterson
- School of Sport, Health and Applied Science, St Mary's University, London, United Kingdom
| |
Collapse
|
12
|
Warren RV, Cotter J, Ganesan G, Le L, Agustin JP, Duarte B, Cutler K, O’Sullivan T, Tromberg BJ. Noninvasive optical imaging of resistance training adaptations in human muscle. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-9. [PMID: 29264896 PMCID: PMC5741457 DOI: 10.1117/1.jbo.22.12.121611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/05/2017] [Indexed: 05/12/2023]
Abstract
A quantitative and dynamic analysis of skeletal muscle structure and function can guide training protocols and optimize interventions for rehabilitation and disease. While technologies exist to measure body composition, techniques are still needed for quantitative, long-term functional imaging of muscle at the bedside. We evaluate whether diffuse optical spectroscopic imaging (DOSI) can be used for long-term assessment of resistance training (RT). DOSI measures of tissue composition were obtained from 12 adults before and after 5 weeks of training and compared to lean mass fraction (LMF) from dual-energy X-ray absorptiometry (DXA). Significant correlations were detected between DXA LMF and DOSI-measured oxy-hemo/myoglobin, deoxy-hemo/myoglobin, total-hemo/myoglobin, water, and lipid. RT-induced increases of ∼6% in oxy-hemo/myoglobin (3.4±1.0 μM, p=0.00314) and total-hemo/myoglobin (4.9±1.1 μM, p=0.00024) from the medial gastrocnemius were detected with DOSI and accompanied by ∼2% increases in lean soft tissue mass (36.4±12.4 g, p=0.01641) and ∼60% increases in 1 rep-max strength (41.5±6.2 kg, p=1.9E-05). DOSI measures of vascular and/or muscle changes combined with correlations between DOSI and DXA suggest that quantitative diffuse optical methods can be used to evaluate body composition, provide feedback on long-term interventions, and generate new insight into training-induced muscle adaptations.
Collapse
Affiliation(s)
- Robert V. Warren
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Joshua Cotter
- California State University–Long Beach, Department of Kinesiology, Long Beach, California, United States
| | - Goutham Ganesan
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Lisa Le
- University of California, Institute for Clinical and Translational Science, Irvine, California, United States
| | - Janelle P. Agustin
- University of California, Institute for Clinical and Translational Science, Irvine, California, United States
| | - Bridgette Duarte
- University of California, Institute for Clinical and Translational Science, Irvine, California, United States
| | - Kyle Cutler
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Thomas O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Bruce J. Tromberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Address all correspondence to: Bruce J. Tromberg, E-mail:
| |
Collapse
|
13
|
Craig JC, Broxterman RM, Wilcox SL, Chen C, Barstow TJ. Effect of adipose tissue thickness, muscle site, and sex on near-infrared spectroscopy derived total-[hemoglobin + myoglobin]. J Appl Physiol (1985) 2017; 123:1571-1578. [PMID: 28935822 DOI: 10.1152/japplphysiol.00207.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Craig JC, Broxterman RM, Wilcox SL, Chen C, Barstow TJ. Effect of adipose tissue thickness, muscle site, and sex on near-infrared spectroscopy derived total-[hemoglobin + myoglobin]. J Appl Physiol 123: 1571-1578, 2017. First published September 21, 2017; doi: 10.1152/japplphysiol.00207.2017 .-Adipose tissue thickness (ATT) attenuates signals from near-infrared spectroscopy (NIRS) and diminishes the absolute quantification of underlying tissues by contemporary NIRS devices. Based on the relationship between NIRS-derived total-[hemoglobin + myoglobin] (total-[Hb + Mb]) and ATT, we tested the hypotheses that the correction factor for ATT 1) is muscle site specific; 2) does not differ between men and women; and that 3) exclusion of the shortest source-detector distance from data analysis increases total-[Hb + Mb]. Fourteen healthy subjects (7 men) rested in a neutral body position (supine or prone) while measurements of total-[Hb + Mb] and ATT were taken at four muscles common to resting and exercise studies: vastus lateralis (VL), rectus femoris (RF), gastrocnemius (GS), and flexor digitorum superficialis (FDS). ATT averaged 6.0 ± 0.4 mm across all muscles. Every muscle showed a negative slope ( r2: 0.6-0.94; P < 0.01) for total-[Hb + Mb] as a function of ATT: VL (-34 μM/mm), RF (-26 μM/mm), GS (-54 μM/mm), and FDS (-33 μM/mm). The projected total-[Hb + Mb] at 0 mm ATT ( y-intercept) was 452, 372, 620, and 456 μM for VL, RF, GS, and FDS, respectively. No differences were found between the sexes within VL, RF, or FDS, but men had a greater projected total-[Hb + Mb] at 0 mm for GS (688 ± 44 vs. 552 ± 40 μM; P < 0.05). Exclusion of the shortest source-detector distance increased total-[Hb + Mb] by 12 ± 1 μM ( P < 0.05). The present findings demonstrate that total-[Hb + Mb] should be corrected for ATT using muscle site-specific factors which are not sex specific, except in the case of GS. NEW & NOTEWORTHY Near-infrared spectroscopy (NIRS) is an important tool for physiologists and clinicians. However, adipose tissue greatly attenuates the signals from these devices. Correcting for this attenuation has been suggested based on the strength of the relationship between NIRS-derived measurements and the adipose tissue thickness. We show that this relationship is unique to the muscle site of interest but may not be sex specific. Accurate quantification of underlying tissue mandates researchers correct for adipose tissue thickness.
Collapse
Affiliation(s)
- Jesse C Craig
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Ryan M Broxterman
- Department of Kinesiology, Kansas State University , Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - Samuel L Wilcox
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Chixiang Chen
- Department of Statistics, Kansas State University , Manhattan, Kansas
| | - Thomas J Barstow
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
14
|
Bendahan D, Chatel B, Jue T. Comparative NMR and NIRS analysis of oxygen-dependent metabolism in exercising finger flexor muscles. Am J Physiol Regul Integr Comp Physiol 2017; 313:R740-R753. [PMID: 28877871 DOI: 10.1152/ajpregu.00203.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/07/2017] [Accepted: 08/30/2017] [Indexed: 02/08/2023]
Abstract
Muscle contraction requires the physiology to adapt rapidly to meet the surge in energy demand. To investigate the shift in metabolic control, especially between oxygen and metabolism, researchers often depend on near-infrared spectroscopy (NIRS) to measure noninvasively the tissue O2 Because NIRS detects the overlapping myoglobin (Mb) and hemoglobin (Hb) signals in muscle, interpreting the data as an index of cellular or vascular O2 requires deconvoluting the relative contribution. Currently, many in the NIRS field ascribe the signal to Hb. In contrast, 1H NMR has only detected the Mb signal in contracting muscle, and comparative NIRS and NMR experiments indicate a predominant Mb contribution. The present study has examined the question of the NIRS signal origin by measuring simultaneously the 1H NMR, 31P NMR, and NIRS signals in finger flexor muscles during the transition from rest to contraction, recovery, ischemia, and reperfusion. The experiment results confirm a predominant Mb contribution to the NIRS signal from muscle. Given the NMR and NIRS corroborated changes in the intracellular O2, the analysis shows that at the onset of muscle contraction, O2 declines immediately and reaches new steady states as contraction intensity rises. Moreover, lactate formation increases even under quite aerobic condition.
Collapse
Affiliation(s)
- David Bendahan
- Aix-Marseille Univ, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Marseille, France
| | - Benjamin Chatel
- Aix-Marseille Univ, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Marseille, France
| | - Thomas Jue
- Biochemistry and Molecular Medicine, University of California Davis, Davis, California; and
| |
Collapse
|
15
|
Layec G, Hart CR, Trinity JD, Kwon OS, Rossman MJ, Broxterman RM, Le Fur Y, Jeong EK, Richardson RS. Oxygen delivery and the restoration of the muscle energetic balance following exercise: implications for delayed muscle recovery in patients with COPD. Am J Physiol Endocrinol Metab 2017; 313:E94-E104. [PMID: 28292763 PMCID: PMC6109703 DOI: 10.1152/ajpendo.00462.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 11/22/2022]
Abstract
Patients with chronic obstructive pulmonary disease (COPD) experience a delayed recovery from skeletal muscle fatigue following exhaustive exercise that likely contributes to their progressive loss of mobility. As this phenomenon is not well understood, this study sought to examine postexercise peripheral oxygen (O2) transport and muscle metabolism dynamics in patients with COPD, two important determinants of muscle recovery. Twenty-four subjects, 12 nonhypoxemic patients with COPD and 12 healthy subjects with a sedentary lifestyle, performed dynamic plantar flexion exercise at 40% of the maximal work rate (WRmax) with phosphorus magnetic resonance spectroscopy (31P-MRS), near-infrared spectroscopy (NIRS), and vascular Doppler ultrasound assessments. The mean response time of limb blood flow at the offset of exercise was significantly prolonged in patients with COPD (controls: 56 ± 27 s; COPD: 120 ± 87 s; P < 0.05). In contrast, the postexercise time constant for capillary blood flow was not significantly different between groups (controls: 49 ± 23 s; COPD: 51 ± 21 s; P > 0.05). The initial postexercise convective O2 delivery (controls: 0.15 ± 0.06 l/min; COPD: 0.15 ± 0.06 l/min) and the corresponding oxidative adenosine triphosphate (ATP) demand (controls: 14 ± 6 mM/min; COPD: 14 ± 6 mM/min) in the calf were not significantly different between controls and patients with COPD (P > 0.05). The phosphocreatine resynthesis time constant (controls: 46 ± 20 s; COPD: 49 ± 21 s), peak mitochondrial phosphorylation rate, and initial proton efflux were also not significantly different between groups (P > 0.05). Therefore, despite perturbed peripheral hemodynamics, intracellular O2 availability, proton efflux, and aerobic metabolism recovery in the skeletal muscle of nonhypoxemic patients with COPD are preserved following plantar flexion exercise and thus are unlikely to contribute to the delayed recovery from exercise in this population.
Collapse
Affiliation(s)
- Gwenael Layec
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah;
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Corey R Hart
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Oh-Sung Kwon
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Matthew J Rossman
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Ryan M Broxterman
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Yann Le Fur
- Centre de Résonance Magnétique Biologique et Médicale, Aix-Marseille Universite, Centre National de la Recherche Scientifique, Marseille, France; and
| | - Eun-Kee Jeong
- Department of Radiology and Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
16
|
Nasseri N, Kleiser S, Ostojic D, Karen T, Wolf M. Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:4605-4619. [PMID: 27895999 PMCID: PMC5119599 DOI: 10.1364/boe.7.004605] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/11/2016] [Accepted: 09/23/2016] [Indexed: 05/18/2023]
Abstract
Change of muscle tissue oxygen saturation (StO2), due to exercise, measured by near infrared spectroscopy (NIRS) is known to be lower for subjects with higher adipose tissue thickness. This is most likely not physiological but caused by the superficial fat and adipose tissue. In this paper we assessed, in vitro, the influence of adipose tissue thickness on muscle StO2, measured by NIRS oximeters. We measured StO2 of a liquid phantom by 3 continuous wave (CW) oximeters (Sensmart Model X-100 Universal Oximetry System, INVOS 5100C, and OxyPrem v1.3), as well as a frequency-domain oximeter, OxiplexTS, through superficial layers with 4 different thicknesses. Later, we employed the results to calibrate OxyPrem v1.3 for adipose tissue thickness in-vivo.
Collapse
Affiliation(s)
- Nassim Nasseri
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, Zurich,
Switzerland
- equal contribution
| | - Stefan Kleiser
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, Zurich,
Switzerland
- equal contribution
| | - Daniel Ostojic
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, Zurich,
Switzerland
| | - Tanja Karen
- Department of Neonatology, University Hospital Zurich, Zurich,
Switzerland
| | - Martin Wolf
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, Zurich,
Switzerland
| |
Collapse
|
17
|
Butler E, Chin M, Aneman A. Peripheral Near-Infrared Spectroscopy: Methodologic Aspects and a Systematic Review in Post-Cardiac Surgical Patients. J Cardiothorac Vasc Anesth 2016; 31:1407-1416. [PMID: 27876185 DOI: 10.1053/j.jvca.2016.07.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Ethan Butler
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Melissa Chin
- Intensive Care Unit, Liverpool Hospital, Sydney, Australia
| | - Anders Aneman
- Intensive Care Unit, Liverpool Hospital, Sydney, Australia; University of New South Wales, South Western Sydney Clinical School, Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia.
| |
Collapse
|
18
|
Jones S, Chiesa ST, Chaturvedi N, Hughes AD. Recent developments in near-infrared spectroscopy (NIRS) for the assessment of local skeletal muscle microvascular function and capacity to utilise oxygen. Artery Res 2016; 16:25-33. [PMID: 27942271 PMCID: PMC5134760 DOI: 10.1016/j.artres.2016.09.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose of review Continuous wave near infrared spectroscopy (CW NIRS) provides non-invasive technology to measure relative changes in oxy- and deoxy-haemoglobin in a dynamic environment. This allows determination of local skeletal muscle O2 saturation, muscle oxygen consumption (V˙O2) and blood flow. This article provides a brief overview of the use of CW NIRS to measure exercise-limiting factors in skeletal muscle. Recent findings NIRS parameters that measure O2 delivery and capacity to utilise O2 in the muscle have been developed based on response to physiological interventions and exercise. NIRS has good reproducibility and agreement with gold standard techniques and can be used in clinical populations where muscle oxidative capacity or oxygen delivery (or both) are impaired. CW NIRS has limitations including: the unknown contribution of myoglobin to the overall signals, the impact of adipose tissue thickness, skin perfusion during exercise, and variations in skin pigmentation. These, in the main, can be circumvented through appropriate study design or measurement of absolute tissue saturation. Summary CW NIRS can assess skeletal muscle O2 delivery and utilisation without the use of expensive or invasive procedures and is useable in large population-based samples, including older adults. An overview of CW NIRS to measure O2 utilisation and delivery is presented. CW NIRS is cheap, non-invasive, portable and useable in population-based samples. It is useful for understanding underlying mechanisms of deterioration in capacity.
Collapse
Affiliation(s)
- Siana Jones
- Corresponding author. UCL Institute of Cardiovascular Science, 10th Floor, 1-19 Torrington Place, London WC1E 7HB, UK. Fax: +44 207 594 1706.UCL Institute of Cardiovascular Science10th Floor, 1-19 Torrington PlaceLondonWC1E 7HEUK
| | | | | | | |
Collapse
|
19
|
Barrett EJ, Keske MA, Rattigan S, Eringa EC. Rebuttal from Eugene J. Barrett, Michelle A. Keske, Stephen Rattigan and Etto C. Eringa. J Physiol 2014; 592:5137-8. [PMID: 25448180 DOI: 10.1113/jphysiol.2014.284604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Eugene J Barrett
- University of Virginia School of Medicine, Charlottesville, VA, USA University of Tasmania, Hobart, Tasmania, Australia VU University Medical Center, Amsterdam, The Netherlands
| | - Michelle A Keske
- University of Virginia School of Medicine, Charlottesville, VA, USA University of Tasmania, Hobart, Tasmania, Australia VU University Medical Center, Amsterdam, The Netherlands
| | - Stephen Rattigan
- University of Virginia School of Medicine, Charlottesville, VA, USA University of Tasmania, Hobart, Tasmania, Australia VU University Medical Center, Amsterdam, The Netherlands
| | - Etto C Eringa
- University of Virginia School of Medicine, Charlottesville, VA, USA University of Tasmania, Hobart, Tasmania, Australia VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Martin DS, Levett DZH, Bezemer R, Montgomery HE, Grocott MPW. The use of skeletal muscle near infrared spectroscopy and a vascular occlusion test at high altitude. High Alt Med Biol 2014; 14:256-62. [PMID: 24067186 DOI: 10.1089/ham.2012.1109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Microcirculatory function, central to tissue regulation of oxygen flux, may be altered by the chronic hypoxemia experienced at high altitude. We hypothesized that at high altitude, adaptations within skeletal muscle would result in reduced oxygen consumption and reduced microcirculatory responsiveness, detectable by near infrared spectroscopy (NIRS) during a vascular occlusion test (VOT). The VOT comprised 3 min of noninvasive arterial occlusion; thenar eminence tissue oxygenation (Sto2) was measured by NIRS during the VOT at sea level, 4900 m and 5600 m (after 7 and 17 days at altitude, respectively) in 12 healthy volunteers. Data were derived from Sto2 time-curves using specifically designed computer software. Mean (±SD) resting Sto2 was reduced at 4900 m and 5600 m (69.3 (± 8.2)% (p=0.001) and 64.2 (± 6.1)% (p<0.001) respectively) when compared to sea level (84.4 (± 6.0)%. The rate of Sto2 recovery after vascular occlusion (Sto2 upslope) was significantly reduced at 4900 m (2.4 (± 0.4)%/sec) and 5600 m (2.4 (± 0.8)%/sec) compared to sea level (3.7 (± 1.3)%/sec) (p=0.021 and p=0.032, respectively). There was no change from sea level in the rate of desaturation during occlusion (Sto2 downslope) at either altitude. The findings suggest that in resting skeletal muscle of acclimatizing healthy volunteers at high altitude, microvascular reactivity is reduced (Sto2 upslope after a short period of ischemia) but that oxygen consumption remains unchanged (Sto2 downslope).
Collapse
Affiliation(s)
- Daniel S Martin
- 1 Centre for Altitude, Space, and Extreme Environment Medicine (CASE Medicine), Portex Unit, Institute of Child Health, University College London , London, United Kingdom
| | | | | | | | | | | |
Collapse
|
21
|
Clanton TL, Hogan MC, Gladden LB. Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol 2013; 3:1135-90. [PMID: 23897683 DOI: 10.1002/cphy.c120030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells must continuously monitor and couple their metabolic requirements for ATP utilization with their ability to take up O2 for mitochondrial respiration. When O2 uptake and delivery move out of homeostasis, cells have elaborate and diverse sensing and response systems to compensate. In this review, we explore the biophysics of O2 and gas diffusion in the cell, how intracellular O2 is regulated, how intracellular O2 levels are sensed and how sensing systems impact mitochondrial respiration and shifts in metabolic pathways. Particular attention is paid to how O2 affects the redox state of the cell, as well as the NO, H2S, and CO concentrations. We also explore how these agents can affect various aspects of gas exchange and activate acute signaling pathways that promote survival. Two kinds of challenges to gas exchange are also discussed in detail: when insufficient O2 is available for respiration (hypoxia) and when metabolic requirements test the limits of gas exchange (exercising skeletal muscle). This review also focuses on responses to acute hypoxia in the context of the original "unifying theory of hypoxia tolerance" as expressed by Hochachka and colleagues. It includes discourse on the regulation of mitochondrial electron transport, metabolic suppression, shifts in metabolic pathways, and recruitment of cell survival pathways preventing collapse of membrane potential and nuclear apoptosis. Regarding exercise, the issues discussed relate to the O2 sensitivity of metabolic rate, O2 kinetics in exercise, and influences of available O2 on glycolysis and lactate production.
Collapse
Affiliation(s)
- T L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
22
|
Estimated contribution of hemoglobin and myoglobin to near infrared spectroscopy. Respir Physiol Neurobiol 2013; 186:180-7. [DOI: 10.1016/j.resp.2013.01.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 12/14/2012] [Accepted: 01/21/2013] [Indexed: 11/20/2022]
|
23
|
Ryan TE, Erickson ML, Brizendine JT, Young HJ, McCully KK. Noninvasive evaluation of skeletal muscle mitochondrial capacity with near-infrared spectroscopy: correcting for blood volume changes. J Appl Physiol (1985) 2012; 113:175-83. [PMID: 22582211 DOI: 10.1152/japplphysiol.00319.2012] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) is a well-known method used to measure muscle oxygenation and hemodynamics in vivo. The application of arterial occlusions allows for the assessment of muscle oxygen consumption (mVo(2)) using NIRS. The aim of this study was to measure skeletal muscle mitochondrial capacity using blood volume-corrected NIRS signals that represent oxygenated hemoglobin/myoglobin (O(2)Hb) and deoxygenated hemoglobin/myoglobin (HHb). We also assessed the reliability and reproducibility of NIRS measurements of resting oxygen consumption and mitochondrial capacity. Twenty-four subjects, including four with chronic spinal cord injury, were tested using either the vastus lateralis or gastrocnemius muscles. Ten healthy, able-bodied subjects were tested on two occasions within a period of 7 days to assess the reliability and reproducibility. NIRS signals were corrected for blood volume changes using three different methods. Resting oxygen consumption had a mean coefficient of variation (CV) of 2.4% (range 1-32%). The recovery of oxygen consumption (mVo(2)) after electrical stimulation at 4 Hz was fit to an exponential curve, which represents mitochondrial capacity. The time constant for the recovery of mVo(2) was reproducible with a mean CV of 10% (range 1-22%) only when correcting for blood volume changes. We also examined the effects of adipose tissue thickness on measurements of mVo(2). We found the mVo(2) measurements using absolute units to be influenced by adipose tissue thickness (ATT), and this relationship was removed when an ischemic calibration was performed, supporting its use to compare mVo(2) between individuals of varying ATT. In conclusion, in vivo oxidative capacity can be assessed using blood volume-corrected NIRS signals with a high degree of reliability and reproducibility.
Collapse
Affiliation(s)
- Terence E Ryan
- Department of Kinesiology, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
24
|
Koga S, Kano Y, Barstow TJ, Ferreira LF, Ohmae E, Sudo M, Poole DC. Kinetics of muscle deoxygenation and microvascular Po2 during contractions in rat: comparison of optical spectroscopy and phosphorescence-quenching techniques. J Appl Physiol (1985) 2012; 112:26-32. [DOI: 10.1152/japplphysiol.00925.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The overarching presumption with near-infrared spectroscopy measurement of muscle deoxygenation is that the signal reflects predominantly the intramuscular microcirculatory compartment rather than intramyocyte myoglobin (Mb). To test this hypothesis, we compared the kinetics profile of muscle deoxygenation using visible light spectroscopy (suitable for the superficial fiber layers) with that for microvascular O2 partial pressure (i.e., PmvO2, phosphorescence quenching) within the same muscle region (0.5∼1 mm depth) during transitions from rest to electrically stimulated contractions in the gastrocnemius of male Wistar rats ( n = 14). Both responses could be modeled by a time delay (TD), followed by a close-to-exponential change to the new steady level. However, the TD for the muscle deoxygenation profile was significantly longer compared with that for the phosphorescence-quenching PmvO2 [8.6 ± 1.4 and 2.7 ± 0.6 s (means ± SE) for the deoxygenation and PmvO2, respectively; P < 0.05]. The time constants (τ) of the responses were not different (8.8 ± 4.7 and 11.2 ± 1.8 s for the deoxygenation and PmvO2, respectively). These disparate (TD) responses suggest that the deoxygenation characteristics of Mb extend the TD, thereby increasing the duration (number of contractions) before the onset of muscle deoxygenation. However, this effect was insufficient to increase the mean response time. Somewhat differently, the muscle deoxygenation response measured using near-infrared spectroscopy in the deeper regions (∼5 mm depth) (∼50% type I Mb-rich, highly oxidative fibers) was slower (τ = 42.3 ± 6.6 s; P < 0.05) than the corresponding value for superficial muscle measured using visible light spectroscopy or PmvO2 and can be explained on the basis of known fiber-type differences in PmvO2 kinetics. These data suggest that, within the superficial and also deeper muscle regions, the τ of the deoxygenation signal may represent a useful index of local O2 extraction kinetics during exercise transients.
Collapse
Affiliation(s)
- Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe
| | - Yutaka Kano
- The University of Electro-Communications, Chofu; and
| | - Thomas J. Barstow
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Leonardo F. Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | | | - Mizuki Sudo
- The University of Electro-Communications, Chofu; and
| | - David C. Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
25
|
Hamaoka T, McCully KK, Niwayama M, Chance B. The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:4591-604. [PMID: 22006908 DOI: 10.1098/rsta.2011.0298] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Near-infrared spectroscopy (NIRS) has been shown to be one of the tools that can measure oxygenation in muscle and other tissues in vivo. This review paper highlights the progress, specifically in this decade, that has been made for evaluating skeletal muscle oxygenation and oxidative energy metabolism in sport, health and clinical sciences. Development of NIRS technologies has focused on improving quantification of the signal using multiple wavelengths to solve for absorption and scattering coefficients, multiple pathlengths to correct for the influence of superficial skin and fat, and time-resolved and phase-modulated light sources to determine optical pathlengths. In addition, advances in optical imaging with multiple source and detector pairs as well as portability using small wireless detectors have expanded the usefulness of the devices. NIRS measurements have provided information on oxidative metabolism in various athletes during localized exercise and whole-body exercise, as well as training-induced adaptations. Furthermore, NIRS technology has been used in the study of a number of chronic health conditions. Future developments of NIRS technology will include enhancing signal quantification. In addition, advances in NIRS imaging and portability promise to transform how measurements of oxygen utilization are obtained in the future.
Collapse
Affiliation(s)
- Takafumi Hamaoka
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
| | | | | | | |
Collapse
|
26
|
Ferrari M, Muthalib M, Quaresima V. The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:4577-90. [PMID: 22006907 DOI: 10.1098/rsta.2011.0230] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questions and outlining future directions. So far, different NIRS techniques (e.g. continuous-wave (CW) and spatially, time- and frequency-resolved spectroscopy) have been used for measuring muscle oxygenation during exercise. In the last four years, approximately 160 muscle NIRS articles have been published on different physiological aspects (primarily muscle oxygenation and haemodynamics) of several upper- and lower-limb muscle groups investigated by using mainly two-channel CW and spatially resolved spectroscopy commercial instruments. Unfortunately, in only 15 of these studies were the advantages of using multi-channel instruments exploited. There are still several open questions in the application of NIRS in muscle studies: (i) whether NIRS can be used in subjects with a large fat layer; (ii) the contribution of myoglobin desaturation to the NIRS signal during exercise; (iii) the effect of scattering changes during exercise; and (iv) the effect of changes in skin perfusion, particularly during prolonged exercise. Recommendations for instrumentation advancements and future muscle NIRS studies are provided.
Collapse
Affiliation(s)
- Marco Ferrari
- Department of Health Sciences, University of L'Aquila, L'Aquila, Italy.
| | | | | |
Collapse
|
27
|
Desjardins AE, Hendriks BH, van der Voort M, Nachabé R, Bierhoff W, Braun G, Babic D, Rathmell JP, Holmin S, Söderman M, Holmström B. Epidural needle with embedded optical fibers for spectroscopic differentiation of tissue: ex vivo feasibility study. BIOMEDICAL OPTICS EXPRESS 2011; 2:1452-61. [PMID: 21698009 PMCID: PMC3114214 DOI: 10.1364/boe.2.001452] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/22/2011] [Accepted: 05/01/2011] [Indexed: 05/29/2023]
Abstract
Epidural injection is commonly used to provide intraoperative anesthesia, postoperative and obstetric analgesia, and to treat acute radicular pain. Identification of the epidural space is typically carried out using the loss of resistance (LOR) technique, but the usefulness of this technique is limited by false LOR and the inability to reliably detect intravascular or subarachnoid needle placement. In this study, we present a novel epidural needle that allows for the acquisition of optical reflectance spectra from tissue close to the beveled surface. This needle has optical fibers embedded in the cannula that deliver and receive light. With two spectrometers, light received from tissue is resolved across the wavelength range of 500 to 1600 nm. To determine the feasibility of optical tissue differentiation, spectra were acquired from porcine tissues during a post mortem laminectomy. The spectra were processed with an algorithm that derives estimates of the hemoglobin and lipid concentrations. The results of this study suggest that the optical epidural needle has the potential to improve the accuracy of epidural space identification.
Collapse
Affiliation(s)
| | | | | | - Rami Nachabé
- Philips Research, Minimally Invasive Healthcare Department, The Netherlands
| | - Walter Bierhoff
- Philips Research, Minimally Invasive Healthcare Department, The Netherlands
| | - Guus Braun
- Philips Research, Minimally Invasive Healthcare Department, The Netherlands
| | | | - James P. Rathmell
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, USA
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet and Department of Neuroradiology, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Michael Söderman
- Department of Clinical Neuroscience, Karolinska Institutet and Department of Neuroradiology, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Björn Holmström
- Department of Anesthesiology and Intensive Care, Karolinska University Hospital, Huddinge and Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Characterizing near-infrared spectroscopy responses to forearm post-occlusive reactive hyperemia in healthy subjects. Eur J Appl Physiol 2011; 111:2753-61. [DOI: 10.1007/s00421-011-1898-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
|
29
|
Lee SMC, Clarke MSF, O’Connor DP, Stroud L, Ellerby GEC, Soller BR. Near infrared spectroscopy-derived interstitial hydrogen ion concentration and tissue oxygen saturation during ambulation. Eur J Appl Physiol 2011; 111:1705-14. [DOI: 10.1007/s00421-010-1797-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 12/20/2010] [Indexed: 11/29/2022]
|
30
|
Gussakovsky E, Yang Y, Rendell J, Jilkina O, Kupriyanov V. Mapping the myoglobin concentration, oxygenation, and optical pathlength in heart ex vivo using near-infrared imaging. Anal Biochem 2010; 407:120-7. [DOI: 10.1016/j.ab.2010.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 07/14/2010] [Indexed: 11/28/2022]
|
31
|
Mohan A, Hunt MC, Barstow TJ, Houser TA, Hueber DM. Near-infrared oximetry of three post-rigor skeletal muscles for following myoglobin redox forms. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.04.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Binzoni T, Cooper CE, Wittekind AL, Beneke R, Elwell CE, Van De Ville D, Leung TS. A new method to measure local oxygen consumption in human skeletal muscle during dynamic exercise using near-infrared spectroscopy. Physiol Meas 2010; 31:1257-69. [DOI: 10.1088/0967-3334/31/9/014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Mohan A, Hunt M, Barstow T, Houser T, Bopp C, Hueber D. Effects of fibre orientation, myoglobin redox form, and postmortem storage on NIR tissue oximeter measurements of beef longissimus muscle. Meat Sci 2010; 84:79-85. [DOI: 10.1016/j.meatsci.2009.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/19/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
|
34
|
Lai N, Zhou H, Saidel GM, Wolf M, McCully K, Gladden LB, Cabrera ME. Modeling oxygenation in venous blood and skeletal muscle in response to exercise using near-infrared spectroscopy. J Appl Physiol (1985) 2009; 106:1858-74. [PMID: 19342438 PMCID: PMC2692777 DOI: 10.1152/japplphysiol.91102.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 03/31/2009] [Indexed: 11/22/2022] Open
Abstract
Noninvasive, continuous measurements in vivo are commonly used to make inferences about mechanisms controlling internal and external respiration during exercise. In particular, the dynamic response of muscle oxygenation (Sm(O(2))) measured by near-infrared spectroscopy (NIRS) is assumed to be correlated to that of venous oxygen saturation (Sv(O(2))) measured invasively. However, there are situations where the dynamics of Sm(O(2)) and Sv(O(2)) do not follow the same pattern. A quantitative analysis of venous and muscle oxygenation dynamics during exercise is necessary to explain the links between different patterns observed experimentally. For this purpose, a mathematical model of oxygen transport and utilization that accounts for the relative contribution of hemoglobin (Hb) and myoglobin (Mb) to the NIRS signal was developed. This model includes changes in microvascular composition within skeletal muscle during exercise and integrates experimental data in a consistent and mechanistic manner. Three subjects (age 25.6 +/- 0.6 yr) performed square-wave moderate exercise on a cycle ergometer under normoxic and hypoxic conditions while muscle oxygenation (C(oxy)) and deoxygenation (C(deoxy)) were measured by NIRS. Under normoxia, the oxygenated Hb/Mb concentration (C(oxy)) drops rapidly at the onset of exercise and then increases monotonically. Under hypoxia, C(oxy) decreases exponentially to a steady state within approximately 2 min. In contrast, model simulations of venous oxygen concentration show an exponential decrease under both conditions due to the imbalance between oxygen delivery and consumption at the onset of exercise. Also, model simulations that distinguish the dynamic responses of oxy-and deoxygenated Hb (HbO(2), HHb) and Mb (MbO(2), HMb) concentrations (C(oxy) = HbO(2) + MbO(2); C(deoxy) = HHb + HMb) show that Hb and Mb contributions to the NIRS signal are comparable. Analysis of NIRS signal components during exercise with a mechanistic model of oxygen transport and metabolism indicates that changes in oxygenated Hb and Mb are responsible for different patterns of Sm(O(2)) and Sv(O(2)) dynamics observed under normoxia and hypoxia.
Collapse
Affiliation(s)
- Nicola Lai
- Depatment of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106-7207, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Layec G, Bringard A, Le Fur Y, Vilmen C, Micallef JP, Perrey S, Cozzone PJ, Bendahan D. Effects of a prior high-intensity knee-extension exercise on muscle recruitment and energy cost: a combined local and global investigation in humans. Exp Physiol 2009; 94:704-19. [PMID: 19151077 DOI: 10.1113/expphysiol.2008.044651] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of a priming exercise bout on both muscle energy production and the pattern of muscle fibre recruitment during a subsequent exercise bout are poorly understood. The purpose of the present study was to determine whether a prior exercise bout which is known to increase O(2) supply and to induce a residual acidosis could alter energy cost and muscle fibre recruitment during a subsequent heavy-intensity knee-extension exercise. Fifteen healthy subjects performed two 6 min bouts of heavy exercise separated by a 6 min resting period. Rates of oxidative and anaerobic ATP production, determined with (31)P-magnetic resonance spectroscopy, and breath-by-breath measurements of pulmonary oxygen uptake were obtained simultaneously. Changes in muscle oxygenation and muscle fibre recruitment occurring within the quadriceps were measured using near-infrared spectroscopy and surface electromyography. The priming heavy-intensity exercise increased motor unit recruitment (P < 0.05) in the early part of the subsequent exercise bout but did not alter muscle energy cost. We also observed a reduced deoxygenation time delay, whereas the deoxygenation amplitude was increased (P < 0.01). These changes were associated with an increased oxidative ATP cost after approximately 50 s (P < 0.05) and a slight reduction in the overall anaerobic rate of ATP production (0.11 +/- 0.04 mM min(-1) W(-1) for bout 1 and 0.06 +/- 0.11 mM min(-1) W(-1) for bout 2; P < 0.05). We showed that a priming bout of heavy exercise led to an increased recruitment of motor units in the early part of the second bout of heavy exercise. Considering the increased oxidative cost and the unaltered energy cost, one could suggest that our results illustrate a reduced metabolic strain per fibre.
Collapse
Affiliation(s)
- Gwenael Layec
- Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Faculté de Médecine de Marseille, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Amara CE, Marcinek DJ, Shankland EG, Schenkman KA, Arakaki LSL, Conley KE. Mitochondrial function in vivo: spectroscopy provides window on cellular energetics. Methods 2008; 46:312-8. [PMID: 18930151 PMCID: PMC10798296 DOI: 10.1016/j.ymeth.2008.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 10/03/2008] [Accepted: 10/08/2008] [Indexed: 01/06/2023] Open
Abstract
Mitochondria integrate the key metabolic fluxes in the cell. This role places this organelle at the center of cellular energetics and, hence, mitochondrial dysfunction underlies a growing number of human disorders and age-related degenerative diseases. Here we present novel analytical and technical methods for evaluating mitochondrial metabolism and (dys)function in human muscle in vivo. Three innovations involving advances in optical spectroscopy (OS) and magnetic resonance spectroscopy (MRS) permit quantifying key compounds in energy metabolism to yield mitochondrial oxidation and phosphorylation fluxes. The first of these uses analytical methods applied to optical spectra to measure hemoglobin (Hb) and myoglobin (Mb) oxygenation states and relative contents ([Hb]/[Mb]) to determine mitochondrial respiration (O2 uptake) in vivo. The second uses MRS methods to quantify key high-energy compounds (creatine phosphate, PCr, and adenosine triphosphate, ATP) to determine mitochondrial phosphorylation (ATP flux) in vivo. The third involves a functional test that combines these spectroscopic approaches to determine mitochondrial energy coupling (ATP/O2), phosphorylation capacity (ATP(max)) and oxidative capacity (O2max) of muscle. These new developments in optical and MR tools allow us to determine the function and capacity of mitochondria noninvasively in order to identify specific defects in vivo that are associated with disease in human and animal muscle. The clinical implication of this unique diagnostic probe is the insight into the nature and extent of dysfunction in metabolic and degenerative disorders, as well as the ability to follow the impact of interventions designed to reverse these disorders.
Collapse
Affiliation(s)
- Catherine E. Amara
- Department of Radiology, University of Washington Medical Center, Seattle, WA 98195
| | - David J. Marcinek
- Department of Radiology, University of Washington Medical Center, Seattle, WA 98195
| | - Eric G. Shankland
- Department of Radiology, University of Washington Medical Center, Seattle, WA 98195
| | - Kenneth A. Schenkman
- Department of Bioengineering, University of Washington Medical Center, Seattle, WA 98195
- Department of Pediatrics, University of Washington Medical Center, Seattle, WA 98195
| | - Lorilee S. L. Arakaki
- Department of Pediatrics, University of Washington Medical Center, Seattle, WA 98195
| | - Kevin E. Conley
- Department of Radiology, University of Washington Medical Center, Seattle, WA 98195
- Department of Physiology & Biophysics, University of Washington Medical Center, Seattle, WA 98195
- Department of Bioengineering, University of Washington Medical Center, Seattle, WA 98195
| |
Collapse
|
37
|
Masuda K, Truscott K, Lin PC, Kreutzer U, Chung Y, Sriram R, Jue T. Determination of myoglobin concentration in blood-perfused tissue. Eur J Appl Physiol 2008; 104:41-8. [PMID: 18516616 DOI: 10.1007/s00421-008-0775-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2008] [Indexed: 12/01/2022]
Abstract
The standard method for determining the myoglobin (Mb) concentration in blood-perfused tissue often relies on a simple but clever differencing algorithm of the optical spectra, as proposed by Reynafarje. However, the underlying assumptions of the differencing algorithm do not always lead to an accurate assessment of Mb concentration in blood-perfused tissue. Consequently, the erroneous data becloud the understanding of Mb function and oxygen transport in the cell. The present study has examined the Mb concentration in buffer and blood-perfused mouse heart. In buffer-perfused heart containing no hemoglobin (Hb), the optical differencing method yields a tissue Mb concentration of 0.26 mM. In blood-perfused tissue, the method leads to an overestimation of Mb. However, using the distinct (1)H NMR signals of MbCO and HbCO yields a Mb concentration of 0.26 mM in both buffer- and blood-perfused myocardium. Given the NMR and optical data, a computer simulation analysis has identified some error sources in the optical differencing algorithm and has suggested a simple modification that can improve the Mb determination. Even though the present study has determined a higher Mb concentration than previously reported, it does not alter significantly the equipoise PO(2), the PO(2) where Mb and O(2) contribute equally to the O(2) flux. It also suggests that any Mb increase with exercise training does not necessarily enhance the intracellular O(2) delivery.
Collapse
Affiliation(s)
- Kazumi Masuda
- Faculty of Human Sciences, Institute of Human and Social Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|