1
|
Li J, Pang CJ. Gene expression profiling of venous malformations identifies the role of SDC1 in venous endothelial cells. Heliyon 2024; 10:e32690. [PMID: 38952376 PMCID: PMC11215287 DOI: 10.1016/j.heliyon.2024.e32690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024] Open
Abstract
Objective To obtain insight into the molecular process implicated in venous malformations (VMs) and identify potential targets for treatment of VMs, this study profiled the gene expression pattern in VMs, investigated alterations of syndecan-1 (SDC1) expression in VMs, and tested the hypothesis that aberrant SDC1 expression triggers abnormal angiogenesis and VM development. Methods Microarray analysis was performed to identify differentially expressed genes (DEGs) on a transcriptome-wide level in VMs and conjunctive normal. Gene Ontology molecular functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were carried out to establish enhancement of biological signaling pathways involved in VMs. Among the DEGs, we focused on SDC1, which is involved in matrix remodeling, cell proliferation and invasion, and angiogenesis. SDC1 expression in VMs was verified by qRT-PCR, western blotting, and immunohistochemistry. Loss-of-function of SDC1 was achieved in human umbilical vein endothelial cells (HUVECs) by siRNA to investigate the roles of SDC1 in cell migration, invasion, and angiogenesis. Results Compared with control tissue, the transcriptome study identified 274 upregulated DEGs and 3 downregulated DEGs. The transcript and protein levels of SDC1 were significantly decreased in VMs compared with normal tissue. Inhibition of SDC1 enhanced HUVEC migration, invasion, and angiogenesis. Conclusion Our genome-wide microarray analysis suggests the involvement of numerous genes in VMs. Among them, SDC1 plays a substantial role in the process of angiogenesis and development of VMs. SDC1 may represent a potential target for a molecular therapy for VMs.
Collapse
Affiliation(s)
- Jin Li
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen-Jiu Pang
- Henan University People's Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Ismail Y, Zakaria AS, Allam R, Götte M, Ibrahim SA, Hassan H. Compartmental Syndecan-1 (CD138) expression as a novel prognostic marker in triple-negative metaplastic breast cancer. Pathol Res Pract 2024; 253:154994. [PMID: 38071886 DOI: 10.1016/j.prp.2023.154994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Metaplastic breast cancer (MpBC) is rare, aggressive, and mostly triple-negative (TN) subtype of BC. We aimed to investigate the potential prognostic significance of Syndecan-1 (SDC1/CD138) expression in this unique tumor. METHODS Archived charts of 50 TNBC patients [21 MpBC and 29 invasive ductal carcinoma (IDC)] were retrospectively evaluated. Corresponding paraffin blocks were used for immunohistochemical (IHC) staining of SDC1. Compartmental (epithelial membranous, stromal, and cytoplasmic) staining scores were expressed in quartiles (Q) and correlated with disease-free survival (DFS) and overall survival (OS). RESULTS The median follow-up period was 54.6 months (range: 2.2-112.7). MpBC patients showed significantly worse DFS and OS than IDC (p = 0.007 and 0.004, respectively). MpBC demonstrated significantly higher Q4 stromal and membranous SDC1 compared to IDC (p = 0.016 and 0.021, respectively), whereas IDC exhibited significantly higher cytoplasmic Q4 SDC1 than MpBC (p = 0.015). Stromal Q4 SDC1 expression was found to be an independent factor associated with MpBC relative to IDC (OR: 6.7, 95% CI: 1.24-36.90; p = 0.028). Stromal Q4 SDC1 expression was also an independent prognostic parameter for worse DFS and OS compared to Q1-3 in the whole cohort (HR: 4.2, 95% CI: 1.6-10.5; p = 0.003 and HR: 5.8; 95% CI: 2.2-15.3; p < 0.001, respectively). In MpBC, cytoplasmic Q1-3 SDC1 expression was an independent prognostic indicator for worse OS compared with their IDC counterparts (HR: 2.837, 95% CI: 1.048-7.682; p = 0.04). CONCLUSION This study suggests, for the first time, that differential expression and localization of SDC1 may contribute to the pathogenesis and prognosis of TN-MpBC. Therefore, targeting SDC1 (CD138) could emerge as a novel therapeutic approach for this devastating disease.
Collapse
Affiliation(s)
- Yahia Ismail
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Al-Shimaa Zakaria
- Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Rasha Allam
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster 48149 Germany
| | | | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
3
|
Pham SH, Vuorinen SI, Arif KT, Griffiths LR, Okolicsanyi RK, Haupt LM. Syndecan-4 regulates the HER2-positive breast cancer cell proliferation cells via CK19/AKT signalling. Biochimie 2023; 207:49-61. [PMID: 36460206 DOI: 10.1016/j.biochi.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022]
Abstract
Despite the use of the highly specific anti-HER2 receptor (trastuzumab) therapy, HER2-positive breast cancers account for 20-30% of all breast cancer carcinomas, with HER2 status a challenge to treatment interventions. The heparan sulfate proteoglycans (HSPGs) are prominently expressed in the extracellular matrix (ECM), mediate breast cancer proliferation, development, and metastasis with most studies to date conducted in animal models. This study examined HSPGs in HER2-positive human breast cancer cell lines and their contribution to cancer cell proliferation. The study examined the cells following enhancement (via the addition of heparin) and knockdown (KD; using short interfering RNA, siRNA) of HSPG core proteins. The interaction of HSPG core proteins and AKT signalling molecules was examined to identify any influence of this signalling pathway on cancer cell proliferation. Our findings illustrated the HSPG syndecan-4 (SDC4) core protein significantly regulates cell proliferation with increased BC cell proliferation following heparin addition to cultures and decreased cell number following SDC4 KD. In addition, along with SDC4, significant changes in CK19/AKT signalling were identified as mediators of BC HER2-positive BC cell proliferation. This study provides evidence for a cell growth regulatory axis involving HSPGs/CK19 and AKT that represents a potential molecular target to prevent proliferation of HER2-positive breast cancer cells.
Collapse
Affiliation(s)
- Son H Pham
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia
| | - Sofia I Vuorinen
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia
| | - Km Taufiqul Arif
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia
| | - Lyn R Griffiths
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia
| | - Rachel K Okolicsanyi
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia
| | - Larisa M Haupt
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia.
| |
Collapse
|
4
|
Revisiting the Syndecans: Master Signaling Regulators with Prognostic and Targetable Therapeutic Values in Breast Carcinoma. Cancers (Basel) 2023; 15:cancers15061794. [PMID: 36980680 PMCID: PMC10046401 DOI: 10.3390/cancers15061794] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Syndecans (SDC1 to 4), a family of cell surface heparan sulfate proteoglycans, are frequently expressed in mammalian tissues. SDCs are aberrantly expressed either on tumor or stromal cells, influencing cancer initiation and progression through their pleiotropic role in different signaling pathways relevant to proliferation, cell-matrix adhesion, migration, invasion, metastasis, cancer stemness, and angiogenesis. In this review, we discuss the key roles of SDCs in the pathogenesis of breast cancer, the most common malignancy in females worldwide, focusing on the prognostic significance and molecular regulators of SDC expression and localization in either breast tumor tissue or its microenvironmental cells and the SDC-dependent epithelial–mesenchymal transition program. This review also highlights the molecular mechanisms underlying the roles of SDCs in regulating breast cancer cell behavior via modulation of nuclear hormone receptor signaling, microRNA expression, and exosome biogenesis and functions, as well as summarizing the potential of SDCs as promising candidate targets for therapeutic strategies against breast cancer.
Collapse
|
5
|
Kizhakkeppurath Kumaran A, Sahu A, Singh A, Aynikkattil Ravindran N, Sekhar Chatterjee N, Mathew S, Verma S. Proteoglycans in breast cancer, identification and characterization by LC-MS/MS assisted proteomics approach: A review. Proteomics Clin Appl 2023:e2200046. [PMID: 36598116 DOI: 10.1002/prca.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
PURPOSE Proteoglycans (PGs) are negatively charged macromolecules containing a core protein and single or several glycosaminoglycan chains attached by covalent bond. They are distributed in all tissues, including extracellular matrix (ECM), cell surface, and basement membrane. They are involved in major pathways and cell signalling cascades which modulate several vital physiological functions of the body. They have also emerged as a target molecule for cancer treatment and as possible biomarkers for early cancer detection. Among cancers, breast cancer is a highly invasive and heterogenous type and has become the major cause of mortality especially among women. So, this review revisits the studies on PGs characterization in breast cancer using LC-MS/MS-based proteomics approach, which will be further helpful for identification of potential PGs-based biomarkers or therapeutic targets. EXPERIMENTAL DESIGN There is a lack of comprehensive knowledge on the use of LC-MS/MS-based proteomics approaches to identify and characterize PGs in breast cancer. RESULTS LC-MS/MS assisted PGs characterization in breast cancer revealed the vital PGs in breast cancer invasion and progression. In addition, comprehensive profiling and characterization of PGs in breast cancer are efficiently carried out by this approach. CONCLUSIONS Proteomics techniques including LC-MS/MS-based identification of proteoglycans is effectively carried out in breast cancer research. Identification of expression at different stages of breast cancer is a major challenge, and LC-MS/MS-based profiling of PGs can boost novel strategies to treat breast cancer, which involve targeting PGs, and also aid early diagnosis using PGs as biomarkers.
Collapse
Affiliation(s)
| | - Ankita Sahu
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Astha Singh
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Nisha Aynikkattil Ravindran
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Thrissur, India
| | | | - Suseela Mathew
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Kochi, India
| | - Saurabh Verma
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| |
Collapse
|
6
|
Velesiotis C, Kanellakis M, Vynios DH. Steviol glycosides affect functional properties and macromolecular expression of breast cancer cells. IUBMB Life 2022; 74:1012-1028. [PMID: 36054915 DOI: 10.1002/iub.2669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022]
Abstract
Steviol glycosides, the active sweet components of stevia plant, have been recently found to possess a number of therapeutic properties, including some recorded anticancer ones against various cancer cell types (breast, ovarian, cervical, pancreatic, and colon cancer). Our aim was to investigate this anticancer potential on the two most commonly used breast cancer cell lines which differ in the phenotype and estrogen receptor (ER) status: the low metastatic, ERα+ MCF-7 and the highly metastatic, ERα-/ERβ+ MDA-MB-231. Specifically, glycosides' effect was studied on cancer cells': (a) viability, (b) functionality (proliferation, migration, and adhesion), and (c) gene expression (mRNA level) of crucial molecules implicated in cancer's pathophysiology. Results showed that steviol glycosides induced cell death in both cell lines, in the first 24 hr, which was in line with the antiapoptotic BCL2 decrease. However, cells that managed to survive showcased diametrically opposite behavior. The low metastatic ERα+ MCF-7 cells acquired an aggressive phenotype, depicted by the upregulation of all receptors and co-receptors (ESR, PGR, AR, GPER1, EGFR, IGF1R, CD44, SDC2, and SDC4), as well as VIM and MMP14. On the contrary, the highly metastatic ERα-/ERβ+ MDA-MB-231 cells became less aggressive as pointed out by the respective downregulation of EGFR, IGF1R, CD44, and SDC2. Changes observed in gene expression were compatible with altered cell functions. Glycosides increased MCF-7 cells migration and adhesion, but reduced MDA-MB-231 cells migratory and metastatic potential. In conclusion, the above data clearly demonstrate that steviol glycosides have different effects on breast cancer cells according to their ER status, suggesting that steviol glycosides might be examined for their potential anticancer activity against breast cancer, especially triple negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Christos Velesiotis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Patras, Greece
| | - Marinos Kanellakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
7
|
Papadopoulou A, Kalodimou VE, Mavrogonatou E, Karamanou K, Yiacoumettis AM, Panagiotou PN, Pratsinis H, Kletsas D. Decreased differentiation capacity and altered expression of extracellular matrix components in irradiation-mediated senescent human breast adipose-derived stem cells. IUBMB Life 2022; 74:969-981. [PMID: 35833571 DOI: 10.1002/iub.2659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
Radiotherapy is widely used for the treatment of breast cancer. However, we have shown that ionizing radiation can provoke premature senescence in breast stromal cells. In particular, breast stromal fibroblasts can become senescent after irradiation both in vitro and in vivo and they express an inflammatory phenotype and an altered profile of extracellular matrix components, thus facilitating tumor progression. Adipose-derived stem cells (ASCs) represent another major component of the breast tissue stroma. They are multipotent cells and due to their ability to differentiate in multiple cell lineages they play an important role in tissue maintenance and repair in normal and pathologic conditions. Here, we investigated the characteristics of human breast ASCs that became senescent prematurely after their exposure to ionizing radiation. We found decreased expression levels of the specific mesenchymal cell surface markers CD105, CD73, CD44, and CD90. In parallel, we demonstrated a significantly reduced expression of transcription factors regulating osteogenic (i.e., RUNX2), adipogenic (i.e., PPARγ), and chondrogenic (i.e., SOX9) differentiation; this was followed by an analogous reduction in their differentiation capacity. Furthermore, they overexpress inflammatory markers, that is, IL-6, IL-8, and ICAM-1, and a catabolic phenotype, marked by the reduction of collagen type I and the increase of MMP-1 and MMP-13 expression. Finally, we detected changes in proteoglycan expression, for example, the upregulation of syndecan 1 and syndecan 4 and the downregulation of decorin. Notably, all these alterations, when observed in the breast stroma, represent poor prognostic factors for tumor development. In conclusion, we showed that ionizing radiation-mediated prematurely senescent human breast ASCs have a decreased differentiation potential and express specific changes adding to the formation of a permissive environment for tumor growth.
Collapse
Affiliation(s)
- Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Vasiliki E Kalodimou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Konstantina Karamanou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Andreas M Yiacoumettis
- Plastic and Reconstructive Surgery Department, Metropolitan General Hospital, Athens, Greece
| | - Petros N Panagiotou
- Department of Plastic Surgery and Burns Unit, KAT General Hospital of Athens, Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
8
|
Szabo K, Varga D, Vegh AG, Liu N, Xiao X, Xu L, Dux L, Erdelyi M, Rovo L, Keller-Pinter A. Syndecan-4 affects myogenesis via Rac1-mediated actin remodeling and exhibits copy-number amplification and increased expression in human rhabdomyosarcoma tumors. Cell Mol Life Sci 2022; 79:122. [PMID: 35128576 PMCID: PMC8818642 DOI: 10.1007/s00018-021-04121-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Skeletal muscle demonstrates a high degree of regenerative capacity repeating the embryonic myogenic program under strict control. Rhabdomyosarcoma is the most common sarcoma in childhood and is characterized by impaired muscle differentiation. In this study, we observed that silencing the expression of syndecan-4, the ubiquitously expressed transmembrane heparan sulfate proteoglycan, significantly enhanced myoblast differentiation, and fusion. During muscle differentiation, the gradually decreasing expression of syndecan-4 allows the activation of Rac1, thereby mediating myoblast fusion. Single-molecule localized superresolution direct stochastic optical reconstruction microscopy (dSTORM) imaging revealed nanoscale changes in actin cytoskeletal architecture, and atomic force microscopy showed reduced elasticity of syndecan-4-knockdown cells during fusion. Syndecan-4 copy-number amplification was observed in 28% of human fusion-negative rhabdomyosarcoma tumors and was accompanied by increased syndecan-4 expression based on RNA sequencing data. Our study suggests that syndecan-4 can serve as a tumor driver gene in promoting rabdomyosarcoma tumor development. Our results contribute to the understanding of the role of syndecan-4 in skeletal muscle development, regeneration, and tumorigenesis.
Collapse
|
9
|
Pham SH, Pratt K, Okolicsanyi RK, Oikari LE, Yu C, Peall IW, Arif KMT, Chalmers TA, Gyimesi M, Griffiths LR, Haupt LM. Syndecan-1 and -4 influence Wnt signaling and cell migration in human breast cancers. Biochimie 2022; 198:60-75. [DOI: 10.1016/j.biochi.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/30/2021] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
|
10
|
Ej M, Em M, N D, Ho M. A Peptide/MicroRNA-31 nanomedicine within an electrospun biomaterial designed to regenerate wounds in vivo. Acta Biomater 2022; 138:285-300. [PMID: 34800718 DOI: 10.1016/j.actbio.2021.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022]
Abstract
microRNA-31 (miR-31) has been identified to be downregulated in pathologies associated with delayed wound repair. Thus, it was proposed that the delivery of a plasmid encoding miR-31 (pmiR-31) to the skin could hold potential in promoting wound healing. Effective delivery of pmiR-31 was potentiated by encapsulation with the CHAT peptide to form nanocomplexes, this improved cellular entry and elicited a potent increase in miR-31 expression in vitro in both skin human keratinocyte cell line (HaCaT) and human microvascular endothelial cell line (HMEC-1). Transfection efficiencies with CHAT/pEFGP-N1 were significant at 15.2 ± 8.1% in HMEC-1 cells and >40% in HaCaT cells. In this study, the CHAT/pmiR-31 nanocomplexes at a N:P ratio of 10 had an average particle size of 74.2 nm with a cationic zeta potential of 9.7 mV. Delivery of CHAT/pmiR-31 to HaCaT and HMEC-1 cells resulted in significant improvements in cell migration capacity and increased angiogenesis. In vivo studies were conducted in C57BL/6 J mice were CHAT/pmiR-31 was delivered via electrospun PVA nanofibres, demonstrating a significant increase in epidermal (increase of ∼38.2 µm) and stratum corneum (increase of 8.2 µm) layers compared to controls. Furthermore, treatment in vivo with CHAT/pmiR-31 increased angiogenesis in wounds compared to controls, with a significant increase in vessel diameter by ∼20.4 µm compared against a commercial dressing control (Durafiber™). Together, these data demonstrate that the delivery of CHAT/pmiR-31 nanocomplexes from electrospun PVA nanofibres represent an innovative therapy for wound repair, eliciting a positive therapeutic response across both stromal and epithelial tissue compartments of the skin. STATEMENT OF SIGNIFICANCE: This study advances research regarding the development of our unique electrospun nanofibre patch to deliver genetic nanoparticles into wounds in vivo to promote healing. The genetic nanoparticles are comprised of: (a) plasmid micro-RNA31 that has been shown to be downregulated in pathologies with delayed wound repair and (b) a 15 amino acid linear peptide termed CHAT. The CHAT facilitates complexation of miR-31 and cellular uptake. Herein, we report for the first time on the use of CHAT to deliver a therapeutic cargo pmiR-31 for wound healing applications from a nanofibre patch. Application of the nanofibre patch resulted in the controlled delivery of the CHAT/pmiR-31 nanoparticles with a significant increase in both epidermal and stratum corneum layers compared to untreated and commercial controls.
Collapse
Affiliation(s)
- Mulholland Ej
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom.
| | - McErlean Em
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Dunne N
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - McCarthy Ho
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
11
|
Reye G, Huang X, Haupt LM, Murphy RJ, Northey JJ, Thompson EW, Momot KI, Hugo HJ. Mechanical Pressure Driving Proteoglycan Expression in Mammographic Density: a Self-perpetuating Cycle? J Mammary Gland Biol Neoplasia 2021; 26:277-296. [PMID: 34449016 PMCID: PMC8566410 DOI: 10.1007/s10911-021-09494-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
Regions of high mammographic density (MD) in the breast are characterised by a proteoglycan (PG)-rich fibrous stroma, where PGs mediate aligned collagen fibrils to control tissue stiffness and hence the response to mechanical forces. Literature is accumulating to support the notion that mechanical stiffness may drive PG synthesis in the breast contributing to MD. We review emerging patterns in MD and other biological settings, of a positive feedback cycle of force promoting PG synthesis, such as in articular cartilage, due to increased pressure on weight bearing joints. Furthermore, we present evidence to suggest a pro-tumorigenic effect of increased mechanical force on epithelial cells in contexts where PG-mediated, aligned collagen fibrous tissue abounds, with implications for breast cancer development attributable to high MD. Finally, we summarise means through which this positive feedback mechanism of PG synthesis may be intercepted to reduce mechanical force within tissues and thus reduce disease burden.
Collapse
Affiliation(s)
- Gina Reye
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Xuan Huang
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Ryan J Murphy
- School of Mathematical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| | - Jason J Northey
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erik W Thompson
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Konstantin I Momot
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Honor J Hugo
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia.
- Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
12
|
Circulating syndecan-1 is reduced in pregnancies with poor fetal growth and its secretion regulated by matrix metalloproteinases and the mitochondria. Sci Rep 2021; 11:16595. [PMID: 34400721 PMCID: PMC8367987 DOI: 10.1038/s41598-021-96077-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/30/2021] [Indexed: 11/08/2022] Open
Abstract
Fetal growth restriction is a leading cause of stillbirth that often remains undetected during pregnancy. Identifying novel biomarkers may improve detection of pregnancies at risk. This study aimed to assess syndecan-1 as a biomarker for small for gestational age (SGA) or fetal growth restricted (FGR) pregnancies and determine its molecular regulation. Circulating maternal syndecan-1 was measured in several cohorts; a large prospective cohort collected around 36 weeks’ gestation (n = 1206), a case control study from the Manchester Antenatal Vascular service (285 women sampled at 24–34 weeks’ gestation); two prospective cohorts collected on the day of delivery (36 + 3–41 + 3 weeks’ gestation, n = 562 and n = 405 respectively) and a cohort who delivered for preterm FGR (< 34 weeks). Circulating syndecan-1 was consistently reduced in women destined to deliver growth restricted infants and those delivering for preterm disease. Syndecan-1 secretion was reduced by hypoxia, and its loss impaired proliferation. Matrix metalloproteinases and mitochondrial electron transport chain inhibitors significantly reduced syndecan-1 secretion, an effect that was rescued by coadministration of succinate, a mitochondrial electron transport chain activator. In conclusion, circulating syndecan-1 is reduced among cases of term and preterm growth restriction and has potential for inclusion in multi-marker algorithms to improve detection of poorly grown fetuses.
Collapse
|
13
|
Onyeisi JOS, Greve B, Espinoza-Sánchez NA, Kiesel L, Lopes CC, Götte M. microRNA-140-3p modulates invasiveness, motility, and extracellular matrix adhesion of breast cancer cells by targeting syndecan-4. J Cell Biochem 2021; 122:1491-1505. [PMID: 34180077 DOI: 10.1002/jcb.30071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
Syndecan-4, a predicted target of the microRNA miR-140-3p, plays an important role in multiple steps of tumor progression and is the second most abundant heparan sulfate proteoglycan produced by breast carcinoma cell lines. To investigate the potential functional relationship of miR-140-3p and syndecan-4, MDA-MB-231, SKBR3, and MCF-7 breast cancer (BC) cells were transiently transfected with pre-miR-140-3p, syndecan-4 small interfering RNAJ, or control reagents, respectively. Altered cell behavior was monitored by adhesion, migration, and invasion chamber assays. Moreover, the prognostic value of syndecan-4 was assessed by Kaplan-Maier Plotter analysis of gene expression data from tumor samples of 4929 patients. High expression of syndecan-4 was associated with better relapse-free survival in the whole collective of BC patients, but correlated with a worse survival in the subgroup of estrogen receptor negative and estrogen/progesterone-receptor negative patients. miR-140-3p expression was associated with improved survival irrespective of hormone receptor status. miR-140-3p overexpression induced posttranscriptional downregulation of syndecan-4, as demonstrated by quantitative real-time PCR (qPCR), flow cytometry, and luciferase assays, resulting in decreased BC cell migration and matrigel invasiveness. Furthermore, miR-140-3p overexpression and syndecan-4 silencing increased the adhesion of BC to fibronectin and laminin. qPCR analysis demonstrated that syndecan-4 silencing leads to altered gene expression of adhesion-related molecules, such as fibronectin and focal adhesion kinase, as well as in the gene expression of the proinvasive factors matrix metalloproteinase 2 and heparanase (also known as HPSE). We conclude that syndecan-4 is a novel target of miR-140-3p that regulates BC cell invasiveness and cell-matrix interactions in the tumor microenvironment.
Collapse
Affiliation(s)
- Jessica Oyie Sousa Onyeisi
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Nancy Adriana Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Carla Cristina Lopes
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.,Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
14
|
De Luca M, Mandala M, Rose G. Towards an understanding of the mechanoreciprocity process in adipocytes and its perturbation with aging. Mech Ageing Dev 2021; 197:111522. [PMID: 34147549 DOI: 10.1016/j.mad.2021.111522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Adipose tissue (AT) is a complex organ, with multiple functions that are essential for maintaining metabolic health. A feature of AT is its capability to expand in response to physiological challenges, such as pregnancy and aging, and during chronic states of positive energy balance occurring throughout life. AT grows through adipogenesis and/or an increase in the size of existing adipocytes. One process that is required for healthy AT growth is the remodeling of the extracellular matrix (ECM), which is a necessary step to restore mechanical homeostasis and maintain tissue integrity and functionality. While the relationship between mechanobiology and adipogenesis is now well recognized, less is known about the role of adipocyte mechanosignaling pathways in AT growth. In this review article, we first summarize evidence linking ECM remodelling to AT expansion and how its perturbation is associated to a metabolically unhealthy phenotype. Subsequently, we highlight findings suggesting that molecules involved in the dynamic, bidirectional process (mechanoreciprocity) enabling adipocytes to sense changes in the mechanical properties of the ECM are interconnected to pathways regulating lipid metabolism. Finally, we discuss processes through which aging may influence the ability of adipocytes to appropriately respond to alterations in ECM composition.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Maurizio Mandala
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| |
Collapse
|
15
|
Yang H, Liu Y, Zhao MM, Guo Q, Zheng XK, Liu D, Zeng KW, Tu PF. Therapeutic potential of targeting membrane-spanning proteoglycan SDC4 in hepatocellular carcinoma. Cell Death Dis 2021; 12:492. [PMID: 33990545 PMCID: PMC8121893 DOI: 10.1038/s41419-021-03780-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
Syndecan-4 (SDC4) functions as a major endogenous membrane-associated receptor and widely regulates cytoskeleton, cell adhesion, and cell migration in human tumorigenesis and development, which represents a charming anti-cancer therapeutic target. Here, SDC4 was identified as a direct cellular target of small-molecule bufalin with anti-hepatocellular carcinoma (HCC) activity. Mechanism studies revealed that bufalin directly bond to SDC4 and selectively increased SDC4 interaction with substrate protein DEAD-box helicase 23 (DDX23) to induce HCC genomic instability. Meanwhile, pharmacological promotion of SDC4/DDX23 complex formation also inactivated matrix metalloproteinases (MMPs) and augmented p38/JNK MAPKs phosphorylation, which are highly associated with HCC proliferation and migration. Notably, specific knockdown of SDC4 or DDX23 markedly abolished bufalin-dependent inhibition of HCC proliferation and migration, indicating SDC4/DDX23 signaling axis is highly involved in the HCC process. Our results indicate that membrane-spanning proteoglycan SDC4 is a promising druggable target for HCC, and pharmacological regulation of SDC4/DDX23 signaling axis with small-molecule holds great potential to benefit HCC patients.
Collapse
Affiliation(s)
- Heng Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mei-Mei Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xi-Kang Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
16
|
Jechorek D, Haeusler-Pliske I, Meyer F, Roessner A. Diagnostic value of syndecan-4 protein expression in colorectal cancer. Pathol Res Pract 2021; 222:153431. [PMID: 34029877 DOI: 10.1016/j.prp.2021.153431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
The prognosis of patients with colorectal cancer (CRC) is highly dependent on the disease stage at diagnosis. Therefore, it is crucial to study molecules involved in the progression of colorectal cancer tumorigenesis and to shed light on their potential use as targetable proteins in diagnostics and therapy. As syndecan-4 (SDC4) is a transmembrane proteoglycan with important functions in cell adhesion, migration, cytoskeleton organization, and gene expression through the binding of extracellular matrix molecules, it might play a role in local tumor cell invasion. To clarify its impact on the progression of CRC, we analyzed 177 patients for SDC4 expression in colon carcinoma tissue, lymph node and liver metastasis under consideration of specific morphological features and cellular elements of CRC. Highly upregulated SDC4 was particularly expressed at the tumor invasion front. Expression was strongest in tumor cell buds appearing as membranous expression polarized to peritumoral stromal cells. Increased SDC4 expression directed to the tumor-stromal- or tumor-endothelial-interface was also confirmed for metastasis and angioinvasive tumor cell clusters. Furthermore, strong immunoreactivity of SDC4 in fibroblasts and macrophages being in contact with invasive tumor cells suggests a cooperation between the different types of cells in tumor progression at the cell-matrix interface and a role for SDC4 in tumor cells attached to the extracellular matrix. Overexpression of SDC4 in tumor cells at the invasion front was significantly associated with progressive pathological features and inversely related to disease-free and overall survival. Therefore, overexpression of SDC4 may be a predictor for poor prognosis in patients with CRC and might prove useful in clinical practice, thus identifying patients with potential disease progression. Further investigations will have to reveal the functional role of SDC4 in tumor cell buds, fibroblasts and macrophages at the tumor stromal interface to confirm that SDC4 might also be a possible therapeutic target for the treatment of patients with advanced CRC.
Collapse
Affiliation(s)
| | - Inken Haeusler-Pliske
- Department of General-, Visceral-, Vascular- and Transplantation Surgery, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | - Frank Meyer
- Department of General-, Visceral-, Vascular- and Transplantation Surgery, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | | |
Collapse
|
17
|
Syndecan-1 (CD138), Carcinomas and EMT. Int J Mol Sci 2021; 22:ijms22084227. [PMID: 33921767 PMCID: PMC8072910 DOI: 10.3390/ijms22084227] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Cell surface proteoglycans are known to be important regulators of many aspects of cell behavior. The principal family of transmembrane proteoglycans is the syndecans, of which there are four in mammals. Syndecan-1 is mostly restricted to epithelia, and bears heparan sulfate chains that are capable of interacting with a large array of polypeptides, including extracellular matrix components and potent mediators of proliferation, adhesion and migration. For this reason, it has been studied extensively with respect to carcinomas and tumor progression. Frequently, but not always, syndecan-1 levels decrease as tumor grade, stage and invasiveness and dedifferentiation increase. This parallels experiments that show depletion of syndecan-1 can be accompanied by loss of cadherin-mediated adhesion. However, in some tumors, levels of syndecan-1 increase, but the characterization of its distribution is relevant. There can be loss of membrane staining, but acquisition of cytoplasmic and/or nuclear staining that is abnormal. Moreover, the appearance of syndecan-1 in the tumor stroma, either associated with its cellular component or the collagenous matrix, is nearly always a sign of poor prognosis. Given its relevance to myeloma progression, syndecan-1-directed antibody—toxin conjugates are being tested in clinical and preclinical trials, and may have future relevance to some carcinomas.
Collapse
|
18
|
Overexpression of Human Syndecan-1 Protects against the Diethylnitrosamine-Induced Hepatocarcinogenesis in Mice. Cancers (Basel) 2021; 13:cancers13071548. [PMID: 33801718 PMCID: PMC8037268 DOI: 10.3390/cancers13071548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Syndecan-1 is a Janus-faced proteoglycan: depending on the type of cancer, it can promote or inhibit the development of tumors. Our previous in vitro experiments revealed that transfection of human syndecan-1 (hSDC1) into hepatoma cells, initiating hepatocyte-like differentiation. To further confirm the antitumor action of hSDC1 in the context of liver carcinogenesis, mice transgenic for albumin promoter-driven hSDC1 were created with exclusive expression of hSDC1 in the liver. Indeed, hSDC1 interfered with the development of liver cancer in diethylnitrosamine (DEN)-induced hepatocarcinogenesis experiments. The mechanism was found to be related to lipid metabolism that plays an important role in the induction of nonalcoholic liver cirrhosis. Nonalcoholic fatty liver disease is known to promote the development of cancer; therefore, the oncoprotective effect of hSDC1 may be mediated by a beneficial modulation of lipid metabolism. Abstract Although syndecan-1 (SDC1) is known to be dysregulated in various cancer types, its implication in tumorigenesis is poorly understood. Its effect may be detrimental or protective depending on the type of cancer. Our previous data suggest that SDC1 is protective against hepatocarcinogenesis. To further verify this notion, human SDC1 transgenic (hSDC1+/+) mice were generated that expressed hSDC1 specifically in the liver under the control of the albumin promoter. Hepatocarcinogenesis was induced by a single dose of diethylnitrosamine (DEN) at an age of 15 days after birth, which resulted in tumors without cirrhosis in wild-type and hSDC1+/+ mice. At the experimental endpoint, livers were examined macroscopically and histologically, as well as by immunohistochemistry, Western blot, receptor tyrosine kinase array, phosphoprotein array, and proteomic analysis. Liver-specific overexpression of hSDC1 resulted in an approximately six month delay in tumor formation via the promotion of SDC1 shedding, downregulation of lipid metabolism, inhibition of the mTOR and the β-catenin pathways, and activation of the Foxo1 and p53 transcription factors that lead to the upregulation of the cell cycle inhibitors p21 and p27. Furthermore, both of them are implicated in the regulation of intermediary metabolism. Proteomic analysis showed enhanced lipid metabolism, activation of motor proteins, and loss of mitochondrial electron transport proteins as promoters of cancer in wild-type tumors, inhibited in the hSDC1+/+ livers. These complex mechanisms mimic the characteristics of nonalcoholic steatohepatitis (NASH) induced human liver cancer successfully delayed by syndecan-1.
Collapse
|
19
|
Syndecan-4 as a Pathogenesis Factor and Therapeutic Target in Cancer. Biomolecules 2021; 11:biom11040503. [PMID: 33810567 PMCID: PMC8065655 DOI: 10.3390/biom11040503] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is an important cause of morbidity and mortality worldwide. Advances in research on the biology of cancer revealed alterations in several key pathways underlying tumorigenesis and provided molecular targets for developing new and improved existing therapies. Syndecan-4, a transmembrane heparan sulfate proteoglycan, is a central mediator of cell adhesion, migration and proliferation. Although several studies have demonstrated important roles of syndecan-4 in cell behavior and its interactions with growth factors, extracellular matrix (ECM) molecules and cytoskeletal signaling proteins, less is known about its role and expression in multiple cancer. The data summarized in this review demonstrate that high expression of syndecan-4 is an unfavorable biomarker for estrogen receptor-negative breast cancer, glioma, liver cancer, melanoma, osteosarcoma, papillary thyroid carcinoma and testicular, kidney and bladder cancer. In contrast, in neuroblastoma and colorectal cancer, syndecan-4 is downregulated. Interestingly, syndecan-4 expression is modulated by anticancer drugs. It is upregulated upon treatment with zoledronate and this effect reduces invasion of breast cancer cells. In our recent work, we demonstrated that the syndecan-4 level was reduced after trastuzumab treatment. Similarly, syndecan-4 levels are also reduced after panitumumab treatment. Together, the data found suggest that syndecan-4 level is crucial for understanding the changes involving in malignant transformation, and also demonstrate that syndecan-4 emerges as an important target for cancer therapy and diagnosis.
Collapse
|
20
|
Liao WC, Yen HR, Chen CH, Chu YH, Song YC, Tseng TJ, Liu CH. CHPF promotes malignancy of breast cancer cells by modifying syndecan-4 and the tumor microenvironment. Am J Cancer Res 2021; 11:812-826. [PMID: 33791155 PMCID: PMC7994168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in women worldwide. Several studies have indicated that abnormal chondroitin sulfate (CS) chains accumulate in breast cancer tissues; however, the functions and dysregulation of CS synthases are largely unknown. Here, we demonstrate that chondroitin polymerising factor (CHPF) is frequently upregulated in breast cancer tissues and that its high expression is positively associated with tumor metastasis, high stages, and short survival time. CHPF modulates CS formation in breast cancer cells. Additionally, we found that CHPF promotes tumor growth and metastasis accompanied by an increase in G-CSF levels and the number of myeloid-derived suppressor cells in tumor tissue. We revealed that tumor cell-derived G-CSF is co-localised with CS on the cell surface. Interestingly, our study is the first to identify that syndecan-4 (SDC4) is modified by CHPF and that it is involved in CHPF-mediated phenotypes. Moreover, breast cancer patients with high expression of both SDC4 and CHPF had worse overall survival compared to other subsets, which implied the synergistic effects of these two genes. In summary, our results indicated that the upregulation of CHPF in breast cancer contributes to the malignant behaviour of cancer cells, thereby providing novel insights on the significance of CHPF-modified SDC4 in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical UniversityTaichung, Taiwan
- Department of Medical Education, Chung Shan Medical University HospitalTaichung, Taiwan
| | - Hung-Rong Yen
- School of Chinese Medicine, China Medical UniversityTaichung, Taiwan
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
- Chinese Medicine Research Center, China Medical UniversityTaichung, Taiwan
| | - Chia-Hua Chen
- Molecular Medicine Research Center, Chang Gung UniversityTaiwan
| | - Yin-Hung Chu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical UniversityTaichung, Taiwan
| | - Ying-Chyi Song
- School of Chinese Medicine, China Medical UniversityTaichung, Taiwan
- Chinese Medicine Research Center, China Medical UniversityTaichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical UniversityTaichung, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical UniversityTaichung, Taiwan
- Department of Medical Education, Chung Shan Medical University HospitalTaichung, Taiwan
| | - Chiung-Hui Liu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical UniversityTaichung, Taiwan
- Department of Medical Education, Chung Shan Medical University HospitalTaichung, Taiwan
| |
Collapse
|
21
|
Gopal S, Arokiasamy S, Pataki C, Whiteford JR, Couchman JR. Syndecan receptors: pericellular regulators in development and inflammatory disease. Open Biol 2021; 11:200377. [PMID: 33561383 PMCID: PMC8061687 DOI: 10.1098/rsob.200377] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
The syndecans are the major family of transmembrane proteoglycans, usually bearing multiple heparan sulfate chains. They are present on virtually all nucleated cells of vertebrates and are also present in invertebrates, indicative of a long evolutionary history. Genetic models in both vertebrates and invertebrates have shown that syndecans link to the actin cytoskeleton and can fine-tune cell adhesion, migration, junction formation, polarity and differentiation. Although often associated as co-receptors with other classes of receptors (e.g. integrins, growth factor and morphogen receptors), syndecans can nonetheless signal to the cytoplasm in discrete ways. Syndecan expression levels are upregulated in development, tissue repair and an array of human diseases, which has led to the increased appreciation that they may be important in pathogenesis not only as diagnostic or prognostic agents, but also as potential targets. Here, their functions in development and inflammatory diseases are summarized, including their potential roles as conduits for viral pathogen entry into cells.
Collapse
Affiliation(s)
- Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Samantha Arokiasamy
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Csilla Pataki
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - James R. Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - John R. Couchman
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
22
|
Syndecans in cancer: A review of function, expression, prognostic value, and therapeutic significance. Cancer Treat Res Commun 2021; 27:100312. [PMID: 33485180 DOI: 10.1016/j.ctarc.2021.100312] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
While our understanding of tumors and how to treat them has advanced significantly since the days of Aminopterin and the radical mastectomy, cancer remains among the leading causes of death worldwide. Despite innumerable advancements in medical technology the non-static and highly heterogeneous nature of a tumor can make characterization and treatment exceedingly difficult. Because of this complexity, the identification of new cellular constituents that can be used for diagnostic, prognostic, and therapeutic purposes is crucial in improving patient outcomes worldwide. Growing evidence has demonstrated that among the myriad of changes seen in cancer cells, the Syndecan family of proteins has been observed to undergo drastic alterations in expression. Syndecans are transmembrane heparan sulfate proteoglycans that are responsible for cell signaling, proliferation, and adhesion, and many studies have shed light on their unique involvement in both tumor progression and suppression. This review seeks to discuss Syndecan expression levels in various cancers, whether they make reliable biomarkers for detection and prognosis, and whether they may be viable targets for future cancer therapies. The conclusions drawn from the literature reviewed in this article indicate that changes in expression of Syndecan protein can have profound effects on tumor size, metastatic capability, and overall patient survival rate. Further, while data regarding the therapeutic targeting of Syndecan proteins is sparse, the available literature does demonstrate promise for their use in cancer treatment going forward.
Collapse
|
23
|
Onyeisi JOS, Ferreira BZF, Nader HB, Lopes CC. Heparan sulfate proteoglycans as targets for cancer therapy: a review. Cancer Biol Ther 2020; 21:1087-1094. [PMID: 33180600 DOI: 10.1080/15384047.2020.1838034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) play important roles in cancer initiation and progression, by interacting with the signaling pathways that affect proliferation, adhesion, invasion and angiogenesis. These roles suggest the possibility of various strategies of regulation of these molecules. In this review, we demonstrated that the anticancer drugs can regulate the heparan sulfate proteoglycans activity in different ways: some act directly in core protein, and can bind to a specific type of HSPG. Others drugs interact with glycosaminoglycans chains, and others can act directly in enzymes that regulate HSPGs levels. We also demonstrated that the HSPGs drug targets can be divided into four groups: monoclonal antibodies, antitumor antibiotic, natural products, and mimetics peptide. Interestingly, many drugs demonstrated in this review are approved by FDA and is used in cancer therapy (Food and Drug Administration) like trastuzumab, panitumumab, bleomycin and bisphosphonate zoledronic acid (ASCO) or are in clinical trials like codrituzumab and genistein. This review should help researchers to understand the mechanism of action of anticancer drugs existing and also may inspire the discovery of new drugs that regulate the heparan sulfate proteoglycans activity.
Collapse
Affiliation(s)
- Jessica Oyie Sousa Onyeisi
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo , São Paulo, SP, Brazil
| | - Bianca Zaia Franco Ferreira
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo , Diadema, SP, Brazil
| | - Helena Bonciani Nader
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo , São Paulo, SP, Brazil
| | - Carla Cristina Lopes
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo , São Paulo, SP, Brazil.,Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo , Diadema, SP, Brazil
| |
Collapse
|
24
|
Hassan N, Greve B, Espinoza-Sánchez NA, Götte M. Cell-surface heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. Cell Signal 2020; 77:109822. [PMID: 33152440 DOI: 10.1016/j.cellsig.2020.109822] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) represent a large proportion of the components that constitute the extracellular matrix (ECM). They are a diverse group of glycoproteins characterized by a covalent link to a specific glycosaminoglycan type. As part of the ECM, heparan sulfate (HS)PGs participate in both physiological and pathological processes including cell recruitment during inflammation and the promotion of cell proliferation, adhesion and motility during development, angiogenesis, wound repair and tumor progression. A key function of HSPGs is their ability to modulate the expression and function of cytokines, chemokines, growth factors, morphogens, and adhesion molecules. This is due to their capacity to act as ligands or co-receptors for various signal-transducing receptors, affecting pathways such as FGF, VEGF, chemokines, integrins, Wnt, notch, IL-6/JAK-STAT3, and NF-κB. The activation of those pathways has been implicated in the induction, progression, and malignancy of a tumor. For many years, the study of signaling has allowed for designing specific drugs targeting these pathways for cancer treatment, with very positive results. Likewise, HSPGs have become the subject of cancer research and are increasingly recognized as important therapeutic targets. Although they have been studied in a variety of preclinical and experimental models, their mechanism of action in malignancy still needs to be more clearly defined. In this review, we discuss the role of cell-surface HSPGs as pleiotropic modulators of signaling in cancer and identify them as promising markers and targets for cancer treatment.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Biotechnology Program, Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany.
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
25
|
Syndecan-1 Promotes Hepatocyte-Like Differentiation of Hepatoma Cells Targeting Ets-1 and AP-1. Biomolecules 2020; 10:biom10101356. [PMID: 32977498 PMCID: PMC7598270 DOI: 10.3390/biom10101356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023] Open
Abstract
Syndecan-1 is a transmembrane heparan sulfate proteoglycan which is indispensable in the structural and functional integrity of epithelia. Normal hepatocytes display strong cell surface expression of syndecan-1; however, upon malignant transformation, they may lose it from their cell surfaces. In this study, we demonstrate that re-expression of full-length or ectodomain-deleted syndecan-1 in hepatocellular carcinoma cells downregulates phosphorylation of ERK1/2 and p38, with the truncated form exerting an even stronger effect than the full-length protein. Furthermore, overexpression of syndecan-1 in hepatoma cells is associated with a shift of heparan sulfate structure toward a highly sulfated type specific for normal liver. As a result, cell proliferation and proteolytic shedding of syndecan-1 from the cell surface are restrained, which facilitates redifferentiation of hepatoma cells to a more hepatocyte-like phenotype. Our results highlight the importance of syndecan-1 in the formation and maintenance of differentiated epithelial characteristics in hepatocytes partly via the HGF/ERK/Ets-1 signal transduction pathway. Downregulation of Ets-1 expression alone, however, was not sufficient to replicate the phenotype of syndecan-1 overexpressing cells, indicating the need for additional molecular mechanisms. Accordingly, a reporter gene assay revealed the inhibition of Ets-1 as well as AP-1 transcription factor-induced promoter activation, presumably an effect of the heparan sulfate switch.
Collapse
|
26
|
Onyeisi JOS, Pernambuco Filho PCDA, Mesquita APDS, Azevedo LCD, Nader HB, Lopes CC. Effects of syndecan-4 gene silencing by micro RNA interference in anoikis resistant endothelial cells: Syndecan-4 silencing and anoikis resistance. Int J Biochem Cell Biol 2020; 128:105848. [PMID: 32927086 DOI: 10.1016/j.biocel.2020.105848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
The cell's resistance to cell death by adhesion loss to extracellular matrix (anoikis), contributes to tumor progression and metastasis. Various adhesion molecules are involved in the anoikis resistance, including the syndecan-4 (SDC4), a heparan sulfate proteoglycan (HSPG) present on the cell surface. Changes in the expression of SDC4 have been observed in tumor and transformed cells, indicating its involvement in cancer. In previous works, we demonstrated that acquisition of anoikis resistance resistance by blocking adhesion to the substrate up-regulates syndecan-4 expression in endothelial cells. This study investigates the role of SDC4 in the transformed phenotype of anoikis resistant endothelial cells. Anoikis-resistant endothelial cells (Adh1-EC) were transfected with micro RNA interference (miR RNAi) targeted against syndecan-4. The effect of SDC4 silencing was analyzed by real-time PCR, western blotting and immunofluorescence. Transfection with miRNA-SDC4 resulted in a sequence-specific decrease in syndecan-4 mRNA and protein levels. Furthermore, we observed a reduction in the number of heparan and chondroitin sulfate chains in the cell extract and culture medium. The SDC4 silencing led to downregulation of proliferative and invasive capacity and angiogenic abilities of anoikis-resistant endothelial cells. Compared with the parental cells (Adh1-EC), SDC4 silenced cells (SDC4 miR-Syn-4-1-Adh1-EC e miR-Syn-4-2-Adh1-EC) exhibited an increase in adhesion to collagen and laminin and also in the apoptosis rate. Moreover, transfection with miRNA-SDC4 caused a decrease in the number of cells in the S phase of the cell cycle. This is accompanied by an increase in the heparan sulfate synthesis after 12 h of simulation with fetal calf serum (FCS). SDC4 silencing cells are more dependent of growth factors present in the FCS to synthesize heparan sulfate than parental cells. Similar data were obtained for the wild-type cell line (EC). Our results indicated that downregulation of SDC4 expression reverses the transformed phenotype of anoikis resistant endothelial cells. These and other findings suggest that syndecan-4 is suitable for pharmacological intervention, making it an attractive target for cancer therapy.
Collapse
Affiliation(s)
- Jessica Oyie Sousa Onyeisi
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Ana Paula de Sousa Mesquita
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Luis Cesar de Azevedo
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Helena Bonciani Nader
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Carla Cristina Lopes
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
27
|
Parafioriti A, Cifola I, Gissi C, Pinatel E, Vilardo L, Armiraglio E, Di Bernardo A, Daolio PA, Felsani A, D’Agnano I, Berardi AC. Expression profiling of microRNAs and isomiRs in conventional central chondrosarcoma. Cell Death Discov 2020; 6:46. [PMID: 32566253 PMCID: PMC7287106 DOI: 10.1038/s41420-020-0282-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/05/2020] [Accepted: 05/16/2020] [Indexed: 12/24/2022] Open
Abstract
Conventional central chondrosarcoma (CCC) is a malignant bone tumor that is characterized by the production of chondroid tissue. Since radiation therapy and chemotherapy have limited effects on CCC, treatment of most patients depends on surgical resection. This study aimed to identify the expression profiles of microRNAs (miRNAs) and isomiRs in CCC tissues to highlight their possible participation to the regulation of pathways critical for the formation and growth of this type of tumor. Our study analyzed miRNAs and isomiRs from Grade I (GI), Grade II (GII), and Grade III (GIII) histologically validated CCC tissue samples. While the different histological grades shared a similar expression profile for the top abundant miRNAs, we found several microRNAs and isomiRs showing a strong different modulation in GII + GIII vs GI grade samples and their involvement in tumor biology could be consistently hypothesized. We then in silico validated these differently expressed miRNAs in a larger chondrosarcoma public dataset and confirmed the expression trend for 17 out of 34 miRNAs. Our results clearly suggests that the contribution of miRNA deregulation, and their targeted pathways, to the progression of CCC could be relevant and strongly indicates that when studying miRNA deregulation in tumors, not only the canonical miRNAs, but the whole set of corresponding isomiRs should be taken in account. Improving understanding of the precise roles of miRNAs and isomiRs over the course of central chondrosarcoma progression could help identifying possible targets for precision medicine therapeutic intervention.
Collapse
Affiliation(s)
- Antonina Parafioriti
- Pathology Department, Azienda Socio Sanitaria Territoriale Gaetano Pini, Milan, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), CNR, Segrate, Italy
| | - Clarissa Gissi
- U.O.C. of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Eva Pinatel
- Institute for Biomedical Technologies (ITB), CNR, Segrate, Italy
| | - Laura Vilardo
- Institute for Biomedical Technologies (ITB), CNR, Segrate, Italy
| | - Elisabetta Armiraglio
- Pathology Department, Azienda Socio Sanitaria Territoriale Gaetano Pini, Milan, Italy
| | - Andrea Di Bernardo
- Pathology Department, Azienda Socio Sanitaria Territoriale Gaetano Pini, Milan, Italy
| | | | - Armando Felsani
- Institute of Biochemistry and Cell Biology (IBBC), CNR, Monterotondo, Italy
- Genomnia Srl, Bresso, Italy
| | - Igea D’Agnano
- Institute for Biomedical Technologies (ITB), CNR, Segrate, Italy
| | - Anna Concetta Berardi
- U.O.C. of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| |
Collapse
|
28
|
Okolicsanyi RK, Bluhm J, Miller C, Griffiths LR, Haupt LM. An investigation of genetic polymorphisms in heparan sulfate proteoglycan core proteins and key modification enzymes in an Australian Caucasian multiple sclerosis population. Hum Genomics 2020; 14:18. [PMID: 32398079 PMCID: PMC7218574 DOI: 10.1186/s40246-020-00264-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system in young adults. Heparan sulfate proteoglycans (HSPGs) are ubiquitous to the cell surface and the extracellular matrix. HSPG biosynthesis is a complex process involving enzymatic attachment of heparan sulfate (HS) chains to a core protein. HS side chains mediate specific ligand and growth factor interactions directing cellular processes including cell adhesion, migration and differentiation. Two main families of HSPGs exist, the syndecans (SDC1-4) and glypicans (GPC1-6). The SDCs are transmembrane proteins, while the GPC family are GPI linked to the cell surface. SDC1 has well-documented interactions with numerous signalling pathways. Genome-wide association studies (GWAS) have identified regions of the genome associated with MS including a region on chromosome 13 containing GPC5 and GPC6. International studies have revealed significant associations between this region and disease development. The exostosin-1 (EXT1) and sulfatase-1 (SULF1) are key enzymes contributing to the generation of HS chains. EXT1, with documented tumour suppressor properties, is involved in the initiation and polymerisation of the growing HS chain. SULF1 removes 6-O-sulfate groups from HS chains, affecting protein-ligand interactions and subsequent downstream signalling with HS modification potentially having significant effects on MS progression. In this study, we identified significant associations between single nucleotide polymorphisms in SDC1, GPC5 and GPC6 and MS in an Australian Caucasian case-control population. Further significant associations in these genes were identified when the population was stratified by sex and disease subtype. No association was found for EXT1 or SULF1.
Collapse
Affiliation(s)
- Rachel K Okolicsanyi
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Julia Bluhm
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Cassandra Miller
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia.
| | - Larisa M Haupt
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia.
| |
Collapse
|
29
|
Brassart-Pasco S, Brézillon S, Brassart B, Ramont L, Oudart JB, Monboisse JC. Tumor Microenvironment: Extracellular Matrix Alterations Influence Tumor Progression. Front Oncol 2020; 10:397. [PMID: 32351878 PMCID: PMC7174611 DOI: 10.3389/fonc.2020.00397] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is composed of various cell types embedded in an altered extracellular matrix (ECM). ECM not only serves as a support for tumor cell but also regulates cell-cell or cell-matrix cross-talks. Alterations in ECM may be induced by hypoxia and acidosis, by oxygen free radicals generated by infiltrating inflammatory cells or by tumor- or stromal cell-secreted proteases. A poorer diagnosis for patients is often associated with ECM alterations. Tumor ECM proteome, also named cancer matrisome, is strongly altered, and different ECM protein signatures may be defined to serve as prognostic biomarkers. Collagen network reorganization facilitates tumor cell invasion. Proteoglycan expression and location are modified in the TME and affect cell invasion and metastatic dissemination. ECM macromolecule degradation by proteases may induce the release of angiogenic growth factors but also the release of proteoglycan-derived or ECM protein fragments, named matrikines or matricryptins. This review will focus on current knowledge and new insights in ECM alterations, degradation, and reticulation through cross-linking enzymes and on the role of ECM fragments in the control of cancer progression and their potential use as biomarkers in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sylvie Brassart-Pasco
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Bertrand Brassart
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Laurent Ramont
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Jean-Baptiste Oudart
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Jean Claude Monboisse
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| |
Collapse
|
30
|
Franzè E, Stolfi C, Troncone E, Scarozza P, Monteleone G. Role of Interleukin-34 in Cancer. Cancers (Basel) 2020; 12:E252. [PMID: 31968663 PMCID: PMC7017118 DOI: 10.3390/cancers12010252] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cross-talk between cancer cells and the immune cells occurring in the tumor microenvironment is crucial in promoting signals that foster tumor growth and metastasis. Both cancer cells and immune cells secrete various interleukins (IL), which, either directly or indirectly, stimulate cancer-cell proliferation, survival, and diffusion, as well as contribute to sculpt the immune microenvironment, thereby amplifying tumorigenic stimuli. IL-34, a cytokine produced by a wide range of cells, has been initially involved in the control of differentiation, proliferation, and survival of myeloid cells. More recent studies documented the overexpression of IL-34 in several cancers, such as hepatocarcinoma, osteosarcoma, multiple myeloma, colon cancer, and lung cancer, and showed that tumor cells can produce and functionally respond to this cytokine. In this review, we summarize the multiple roles of IL-34 in various cancers, with the aim to better understand the relationship between the expression of this cytokine and cancer behavior and to provide new insights for exploring a new potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome “TOR VERGATA”, 00133 Rome, Italy; (E.F.); (C.S.); (E.T.); (P.S.)
| |
Collapse
|
31
|
Handra-Luca A. Syndecan-1 in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:39-53. [PMID: 32845501 DOI: 10.1007/978-3-030-48457-6_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Syndecan-1 along with the other three syndecan proteins is present in the varied components of the tumor microenvironment: fibroblasts, inflammatory tumor immunity-associated cells, vessels, and extracellular matrix. Epithelial and non-epithelial tumors may show stromal syndecans. The main relevance of stromal syndecans as tumor biomarker resides in the relationships to tumor features such as type and differentiation as well as to prognosis.
Collapse
Affiliation(s)
- Adriana Handra-Luca
- Service d'Anatomie pathologique; APHP GHU Avicenne, University Sorbonne Paris Nord, Bobigny, France.
| |
Collapse
|
32
|
Rigoglio NN, Rabelo ACS, Borghesi J, de Sá Schiavo Matias G, Fratini P, Prazeres PHDM, Pimentel CMMM, Birbrair A, Miglino MA. The Tumor Microenvironment: Focus on Extracellular Matrix. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:1-38. [PMID: 32266651 DOI: 10.1007/978-3-030-40146-7_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) regulates the development and maintains tissue homeostasis. The ECM is composed of a complex network of molecules presenting distinct biochemical properties to regulate cell growth, survival, motility, and differentiation. Among their components, proteoglycans (PGs) are considered one of the main components of ECM. Its composition, biomechanics, and anisotropy are exquisitely tuned to reflect the physiological state of the tissue. The loss of ECM's homeostasis is seen as one of the hallmarks of cancer and, typically, defines transitional events in tumor progression and metastasis. In this chapter, we discuss the types of proteoglycans and their roles in cancer. It has been observed that the amount of some ECM components is increased, while others are decreased, depending on the type of tumor. However, both conditions corroborate with tumor progression and malignancy. Therefore, ECM components have an increasingly important role in carcinogenesis and this leads us to believe that their understanding may be a key in the discovery of new anti-tumor therapies. In this book, the main ECM components will be discussed in more detail in each chapter.
Collapse
Affiliation(s)
- Nathia Nathaly Rigoglio
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Carolina Silveira Rabelo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Jessica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Alexander Birbrair
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
33
|
Prevalence of Syndecan-1 (CD138) Expression in Different Kinds of Human Tumors and Normal Tissues. DISEASE MARKERS 2019; 2019:4928315. [PMID: 31976021 PMCID: PMC6954471 DOI: 10.1155/2019/4928315] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/07/2019] [Indexed: 12/28/2022]
Abstract
Syndecan-1 (CD138) is a transmembrane proteoglycan known to be expressed in various normal and malignant tissues. It is of interest because of a possible prognostic role of differential expression in tumors and its role as a target for indatuximab, a monoclonal antibody coupled with a cytotoxic agent. To comprehensively analyze CD138 in normal and neoplastic tissues, we used tissue microarrays (TMAs) for analyzing immunohistochemically detectable CD138 expression in 2,518 tissue samples from 85 different tumor entities and 76 different normal tissue types. The data showed that CD138 expression is abundant in tumors. At least an occasional weak CD138 immunostaining could be detected in 71 of 82 (87%) different tumor types, and 58 entities (71%) had at least one tumor with a strong positivity. In normal tissues, a particularly strong expression was found in normal squamous epithelium of various organs, goblet and columnar cells of the gastrointestinal tract, and in hepatocytes. The highly standardized analysis of most human cancer types resulted in a ranking order of tumors according to the frequency and levels of CD138 expression. CD138 immunostaining was highest in squamous cell carcinomas such as from the esophagus (100%), cervix uteri (79.5%), lung (85.7%), vagina (89.7%) or vulva (73.3%), and in invasive urothelial cancer (76.2%). In adenocarcinomas, CD138 was also high in lung (82.9%) and colorectal cancer (85.3%) but often lower in pancreas (73.3%), stomach (54.2% in intestinal type), or prostate carcinomas (16.3%). CD138 expression was usually low or absent in germ cell tumors, sarcomas, endocrine tumors including thyroid cancer, and neuroendocrine tumors. In summary, the preferential expression in squamous cell carcinomas of various sites makes these cancers prime targets for anti-CD138 treatments once these might become available. Abundant expression in many different normal tissues might pose obstacles to exploiting CD138 as a therapeutic target, however.
Collapse
|
34
|
De Luca M, Vecchie’ D, Athmanathan B, Gopalkrishna S, Valcin JA, Swain TM, Sertie R, Wekesa K, Rowe GC, Bailey SM, Nagareddy PR. Genetic Deletion of Syndecan-4 Alters Body Composition, Metabolic Phenotypes, and the Function of Metabolic Tissues in Female Mice Fed A High-Fat Diet. Nutrients 2019; 11:nu11112810. [PMID: 31752080 PMCID: PMC6893658 DOI: 10.3390/nu11112810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022] Open
Abstract
Syndecans are transmembrane proteoglycans that, like integrins, bind to components of the extracellular matrix. Previously, we showed significant associations of genetic variants in the Syndecan-4 (SDC4) gene with intra-abdominal fat, fasting plasma glucose levels, and insulin sensitivity index in children, and with fasting serum triglyceride levels in healthy elderly subjects. An independent study also reported a correlation between SDC4 and the risk of coronary artery disease in middle-aged patients. Here, we investigated whether deletion of Sdc4 promotes metabolic derangements associated with diet-induced obesity by feeding homozygous male and female Sdc4-deficient (Sdc4-/-) mice and their age-matched wild-type (WT) mice a high-fat diet (HFD). We found that WT and Sdc4-/- mice gained similar weight. However, while no differences were observed in males, HFD-fed female Sdc4-/- mice exhibited a higher percentage of body fat mass than controls and displayed increased levels of plasma total cholesterol, triglyceride, and glucose, as well as reduced whole-body insulin sensitivity. Additionally, they had an increased adipocyte size and macrophage infiltration in the visceral adipose tissue, and higher triglyceride and fatty acid synthase levels in the liver. Together with our previous human genetic findings, these results provide evidence of an evolutionarily conserved role of SDC4 in adiposity and its complications.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (R.S.)
- Correspondence: ; Tel.: +1-205-934-7033
| | - Denise Vecchie’
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (R.S.)
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Baskaran Athmanathan
- Department of Surgery, Ohio State University, Columbus, OH 43209, USA; (B.A.); (S.G.); (P.R.N.)
| | - Sreejit Gopalkrishna
- Department of Surgery, Ohio State University, Columbus, OH 43209, USA; (B.A.); (S.G.); (P.R.N.)
| | - Jennifer A. Valcin
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.A.V.); (T.M.S.); (S.M.B.)
| | - Telisha M. Swain
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.A.V.); (T.M.S.); (S.M.B.)
| | - Rogerio Sertie
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (R.S.)
| | - Kennedy Wekesa
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Glenn C. Rowe
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Shannon M. Bailey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.A.V.); (T.M.S.); (S.M.B.)
| | - Prabhakara R. Nagareddy
- Department of Surgery, Ohio State University, Columbus, OH 43209, USA; (B.A.); (S.G.); (P.R.N.)
| |
Collapse
|
35
|
Kind S, Jaretzke A, Büscheck F, Möller K, Dum D, Höflmayer D, Hinsch A, Weidemann S, Fraune C, Möller-Koop C, Hube-Magg C, Simon R, Wilczak W, Lebok P, Witzel I, Müller V, Schmalfeldt B, Paluchowski P, Wilke C, Heilenkötter U, von Leffern I, Krech T, Krech RH, von der Assen A, Bawahab AA, Burandt E. A shift from membranous and stromal syndecan-1 (CD138) expression to cytoplasmic CD138 expression is associated with poor prognosis in breast cancer. Mol Carcinog 2019; 58:2306-2315. [PMID: 31545001 DOI: 10.1002/mc.23119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022]
Abstract
Syndecan-1 (CD138) is a transmembrane proteoglycan expressed in normal and malignant tissues. It is of interest because of a possible prognostic effect in tumors and as a target for Indatuximab, a monoclonal antibody coupled to a cytotoxic agent. To assess the prognostic role of CD138 expression in breast cancer (BCa), a tissue microarray containing 1535 BCa specimens was analyzed by immunohistochemistry. Cytoplasmic, membranous, and stromal CD138 staining was separately analyzed. In normal breast tissue, CD138 staining was limited to epithelial cell membranes. In cancers, membranous staining tended to become weaker or even disappeared (38.3% of cancers with absence of membranous staining) but cytoplasmic and stromal staining newly appeared in 29.7% and 58.1% of cancers. Loss of membranous epithelial CD138 staining as well as presence of cytoplasmic and stromal CD138 positivity were-to a variable degree-associated with high pT, high grade, nodal metastasis, estrogen receptor-negative, progesterone receptor-negative, human epidermal growth factor receptor 2+, and poor overall patient survival. A combined analysis of epithelial and stromal CD138 expression revealed a link to overall patient survival (P < .0001) with best prognosis for patients with stromal positivity and absence of cytoplasmic staining, the worst prognosis for cancers with cytoplasmic staining and stromal negativity and intermediate prognosis for patients having either cytoplasmic staining or stromal negativity. In multivariate analyses, CD138 was not independent of established prognostic features. In summary, these data reveal a compartment depending prognostic effect of CD138 expression in BCa with cytoplasmic positivity being linked to aggressive cancer and stromal CD138 being linked to a more favorable prognosis.
Collapse
Affiliation(s)
- Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Jaretzke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabell Witzel
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Paluchowski
- Department of Gynecology, Regio Clinic Pinneberg, Pinneberg, Germany
| | - Christian Wilke
- Department of Gynecology, Regio Clinic Elmshorn, Elmshorn, Germany
| | - Uwe Heilenkötter
- Department of Gynecology, Clinical Centre Itzehoe, Itzehoe, Germany
| | - Ingo von Leffern
- Department of Gynecology, Albertinen Clinic Schnelsen, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, Clinical Centre Osnabrück, Osnabrück, Germany
| | - Rainer H Krech
- Institute of Pathology, Clinical Centre Osnabrück, Osnabrück, Germany
| | | | | | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Sulfated Glycoaminoglycans and Proteoglycan Syndecan-4 Are Involved in Membrane Fixation of LL-37 and Its Pro-Migratory Effect in Breast Cancer Cells. Biomolecules 2019; 9:biom9090481. [PMID: 31547381 PMCID: PMC6769752 DOI: 10.3390/biom9090481] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Initially characterized by its antimicrobial activities, LL-37 has also been shown to significantly contribute to tumor development. On breast cancer cell lines, LL-37 increases intracellular calcium via the TRPV2 channel and their migration via the activation of PI3K/AKT signaling. Its all-d enantiomer d-LL-37 induces similar effects, which excludes a protein-protein interaction of LL-37 in a classic ligand-receptor manner. Its net charge of +6 gave rise to the hypothesis that the peptide uses the negative charges of sulfoglycans or sialic acids to facilitate its attachment to the cell membrane and to induce its activities. Whereas several vegetal lectins, specifically attaching to sialylated or sulfated structures, blocked the activities of LL-37 on both calcium increase and cell migration, several sialidases had no effect. However, the competitive use of free sulfated glycoaminoglycans (GAGs) as chrondroitin and heparin, or treatment of the cell surface with chondroitinase and heparinase resulted in an activity loss of 50–100% for LL-37. Concordant results were obtained by blocking the synthesis of GAGs with 4-Methylumbelliferyl-β-d-xyloside, and by suppression of glycan sulfatation by sodium chlorate. Using a candidate approach by suppressing proteoglycan synthesis using RNA interference, syndecan-4 was shown to be required for the activities of LL-37 and its binding to the cell surface. This leads to the conclusion that syndecan-4, by means of sulfated GAGs, could act as a receptor for LL-37.
Collapse
|
37
|
Alaeddini M, Yazdani F, Etemad-Moghadam S. Stromal and epithelial syndecan-1 expression in benign and malignant salivary gland tumors: which is more reflective of behavior? Braz J Otorhinolaryngol 2019; 87:171-177. [PMID: 31540870 PMCID: PMC9422431 DOI: 10.1016/j.bjorl.2019.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/31/2019] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Salivary gland tumors are a diverse group of lesions, with various origins and extremely different behaviors, leading to a variety of outcomes for patients. Therefore, the need to discover novel markers with the ability to predict the behavior of benign and malignant salivary gland neoplasms is crucial. Syndecan-1 is a cell-surface protein with significant roles in various aspects of tumor function. Its expression in salivary gland neoplasms, especially their stromal component, has not been investigated. OBJECTIVES We aimed to assess the immunopositivity of syndecan-1 in epithelial and stromal components of salivary gland neoplasms and to compare it between benign and malignant subtypes in addition to evaluating its correlation with clinicopathologic parameters. METHODS 133 salivary gland tumors were immunohistochemically stained with syndecan-1 and the intensity and percentage of this protein was determined, compared between the tumors and correlated with clinicopathologic factors. RESULTS Statistical analysis of lesions with a sufficient sample size showed significant differences in percentage and intensity between both epithelial and stromal components of all tumors (p<0.05). Pairwise-comparisons demonstrated significantly higher staining-percentage of epithelial cells (p=0.02) in Warthin's tumor compared to pleomorphic adenoma and adenoid cystic carcinoma. Similarly, significantly higher staining intensities and/or percentages was observed in mucoepidermoid carcinoma and adenoid cystic carcinoma compared to pleomorphic adenoma and Warthin's tumor (p<0.05). Of the clinicopathologic factors, there was only a significant negative correlation between stromal percentage of mucoepidermoid carcinoma and age and a significant difference between stromal intensity+percentage of adenoid cystic carcinoma and gender (p<0.05). CONCLUSIONS According to our findings we postulate that stromal syndecan-1 correlates with the behavior of salivary gland tumors, with malignant neoplasms demonstrating a higher expression, indicating a role for syndecan-1 in invasion and metastasis.
Collapse
Affiliation(s)
- Mojgan Alaeddini
- Tehran University of Medical Sciences, Dentistry Research Institute, Dental Research Center, Tehran, Iran
| | - Farzad Yazdani
- Tehran University of Medical Sciences, Amiralam Hospital, Department of Pathology, Tehran, Iran
| | - Shahroo Etemad-Moghadam
- Tehran University of Medical Sciences, Dentistry Research Institute, Dental Research Center, Tehran, Iran.
| |
Collapse
|
38
|
Sayyad MR, Puchalapalli M, Vergara NG, Wangensteen SM, Moore M, Mu L, Edwards C, Anderson A, Kall S, Sullivan M, Dozmorov M, Singh J, Idowu MO, Koblinski JE. Syndecan-1 facilitates breast cancer metastasis to the brain. Breast Cancer Res Treat 2019; 178:35-49. [PMID: 31327090 DOI: 10.1007/s10549-019-05347-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Although survival rates for patients with localized breast cancer have increased, patients with metastatic breast cancer still have poor prognosis. Understanding key factors involved in promoting breast cancer metastasis is imperative for better treatments. In this study, we investigated the role of syndecan-1 (Sdc1) in breast cancer metastasis. METHODS To assess the role of Sdc1 in breast cancer metastasis, we silenced Sdc1 expression in the triple-negative breast cancer human MDA-MB-231 cell line and overexpressed it in the mouse mammary carcinoma 4T1 cell line. Intracardiac injections were performed in an experimental mouse metastasis model using both cell lines. In vitro transwell blood-brain barrier (BBB) and brain section adhesion assays were utilized to specifically investigate how Sdc1 facilitates brain metastasis. A cytokine array was performed to evaluate differences in the breast cancer cell secretome when Sdc1 is silenced. RESULTS Silencing expression of Sdc1 in breast cancer cells significantly reduced metastasis to the brain. Conversely, overexpression of Sdc1 increased metastasis to the brain. We found that silencing of Sdc1 expression had no effect on attachment of breast cancer cells to brain endothelial cells or astrocytes, but migration across the BBB was reduced as well as adhesion to the perivascular regions of the brain. Loss of Sdc1 also led to changes in breast cancer cell-secreted cytokines/chemokines, which may influence the BBB. CONCLUSIONS Taken together, our study demonstrates a role for Sdc1 in promoting breast cancer metastasis to the brain. These findings suggest that Sdc1 supports breast cancer cell migration across the BBB through regulation of cytokines, which may modulate the BBB. Further elucidating this mechanism will allow for the development of therapeutic strategies to combat brain metastasis.
Collapse
Affiliation(s)
- Megan R Sayyad
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Madhavi Puchalapalli
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA
| | - Natasha G Vergara
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA.,McCormick School of Engineering, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Sierra Mosticone Wangensteen
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Melvin Moore
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA.,McCormick School of Engineering, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Liang Mu
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA
| | - Chevaunne Edwards
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA
| | - Aubree Anderson
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA
| | - Stefanie Kall
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA.,McCormick School of Engineering, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Megan Sullivan
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA
| | - Mikhail Dozmorov
- Department of Biostatistics, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jaime Singh
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael O Idowu
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer E Koblinski
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA. .,Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA. .,Department of Pathology, School of Medicine, Virginia Commonwealth University, Sanger Hall 4-013, 1101 E. Marshall St, Box 980662, Richmond, VA, 23298, USA.
| |
Collapse
|
39
|
Soliman NA, Yussif SM, Shebl AM. Syndecan-1 could be added to hormonal receptors and HER2/neu in routine assessment of invasive breast carcinoma, relation of its expression to prognosis and clinicopathological parameters. Pathol Res Pract 2019; 215:977-982. [DOI: 10.1016/j.prp.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
|
40
|
Nagaprashantha LD, Singhal J, Chikara S, Gugiu G, Horne D, Awasthi S, Salgia R, Singhal SS. 2′-Hydroxyflavanone induced changes in the proteomic profile of breast cancer cells. J Proteomics 2019; 192:233-245. [DOI: 10.1016/j.jprot.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/03/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
|
41
|
Qiao W, Liu H, Guo W, Li P, Deng M. Prognostic and clinical significance of syndecan-1 expression in breast cancer: A systematic review and meta-analysis. Eur J Surg Oncol 2018; 45:1132-1137. [PMID: 30598194 DOI: 10.1016/j.ejso.2018.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/09/2018] [Accepted: 12/24/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The prognostic value of syndecan-1 (SDC1, also called CD138) in breast cancer remains controversial. Therefore, we performed a meta-analysis to assess the clinical significance of SDC1 expression in breast cancer. MATERIALS AND METHODS Various databases were searched to evaluate possible correlations between SDC1 protein or mRNA expression and prognostic significance in breast cancer. Pooled hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs) were applied to perform a quantitative meta-analysis. RESULTS A total of 1305 breast cancer patients from 9 eligible studies were included in this meta-analysis. Significant associations between elevated SDC1 protein expression and poor disease-free survival (DFS) (HR = 1.55, 95% CI: 1.12-2.14; P = 0.007) and overall survival (OS) (HR = 2.08, 95% CI: 1.61-2.69; P < 0.001) were observed. In addition, enhanced SDC1 protein expression correlated with negative estrogen receptor (ER) expression (OR, 2.38; 95% CI, 1.64-3.44; P < 0.001) and positive human epidermal growth factor receptor 2 (HER2) expression (OR, 1.77; 95% CI, 1.14-2.76; P = 0.01). However, increased SDC1 protein expression did not correlate with relapse-free survival (RFS) (HR = 0.33, 95% CI: 0.03-3.13; P = 0.33). There were no additional significant correlations observed between SDC1 protein expression and other clinical factors, including tumor size, lymph node involvement, nuclear grade, and progesterone receptor (PR) expression. CONCLUSION The results of this meta-analysis demonstrate that increased SDC1 protein expression in breast cancer is significantly associated with worse prognosis in terms of DFS and OS, and an aggressive phenotype is associated with negative ER expression and positive HER2 expression.
Collapse
Affiliation(s)
- Weiqiang Qiao
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Heyang Liu
- Department of Oncology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Wanying Guo
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Peng Li
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Miao Deng
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
42
|
Solbu MD, Kolset SO, Jenssen TG, Wilsgaard T, Løchen ML, Mathiesen EB, Melsom T, Eriksen BO, Reine TM. Gender differences in the association of syndecan-4 with myocardial infarction: The population-based Tromsø Study. Atherosclerosis 2018; 278:166-173. [DOI: 10.1016/j.atherosclerosis.2018.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/27/2018] [Accepted: 08/15/2018] [Indexed: 01/23/2023]
|
43
|
Chen LL, Gao GX, Shen FX, Chen X, Gong XH, Wu WJ. SDC4 Gene Silencing Favors Human Papillary Thyroid Carcinoma Cell Apoptosis and Inhibits Epithelial Mesenchymal Transition via Wnt/β-Catenin Pathway. Mol Cells 2018; 41:853-867. [PMID: 30165731 PMCID: PMC6182223 DOI: 10.14348/molcells.2018.0103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/10/2018] [Accepted: 07/29/2018] [Indexed: 01/06/2023] Open
Abstract
As the most common type of endocrine malignancy, papillary thyroid cancer (PTC) accounts for 85-90% of all thyroid cancers. In this study, we presented the hypothesis that SDC4 gene silencing could effectively attenuate epithelial mesenchymal transition (EMT), and promote cell apoptosis via the Wnt/β-catenin signaling pathway in human PTC cells. Bioinformatics methods were employed to screen the determined differential expression levels of SDC4 in PTC and adjacent normal samples. PTC tissues and adjacent normal tissues were prepared and their respective levels of SDC4 protein positive expression, in addition to the mRNA and protein levels of SDC4, Wnt/β-catenin signaling pathway, EMT and apoptosis related genes were all detected accordingly. Flow cytometry was applied in order to detect cell cycle entry and apoptosis. Finally, analyses of PTC migration and invasion abilities were assessed by using a Transwell assay and scratch test. In PTC tissues, activated Wnt/β-catenin signaling pathway, increased EMT and repressed cell apoptosis were determined. Moreover, the PTC K1 and TPC-1 cell lines exhibiting the highest SDC4 expression were selected for further experiments. In vitro experiments revealed that SDC4 gene silencing could suppress cell migration, invasion and EMT, while acting to promote the apoptosis of PTC cells by inhibiting the activation of the Wnt/β-catenin signaling pathway. Besides, si-β-catenin was observed to inhibit the promotion of PTC cell migration and invasion caused by SDC4 overexpression. Our study revealed that SDC4 gene silencing represses EMT, and enhances cell apoptosis by suppressing the activation of the Wnt/β-catenin signaling pathway in human PTC.
Collapse
Affiliation(s)
- Liang-Liang Chen
- Department of Surgical Oncology, Ningbo No.2 Hospital, Ningbo 315010,
P.R. China
| | - Ge-Xin Gao
- School of Nursing, Wenzhou Medical University, Wenzhou 325000,
P.R. China
| | - Fei-Xia Shen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015,
P.R. China
| | - Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015,
P.R. China
| | - Xiao-Hua Gong
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015,
P.R. China
| | - Wen-Jun Wu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015,
P.R. China
| |
Collapse
|
44
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
45
|
Yang Y, Tao X, Li CB, Wang CM. MicroRNA-494 acts as a tumor suppressor in pancreatic cancer, inhibiting epithelial-mesenchymal transition, migration and invasion by binding to SDC1. Int J Oncol 2018; 53:1204-1214. [PMID: 29956739 DOI: 10.3892/ijo.2018.4445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/14/2018] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer (PC) is the fourth most common cause of cancer‑related mortality in the industrialized world. Emerging evidence indicates that a variety of microRNAs (miRNAs or miRs) are involved in the development of PC. The aim of the present study was to elucidate the mechanisms through which miR‑494 affects the epithelial‑mesenchymal transition (EMT) and invasion of PC cells by binding to syndecan 1 (SDC1). PC tissues and pancreatitis tissues were collected, and the regulatory effects of miR‑494 on SDC1 were validated using bioinformatics analysis and a dual‑luciferase report gene assay. The cell line with the highest SDC1 expression was selected for use in the following experiments. The role of miR‑494 in EMT was assessed by measuring the expression of SDC1, E‑cadherin and vimentin. Cell proliferation was assessed using a cell counting kit (CCK)‑8 assay, migration was measured using a scratch test, invasion was assessed with a Transwell assay and apoptosis was detected by flow cytometry. Finally, a xenograft tumor model was constructed in nude mice to observe tumor growth in vivo. We found that SDC1 protein expression was significantly higher in the PC tissues. SDC1 was verified as a target gene of miR‑494. The SW1990 cell line was selected for use in further experiments as it had the lowest miR‑494 expression and the highest SDC1 expression. Our results also demonstrated that miR‑494 overexpression and SDC1 silencing significantly decreased the mRNA and protein expression of SDC1 and vimentin in SW1990 cells, while it increased E‑cadherin expression and apoptosis, and inhibited cell growth, migration, invasion and tumor growth. On the whole, the findings of this study demonstrated that miR‑494 is able to downregulate SDC1 expression, thereby inhibiting the progression of PC. These findings reveal a novel mechanism through which miR‑494 affects the development of PC and may thus provide a basis for the application of miR‑494 in pancreatic oncology.
Collapse
Affiliation(s)
- Ying Yang
- Department of General Surgery, Τhe First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiong Tao
- Department of General Surgery, Τhe First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Chun-Bo Li
- Department of General Surgery, Τhe First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Chang-Miao Wang
- Department of General Surgery, Τhe First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
46
|
Zins K, Heller G, Mayerhofer M, Schreiber M, Abraham D. Differential prognostic impact of interleukin-34 mRNA expression and infiltrating immune cell composition in intrinsic breast cancer subtypes. Oncotarget 2018; 9:23126-23148. [PMID: 29796177 PMCID: PMC5955405 DOI: 10.18632/oncotarget.25226] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/05/2018] [Indexed: 12/14/2022] Open
Abstract
Interleukin-34 (IL-34) is a ligand for the CSF-1R and has also two additional receptors, PTPRZ1 and syndecan-1. IL-34 plays a role in innate immunity, inflammation, and cancer. However, the role of IL-34 in breast cancer is still ill-defined. We analyzed IL-34 mRNA expression in breast cancer cell lines and breast cancer patients and applied established computational approaches (CIBERSORT, ESTIMATE, TIMER, TCIA), to analyze gene expression data from The Cancer Genome Atlas (TCGA). Expression of IL-34 was associated with a favorable prognosis in luminal and HER2 but not basal breast cancer patients. Gene expression of CSF-1 and CSF-1R was strongly associated with myeloid cell infiltration, while we found no or only weak correlations between IL-34, PTPRZ1, syndecan-1 and myeloid cells. In vitro experiments showed that tyrosine phosphorylation of CSF-1R, ERK, and FAK and cell migration are differentially regulated by IL-34 and CSF-1 in breast cancer cell lines. Collectively, our data suggest that correlation of IL-34 gene expression with survival is dependent on the molecular breast cancer subtype. Furthermore, IL-34 is not associated with myeloid cell infiltration and directly regulates breast cancer cell migration and signaling.
Collapse
Affiliation(s)
- Karin Zins
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Gerwin Heller
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, A-1090 Vienna, Austria.,Comprehensive Cancer Center Vienna, A-1090 Vienna, Austria
| | - Mathias Mayerhofer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Martin Schreiber
- Department of Obstetrics and Gynecology, Medical University of Vienna, A-1090 Vienna, Austria.,Comprehensive Cancer Center Vienna, A-1090 Vienna, Austria
| | - Dietmar Abraham
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria.,Comprehensive Cancer Center Vienna, A-1090 Vienna, Austria
| |
Collapse
|
47
|
Okolicsanyi RK, Oikari LE, Yu C, Griffiths LR, Haupt LM. Heparan Sulfate Proteoglycans as Drivers of Neural Progenitors Derived From Human Mesenchymal Stem Cells. Front Mol Neurosci 2018; 11:134. [PMID: 29740281 PMCID: PMC5928449 DOI: 10.3389/fnmol.2018.00134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/03/2018] [Indexed: 01/19/2023] Open
Abstract
Background: Due to their relative ease of isolation and their high ex vivo and in vitro expansive potential, human mesenchymal stem cells (hMSCs) are an attractive candidate for therapeutic applications in the treatment of brain injury and neurological diseases. Heparan sulfate proteoglycans (HSPGs) are a family of ubiquitous proteins involved in a number of vital cellular processes including proliferation and stem cell lineage differentiation. Methods: Following the determination that hMSCs maintain neural potential throughout extended in vitro expansion, we examined the role of HSPGs in mediating the neural potential of hMSCs. hMSCs cultured in basal conditions (undifferentiated monolayer cultures) were found to co-express neural markers and HSPGs throughout expansion with modulation of the in vitro niche through the addition of exogenous HS influencing cellular HSPG and neural marker expression. Results: Conversion of hMSCs into hMSC Induced Neurospheres (hMSC IN) identified distinctly localized HSPG staining within the spheres along with altered gene expression of HSPG core protein and biosynthetic enzymes when compared to undifferentiated hMSCs. Conclusion: Comparison of markers of pluripotency, neural self-renewal and neural lineage specification between hMSC IN, hMSC and human neural stem cell (hNSC H9) cultures suggest that in vitro generated hMSC IN may represent an intermediary neurogenic cell type, similar to a common neural progenitor cell. In addition, this data demonstrates HSPGs and their biosynthesis machinery, are associated with hMSC IN formation. The identification of specific HSPGs driving hMSC lineage-specification will likely provide new markers to allow better use of hMSCs in therapeutic applications and improve our understanding of human neurogenesis.
Collapse
Affiliation(s)
- Rachel K Okolicsanyi
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lotta E Oikari
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Chieh Yu
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Larisa M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
48
|
Schönfeld K, Herbener P, Zuber C, Häder T, Bernöster K, Uherek C, Schüttrumpf J. Activity of Indatuximab Ravtansine against Triple-Negative Breast Cancer in Preclinical Tumor Models. Pharm Res 2018; 35:118. [PMID: 29666962 PMCID: PMC5904230 DOI: 10.1007/s11095-018-2400-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/03/2018] [Indexed: 11/26/2022]
Abstract
Purpose Triple-negative breast cancer (TNBC) is related with a poor prognosis as patients do hardly benefit from approved therapies. CD138 (Syndecan-1) is upregulated on human breast cancers. Indatuximab ravtansine (BT062) is an antibody-drug-conjugate that specifically targets CD138-expressing cells and has previously shown clinical activity in multiple myeloma. Here we show indatuximab ravtansine as a potential mono- and combination therapy for TNBC. Methods The effects of indatuximab ravtansine were assessed in vitro in SK-BR-3 and T47D breast cancer cell lines. The in vivo effects of indatuximab ravtansine alone and in combination with docetaxel or paclitaxel were assessed in MAXF401, MAXF1384 and MAXF1322 xenograft TNBC models. Results CD138+ SK-BR-3 and T47D cells were highly sensitive to indatuximab ravtansine. The high CD138-expressing MAXF401 xenograft model demonstrated strong inhibition of tumor growth with 4 mg/kg indatuximab ravtansine. High doses of indatuximab ravtansine (8 mg/kg), docetaxel and the combination of both led to complete remission. In the low CD138-expressing MAXF1384 xenograft model, only combination of indatuximab ravtansine and docetaxel demonstrated a significant efficacy. In the MAXF1322 xenograft model, indatuximab ravtansine alone and in combination with paclitaxel elicited complete remission. Conclusions These data demonstrate potential use of indatuximab ravtansine in combination with docetaxel or paclitaxel for CD138-positive TNBC.
Collapse
Affiliation(s)
- Kurt Schönfeld
- Corporate Research & Development, Biotest AG, Landsteinerstraße 5, 63303, Dreieich, Germany
| | - Peter Herbener
- Corporate Research & Development, Biotest AG, Landsteinerstraße 5, 63303, Dreieich, Germany
| | - Chantal Zuber
- Corporate Research & Development, Biotest AG, Landsteinerstraße 5, 63303, Dreieich, Germany
| | - Thomas Häder
- Corporate Research & Development, Biotest AG, Landsteinerstraße 5, 63303, Dreieich, Germany
| | - Katrin Bernöster
- Corporate Project & Portfolio Management, Biotest AG, Landsteinerstraße 5, 63303, Dreieich, Germany
| | - Christoph Uherek
- Corporate Project & Portfolio Management, Biotest AG, Landsteinerstraße 5, 63303, Dreieich, Germany
| | - Jörg Schüttrumpf
- Corporate Research & Development, Biotest AG, Landsteinerstraße 5, 63303, Dreieich, Germany.
| |
Collapse
|
49
|
Agere SA, Kim EY, Akhtar N, Ahmed S. Syndecans in chronic inflammatory and autoimmune diseases: Pathological insights and therapeutic opportunities. J Cell Physiol 2018; 233:6346-6358. [PMID: 29226950 DOI: 10.1002/jcp.26388] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
Syndecans (SDCs) are a family of heparan sulfate proteoglycans (HSPGs) glycoproteins ubiquitously expressed on the cell surfaces and extracellular matrix of all mammalian tissues. There are four mammalian syndecans, SDC-1 thorough 4, which play a critical role in cell adhesion, migration, proliferation, differentiation, and angiogenesis through independent and growth factor mediated signaling. An altered expression of SDCs is often observed in autoimmune disorders, cancer, HIV infection, and many other pathological conditions. SDCs modulate disease progression by interacting with a diverse array of ligands, receptors, and other proteins, including extracellular matrix, glycoproteins, integrins, morphogens, and various growth factors and chemokines, along with their receptors and kinases. Specifically, SDCs present on cell surface can bind directly to chemokines to enhance their binding to receptors, downstream signaling, and migration. Alternatively, SDCs can be cleaved and shed to mediate negative regulation of chemokine and growth factor signaling pathways and ligand sequestration. Importantly, SDC shedding may be a biomarker of inflammation, especially in chronic inflammatory diseases. While the current therapies for cancer and several autoimmune disorders have revolutionized treatment outcomes, understanding the pathophysiological role of SDCs and the use of HSPG mimetic or antagonists on cytokine signaling networks may uncover potentially novel targeted therapeutic approaches. This review mainly summarizes the current findings on the role of individual SDCs in disease processes, mechanisms through which SDCs mediate their biological functions, and the possibility of targeting SDCs as future potential therapeutic approaches.
Collapse
Affiliation(s)
- Solomon A Agere
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington
| | - Eugene Y Kim
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington
| | - Nahid Akhtar
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington.,Division of Rheumatology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
50
|
Krushkal J, Zhao Y, Hose C, Monks A, Doroshow JH, Simon R. Longitudinal Transcriptional Response of Glycosylation-Related Genes, Regulators, and Targets in Cancer Cell Lines Treated With 11 Antitumor Agents. Cancer Inform 2017; 16:1176935117747259. [PMID: 29276373 PMCID: PMC5734428 DOI: 10.1177/1176935117747259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/18/2017] [Indexed: 01/25/2023] Open
Abstract
Cellular glycosylation processes are vital to cell functioning. In malignant cells, they are profoundly altered. We used time-course gene expression data from the NCI-60 cancer cell lines treated with 11 antitumor agents to analyze expression changes of genes involved in glycosylation pathways, genes encoding glycosylation targets or regulators, and members of cancer pathways affected by glycosylation. We also identified glycosylation genes for which pretreatment expression levels or changes after treatment were correlated with drug sensitivity. Their products are involved in N-glycosylation and O-glycosylation, fucosylation, biosynthesis of poly-N-acetyllactosamine, removal of misfolded proteins, binding to hyaluronic acid and other glycans, and cell adhesion. Tumor cell sensitivity to multiple agents was correlated with transcriptional response of C1GALT1C1, FUCA1, SDC1, MUC1; members of the MGAT, GALNT, B4GALT, B3GNT, MAN, and EDEM families; and other genes. These genes may be considered as potential candidates for drug targeting in combination therapy to enhance treatment response.
Collapse
Affiliation(s)
- Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Curtis Hose
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Anne Monks
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis and Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Richard Simon
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|