1
|
Zhang Y, Ren D, Shi Y, Yuan R, Ye H, Yin XB, Chi H. A smartphone sensing fluorescent detection of mercury ion based on silicon quantum dots in environment water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 325:125135. [PMID: 39299073 DOI: 10.1016/j.saa.2024.125135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Mercury ion (Hg2+) pose a significant hazard to the natural environment. Conventional techniques like Inductively coupled plasma mass spectrometry, X-ray absorption spectroscopy, among others, pose some disadvantages as they demand a lot of money, need trained employees, and cannot provide on-site detection in real-time. A smartphone sensing technique based on silicon quantum dots (Si-QDs) was presented to detect Hg2+ in the environment without the usage of sophisticated equipment. Meanwhile, the technology was built by utilizing a smartphone to capture gray values of fluorescent images of the Si-QDs-Hg2+ system. Microwave-assisted Si-QDs with tiny particle size, high fluorescence, and good optical stability were created. The fluorescence of the Si-QDs was gradually quenched by raising the Hg2+ concentration from 0.5 μmol/L to 5.0 μmol/L for fluorescent detection with a detection limit of 28 nmol/L. The 94.8-97.1 % recovery demonstrated the viability of the Si-QDs approach for detecting Hg2+. Meanwhile, a smartphone sensing strategy was built by recording the gray value of the fluorescent images of the Si-QDs-Hg2+ systems using a smartphone, and the detection limit of the established approach was 3 nmol/L. The accuracy and reliability of the smartphone strategy were verified with the recovery rates of 80.3-92.5 % in tap water and 87.6-109 % in river water. Electron transfer quenching mechanism between Si-QDs and Hg2+ was evidenced by ultraviolet-visible spectroscopy, fluorescent decay curves, cyclic voltammetry, and Zeta potential. Finally, the suggested approach was used to detect Hg2+ in water samples from various environments.
Collapse
Affiliation(s)
- Yuanxing Zhang
- Laboratory of Aquatic Product Quality, Safety and Processing, Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China
| | - Yongfu Shi
- Laboratory of Aquatic Product Quality, Safety and Processing, Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Rui Yuan
- Laboratory of Aquatic Product Quality, Safety and Processing, Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Hongli Ye
- Laboratory of Aquatic Product Quality, Safety and Processing, Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; Key Laboratory of Control of Safety and Quality for Aquatic Product, Ministry of Agriculture and Rural Affairs, Beijing 100141, PR China.
| | - Xue-Bo Yin
- Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Hai Chi
- Laboratory of Aquatic Product Quality, Safety and Processing, Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China.
| |
Collapse
|
2
|
Zhang M, Meng L, Kalyinur K, Dong S, Chang X, Yu Q, Wang R, Pang B, Kong X. Fabrication and Application of Ag@SiO 2/Au Core-Shell SERS Composite in Detecting Cu 2+ in Water Environment. Molecules 2024; 29:1503. [PMID: 38611782 PMCID: PMC11013303 DOI: 10.3390/molecules29071503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
A sensitive and simple method for detecting Cu2+ in the water source was proposed by using surface-enhanced Raman scattering spectroscopy (SERS) based on the Ag@SiO2/Au core-shell composite. The Ag@SiO2 SERS tag was synthesized by a simple approach, in which Ag nanoparticles were first embedded with Raman reporter PATP and next coated with a SiO2 shell. The Ag@SiO2 nanoparticles had strong stability even in a high-concentration salty solution, and there were no changes to their properties and appearance within one month. The Ag@SiO2/Au composite was fabricated through a controllable self-assemble process. L-cysteine was decorated on the surface of a functionalized Ag@SiO2/Au composite, as the amino and carboxyl groups of it can form coordinate covalent bond with Cu2+, which shows that the Ag@SiO2/Au composite labelled with L-cysteine has excellent performance for the detection of Cu2+ in aqueous media. In this study, the SERS detection of Cu2+ was carried out using Ag@SiO2 nanoparticles, and the limit of detection (LOD) as low as 0.1 mg/L was achieved.
Collapse
Affiliation(s)
- Meizhen Zhang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (L.M.); (S.D.); (X.C.); (Q.Y.); (X.K.)
| | - Lin Meng
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (L.M.); (S.D.); (X.C.); (Q.Y.); (X.K.)
- International Education College, Liaoning Petrochemical University, Fushun 113001, China;
| | - Kelgenbaev Kalyinur
- International Education College, Liaoning Petrochemical University, Fushun 113001, China;
| | - Siyuan Dong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (L.M.); (S.D.); (X.C.); (Q.Y.); (X.K.)
- International Education College, Liaoning Petrochemical University, Fushun 113001, China;
| | - Xinyi Chang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (L.M.); (S.D.); (X.C.); (Q.Y.); (X.K.)
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (L.M.); (S.D.); (X.C.); (Q.Y.); (X.K.)
| | - Rui Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (L.M.); (S.D.); (X.C.); (Q.Y.); (X.K.)
| | - Bo Pang
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (L.M.); (S.D.); (X.C.); (Q.Y.); (X.K.)
| |
Collapse
|
3
|
Fu Z, He J, Li Y, Ding H, Gao X, Cui F. A novel and ultrasensitive fluorescent probe derived from labeled carbon dots for recognitions of copper ions and glyphosate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122052. [PMID: 36356396 DOI: 10.1016/j.saa.2022.122052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Labeling materials with special functional groups are very valuable for the creation of novel probes. Hence, a novel fluorescent probe was constructed by conjugating 4-butyl-3-thiosemicarbazide (BTSC) with carbon dots (CDs). The CDs labeled by BTSC (BTSC-CDs) displayed a strong capability for recognition of Cu2+ and Cu2+ could quench the emission of BTSC-CDs significantly. The fluorescence quenching was proved to be a static quenching which was resulted from the interaction between BTSC-CDs and Cu2+ to form a ground-state BTSC-CDs/Cu2+complex, and the fluorescence intensities showed a good linear correlation with Cu2+ concentrations in the range of 0.20-30 μM. What is more important, by adding glyphosate into the sensor system of BTSC-CDs/Cu2+ the fluorescence of the probe turned on again owing to the stronger chelating between glyphosate and Cu2+ than between BTSC-CDs and Cu2+. This could realize the specific detection of glyphosate and the limit of detection was low to 0.27 μM. Detecting glyphosate using the complex BTSC-CDs/Cu2+ system in actual samples with satisfactory outcomes indicated that a novel fluorescent probe for Cu2+ and subsequent glyphosate detections has been provided.
Collapse
Affiliation(s)
- Zheng Fu
- College of Material Science and Engineering, Henan Institute of Technology, Henan, Xinxiang 453000, PR China
| | - Jiantong He
- Clinical Laboratory, Xinxiang Maternal and Child Health Hospital, Henan, Xinxiang 453003, PR China
| | - Yameng Li
- College of Chemistry and Chemical Engineering, Henan Normal University, Henan, Xinxiang 453007, PR China
| | - Hai Ding
- College of Material Science and Engineering, Henan Institute of Technology, Henan, Xinxiang 453000, PR China
| | - Xiaoxiao Gao
- College of Chemistry and Chemical Engineering, Henan Normal University, Henan, Xinxiang 453007, PR China
| | - Fengling Cui
- College of Chemistry and Chemical Engineering, Henan Normal University, Henan, Xinxiang 453007, PR China.
| |
Collapse
|
4
|
Fazal M, Ali I, Ahmed F, Khalid S, Farghaly TA, Althagafi II, Khan I, Ali M, Ateeq M, Shah MR. A Biologically Compatible Colorimetric Sensor for the Selective Recognition of Cu
2+
Ions in Biological Matrices. ChemistrySelect 2022. [DOI: 10.1002/slct.202202913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahmood Fazal
- Department of Chemistry University of Malakand Chakdara Dir (L) Khyber Pakhtunkhwa 18300 Pakistan
| | - Imdad Ali
- HEJ Research institute of chemistry International center for chemical and biological sciences (ICCBS) University of Karachi 75270 Karachi Pakistan
| | - Farid Ahmed
- HEJ Research institute of chemistry International center for chemical and biological sciences (ICCBS) University of Karachi 75270 Karachi Pakistan
| | - Shumaila Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research ICCBS University of Karachi 75270 Karachi Pakistan
| | - Thoraya A. Farghaly
- Department of chemistry. Faculty of Science Cairo University Giza Egypt
- Department of chemistry Faculty of Applied Science Umm Al_Qura University Makkah Almukkaramah Saudi Arabia
| | - Ismail I. Althagafi
- Department of chemistry Faculty of Applied Science Umm Al_Qura University Makkah Almukkaramah Saudi Arabia
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research ICCBS University of Karachi 75270 Karachi Pakistan
| | - Mumtaz Ali
- Department of Chemistry University of Malakand Chakdara Dir (L) Khyber Pakhtunkhwa 18300 Pakistan
| | - Muhammad Ateeq
- Department of Chemistry Abdul Wali Khan University Mardan 23200 Pakistan
| | - Muhammad Raza Shah
- HEJ Research institute of chemistry International center for chemical and biological sciences (ICCBS) University of Karachi 75270 Karachi Pakistan
| |
Collapse
|
5
|
Kamal S, Yang TCK. Silver enriched silver phosphate microcubes as an efficient recyclable SERS substrate for the detection of heavy metal ions. J Colloid Interface Sci 2021; 605:173-181. [PMID: 34325339 DOI: 10.1016/j.jcis.2021.07.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
A rapid, cost-effective and accurate detection of heavy metal ions is crucial for human health monitoring and environmental protection. Surface-enhanced Raman spectroscopy (SERS) has become a reliable method due to its outstanding performance for the identification of contaminants. In this paper, silver phosphate microcubes (Ag3PO4) were fabricated using two different precipitation methods for ultrasensitive SERS detection of heavy metal ions. The use of an organic linker (BPy) with Ag3PO4 enabled the immobilization of Hg2+ and Pb2+ ions. The formation of Ag3PO4 was confirmed by XRD, UV-DRS, FESEM coupled with EDX and HRTEM. The analytical enhancement factor (AEF) obtained was 1010 with a detection limit of 10-15 M indicating high sensitivity. Based on these results, the possible SERS mechanism has been proposed and discussed. Moreover, an excellent reusability of Ag3PO4 substrate for at least four cycles was achieved upon the light exposure on heavy metal loaded substrate due to its superior catalytic ability for the degradation of heavy metal ions. The as-prepared substrate demonstrated remarkable stability, selectivity and SERS sensitivity towards real samples. The results conclude that Ag3PO4 microcubes offer a great prospect in recyclable SERS applications.
Collapse
Affiliation(s)
- Surabhi Kamal
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Da'an District, 106 Taipei City, Taiwan.
| | - Thomas Chung-Kuang Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Da'an District, 106 Taipei City, Taiwan; Precision Analysis and Materials Research Centre, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Da'an District, 106 Taipei City, Taiwan.
| |
Collapse
|
6
|
Magna G, Nardis S, Stefanelli M, Monti D, Di Natale C, Paolesse R. The strength in Numbers! Porphyrin hybrid nanostructured materials for chemical sensing. Dalton Trans 2021; 50:5724-5731. [PMID: 33949554 DOI: 10.1039/d1dt00528f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of chemical sensors is an urgent need for both environmental and health issues. The breakthrough needed for the advancement of these devices is the development of efficient receptors. Porphyrins have been widely used as sensing layers in chemical sensors, but their integration with nanostructures can greatly boost the performance of these macrocycles, improving from one side the stability of the sensing layer, and from the other, offering additional interaction mechanisms with target analytes. We present here some recent examples of hybrid materials prepared by the integration of porphyrins with metal and metal oxide nanoparticles, porphyrin-based metal organic frameworks and their exploitation as sensing layers in chemical sensors.
Collapse
Affiliation(s)
- Gabriele Magna
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Sara Nardis
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Manuela Stefanelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Donato Monti
- Department of Chemistry, University of Roma La Sapienza, 00185 Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
7
|
Sarfraz N, Khan I. Plasmonic Gold Nanoparticles (AuNPs): Properties, Synthesis and their Advanced Energy, Environmental and Biomedical Applications. Chem Asian J 2021; 16:720-742. [PMID: 33440045 DOI: 10.1002/asia.202001202] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/12/2020] [Indexed: 12/12/2022]
Abstract
Inducing plasmonic characteristics, primarily localized surface plasmon resonance (LSPR), in conventional AuNPs through particle size and shape control could lead to a significant enhancement in electrical, electrochemical, and optical properties. Synthetic protocols and versatile fabrication methods play pivotal roles to produced plasmonic gold nanoparticles (AuNPs), which can be employed in multipurpose energy, environmental and biomedical applications. The main focus of this review is to provide a comprehensive and tutorial overview of various synthetic methods to design highly plasmonic AuNPs, along with a brief essay to understand the experimental procedure for each technique. The latter part of the review is dedicated to the most advanced and recent solar-induced energy, environmental and biomedical applications. The synthesis methods are compared to identify the best possible synthetic route, which can be adopted while employing plasmonic AuNPs for a specific application. The tutorial nature of the review would be helpful not only for expert researchers but also for novices in the field of nanomaterial synthesis and utilization of plasmonic nanomaterials in various industries and technologies.
Collapse
Affiliation(s)
- Nafeesa Sarfraz
- Department of Chemistry, Govt. Post Graduate College (For Women), University of Harīpur, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Ibrahim Khan
- Centre for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
8
|
Goel A, Tomer N, Ghule VD, Malhotra R. A multi-responsive pyranone based Schiff base for the selective, sensitive and competent recognition of copper metal ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119221. [PMID: 33257246 DOI: 10.1016/j.saa.2020.119221] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Exploring a new multi-responsive pyranone chemosensor capable of sensing copper ions specifically and selectively through colorimetric, UV-Vis absorption and fluorescence methods is of great importance. In this piece of work, a novel pyranone based Schiff base ligand 4-Hydroxy-6-methyl-3-[1-(2-morpholin-4-yl-ethylimino)-ethyl]-pyran-2-one (DM) was synthesized by the condensation of dehydroacetic acid and 4-(2-aminoethyl) morpholine. The structural determination of ligand DM was executed using distinct spectral techniques i.e.,1H NMR, 13C NMR, FT-IR and HR-MS techniques. The reported Schiff base DM showed an immediate colorimetric change from pale yellow to colorless accompanied by a strong change in the UV-Vis absorption band onto the addition of Cu (II) ions. This metal ligand chelation leads a decrease in ICT process. Also the decrease in fluorescence emission intensity of Schiff base DM with Cu (II) ions addition showed its turn-off behavior towards copper ions. Further absorption/ emission titration studies, Job's plot, HR-MS and 1H NMR titration data designated 2:1 stoichiometric ratio between DM and Cu (II) ions respectively. Density functional theory studies were also performed to authenticate the binding mechanism theoretically. The sensitivity of Schiff base DM towards Cu (II) ions was applicable at every pH conditions and at the same time DM exhibited selectivity towards Cu (II) ions with a negligible interference of other metal ions. DM showed a detection limit of 7.7 nM towards copper ions via fluorescence emission studies. The best part about DM is that it has good stability but showed an instant chemical reversibility when titrated with EDTA solution.
Collapse
Affiliation(s)
- Apurva Goel
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Nisha Tomer
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Vikas D Ghule
- Department of Chemistry, National Institute of Technology, Kurukshetra 136119, India
| | - Rajesh Malhotra
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, India.
| |
Collapse
|
9
|
Jahn IJ, Mühlig A, Cialla-May D. Application of molecular SERS nanosensors: where we stand and where we are headed towards? Anal Bioanal Chem 2020; 412:5999-6007. [PMID: 32676675 PMCID: PMC7442760 DOI: 10.1007/s00216-020-02779-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/20/2020] [Accepted: 06/18/2020] [Indexed: 11/26/2022]
Abstract
Molecular specific and highly sensitive detection is the driving force of the surface-enhanced Raman spectroscopy (SERS) community. The technique opens the window to the undisturbed monitoring of cellular processes in situ or to the quantification of small molecular species that do not deliver Raman signals. The smart design of molecular SERS nanosensors makes it possible to indirectly but specifically detect, e.g. reactive oxygen species, carbon monoxide or potentially toxic metal ions. Detection schemes evolved over the years from simple metallic colloidal nanoparticles functionalized with sensing molecules that show uncontrolled aggregation to complex nanostructures with magnetic properties making the analysis of complex environmental samples possible. The present article gives the readership an overview of the present research advancements in the field of molecular SERS sensors, highlighting future trends.
Collapse
Affiliation(s)
- Izabella J Jahn
- Leibniz Institute of Photonic Technology, Member of the Leibniz Research Alliance "Leibniz Health Technologies", Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Anna Mühlig
- Leibniz Institute of Photonic Technology, Member of the Leibniz Research Alliance "Leibniz Health Technologies", Albert-Einstein-Str. 9, 07745, Jena, Germany
- Center for Sepsis Care and Control Jena, Jena University Hospital, Kollegiengasse 10, 07743, Jena, Germany
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of the Leibniz Research Alliance "Leibniz Health Technologies", Albert-Einstein-Str. 9, 07745, Jena, Germany.
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, Jena, Germany.
- Center of Applied Research, InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743, Jena, Germany.
| |
Collapse
|
10
|
Qadri T, Ali I, Hussain M, Ahmed F, Shah MR, Hussain Z. Synthesis of New Tetra Triazole Functionalized Calix[4]resorcinarene and Chemosensing of Copper Ions in Aqueous Medium. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200211114211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new tetra triazole functionalized calix[4]resorcinarene macrocycle (5) is synthesized
and utilized for the detection of copper ions in the aqueous medium. The photophysical
potential of compound (5) is examined by a range of cations (Ba2+, Ca2+, Co2+,
Hg2+, K+, Mg2+, Mn2+, Na+, NH4
+ and Pd2+). The triazole based calix[4]resorcinarene macrocycle
(5) has interacted with Cu2+ ion in preference of other cations. A significant
quenching has been observed after the addition of 15 μM Cu2+ ion solution, which produced
4.2 folds drift in the absorption intensity of compound (5). Tetra triazole functionalized
calix[4]resorcinarene macrocycle showed high selectivity towards copper ion chemosensing
without any interference in competitive studies. The pH studies of compound
(5) with Cu2+ indicated the maximum chelation between 7- 7.5 pH. The compound (5) is
capable to recognize Cu2+ at 1 μM detectable limit. Copper ion was detected in tap water with 15 μM concentration.
Job’s plot showed 1:2 binding ratio between macrocycle (5) and Cu2+.
Collapse
Affiliation(s)
- Tahir Qadri
- Department of Chemistry, University of Karachi, Karachi-75270, Sindh, Pakistan
| | - Imdad Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Sindh, Pakistan
| | - Mumtaz Hussain
- Department of Chemistry, University of Karachi, Karachi-75270, Sindh, Pakistan
| | - Farid Ahmed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Sindh, Pakistan
| | - Muhammad R. Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Sindh, Pakistan
| | - Zahid Hussain
- Department of Chemistry, University of Karachi, Karachi-75270, Sindh, Pakistan
| |
Collapse
|
11
|
Bao H, Fu H, Zhou L, Cai W, Zhang H. Rapid and ultrasensitive surface-enhanced Raman spectroscopy detection of mercury ions with gold film supported organometallic nanobelts. NANOTECHNOLOGY 2020; 31:155501. [PMID: 31887726 DOI: 10.1088/1361-6528/ab6630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rapid, ultrasensitive and reliable detection of mercury ions (Hg2+) by surface enhanced Raman spectroscopy (SERS) is of importance, but is restricted by the extremely low Raman cross section of the Hg2+. Here, we report a facile methodology that can realize such detection based on the organometallic Cu(CH4N2S)Cl · 0.5H2O nanobelts and SERS. In the assay, Hg2+ react with the nanobelts coated on a SERS active gold nanoparticle (NP) film to form ultrafine HgS NPs in situ. Subsequently, solid HgS is SERS determined to mirror the presence of Hg2+. Importantly, such detection is rapid and ultrasensitive. Within 10 min, limit of detection (LoD) of ppt level can be realized. The high detection efficiency is attributed to the superhydrophilicity, rich micropores and ultrathin nature of the organometallic nanobelts besides the strong SERS effect of Au NP film. In addition, this detection is highly resistant to various metal ions (Cu2+, Fe3+, Bi3+, Cr3+, Na+, Ni2+, Cd2+, etc) and is highly reliable in actual water (lake and tap water). Finally, influences of some substrate parameters and detection conditions on the test results are revealed. The optimal thickness of the gold NP film is about 80 nm, and the optimal wavelength of excitation light is about 633 nm. A small amount of Cu(CH4N2S)Cl · 0.5H2O nanobelts or a large volume of Hg2+ contaminated solution contributes to low LoDs. We believe that this work provides a rapid and sensitive detection for Hg2+.
Collapse
Affiliation(s)
- Haoming Bao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | | | | | | | | |
Collapse
|
12
|
Panda S, Paital B, Mohapatra S. CQD@γ-Fe2O3 multifunctional nanoprobe for selective fluorescence sensing, detoxification and removal of Hg(II). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Ali I, Isaac IO, Ahmed F, Aslam F, Ali S, Imran M, Alharthy RD, Shah MR, Malik MI, Hameed A. Acridine‐Thiosemicarbazones‐Stabilized Silver Nanoparticles as a Selective Sensor for Copper(II)‐Ion in Tap Water. ChemistrySelect 2019. [DOI: 10.1002/slct.201901381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Imdad Ali
- H. E. J Research Institute of ChemistryInternational Center for Chemical and Biological Sciences University of Karachi, Karachi Pakistan
| | - Ibanga Okon Isaac
- H. E. J Research Institute of ChemistryInternational Center for Chemical and Biological Sciences University of Karachi, Karachi Pakistan
| | - Farid Ahmed
- Department of ChemistryWomen University of Azad Jammu Kashmir Bagh-12500 Pakistan
| | - Fariha Aslam
- H. E. J Research Institute of ChemistryInternational Center for Chemical and Biological Sciences University of Karachi, Karachi Pakistan
| | - Shujaat Ali
- H. E. J Research Institute of ChemistryInternational Center for Chemical and Biological Sciences University of Karachi, Karachi Pakistan
| | - Muhammad Imran
- H. E. J Research Institute of ChemistryInternational Center for Chemical and Biological Sciences University of Karachi, Karachi Pakistan
| | - Rima D. Alharthy
- Department of ChemistryScience and Arts CollegeRabigh Campus, King Abdulaziz, University, Jeddah Saudi Arabia
| | - Muhammad Raza Shah
- H. E. J Research Institute of ChemistryInternational Center for Chemical and Biological Sciences University of Karachi, Karachi Pakistan
| | - Muhammad Imran Malik
- H. E. J Research Institute of ChemistryInternational Center for Chemical and Biological Sciences University of Karachi, Karachi Pakistan
| | - Abdul Hameed
- H. E. J Research Institute of ChemistryInternational Center for Chemical and Biological Sciences University of Karachi, Karachi Pakistan
- Department of ChemistryForman Christian College (A Chartered University) Ferozepur Road Lahore 54600 Pakistan
| |
Collapse
|
14
|
Franciscato DS, Matias TA, Shinohara J, Gonçalves JM, Coelho NP, Fernandes CS, Basso EA, Nakatani HS, Araki K, Toma HE, de Souza VR. Thiosemicarbazone@Gold nanoparticle hybrid as selective SERS substrate for Hg 2+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:174-179. [PMID: 29933152 DOI: 10.1016/j.saa.2018.06.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
The Raman spectral profile of p-methylcarbohydrazonethioamide (MCHT) is completely changed due to strong SERS effects upon bonding onto gold nanoparticles surface, but some vibrational modes are further enhanced in the presence of Hg(II) ions. The lack of SERS response for most common metal ions indicates that the coordinating groups are interacting with the gold nanoparticles surface and not available for binding metal ions in solution, except for mercury ions. The selective enhancement of some vibrational modes is consistent with significant conformational changes upon binding of Hg(II) ion onto the AuNP@MCHT hybrid, as confirmed by TEM/EDS measurements, demonstrating its potentiality as a highly selective and sensitive SERS substrate.
Collapse
Affiliation(s)
- Douglas S Franciscato
- Department of Chemistry, State University of Maringá, Av. Colombo 5790, CEP 87020-900 Maringá, PR, Brazil
| | - Tiago A Matias
- Department of Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Lineu Prestes 748, CEP 05508-000 Sao Paulo, SP, Brazil
| | - Jorge Shinohara
- Department of Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Lineu Prestes 748, CEP 05508-000 Sao Paulo, SP, Brazil
| | - Josué M Gonçalves
- Department of Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Lineu Prestes 748, CEP 05508-000 Sao Paulo, SP, Brazil
| | - Narcimário P Coelho
- Instituto Federal de Mato Grosso do Sul, Rodovia MS-473, Km 23, Fazenda Santa Bárbara, CEP 79750-000 Nova Andradina, MS, Brazil
| | - Cleverton S Fernandes
- Department of Chemistry, State University of Maringá, Av. Colombo 5790, CEP 87020-900 Maringá, PR, Brazil
| | - Ernani A Basso
- Department of Chemistry, State University of Maringá, Av. Colombo 5790, CEP 87020-900 Maringá, PR, Brazil
| | - Helena S Nakatani
- Department of Chemistry, State University of Maringá, Av. Colombo 5790, CEP 87020-900 Maringá, PR, Brazil
| | - Koiti Araki
- Department of Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Lineu Prestes 748, CEP 05508-000 Sao Paulo, SP, Brazil
| | - Henrique E Toma
- Department of Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Lineu Prestes 748, CEP 05508-000 Sao Paulo, SP, Brazil
| | - Vagner R de Souza
- Department of Chemistry, State University of Maringá, Av. Colombo 5790, CEP 87020-900 Maringá, PR, Brazil.
| |
Collapse
|
15
|
Zhang Y, Wang Q, Xie F, Xiong S. The stripping analysis of Hg(II) and Cu(II) based on hierarchical RTIL/γ-AlOOH/Fe(OH)3 composite. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Aptamer-based sensor for quantitative detection of mercury (II) ions by attenuated total reflection surface enhanced infrared absorption spectroscopy. Anal Chim Acta 2018; 1033:137-147. [PMID: 30172319 DOI: 10.1016/j.aca.2018.05.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/20/2018] [Accepted: 05/10/2018] [Indexed: 11/20/2022]
Abstract
A sensing platform based on the attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) technique and immobilized aptamer has been proposed herein for the selective detection of mercury ions (Hg2+). In the proposed platform, 5' thiolated 32-mer DNA probes with methylene blue at the 3' end were immobilized on a thin gold (Au) surface layer. Following Hg2+ ions interacting with T bases of the aptamer, T-Hg-T bonds are formed; resulting in a hairpin-shaped formation of the DNA and a detectable change in the IR absorbance of the sensing interface. Notably, the background noise produced by external molecules (e.g., water, non-specific binding molecules and bulk solution) is reduced to a negligible level by means of the ATR detection mode. It is shown that the proposed sensor has a linear response (R2 = 0.986) with high sensitivity and good selectivity over the Hg2+ range of 0.01 μM-50 μM.
Collapse
|
17
|
Liu P, Ptacek CJ, Elena KMA, Blowes DW, Gould WD, Finfrock YZ, Wang AO, Landis RC. Evaluation of mercury stabilization mechanisms by sulfurized biochars determined using X-ray absorption spectroscopy. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:114-122. [PMID: 29304450 DOI: 10.1016/j.jhazmat.2017.12.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
The application of biochar to treat mercury (Hg) in the environment is being proposed on an increasing basis due to its widespread availability and cost effectiveness. However, the efficiency of Hg removal by biochars is variable due to differences in source material composition. In this study, a series of batch tests were conducted to evaluate the effectiveness of sulfurized biochars (calcium polysulfide and a dimercapto-related compound, respectively) for Hg removal; Hg-loaded biochars were then characterized using synchrotron-based techniques. Concentrations of Hg decreased by >99.5% in solutions containing the sulfurized biochars. Sulfur X-ray absorption near-edge structure (XANES) analyses indicate a polysulfur-like structure in polysulfide-sulfurized biochar and a thiol-like structure (shifted compared to dimercapto) in the dimercapto-sulfurized biochar. Micro-X-ray fluorescence (μ-XRF) mapping and confocal X-ray micro-fluorescence imaging (CXMFI) analyses indicate Hg is distributed primarily on the edges of sulfurized biochar and throughout unmodified biochar particles. Hg extended X-ray absorption fine structure (EXAFS) analyses show Hg in enriched areas is bound to chlorine (Cl) in the unmodified biochar and to S in sulfurized biochars. These results indicate that Hg removal efficiency is enhanced after sulfurization through the formation of strong bonds (Hg-S) with S-functional groups in the sulfurized biochars.
Collapse
Affiliation(s)
- Peng Liu
- School of Environmental Studies, China University of Geosciences, 388 Lumo Rd., Wuhan, Hubei, 430074, PR China; Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada.
| | - Krista M A Elena
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - W Douglas Gould
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - Y Zou Finfrock
- Science Division, Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada; CLS@APS Sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Alana O Wang
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - Richard C Landis
- I. Du Pont de Nemours and Company, 974 Centre Road, Wilmington, DE 19805, USA
| |
Collapse
|
18
|
Wang Z, Zong S, Wu L, Zhu D, Cui Y. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem Rev 2017; 117:7910-7963. [DOI: 10.1021/acs.chemrev.7b00027] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Lei Wu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dan Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
19
|
Zhang N, Qiao R, Su J, Yan J, Xie Z, Qiao Y, Wang X, Zhong J. Recent Advances of Electrospun Nanofibrous Membranes in the Development of Chemosensors for Heavy Metal Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1604293. [PMID: 28422441 DOI: 10.1002/smll.201604293] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Indexed: 05/21/2023]
Abstract
It is critical to detect and analyze the heavy metal pollutions in environments and foods. Chemosensors have been widely investigated for fast detection of analytes such as heavy metals due to their unique advantages. In order to improve the detection sensitivity of chemosensors, recently electrospun nanofibrous membranes (ENMs) have been explored for the immobilization of chemosensors or receptors due to their high surface-to-volume ratio, high porosity, easiness of fabrication and functionalization, controllability of nanofiber properties, low cost, easy detection, no obvious pollution to the detection solution, and easy post-treatment after the detection process. The purpose of this review is to summarize and guide the development and application of ENMs in the field of chemosensors for the detection of analytes, especially heavy metals. First, heavy metals, chemosensors, and four types of preparation methods for ENM-immobilized chemosensors/receptors are briefly introduced. And then, ENM-immobilized chemosensors/receptors and their application progresses for optical, electro, and mass detections of heavy metals are reviewed according to the four types of preparation methods. Finally, the application of ENM-immobilized chemosensors/receptors is summarized and an outlook is provided. The review will provide an instruction to the research and development of ENM-immobilized chemosensors/receptors for the detection of analytes.
Collapse
Affiliation(s)
- Nan Zhang
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Ruirui Qiao
- Key Laboratory of Colloid Interface Science and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100080, China
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juan Yan
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhiqiang Xie
- Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Yiqun Qiao
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xichang Wang
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jian Zhong
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
20
|
Li C, Ouyang H, Tang X, Wen G, Liang A, Jiang Z. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe. Biosens Bioelectron 2017; 87:888-893. [DOI: 10.1016/j.bios.2016.09.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 02/04/2023]
|
21
|
Fu Z, Cui F. Thiosemicarbazide chemical functionalized carbon dots as a fluorescent nanosensor for sensing Cu2+and intracellular imaging. RSC Adv 2016. [DOI: 10.1039/c6ra10168b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis procedures for the CDs-based nanosensor and schematic diagram of Cu2+detection.
Collapse
Affiliation(s)
- Zheng Fu
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
| | - Fengling Cui
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
| |
Collapse
|