1
|
Zhao YB, Wang SZ, Guo WT, Wang L, Tang X, Li JN, Xu L, Zhou QX. Hippocampal dipeptidyl peptidase 9 bidirectionally regulates memory associated with synaptic plasticity. J Adv Res 2024:S2090-1232(24)00433-8. [PMID: 39369958 DOI: 10.1016/j.jare.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024] Open
Abstract
INTRODUCTION Subtypes of the dipeptidyl peptidase (DPP) family, such as DPP4, are reportedly associated with memory impairment. DPP9 is widely distributed in cells throughout the body, including the brain. However, whether DPP9 regulates memory has not yet been elucidated. OBJECTIVES This study aimed to elucidate the role of DPP9 in memory, as well as the underlying molecular mechanism. METHODS We performed immunofluorescence on mouse brains to explore the distribution of DPP9 in different brain regions and used AAV vectors to construct knockdown and overexpression models. The effects of changing DPP9 expression on memory were demonstrated through behavioral experiments. Finally, we used electrophysiology, proteomics and affinity purification mass spectrometry (AP-MS) to study the molecular mechanism by which DPP9 affects memory. RESULTS Here, we report that DPP9, which is found almost exclusively in neurons, is expressed and has enzyme activity in many brain regions, especially in the hippocampus. Hippocampal DPP9 expression increases after fear memory formation. Fear memory was impaired by DPP9 knockdown and enhanced by DPP9 protein overexpression in the hippocampus. According to subsequent hippocampal proteomics, multiple pathways, including the peptidase pathway, which can be bidirectionally regulated by DPP9. DPP9 directly interacts with its enzymatic substrate neuropeptide Y (NPY) in neurons. Hippocampal long-term potentiation (LTP) is also bidirectionally regulated by DPP9. Moreover, inhibiting DPP enzyme activity impaired both LTP and memory. In addition, AP-MS revealed that DPP9-interacting proteins are involved in the functions of dendritic spines and axons. By combining AP-MS and proteomics, DPP9 was shown to play a role in regulating actin functions. CONCLUSION Taken together, our findings reveal that DPP9 affects the CNS not only through enzymatic activity but also through protein-protein interactions. This study provides new insights into the molecular mechanisms of memory and DPP family functions.
Collapse
Affiliation(s)
- Ya-Bo Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China
| | - Shi-Zhe Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wen-Ting Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Le Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xun Tang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China
| | - Jin-Nan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China; KIZ-SU Joint Laboratory of Animal Model and Drug Development, China
| | - Qi-Xin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
2
|
Zhou Y, Chen Y, Xuan C, Li X, Tan Y, Yang M, Cao M, Chen C, Huang X, Hu R. DPP9 regulates NQO1 and ROS to promote resistance to chemotherapy in liver cancer cells. Redox Biol 2024; 75:103292. [PMID: 39094401 PMCID: PMC11345690 DOI: 10.1016/j.redox.2024.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024] Open
Abstract
Chemotherapy has been the standard treatment for liver cancer. However, intrinsic or acquired drug resistance remains a major barrier to successful treatment. At present, the underlying molecular mechanisms of chemoresistance in liver cancer have not been elucidated. Dipeptidyl peptidase 9 (DPP9) is a member of the dipeptidyl peptidase IV family that has been found to be highly expressed in a variety of tumors, including liver cancer. It is unclear whether DPP9 affects chemoresistance in liver cancer. In this study, we find that DPP9 weakens the responses of liver cancer cells to chemotherapy drugs by up-regulating NQO1 and inhibiting intracellular ROS levels. In terms of mechanism, DPP9 inhibits ubiquitin-mediated degradation of NRF2 protein by binding to KEAP1, up-regulates NRF2 protein levels, promotes mRNA transcription of NQO1, and inhibits intracellular ROS levels. In addition, the NQO1 inhibitor dicoumarol can enhance the efficacy of chemotherapy drugs in liver cancer cells. Collectively, our findings suggest that inhibiting DPP9/NQO1 signaling can serve as a potential therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Yunjiang Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yaxin Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chenyuan Xuan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xingyan Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yingying Tan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengdi Yang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengran Cao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chi Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xing Huang
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China.
| | - Rong Hu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Hua E, Xu D, Chen H, Zhang S, Feng J, Xu L. Development of the dipeptidyl peptidase 4 family and its association with lung diseases: a narrative review. J Thorac Dis 2023; 15:7024-7034. [PMID: 38249892 PMCID: PMC10797411 DOI: 10.21037/jtd-23-1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/10/2023] [Indexed: 01/23/2024]
Abstract
Background and Objective Dipeptidyl peptidase (DPP)4 is a member of a subfamily of serine peptidase S9. DPP4, expressed as a type II transmembrane protein, has a wide tissue distribution and is most active in the lung and small intestine. Many substrates of DPP4 have been identified, including neuropeptides, chemokines, and glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptides (GIPs). DPP4 inhibitors are clinically useful in the treatment of type 2 diabetes mellitus. DPP9, an N-terminal dipeptide targeting enzyme with proline or alanine, may have DPP4-like activity. DPP9 is ubiquitously expressed at human and rodent messenger RNA (mRNA) levels and therefore may play a role in the immune system and epithelial cells. It has been shown that DPP9 plays an important signaling role in the regulation of survival and proliferation pathways and is also involved in cell migration, apoptosis, and cell adhesion. In recent years, there has been further progress in DPP9 inhibition through activation of apoptosis by the inflammasome sensor protein Nlrp1b. This study aims to investigate the association of DPP4 family members and DPP9 with lung disease. Methods The literature search was initiated using the PubMed database. We searched for the content (DPP4) AND (Lung Diseases), (DPP9) AND (Lung Diseases), from which we filtered the literature we needed. Key Content and Findings Given the high biological activity of the DPP4 family, their involvement in various lung diseases is highly relevant. There is growing evidence for the importance of DPP4 and DPP9 of the DPP4 family in lung diseases, which are closely associated with diseases such as asthma, lung infections, pulmonary fibrosis (PF), and lung cancer. Conclusions This review summarizes most of the current evidence that DPP4/9 is associated with lung disease. Within the DPP4 family, the role of DPP4 in particular in respiratory disease is important.
Collapse
Affiliation(s)
- Ershi Hua
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Six People’s Hospital of Nantong), Nantong, China
| | - Dongmei Xu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Huamao Chen
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Shuwen Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jian Feng
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Liqin Xu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
4
|
Complex of Proline-Specific Peptidases in the Genome and Gut Transcriptomes of Tenebrionidae Insects and Their Role in Gliadin Hydrolysis. Int J Mol Sci 2022; 24:ijms24010579. [PMID: 36614021 PMCID: PMC9820350 DOI: 10.3390/ijms24010579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
A detailed analysis of the complexes of proline-specific peptidases (PSPs) in the midgut transcriptomes of the larvae of agricultural pests Tenebrio molitor and Tribolium castaneum and in the genome of T. castaneum is presented. Analysis of the T. castaneum genome revealed 13 PSP sequences from the clans of serine and metal-dependent peptidases, of which 11 sequences were also found in the gut transcriptomes of both tenebrionid species' larvae. Studies of the localization of PSPs, evaluation of the expression level of their genes in gut transcriptomes, and prediction of the presence of signal peptides determining secretory pathways made it possible to propose a set of peptidases that can directly participate in the hydrolysis of food proteins in the larvae guts. The discovered digestive PSPs of tenebrionids in combination with the post-glutamine cleaving cysteine cathepsins of these insects effectively hydrolyzed gliadins, which are the natural food substrates of the studied pests. Based on the data obtained, a hypothetical scheme for the complete hydrolysis of immunogenic gliadin peptides by T. molitor and T. castaneum digestive peptidases was proposed. These results show promise regarding the development of a drug based on tenebrionid digestive enzymes for the enzymatic therapy of celiac disease and gluten intolerance.
Collapse
|
5
|
Cui C, Tian X, Wei L, Wang Y, Wang K, Fu R. New insights into the role of dipeptidyl peptidase 8 and dipeptidyl peptidase 9 and their inhibitors. Front Pharmacol 2022; 13:1002871. [PMID: 36172198 PMCID: PMC9510841 DOI: 10.3389/fphar.2022.1002871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Dipeptidyl peptidase 8 (DPP8) and 9 (DPP9) are widely expressed in mammals including humans, mainly locate in the cytoplasm. The DPP8 and DPP9 (DPP8/9) belong to serine proteolytic enzymes, they can recognize and cleave N-terminal dipeptides of specific substrates if proline is at the penultimate position. Because the localization of DPP8/9 is different from that of DPP4 and the substrates for DPP8/9 are not yet completely clear, their physiological and pathological roles are still being further explored. In this article, we will review the recent research advances focusing on the expression, regulation, and functions of DPP8/9 in physiology and pathology status. Emerging research results have shown that DPP8/9 is involved in various biological processes such as cell behavior, energy metabolism, and immune regulation, which plays an essential role in maintaining normal development and physiological functions of the body. DPP8/9 is also involved in pathological processes such as tumorigenesis, inflammation, and organ fibrosis. In recent years, related research on immune cell pyroptosis has made DPP8/9 a new potential target for the treatment of hematological diseases. In addition, DPP8/9 inhibitors also have great potential in the treatment of tumors and chronic kidney disease.
Collapse
Affiliation(s)
- Chenkai Cui
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Linting Wei
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinhong Wang
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kexin Wang
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Rongguo Fu,
| |
Collapse
|
6
|
CD26 Deficiency Controls Macrophage Polarization Markers and Signal Transducers during Colitis Development and Resolution. Int J Mol Sci 2022; 23:ijms23105506. [PMID: 35628317 PMCID: PMC9141856 DOI: 10.3390/ijms23105506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023] Open
Abstract
Ulcerative colitis (UC) is a multifactorial condition characterized by a destructive immune response that failed to be attenuated by common regulatory mechanisms which reduce inflammation and promote mucosa healing. The inhibition of CD26, a multifunctional glycoprotein that controls the immune response via its dipeptidyl peptidase (DP) 4 enzyme activity, was proven to have beneficial effects in various autoimmune inflammatory diseases. The polarization of macrophages into either pro-inflammatory M1 or anti-inflammatory M2 subclass is a key intersection that mediates the immune-inflammatory process in UC. Hence, we hypothesized that the deficiency of CD26 affects that process in the dextran sulfate sodium (DSS)-induced model of UC. We found that mRNA expression of M2 markers arginase 1 and Fizz were increased, while the expression of M1 marker inducible NO synthase was downregulated in CD26−/− mice. Decreased STAT1 mRNA, as well as upregulated pSTAT6 and pSTAT3, additionally support the demonstrated activation of M2 macrophages under CD26 deficiency. Finally, we investigated DP8 and DP9, proteins with DP4-like activity, and found that CD26 deficiency is not a key factor for the noted upregulation of their expression in UC. In conclusion, we demonstrate that CD26 deficiency regulates macrophage polarization toward the anti-inflammatory M2 phenotype, which is driven by STAT6/STAT3 signaling pathways. This process is additionally enhanced by the reduction of M1 differentiation via the suppression of proinflammatory STAT1. Therefore, further studies should investigate the clinical potential of CD26 inhibitors in the treatment of UC.
Collapse
|
7
|
Sharif-Zak M, Abbasi-Jorjandi M, Asadikaram G, Ghoreshi ZAS, Rezazadeh-Jabalbarzi M, Afsharipur A, Rashidinejad H, Khajepour F, Jafarzadeh A, Arefinia N, Kheyrkhah A, Abolhassani M. CCR2 and DPP9 expression in the peripheral blood of COVID-19 patients: Influences of the disease severity and gender. Immunobiology 2022; 227:152184. [PMID: 35131543 PMCID: PMC8806394 DOI: 10.1016/j.imbio.2022.152184] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022]
Abstract
Introduction Hyper-inflammatory reactions play a crucial role in the pathogenesis of the severe forms of COVID-19. However, clarification of the molecular basis of the inflammatory-related factors needs more consideration. The aim was to evaluate the gene expression of two fundamental molecules contributing to the induction of inflammatory like CCR2 and DPP9 in cells from peripheral blood samples from patients with various patterns of COVID-19. Methods Peripheral blood samples were collected from 470 patients (235 male and 235 female) with RT-qPCR-confirmed COVID-19 test exhibiting moderate, severe, and critical symptoms based on WHO criteria. 100 healthy subjects (50 male and 50 female) were also enrolled in the study as a control group. The gene expression of DPP-9 and CCR-2 was assessed in the blood samples using real-time PCR method. Results The COVID-19 patients in severe stage expressed higher levels of CCR2 and DPP9 compared with healthy controls. In male and female patients, the levels of CCR2 and DDP9 expression significantly differed between moderate, severe, and critical patterns (p < 0.0001) as well as between each COVID-19 form and control group (p < 0.0001). The male patients with severe COVID-19 expressed greater levels of CCR2 and DPP-9 than female with same disease form. The female patients with moderate and critical COVID-19 expressed greater levels of CCR2 and DPP-9 than male patients with same disease stage. Conclusion We demonstrated that the expression of DPP-9 and CCR-2 was substantially increased in COVID-19 patients with different forms of disease. Considerable differences were also demonstrated between male and female with different patterns of disease. Therefore, we suggest to consider the gender of patients and disease severity for management of COVID-19.
Collapse
Affiliation(s)
- Mohsen Sharif-Zak
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran; Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mojtaba Abbasi-Jorjandi
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zohreh-Al-Sadat Ghoreshi
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mitra Rezazadeh-Jabalbarzi
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Alireza Afsharipur
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hamidreza Rashidinejad
- Department of Cardiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fardin Khajepour
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nasir Arefinia
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Aliasghar Kheyrkhah
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Moslem Abolhassani
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Pascual Alonso I, Valiente PA, Valdés-Tresanco ME, Arrebola Y, Almeida García F, Díaz L, García G, Guirola O, Pastor D, Bergado G, Sánchez B, Charli JL. Discovery of tight-binding competitive inhibitors of dipeptidyl peptidase IV. Int J Biol Macromol 2022; 196:120-130. [PMID: 34920066 DOI: 10.1016/j.ijbiomac.2021.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV, EC 3.4.14.5) is an abundant serine aminopeptidase that preferentially cleaves N-terminal Xaa-Pro or Xaa-Ala dipeptides from oligopeptides. Inhibitors of DPP-IV activity are used for treating type 2 diabetes mellitus and other diseases. DPP-IV is also involved in tumor progression. We identified four new non-peptide tight-binding competitive inhibitors of porcine DPP-IV by virtual screening and enzymatic assays. Molecular docking simulations supported the competitive behavior, and the selectivity of one of the compounds in the DPP-IV family. Since three of these inhibitors are also aminopeptidase N (APN) inhibitors, we tested their impact on APN+/DPP-IV+ and DPP-IV+ human tumor cells' viability. Using kinetic assays, we determined that HL-60 tumor cells express both APN and DPP-IV activities and that MDA-MB-231 tumor cells express DPP-IV activity. The inhibitors had a slight inhibitory effect on human HEK-293 cell viability but reduced the viability of APN+/DPP-IV+ and DPP-IV+ human tumor cells more potently. Remarkably, the intraperitoneal injection of these compounds inhibited DPP-IV activity in rat brain, liver, and pancreas. In silico studies suggested inhibitors binding to serum albumin contribute to blood-brain barrier crossing. The spectrum of action of some of these compounds may be useful for niche applications.
Collapse
Affiliation(s)
| | - Pedro A Valiente
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Canada.
| | - Mario E Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba; Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Yarini Arrebola
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba
| | | | - Lisset Díaz
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba
| | - Gabriela García
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba
| | - Osmany Guirola
- Centro de Ingeniería Genética y Biotecnología, BioCubafarma, Cuba
| | - Daniel Pastor
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba
| | | | | | - Jean-Louis Charli
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| |
Collapse
|
9
|
Jaenisch SE, Abbott CA, Gorrell MD, Bampton P, Butler RN, Yazbeck R. Circulating Dipeptidyl Peptidase Activity Is a Potential Biomarker for Inflammatory Bowel Disease. Clin Transl Gastroenterol 2022; 13:e00452. [PMID: 35060938 PMCID: PMC8806366 DOI: 10.14309/ctg.0000000000000452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/06/2021] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Dipeptidyl peptidase (DPP)-4 is part of a larger family of proteases referred to as DPPs. DPP4 has been suggested as a possible biomarker for inflammatory bowel disease (IBD). Circulating DPP4 (cDPP4) enzyme activity was investigated as a potential biomarker for IBD. In addition, DPP enzyme activity and gene expression were quantified in colonic tissue of patients with IBD and non-IBD. METHODS In study 1, DPP enzyme activity was quantified in plasma samples from 220 patients with IBD (Crohn's disease [CD] n = 130 and ulcerative colitis [UC] n = 90) and non-IBD controls (n = 26) using a colorimetric assay. In study 2, tissue and plasma samples were collected from 26 patients with IBD and 20 non-IBD controls. Plasma C-reactive protein (CRP) was quantified in all patients. Colonic DPP4, DPP8, DPP9, and fibroblast activation protein (FAP) gene expression was determined by quantitative polymerase chain reaction. cDPP and cFAP enzyme activity was also measured. Sensitivity and specificity were determined by receiver operating characteristic curve analysis. RESULTS In study 1, total cDPP activity was found to differentiate patients with CD with active disease (n = 18) from those in remission (n = 19; sensitivity 78% and specificity 63%). In study 2, total cDPP and cFAP activity was 28% and 48% lower in patients with elevated CRP (>10 mg/L), respectively, compared with patients with normal CRP. Gene expression of DPP4, FAP, and DPP8 was also significantly higher in colonic biopsies from patients with IBD compared with non-IBD patients (P < 0.05). DISCUSSION Our findings implicate the DPP enzyme family in intestinal inflammation and suggest future biomarker applications to differentiate the pathophysiological aspects of IBD.
Collapse
Affiliation(s)
- Simone E. Jaenisch
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - Catherine A. Abbott
- Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Mark D. Gorrell
- Liver Enzymes in Metabolism and Inflammation Program, Centenary Institute, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Peter Bampton
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Ross N. Butler
- Department of Gastroenterology & Hepatology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Roger Yazbeck
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| |
Collapse
|
10
|
Dipeptidyl Peptidase Inhibition Enhances CD8 T Cell Recruitment and Activates Intrahepatic Inflammasome in a Murine Model of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13215495. [PMID: 34771657 PMCID: PMC8583374 DOI: 10.3390/cancers13215495] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary This study reported, for the first time, on the expression and activity of the dipeptidyl peptidase 4 (DPP4) family during the development of hepatocellular carcinoma (HCC). We also demonstrated that the pan-DPP inhibitory compound ARI-4175 significantly reduced the number of macroscopic liver nodules in a mouse HCC model. ARI-4175 increased intrahepatic inflammatory cell infiltration, CD8+ T cell numbers and caspase-1-mediated inflammasome activation in the HCC-bearing liver. Thus, this study provides promising data on the efficacy of ARI-4175 in the treatment of early-stage HCC. Targeting the DPP4 family may be a novel and effective approach to promote anti-tumour immunity in HCC via caspase-1 activation. Abstract The mRNA expression of the dipeptidyl peptidase 4 (DPP4) gene family is highly upregulated in human hepatocellular carcinoma (HCC) and is associated with poor survival in HCC patients. Compounds that inhibit the DPP4 enzyme family, such as talabostat and ARI-4175, can mediate tumour regression by immune-mediated mechanisms that are believed to include NLRP1 activation. This study investigated the expression and activity of the DPP4 family during the development of HCC and evaluated the efficacy of ARI-4175 in the treatment of early HCC in mice. This first report on this enzyme family in HCC-bearing mice showed DPP9 upregulation in HCC, whereas intrahepatic DPP8/9 and DPP4 enzyme activity levels decreased with age. We demonstrated that ARI-4175 significantly lowered the total number of macroscopic liver nodules in these mice. In addition, ARI-4175 increased intrahepatic inflammatory cell infiltration, including CD8+ T cell numbers, into the HCC-bearing livers. Furthermore, ARI-4175 activated a critical component of the inflammasome pathway, caspase-1, in these HCC-bearing livers. This is the first evidence of caspase-1 activation by a pan-DPP inhibitor in the liver. Our data suggest that targeting the DPP4 enzyme family may be a novel and effective approach to promote anti-tumour immunity in HCC via caspase-1 activation.
Collapse
|
11
|
Qian XK, Zhang J, Li XD, Song PF, Zou LW. Research Progress on Dipeptidyl Peptidase Family: Structure, Function and Xenobiotic Metabolism. Curr Med Chem 2021; 29:2167-2188. [PMID: 34525910 DOI: 10.2174/0929867328666210915103431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/22/2022]
Abstract
Prolyl-specific peptidases or proteases, including Dipeptidyl Peptidase 2, 4, 6, 8, 9, 10, Fibroblast Activation Protein, prolyl endopeptidase and prolyl carboxypeptidase, belong to the dipeptidyl peptidase family. In human physiology and anatomy, they have homology amino acid sequences, similarities in structure, but play distinct functions and roles. Some of them also play important roles in the metabolism of drugs containing endogenous peptides, xenobiotics containing peptides, and exogenous peptides. The major functions of these peptidases in both the metabolism of human health and bioactive peptides are of significant importance in the development of effective inhibitors to control the metabolism of endogenous bioactive peptides. The structural characteristics, distribution of tissue, endogenous substrates, and biological functions were summarized in this review. Furthermore, the xenobiotics metabolism of the dipeptidyl peptidase family is illustrated. All the evidence and information summarized in this review would be very useful for researchers to extend the understanding of the proteins of these families and offer advice and assistance in physiology and pathology studies.
Collapse
Affiliation(s)
- Xing-Kai Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Jing Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Xiao-Dong Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Pei-Fang Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| |
Collapse
|
12
|
Huang JC, Emran AA, Endaya JM, McCaughan GW, Gorrell MD, Zhang HE. DPP9: Comprehensive In Silico Analyses of Loss of Function Gene Variants and Associated Gene Expression Signatures in Human Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:1637. [PMID: 33915844 PMCID: PMC8037973 DOI: 10.3390/cancers13071637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Dipeptidyl peptidase (DPP) 9, DPP8, DPP4 and fibroblast activation protein (FAP) are the four enzymatically active members of the S9b protease family. Associations of DPP9 with human liver cancer, exonic single nucleotide polymorphisms (SNPs) in DPP9 and loss of function (LoF) variants have not been explored. Human genomic databases, including The Cancer Genome Atlas (TCGA), were interrogated to identify DPP9 LoF variants and associated cancers. Survival and gene signature analyses were performed on hepatocellular carcinoma (HCC) data. We found that DPP9 and DPP8 are intolerant to LoF variants. DPP9 exonic LoF variants were most often associated with uterine carcinoma and lung carcinoma. All four DPP4-like genes were overexpressed in liver tumors and their joint high expression was associated with poor survival in HCC. Increased DPP9 expression was associated with obesity in HCC patients. High expression of genes that positively correlated with overexpression of DPP4, DPP8, and DPP9 were associated with very poor survival in HCC. Enriched pathways analysis of these positively correlated genes featured Toll-like receptor and SUMOylation pathways. This comprehensive data mining suggests that DPP9 is important for survival and that the DPP4 protease family, particularly DPP9, is important in the pathogenesis of human HCC.
Collapse
Affiliation(s)
- Jiali Carrie Huang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.H.); (A.A.E.); (J.M.E.); (G.W.M.)
| | - Abdullah Al Emran
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.H.); (A.A.E.); (J.M.E.); (G.W.M.)
| | - Justine Moreno Endaya
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.H.); (A.A.E.); (J.M.E.); (G.W.M.)
| | - Geoffrey W. McCaughan
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.H.); (A.A.E.); (J.M.E.); (G.W.M.)
- AW Morrow GE & Liver Centre, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Mark D. Gorrell
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.H.); (A.A.E.); (J.M.E.); (G.W.M.)
| | - Hui Emma Zhang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.H.); (A.A.E.); (J.M.E.); (G.W.M.)
| |
Collapse
|
13
|
Posadas-Sánchez R, Sánchez-Muñoz F, Guzmán-Martín CA, Hernández-Díaz Couder A, Rojas-Velasco G, Fragoso JM, Vargas-Alarcón G. Dipeptidylpeptidase-4 levels and DPP4 gene polymorphisms in patients with COVID-19. Association with disease and with severity. Life Sci 2021; 276:119410. [PMID: 33774023 PMCID: PMC7989663 DOI: 10.1016/j.lfs.2021.119410] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes de COVID-19 disease use as a principal receptor the angiotensin-converting enzyme-2 (ACE2). It has been suggested that dipeptidyl peptidase-4 (DPP4) can be another possible receptor for this virus. The present study aimed to establish if the DPP4 levels and DPP4 polymorphisms are associated with COVID-19 disease and its severity. Methods The study included 107 COVID-19 patients and 263 matched-healthy controls. Fifty patients required invasive mechanical ventilation. The DPP4 was quantified in serum using the Bioplex system. Based on the previous results and the functional prediction analysis, we select for the study 5 DPP4 polymorphisms (rs12617336, rs12617656, rs1558957, rs3788979, and rs17574) and these were determined using the 5´exonuclease TaqMan assays. Results Low levels of DPP4 were observed in COVID-19 patients (46.5 [33.1–57.7] ng/mL) when compared to healthy controls (125.3 [100.3–157.3] ng/mL) (P < 0.0001). Also, patients that required mechanical ventilation showed lower DPP4 levels (42.8 [29.8–56.9] ng/mL) than those that did not need this procedure (49.2 [39.9–65.6] ng/mL) (P = 0.012). DPP4 levels correlated negatively with age, fibrinogen, and platelet levels, and positively with albumin, alanine aminotransferase, and percentage of neutrophils. The DPP4 rs3788979 polymorphism was associated with a high risk of COVID-19 disease and, the TT genotype carriers had the lowest DPP4 levels. Conclusions In summary, in the present study, an association of low levels of DPP4 with COVID-19 disease and severity was found. The association of the DPP4 rs3788979 polymorphism with COVID-19 is also reported.
Collapse
Affiliation(s)
| | - Fausto Sánchez-Muñoz
- Departament of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | | | - Gustavo Rojas-Velasco
- Intensive Care Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - José Manuel Fragoso
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Gilberto Vargas-Alarcón
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
14
|
Dunaevsky YE, Tereshchenkova VF, Oppert B, Belozersky MA, Filippova IY, Elpidina EN. Human proline specific peptidases: A comprehensive analysis. Biochim Biophys Acta Gen Subj 2020; 1864:129636. [DOI: 10.1016/j.bbagen.2020.129636] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
|
15
|
Finger Y, Habich M, Gerlich S, Urbanczyk S, van de Logt E, Koch J, Schu L, Lapacz KJ, Ali M, Petrungaro C, Salscheider SL, Pichlo C, Baumann U, Mielenz D, Dengjel J, Brachvogel B, Hofmann K, Riemer J. Proteasomal degradation induced by DPP9-mediated processing competes with mitochondrial protein import. EMBO J 2020; 39:e103889. [PMID: 32815200 PMCID: PMC7527813 DOI: 10.15252/embj.2019103889] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Plasticity of the proteome is critical to adapt to varying conditions. Control of mitochondrial protein import contributes to this plasticity. Here, we identified a pathway that regulates mitochondrial protein import by regulated N-terminal processing. We demonstrate that dipeptidyl peptidases 8/9 (DPP8/9) mediate the N-terminal processing of adenylate kinase 2 (AK2) en route to mitochondria. We show that AK2 is a substrate of the mitochondrial disulfide relay, thus lacking an N-terminal mitochondrial targeting sequence and undergoing comparatively slow import. DPP9-mediated processing of AK2 induces its rapid proteasomal degradation and prevents cytosolic accumulation of enzymatically active AK2. Besides AK2, we identify more than 100 mitochondrial proteins with putative DPP8/9 recognition sites and demonstrate that DPP8/9 influence the cellular levels of a number of these proteins. Collectively, we provide in this study a conceptual framework on how regulated cytosolic processing controls levels of mitochondrial proteins as well as their dual localization to mitochondria and other compartments.
Collapse
Affiliation(s)
- Yannik Finger
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Markus Habich
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Sarah Gerlich
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Sophia Urbanczyk
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Erik van de Logt
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Julian Koch
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Laura Schu
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Kim Jasmin Lapacz
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Muna Ali
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Carmelina Petrungaro
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | | | - Christian Pichlo
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Kay Hofmann
- Institute of Genetics, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Wu QQ, Zhao M, Huang GZ, Zheng ZN, Chen Y, Zeng WS, Lv XZ. Fibroblast Activation Protein (FAP) Overexpression Induces Epithelial-Mesenchymal Transition (EMT) in Oral Squamous Cell Carcinoma by Down-Regulating Dipeptidyl Peptidase 9 (DPP9). Onco Targets Ther 2020; 13:2599-2611. [PMID: 32273729 PMCID: PMC7113806 DOI: 10.2147/ott.s243417] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Fibroblast activation protein (FAP) acts as a tumor promoter via epithelial–mesenchymal transition (EMT) in human oral squamous cell carcinoma (OSCC). The present study was designed to investigate the FAP targeting proteins and explore the precise mechanism by which FAP promotes EMT in OSCC. Patients and Methods Proteins interacting with FAP were found and filtered by immunoprecipitation-mass spectrometry (IP-MS). Both DPP9 protein and mRNA were examined in 90 paired OSCC samples and matched normal tissue. DPP9 knockdown was conducted to determine its function in OSCC in vitro and in vivo. Results Dipeptidyl peptidase 9 (DPP9) was identified as interacting with FAP intracellularly by IP-MS. The levels of both DPP9 protein and mRNA were down-regulated in OSCC tissue. Lower DPP9 expression was correlated with unfavorable survival rates of OSCC patients. DPP9 knockdown accelerates the proliferation of OSCC cells in vitro and in vivo. Overexpression of FAP leads to a reduction in DPP9 expression. Likewise, DPP9 overexpression reverses the proliferation, migration, invasion and EMT induced by FAP during OSCC. Conclusion Our study finds that FAP promotes EMT of OSCC by down-regulating DPP9 in a non-enzymatic manner. FAP-DPP9 pathway could be a potential therapeutic target of OSCC.
Collapse
Affiliation(s)
- Qing-Qing Wu
- Department of Oral & Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Meng Zhao
- Department of Oral & Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Guang-Zhao Huang
- Department of Oral & Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ze-Nan Zheng
- Department of Oral & Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuechuan Chen
- Department of Oral & Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Wei-Sen Zeng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiao-Zhi Lv
- Department of Oral & Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Gall MG, Zhang HE, Lee Q, Jolly CJ, McCaughan GW, Cook A, Roediger B, Gorrell MD. Immune regeneration in irradiated mice is not impaired by the absence of DPP9 enzymatic activity. Sci Rep 2019; 9:7292. [PMID: 31086209 PMCID: PMC6513830 DOI: 10.1038/s41598-019-43739-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/29/2019] [Indexed: 01/21/2023] Open
Abstract
The ubiquitous intracellular protease dipeptidyl peptidase 9 (DPP9) has roles in antigen presentation and B cell signaling. To investigate the importance of DPP9 in immune regeneration, primary and secondary chimeric mice were created in irradiated recipients using fetal liver cells and adult bone marrow cells, respectively, using wild-type (WT) and DPP9 gene-knockin (DPP9S729A) enzyme-inactive mice. Immune cell reconstitution was assessed at 6 and 16 weeks post-transplant. Primary chimeric mice successfully regenerated neutrophils, natural killer, T and B cells, irrespective of donor cell genotype. There were no significant differences in total myeloid cell or neutrophil numbers between DPP9-WT and DPP9S729A-reconstituted mice. In secondary chimeric mice, cells of DPP9S729A-origin cells displayed enhanced engraftment compared to WT. However, we observed no differences in myeloid or lymphoid lineage reconstitution between WT and DPP9S729A donors, indicating that hematopoietic stem cell (HSC) engraftment and self-renewal is not diminished by the absence of DPP9 enzymatic activity. This is the first report on transplantation of bone marrow cells that lack DPP9 enzymatic activity.
Collapse
Affiliation(s)
- Margaret G Gall
- Centenary Institute, The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Hui Emma Zhang
- Centenary Institute, The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Quintin Lee
- Centenary Institute, The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Christopher J Jolly
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Geoffrey W McCaughan
- Centenary Institute, The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Adam Cook
- Centenary Institute, The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Ben Roediger
- Centenary Institute, The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Mark D Gorrell
- Centenary Institute, The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia.
| |
Collapse
|
18
|
Enz N, Vliegen G, De Meester I, Jungraithmayr W. CD26/DPP4 - a potential biomarker and target for cancer therapy. Pharmacol Ther 2019; 198:135-159. [PMID: 30822465 DOI: 10.1016/j.pharmthera.2019.02.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD26/dipeptidyl peptidase (DPP)4 is a membrane-bound protein found in many cell types of the body, and a soluble form is present in body fluids. There is longstanding evidence that various primary tumors and also metastases express CD26/DPP4 to a variable extent. By cleaving dipeptides from peptides with a proline or alanine in the penultimate position at the N-terminus, it regulates the activity of incretin hormones, chemokines and many other peptides. Due to these effects and interactions with other molecules, a tumor promoting or suppressing role can be attributed to CD26/DPP4. In this review, we discuss the existing evidence on the expression of soluble or membrane-bound CD26/DPP4 in malignant diseases, along with the most recent findings on CD26/DPP4 as a therapeutic target in specific malignancies. The expression and possible involvement of the related DPP8 and DPP9 in cancer are also reviewed. A higher expression of CD26/DPP4 is found in a wide variety of tumor entities, however more research on CD26/DPP4 in the tumor microenvironment is needed to fully explore its use as a tumor biomarker. Circulating soluble CD26/DPP4 has also been studied as a cancer biomarker, however, the observed decrease in most cancer patients does not seem to be cancer specific. Encouraging results from experimental work and a recently reported first phase clinical trial targeting CD26/DPP4 in mesothelioma, renal and urological tumors pave the way for follow-up clinical studies, also in other tumor entities, possibly leading to the development of more effective complementary therapies against cancer.
Collapse
Affiliation(s)
- Njanja Enz
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany.
| |
Collapse
|
19
|
Li Y, Zhang J, Zhou Q, Wang H, Xie S, Yang X, Ji P, Zhang W, He T, Liu Y, Wang K, Li X, Shi J, Hu D. Linagliptin inhibits high glucose-induced transdifferentiation of hypertrophic scar-derived fibroblasts to myofibroblasts via IGF/Akt/mTOR signalling pathway. Exp Dermatol 2018; 28:19-27. [PMID: 30308704 DOI: 10.1111/exd.13800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/05/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Yan Li
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Julei Zhang
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Qin Zhou
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Songtao Xie
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Peng Ji
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Wanfu Zhang
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Ting He
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Xiaoqiang Li
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| |
Collapse
|
20
|
Kim M, von Muenchow L, Le Meur T, Kueng B, Gapp B, Weber D, Dietrich W, Kovarik J, Rolink AG, Ksiazek I. DPP9 enzymatic activity in hematopoietic cells is dispensable for mouse hematopoiesis. Immunol Lett 2018; 198:60-65. [PMID: 29709545 DOI: 10.1016/j.imlet.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/09/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Dipeptidyl peptidase 9 (DPP9) is a ubiquitously expressed intracellular prolyl peptidase implicated in immunoregulation. However, its physiological relevance in the immune system remains largely unknown. We investigated the role of DPP9 enzyme in immune system by characterizing DPP9 knock-in mice expressing a catalytically inactive S729A mutant of DPP9 enzyme (DPP9ki/ki mice). DPP9ki/ki mice show reduced number of lymphoid and myeloid cells in fetal liver and postnatal blood but their hematopoietic cells are fully functional and able to reconstitute lymphoid and myeloid lineages even in competitive mixed chimeras. These studies demonstrate that inactivation of DPP9 enzymatic activity does not lead to any perturbations in mouse hematopoiesis.
Collapse
Affiliation(s)
- Munkyung Kim
- Novartis Institute for Biomedical Research, CH-4056, Basel, Switzerland
| | - Lilly von Muenchow
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Thomas Le Meur
- Novartis Institute for Biomedical Research, CH-4056, Basel, Switzerland
| | - Benjamin Kueng
- Novartis Institute for Biomedical Research, CH-4056, Basel, Switzerland
| | - Berangere Gapp
- Novartis Institute for Biomedical Research, CH-4056, Basel, Switzerland
| | - Delphine Weber
- Novartis Institute for Biomedical Research, CH-4056, Basel, Switzerland
| | | | - Jiri Kovarik
- Novartis Institute for Biomedical Research, CH-4056, Basel, Switzerland
| | - Antonius G Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Iwona Ksiazek
- Novartis Institute for Biomedical Research, CH-4056, Basel, Switzerland.
| |
Collapse
|
21
|
Buljevic S, Detel D, Pugel EP, Varljen J. The effect of CD26-deficiency on dipeptidyl peptidase 8 and 9 expression profiles in a mouse model of Crohn's disease. J Cell Biochem 2018; 119:6743-6755. [PMID: 29693275 DOI: 10.1002/jcb.26867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 12/17/2022]
Abstract
The involvement of dipeptidyl peptidase (DP) IV/CD26 (DPP IV/CD26) family members in the pathogenesis of Crohn's disease (CD), an autoimmune inflammatory condition of the gut, is effected mainly through proteolytic cleavage of immunomodulatory substrates and DPP IV/CD26's costimulatory function. DP8 and DP9 are proteases with diverse functions including cell interactions, apoptosis, and immune response but their localization remains to be clarified. We assessed the impact of DPP IV/CD26 deficiency (CD26-/- ) on the expression profiles of DP8 and DP9 by qPCR and immunodetection as well as quantified DP8/9 enzyme activity in distinctive phases of a chemically-induced CD model in mice. CD26-/- did not affect colon DP8 mRNA expression, while the physiological concentration of DP8 protein is decreased in CD26-/- mice but rises in inflammation (P < 0.05). On the other hand, DP9 mRNA level is significantly increased in CD26-/- mice in inflammation as well as healing with the DP9 concentration being almost twofold increased (P < 0.05) in all experimental points in CD26-/- mice compared to wild-type indicating the expected up-regulation in CD26-/- conditions. Surprisingly, dominantly intracellular DP8 and DP9 were found in abundance in serum. DP8/9 activity is decreased in the inflamed colon, whereas its contribution to the overall serum DPP IV/CD26-like activity is negligible, suggesting the importance of their extra-enzymatic functions. To summarize, CD induction generated gene, protein and enzymatic changes of DP8 and DP9 so their involvement in inflammation development and/or healing process is implicated, especially in CD26-/- , and the question of their subcellular localization should be revised.
Collapse
Affiliation(s)
- Suncica Buljevic
- Faculty of Medicine, Department of Chemistry and Biochemistry, University of Rijeka, Rijeka, Croatia
| | - Dijana Detel
- Faculty of Medicine, Department of Chemistry and Biochemistry, University of Rijeka, Rijeka, Croatia
| | - Ester P Pugel
- Faculty of Medicine, Department of Histology and Embryology, University of Rijeka, Rijeka, Croatia
| | - Jadranka Varljen
- Faculty of Medicine, Department of Chemistry and Biochemistry, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
22
|
Antonyan A, Schlenzig D, Schilling S, Naumann M, Sharoyan S, Mardanyan S, Demuth HU. Concerted action of dipeptidyl peptidase IV and glutaminyl cyclase results in formation of pyroglutamate-modified amyloid peptides in vitro. Neurochem Int 2017; 113:112-119. [PMID: 29224965 DOI: 10.1016/j.neuint.2017.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 11/18/2022]
Abstract
Compelling evidence suggests a crucial role of amyloid beta peptides (Aβ(1-40/42)) in the etiology of Alzheimer's disease (AD). The N-terminal truncation of Aβ(1-40/42) and their modification, e.g. by glutaminyl cyclase (QC), is expected to enhance the amyloid toxicity. In this work, the MALDI-TOF mass spectrometry application proved N-terminal cleavage of Aβ(1-40/42) by purified dipeptidyl peptidase IV (DPPIV) in vitro observed earlier. The subsequent transformation of resulted Aβ(3-40/42) to pE-Aβ(3-40/42) in QC catalyzed glutamate cyclization was manifested. Hence, consecutive conversion of Aβ(1-40/42) by DPPIV and QC can be assumed as a potential mechanism of formation of non-degrading pyroglutamated pE-Aβ(3-40/42), which might accumulate and contribute to AD progression. The in vitro acceleration of Aβ(1-40) aggregation in the simultaneous presence of DPPIV and QC was shown also.
Collapse
Affiliation(s)
- Alvard Antonyan
- H. Buniatian Institute of Biochemistry of Armenian NAS, Yerevan 0014, Armenia.
| | - Dagmar Schlenzig
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Marcel Naumann
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Svetlana Sharoyan
- H. Buniatian Institute of Biochemistry of Armenian NAS, Yerevan 0014, Armenia
| | - Sona Mardanyan
- H. Buniatian Institute of Biochemistry of Armenian NAS, Yerevan 0014, Armenia
| | - Hans-Ulrich Demuth
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| |
Collapse
|
23
|
Kim M, Minoux M, Piaia A, Kueng B, Gapp B, Weber D, Haller C, Barbieri S, Namoto K, Lorenz T, Wirsching J, Bassilana F, Dietrich W, Rijli FM, Ksiazek I. DPP9 enzyme activity controls survival of mouse migratory tongue muscle progenitors and its absence leads to neonatal lethality due to suckling defect. Dev Biol 2017; 431:297-308. [PMID: 28887018 DOI: 10.1016/j.ydbio.2017.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/16/2017] [Accepted: 09/03/2017] [Indexed: 01/23/2023]
Abstract
Dipeptidyl peptidase 9 (DPP9) is an intracellular N-terminal post-proline-cleaving enzyme whose physiological function remains largely unknown. We investigated the role of DPP9 enzyme in vivo by characterizing knock-in mice expressing a catalytically inactive mutant form of DPP9 (S729A; DPP9ki/ki mice). We show that DPP9ki/ki mice die within 12-18h after birth. The neonatal lethality can be rescued by manual feeding, indicating that a suckling defect is the primary cause of neonatal lethality. The suckling defect results from microglossia, and is characterized by abnormal formation of intrinsic muscles at the distal tongue. In DPP9ki/ki mice, the number of occipital somite-derived migratory muscle progenitors, forming distal tongue intrinsic muscles, is reduced due to increased apoptosis. In contrast, intrinsic muscles of the proximal tongue and extrinsic tongue muscles, which derive from head mesoderm, develop normally in DPP9ki/ki mice. Thus, lack of DPP9 activity in mice leads to impaired tongue development, suckling defect and subsequent neonatal lethality due to impaired survival of a specific subset of migratory tongue muscle progenitors.
Collapse
Affiliation(s)
- Munkyung Kim
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Alessandro Piaia
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Benjamin Kueng
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Berangere Gapp
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Delphine Weber
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Corinne Haller
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Samuel Barbieri
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Kenji Namoto
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Thorsten Lorenz
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | - Johann Wirsching
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | | | | | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Iwona Ksiazek
- Novartis Institute for Biomedical Research, CH-4056 Basel, Switzerland.
| |
Collapse
|
24
|
Zapletal E, Cupic B, Gabrilovac J. Expression, subcellular localisation, and possible roles of dipeptidyl peptidase 9 (DPP9) in murine macrophages. Cell Biochem Funct 2017; 35:124-137. [DOI: 10.1002/cbf.3256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 01/23/2017] [Accepted: 01/26/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Emilija Zapletal
- Laboratory for Experimental Haematology, Immunology and Oncology, Division of Molecular Medicine; Rudjer Boskovic Institute; Zagreb Croatia
| | - Barbara Cupic
- Laboratory for Experimental Haematology, Immunology and Oncology, Division of Molecular Medicine; Rudjer Boskovic Institute; Zagreb Croatia
| | - Jelka Gabrilovac
- Laboratory for Experimental Haematology, Immunology and Oncology, Division of Molecular Medicine; Rudjer Boskovic Institute; Zagreb Croatia
| |
Collapse
|
25
|
Vliegen G, Raju TK, Adriaensen D, Lambeir AM, De Meester I. The expression of proline-specific enzymes in the human lung. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:130. [PMID: 28462210 DOI: 10.21037/atm.2017.03.36] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathophysiology of lung diseases is very complex and proteolytic enzymes may play a role or could be used as biomarkers. In this review, the literature was searched to make an overview of what is known on the expression of the proline-specific peptidases dipeptidyl peptidase (DPP) 4, 8, 9, prolyl oligopeptidase (PREP) and fibroblast activation protein α (FAP) in the healthy and diseased lung. Search terms included asthma, chronic obstructive pulmonary disease (COPD), lung cancer, fibrosis, ischemia reperfusion injury and pneumonia. Knowledge on the loss or gain of protein expression and activity during disease might tie these enzymes to certain cell types, substrates or interaction partners that are involved in the pathophysiology of the disease, ultimately leading to the elucidation of their functional roles and a potential therapeutic target. Most data could be found on DPP4, while the other enzymes are less explored. Published data however often appear to be conflicting, the applied methods divers and the specificity of the assays used questionable. In conclusion, information on the expression of the proline-specific peptidases in the healthy and diseased lung is lacking, begging for further well-designed research.
Collapse
Affiliation(s)
- Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tom K Raju
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
26
|
Tang Z, Li J, Shen Q, Feng J, Liu H, Wang W, Xu L, Shi G, Ye X, Ge M, Zhou X, Ni S. Contribution of upregulated dipeptidyl peptidase 9 (DPP9) in promoting tumoregenicity, metastasis and the prediction of poor prognosis in non-small cell lung cancer (NSCLC). Int J Cancer 2017; 140:1620-1632. [PMID: 27943262 PMCID: PMC5324565 DOI: 10.1002/ijc.30571] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/08/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase 9 (DPP9) is encoded by DPP9, which belongs to the DPP4 gene family. Proteins encoded by these genes have unique peptidase and extra‐enzymatic functions that have been linked to various diseases including cancers. Here, we describe the expression pattern and biological function of DPP9 in non‐small‐cell lung cancer (NSCLC). The repression of DPP9 expression by small interfering RNA inhibited cell proliferation, migration, and invasion. Moreover, we explored the role of DPP9 in regulating epithelial‐mesenchymal transition (EMT). The epithelial markers E‐cadherin and MUC1 were significantly increased, while mesenchymal markers vimentin and S100A4 were markedly decreased in DPP9 knockdown cells. The downregulation of DPP9 in the NSCLC cells induced the expression of apoptosis‐associated proteins both in vitro and in vivo. We investigated the protein expression levels of DPP9 by tissue microarray immunohistochemical assay (TMA‐IHC) (n = 217). Further we found mRNA expression levels of DPP9 in 30 pairs of clinical NSCLC tissues were significantly lower than in the adjacent non‐cancerous tissues. Survival analysis showed that the overexpression of DPP9 was a significant independent factor for poor 5‐year overall survival in patients with NSCLC (p = 0.003). Taken together, DPP9 expression correlates with poor overall survival in NSCLC. What's new? Non‐small‐cell lung cancer (NSCLC) is associated with multiple genetic and epigenetic changes. Nonetheless, mechanisms underlying its initiation and progression are not well understood. The present study identifies a role for dipeptidyl peptidase 9 (DPP9), a DPP4 family member with suspected influence on tumor initiation and metastasis. In lung cancer cells in vitro, DPP9 repression inhibited cell proliferation, migration, and invasion, while its repression in vivo dramatically slowed tumor growth, greatly reducing tumor volume in DPP9 knockdown mice. In clinical NSCLC specimens, DPP9 upregulation was significantly associated with advanced TNM stage and was negatively prognostic for overall survival.
Collapse
Affiliation(s)
- Zhiyuan Tang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jun Li
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Qin Shen
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Hua Liu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Liqin Xu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Guanglin Shi
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xumei Ye
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Min Ge
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaoyu Zhou
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Songshi Ni
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
27
|
Gabrilovac J, Čupić B, Zapletal E, Kraus O, Jakić-Razumović J. Dipeptidyl peptidase 9 (DPP9) in human skin cells. Immunobiology 2017; 222:327-342. [DOI: 10.1016/j.imbio.2016.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/11/2016] [Accepted: 09/17/2016] [Indexed: 12/20/2022]
|
28
|
Pleshkan VV, Alekseenko IV, Tyulkina DV, Kyzmich AI, Zinovyeva MV, Sverdlov ED. Fibroblast activation protein (FAP) as a possible target of an antitumor strategy. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2017. [DOI: 10.3103/s0891416816030083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Sinnathurai P, Lau W, Vieira de Ribeiro AJ, Bachovchin WW, Englert H, Howe G, Spencer D, Manolios N, Gorrell MD. Circulating fibroblast activation protein and dipeptidyl peptidase 4 in rheumatoid arthritis and systemic sclerosis. Int J Rheum Dis 2016; 21:1915-1923. [PMID: 27990763 DOI: 10.1111/1756-185x.13031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM To quantify circulating fibroblast activation protein (cFAP) and dipeptidyl peptidase 4 (cDPP4) protease activities in patients with rheumatoid arthritis (RA), systemic sclerosis (SSc), and a control group with mechanical back pain and to correlate plasma levels with disease characteristics. METHODS Plasma was collected from patients with RA (n = 73), SSc (n = 37) and control subjects (n = 26). DPP4 and FAP were quantified using specific enzyme activity assays. RESULTS Median cDPP4 was significantly lower in the RA group (P = 0.02), and SSc group (P = 0.002) compared with controls. There were no significant differences in median cFAP between the three groups. DPP4 and FAP demonstrated a negative correlation with inflammatory markers and duration of disease. There were no associations with disease subtypes in RA, including seropositive and erosive disease. Decreased cDPP4 was found in SSc patients with myositis. Plasma FAP was lower in RA patients receiving prednisone (P = 0.001) or leflunomide (P = 0.04), but higher with biologic agents (P = 0.01). RA patients receiving leflunomide also had decreased cDPP4 (P = 0.014). SSc patients receiving prednisone (P = 0.02) had lower cDPP4 but there was no association with cFAP. CONCLUSIONS No association was found between cFAP and RA or SSc. Plasma DPP4 was decreased in RA and SSc when compared with controls. cDPP4 and cFAP correlated negatively with inflammatory markers and there were no significant correlations with disease characteristics in this RA cohort.
Collapse
Affiliation(s)
| | - Wendy Lau
- Rheumatology Department, Westmead Hospital, Westmead, New South Wales, Australia
| | - Ana Julia Vieira de Ribeiro
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| | - William W Bachovchin
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Helen Englert
- Rheumatology Department, Westmead Hospital, Westmead, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Graydon Howe
- Rheumatology Department, Westmead Hospital, Westmead, New South Wales, Australia
| | - David Spencer
- Rheumatology Department, Westmead Hospital, Westmead, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas Manolios
- Rheumatology Department, Westmead Hospital, Westmead, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark D Gorrell
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Wilson CH, Zhang HE, Gorrell MD, Abbott CA. Dipeptidyl peptidase 9 substrates and their discovery: current progress and the application of mass spectrometry-based approaches. Biol Chem 2016; 397:837-56. [DOI: 10.1515/hsz-2016-0174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/04/2016] [Indexed: 12/16/2022]
Abstract
Abstract
The enzyme members of the dipeptidyl peptidase 4 (DPP4) gene family have the very unusual capacity to cleave the post-proline bond to release dipeptides from the N-terminus of peptide/protein substrates. DPP4 and related enzymes are current and potential therapeutic targets in the treatment of type II diabetes, inflammatory conditions and cancer. Despite this, the precise biological function of individual dipeptidyl peptidases (DPPs), other than DPP4, and knowledge of their in vivo substrates remains largely unknown. For many years, identification of physiological DPP substrates has been difficult due to limitations in the available tools. Now, with advances in mass spectrometry based approaches, we can discover DPP substrates on a system wide-scale. Application of these approaches has helped reveal some of the in vivo natural substrates of DPP8 and DPP9 and their unique biological roles. In this review, we provide a general overview of some tools and approaches available for protease substrate discovery and their applicability to the DPPs with a specific focus on DPP9 substrates. This review provides comment upon potential approaches for future substrate elucidation.
Collapse
|
31
|
Henderson JM, Zhang HE, Polak N, Gorrell MD. Hepatocellular carcinoma: Mouse models and the potential roles of proteases. Cancer Lett 2016; 387:106-113. [PMID: 27045475 DOI: 10.1016/j.canlet.2016.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/24/2016] [Accepted: 03/24/2016] [Indexed: 02/07/2023]
Abstract
Primary liver cancer is the second most common cause of mortality from cancer. The most common models of hepatocellular carcinoma, which use a chemical and/or metabolic insult, xenograft, or genetic manipulation, are discussed in this review. In the tumour microenvironment lymphocytes, fibroblasts, endothelial cells and antigen presenting cells are important determinants of cell fate. These cells make a range of proteases that modify the biological activity of other proteins, particularly extracellular matrix proteins that alter cell migration of tumour cells, fibroblasts and leucocytes, and chemokines that alter leucocyte migration. The DPP4 family of post-proline peptidase enzymes modifies cell movement and the activities of many bioactive molecules including growth factors and chemokines.
Collapse
Affiliation(s)
- James M Henderson
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia
| | - Hui Emma Zhang
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia
| | - Natasa Polak
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia
| | - Mark D Gorrell
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia.
| |
Collapse
|
32
|
Wagner L, Klemann C, Stephan M, von Hörsten S. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins. Clin Exp Immunol 2016; 184:265-83. [PMID: 26671446 DOI: 10.1111/cei.12757] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022] Open
Abstract
Dipeptidyl peptidase (DPP) 4 (CD26, DPP4) is a multi-functional protein involved in T cell activation by co-stimulation via its association with adenosine deaminase (ADA), caveolin-1, CARMA-1, CD45, mannose-6-phosphate/insulin growth factor-II receptor (M6P/IGFII-R) and C-X-C motif receptor 4 (CXC-R4). The proline-specific dipeptidyl peptidase also modulates the bioactivity of several chemokines. However, a number of enzymes displaying either DPP4-like activities or representing structural homologues have been discovered in the past two decades and are referred to as DPP4 activity and/or structure homologue (DASH) proteins. Apart from DPP4, DASH proteins include fibroblast activation protein alpha (FAP), DPP8, DPP9, DPP4-like protein 1 (DPL1, DPP6, DPPX L, DPPX S), DPP4-like protein 2 (DPL2, DPP10) from the DPP4-gene family S9b and structurally unrelated enzyme DPP2, displaying DPP4-like activity. In contrast, DPP6 and DPP10 lack enzymatic DPP4-like activity. These DASH proteins play important roles in the immune system involving quiescence (DPP2), proliferation (DPP8/DPP9), antigen-presenting (DPP9), co-stimulation (DPP4), T cell activation (DPP4), signal transduction (DPP4, DPP8 and DPP9), differentiation (DPP4, DPP8) and tissue remodelling (DPP4, FAP). Thus, they are involved in many pathophysiological processes and have therefore been proposed for potential biomarkers or even drug targets in various cancers (DPP4 and FAP) and inflammatory diseases (DPP4, DPP8/DPP9). However, they also pose the challenge of drug selectivity concerning other DASH members for better efficacy and/or avoidance of unwanted side effects. Therefore, this review unravels the complex roles of DASH proteins in immunology.
Collapse
Affiliation(s)
- L Wagner
- Deutschsprachige Selbsthilfegruppe für Alkaptonurie (DSAKU) e.V, Stuttgart.,Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - C Klemann
- Centre of Paediatric Surgery.,Centre for Paediatrics and Adolescent Medicine
| | - M Stephan
- Clinic for Psychosomatics and Psychotherapy, Hannover Medical School, Hannover
| | - S von Hörsten
- Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
33
|
Chen Y, Gall MG, Zhang H, Keane FM, McCaughan GW, Yu DMT, Gorrell MD. Dipeptidyl peptidase 9 enzymatic activity influences the expression of neonatal metabolic genes. Exp Cell Res 2016; 342:72-82. [PMID: 26930324 DOI: 10.1016/j.yexcr.2016.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 02/07/2023]
Abstract
The success of dipeptidyl peptidase 4 (DPP4) inhibition as a type 2 diabetes therapy has encouraged deeper examination of the post-proline DPP enzymes. DPP9 has been implicated in immunoregulation, disease pathogenesis and metabolism. The DPP9 enzyme-inactive (Dpp9 gene knock-in; Dpp9 gki) mouse displays neonatal lethality, suggesting that DPP9 enzyme activity is essential in neonatal development. Here we present gene expression patterns in these Dpp9 gki neonatal mice. Taqman PCR arrays and sequential qPCR assays on neonatal liver and gut revealed differential expression of genes involved in cell growth, innate immunity and metabolic pathways including long-chain-fatty-acid uptake and esterification, long-chain fatty acyl-CoA binding, trafficking and transport into mitochondria, lipoprotein metabolism, adipokine transport and gluconeogenesis in the Dpp9 gki mice compared to wild type. In a liver cell line, Dpp9 knockdown increased AMP-activated protein kinase phosphorylation, which suggests a potential mechanism. DPP9 protein levels in liver cells were altered by treatment with EGF, HGF, insulin or palmitate, suggesting potential natural DPP9 regulators. These gene expression analyses of a mouse strain deficient in DPP9 enzyme activity show, for the first time, that DPP9 enzyme activity regulates metabolic pathways in neonatal liver and gut.
Collapse
Affiliation(s)
- Yiqian Chen
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Margaret G Gall
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Hui Zhang
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Fiona M Keane
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Geoffrey W McCaughan
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Denise M T Yu
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mark D Gorrell
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
34
|
Pleshkan VV, Alekseenko IV, Tyulkina DV, Kyzmich AI, Zinovyeva MV, Sverdlov ED. Fibroblast activation protein (FAP) as a possible target of the antitumor strategy. ACTA ACUST UNITED AC 2016. [DOI: 10.18821/0208-0613-2016-34-3-90-97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Wong PF, Gall MG, Bachovchin WW, McCaughan GW, Keane FM, Gorrell MD. Neuropeptide Y is a physiological substrate of fibroblast activation protein: Enzyme kinetics in blood plasma and expression of Y2R and Y5R in human liver cirrhosis and hepatocellular carcinoma. Peptides 2016; 75:80-95. [PMID: 26621486 DOI: 10.1016/j.peptides.2015.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/17/2015] [Accepted: 11/20/2015] [Indexed: 12/27/2022]
Abstract
Fibroblast activation protein (FAP) is a dipeptidyl peptidase (DPP) and endopeptidase that is weakly expressed in normal adult human tissues but is greatly up-regulated in activated mesenchymal cells of tumors and chronically injured tissue. The identities and locations of target substrates of FAP are poorly defined, in contrast to the related protease DPP4. This study is the first to characterize the physiological substrate repertoire of the DPP activity of endogenous FAP present in plasma. Four substrates, neuropeptide Y (NPY), peptide YY, B-type natriuretic peptide and substance P, were analyzed by mass spectrometry following proteolysis in human or mouse plasma, and by in vivo localization in human liver tissues with cirrhosis and hepatocellular carcinoma (HCC). NPY was the most efficiently cleaved substrate of both human and mouse FAP, whereas all four peptides were efficiently cleaved by endogenous DPP4, indicating that the in vivo degradomes of FAP and DPP4 differ. All detectable DPP-specific proteolysis and C-terminal processing of these neuropeptides was attributable to FAP and DPP4, and plasma kallikrein, respectively, highlighting their combined physiological significance in the regulation of these neuropeptides. In cirrhotic liver and HCC, NPY and its receptor Y2R, but not Y5R, were increased in hepatocytes near the parenchymal-stromal interface where there is an opportunity to interact with FAP expressed on nearby activated mesenchymal cells in the stroma. These novel findings provide insights into the substrate specificity of FAP, which differs greatly from DPP4, and reveal a potential function for FAP in neuropeptide regulation within liver and cancer biology.
Collapse
Affiliation(s)
- Pok Fai Wong
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Margaret G Gall
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - William W Bachovchin
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Geoffrey W McCaughan
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Fiona M Keane
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Mark D Gorrell
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney Medical School, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
36
|
Waumans Y, Baerts L, Kehoe K, Lambeir AM, De Meester I. The Dipeptidyl Peptidase Family, Prolyl Oligopeptidase, and Prolyl Carboxypeptidase in the Immune System and Inflammatory Disease, Including Atherosclerosis. Front Immunol 2015; 6:387. [PMID: 26300881 PMCID: PMC4528296 DOI: 10.3389/fimmu.2015.00387] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/13/2015] [Indexed: 12/19/2022] Open
Abstract
Research from over the past 20 years has implicated dipeptidyl peptidase (DPP) IV and its family members in many processes and different pathologies of the immune system. Most research has been focused on either DPPIV or just a few of its family members. It is, however, essential to consider the entire DPP family when discussing any one of its members. There is a substantial overlap between family members in their substrate specificity, inhibitors, and functions. In this review, we provide a comprehensive discussion on the role of prolyl-specific peptidases DPPIV, FAP, DPP8, DPP9, dipeptidyl peptidase II, prolyl carboxypeptidase, and prolyl oligopeptidase in the immune system and its diseases. We highlight possible therapeutic targets for the prevention and treatment of atherosclerosis, a condition that lies at the frontier between inflammation and cardiovascular disease.
Collapse
Affiliation(s)
- Yannick Waumans
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Lesley Baerts
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Kaat Kehoe
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| |
Collapse
|
37
|
Zhang H, Maqsudi S, Rainczuk A, Duffield N, Lawrence J, Keane FM, Justa-Schuch D, Geiss-Friedlander R, Gorrell MD, Stephens AN. Identification of novel dipeptidyl peptidase 9 substrates by two-dimensional differential in-gel electrophoresis. FEBS J 2015; 282:3737-57. [PMID: 26175140 DOI: 10.1111/febs.13371] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/22/2015] [Accepted: 07/07/2015] [Indexed: 12/26/2022]
Abstract
Dipeptidyl peptidase 9 (DPP9) is a member of the S9B/DPPIV (DPP4) serine protease family, which cleaves N-terminal dipeptides at an Xaa-Pro consensus motif. Cytoplasmic DPP9 has roles in epidermal growth factor signalling and in antigen processing, whilst the role of the recently discovered nuclear form of DPP9 is unknown. Mice lacking DPP9 proteolytic activity die as neonates. We applied a modified 2D differential in-gel electrophoresis approach to identify novel DPP9 substrates, using mouse embryonic fibroblasts lacking endogenous DPP9 activity. A total of 111 potential new DPP9 substrates were identified, with nine proteins/peptides confirmed as DPP9 substrates by MALDI-TOF or immunoblotting. Moreover, we also identified the dipeptide Val-Ala as a consensus site for DPP9 cleavage that was not recognized by DPP8, suggesting different in vivo roles for these closely related enzymes. The relative kinetics for the cleavage of these nine candidate substrates by DPP9, DPP8 and DPP4 were determined. This is the first identification of DPP9 substrates from cells lacking endogenous DPP9 activity. These data greatly expand the potential roles of DPP9 and suggest different in vivo roles for DPP9 and DPP8.
Collapse
Affiliation(s)
- Hui Zhang
- Molecular Hepatology, Liver Injury and Cancer Group, Centenary Institute, Sydney Medical School, University of Sydney, Australia
| | - Sadiqa Maqsudi
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Adam Rainczuk
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Nadine Duffield
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Josie Lawrence
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Fiona M Keane
- Molecular Hepatology, Liver Injury and Cancer Group, Centenary Institute, Sydney Medical School, University of Sydney, Australia
| | - Daniela Justa-Schuch
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Goettingen, Germany
| | - Ruth Geiss-Friedlander
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Goettingen, Germany
| | - Mark D Gorrell
- Molecular Hepatology, Liver Injury and Cancer Group, Centenary Institute, Sydney Medical School, University of Sydney, Australia
| | - Andrew N Stephens
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia.,Epworth Research Institute, Epworth HealthCare, Richmond, Victoria, Australia
| |
Collapse
|
38
|
Beckenkamp A, Willig JB, Santana DB, Nascimento J, Paccez JD, Zerbini LF, Bruno AN, Pilger DA, Wink MR, Buffon A. Differential Expression and Enzymatic Activity of DPPIV/CD26 Affects Migration Ability of Cervical Carcinoma Cells. PLoS One 2015. [PMID: 26222679 PMCID: PMC4519168 DOI: 10.1371/journal.pone.0134305] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dipeptidyl peptidase IV (DPPIV/CD26) is a transmembrane glycoprotein that inactivates or degrades some bioactive peptides and chemokines. For this reason, it regulates cell proliferation, migration and adhesion, showing its role in cancer processes. This enzyme is found mainly anchored onto the cell membrane, although it also has a soluble form, an enzymatically active isoform. In the present study, we investigated DPPIV/CD26 activity and expression in cervical cancer cell lines (SiHa, HeLa and C33A) and non-tumorigenic HaCaT cells. The effect of the DPPIV/CD26 inhibitor (sitagliptin phosphate) on cell migration and adhesion was also evaluated. Cervical cancer cells and keratinocytes exhibited DPPIV/CD26 enzymatic activity both membrane-bound and in soluble form. DPPIV/CD26 expression was observed in HaCaT, SiHa and C33A, while in HeLa cells it was almost undetectable. We observed higher migratory capacity of HeLa, when compared to SiHa. But in the presence of sitagliptin SiHa showed an increase in migration, indicating that, at least in part, cell migration is regulated by DPPIV/CD26 activity. Furthermore, in the presence of sitagliptin phosphate, SiHa and HeLa cells exhibited a significant reduction in adhesion. However this mechanism seems to be mediated independent of DPPIV/CD26. This study demonstrates, for the first time, the activity and expression of DPPIV/CD26 in cervical cancer cells and the effect of sitagliptin phosphate on cell migration and adhesion.
Collapse
Affiliation(s)
- Aline Beckenkamp
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Júlia Biz Willig
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Danielle Bertodo Santana
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jéssica Nascimento
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Juliano Domiraci Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group, Cape Town, South Africa
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group, Cape Town, South Africa
| | | | - Diogo André Pilger
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Andréia Buffon
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
39
|
Fujiwara K, Inoue T, Yorifuji N, Iguchi M, Sakanaka T, Narabayashi K, Kakimoto K, Nouda S, Okada T, Ishida K, Abe Y, Masuda D, Takeuchi T, Fukunishi S, Umegaki E, Akiba Y, Kaunitz JD, Higuchi K. Combined treatment with dipeptidyl peptidase 4 (DPP4) inhibitor sitagliptin and elemental diets reduced indomethacin-induced intestinal injury in rats via the increase of mucosal glucagon-like peptide-2 concentration. J Clin Biochem Nutr 2015; 56:155-62. [PMID: 25759522 PMCID: PMC4345177 DOI: 10.3164/jcbn.14-111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/06/2014] [Indexed: 12/31/2022] Open
Abstract
The gut incretin glucagon-like peptide-1 (GLP-1) and the intestinotropic hormone GLP-2 are released from enteroendocrine L cells in response to ingested nutrients. Treatment with an exogenous GLP-2 analogue increases intestinal villous mass and prevents intestinal injury. Since GLP-2 is rapidly degraded by dipeptidyl peptidase 4 (DPP4), DPP4 inhibition may be an effective treatment for intestinal ulcers. We measured mRNA expression and DPP enzymatic activity in intestinal segments. Mucosal DPP activity and GLP concentrations were measured after administration of the DPP4 inhibitor sitagliptin (STG). Small intestinal ulcers were induced by indomethacin (IM) injection. STG was given before IM treatment, or orally administered after IM treatment with or without an elemental diet (ED). DPP4 mRNA expression and enzymatic activity were high in the jejunum and ileum. STG dose-dependently suppressed ileal mucosal enzyme activity. Treatment with STG prior to IM reduced small intestinal ulcer scores. Combined treatment with STG and ED accelerated intestinal ulcer healing, accompanied by increased mucosal GLP-2 concentrations. The reduction of ulcers by ED and STG was reversed by co-administration of the GLP-2 receptor antagonist. DPP4 inhibition combined with luminal nutrients, which up-regulate mucosal concentrations of GLP-2, may be an effective therapy for the treatment of small intestinal ulcers.
Collapse
Affiliation(s)
- Kaori Fujiwara
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Takuya Inoue
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Naoki Yorifuji
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Munetaka Iguchi
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Taisuke Sakanaka
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Ken Narabayashi
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Kazuki Kakimoto
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Sadaharu Nouda
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Toshihiko Okada
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Kumi Ishida
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Yosuke Abe
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Daisuke Masuda
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Toshihisa Takeuchi
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Shinya Fukunishi
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Eiji Umegaki
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| | - Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System and School of Medicine, Department of Medicine, University of California, Los Angeles, California, USA
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System and School of Medicine, Department of Medicine, University of California, Los Angeles, California, USA ; Greater Los Angeles Veterans Affairs Healthcare System and School of Medicine, Department of Surgery, University of California, Los Angeles, California, USA
| | - Kazuhide Higuchi
- Second Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki City, Osaka 569-8686, Japan
| |
Collapse
|
40
|
Huan Y, Jiang Q, Liu JL, Shen ZF. Establishment of a dipeptidyl peptidases (DPP) 8/9 expressing cell model for evaluating the selectivity of DPP4 inhibitors. J Pharmacol Toxicol Methods 2015; 71:8-12. [DOI: 10.1016/j.vascn.2014.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 11/05/2014] [Accepted: 11/09/2014] [Indexed: 01/25/2023]
|
41
|
Zhang H, Chen Y, Wadham C, McCaughan GW, Keane FM, Gorrell MD. Dipeptidyl peptidase 9 subcellular localization and a role in cell adhesion involving focal adhesion kinase and paxillin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:470-80. [PMID: 25486458 DOI: 10.1016/j.bbamcr.2014.11.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase 9 (DPP9) is a ubiquitously expressed member of the DPP4 gene and protease family. Deciphering the biological functions of DPP9 and its roles in pathogenesis has implicated DPP9 in tumor biology, the immune response, apoptosis, intracellular epidermal growth factor-dependent signaling and cell adhesion and migration. We investigated the intracellular distribution of DPP9 chimeric fluorescent proteins and consequent functions of DPP9. We showed that while some DPP9 is associated with mitochondria, the strongest co-localization was with microtubules. Under steady state conditions, DPP9 was not seen at the plasma membrane, but upon stimulation with either phorbol 12-myristate 13-acetate or epidermal growth factor, some DPP9 re-distributed towards the ruffling membrane. DPP9 was seen at the leading edge of the migrating cell and co-localized with the focal adhesion proteins, integrin-β1 and talin. DPP9 gene silencing and treatment with a DPP8/DPP9 specific inhibitor both reduced cell adhesion and migration. Expression of integrin-β1 and talin was decreased in DPP9-deficient and DPP9-enzyme-inactive cells. There was a concomitant decrease in the phosphorylation of focal adhesion kinase and paxillin, indicating that DPP9 knockdown or enzyme inhibition suppressed the associated adhesion signaling pathway, causing impaired cell movement. These novel findings provide mechanistic insights into the regulatory role of DPP9 in cell movement, and may thus implicate DPP9 in tissue and tumor growth and metastasis.
Collapse
Affiliation(s)
- Hui Zhang
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Yiqian Chen
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Carol Wadham
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Geoffrey W McCaughan
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Fiona M Keane
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mark D Gorrell
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
42
|
Justa-Schuch D, Möller U, Geiss-Friedlander R. The amino terminus extension in the long dipeptidyl peptidase 9 isoform contains a nuclear localization signal targeting the active peptidase to the nucleus. Cell Mol Life Sci 2014; 71:3611-26. [PMID: 24562348 PMCID: PMC11113674 DOI: 10.1007/s00018-014-1591-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 12/25/2022]
Abstract
The intracellular prolyl peptidase DPP9 is implied to be involved in various cellular pathways including amino acid recycling, antigen maturation, cellular homeostasis, and viability. Interestingly, the major RNA transcript of DPP9 contains two possible translation initiation sites, which could potentially generate a longer (892 aa) and a shorter version (863 aa) of DPP9. Although the endogenous expression of the shorter DPP9 form has been previously verified, it is unknown whether the longer version is expressed, and what is its biological significance. By developing specific antibodies against the amino-terminal extension of the putative DPP9-long form, we demonstrate for the first time the endogenous expression of this longer isoform within cells. Furthermore, we show that DPP9-long represents a significant fraction of total DPP9 in cells, under steady-state conditions. Using biochemical cell fractionation assays in combination with immunofluorescence studies, we find the two isoforms localize to separate subcellular compartments. Whereas DPP9-short is present in the cytosol, DPP9-long localizes preferentially to the nucleus. This differential localization is attributed to a classical monopartite nuclear localization signal (K(K/R)X(K/R)) in the N-terminal extension of DPP9-long. Furthermore, we detect prolyl peptidase activity in nuclear fractions, which can be inhibited by specific DPP8/9 inhibitors. In conclusion, a considerable fraction of DPP9, which was previously considered as a purely cytosolic peptidase, localizes to the nucleus and is active there, raising the intriguing possibility that the longer DPP9 isoform may regulate the activity or stability of nuclear proteins, such as transcription factors.
Collapse
Affiliation(s)
- Daniela Justa-Schuch
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Goettingen, Humboldtallee 23, 37073 Goettingen, Germany
| | - Ulrike Möller
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Goettingen, Humboldtallee 23, 37073 Goettingen, Germany
| | - Ruth Geiss-Friedlander
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Goettingen, Humboldtallee 23, 37073 Goettingen, Germany
| |
Collapse
|
43
|
Osborne B, Yao TW, Wang XM, Chen Y, Kotan LD, Nadvi NA, Herdem M, McCaughan GW, Allen JD, Yu DM, Topaloglu AK, Gorrell MD. A rare variant in human fibroblast activation protein associated with ER stress, loss of enzymatic function and loss of cell surface localisation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1248-59. [DOI: 10.1016/j.bbapap.2014.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 02/07/2023]
|
44
|
Kwan JC, Liu Y, Ratnayake R, Hatano R, Kuribara A, Morimoto C, Ohnuma K, Paul VJ, Ye T, Luesch H. Grassypeptolides as natural inhibitors of dipeptidyl peptidase 8 and T-cell activation. Chembiochem 2014; 15:799-804. [PMID: 24591193 DOI: 10.1002/cbic.201300762] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Indexed: 01/29/2023]
Abstract
Natural products made by marine cyanobacteria are often highly modified peptides and depsipeptides that have the potential to act as inhibitors for proteases. In the interests of finding new protease inhibition activity and selectivity, grassypeptolide A (1) was screened against a panel of proteases and found to inhibit DPP8 selectively over DPP4. Grassypeptolides were also found to inhibit IL-2 production and proliferation in activated T-cells, consistent with a putative role of DPP8 in the immune system. These effects were also observed in Jurkat cells, and DPP activity in Jurkat cell cytosol was shown to be inhibited by grassypeptolides. In silico docking suggests two possible binding modes of grassypeptolides-at the active site of DPP8 and at one of the entrances to the internal cavity. Collectively these results suggest that grassypeptolides might be useful tool compounds in the study of DPP8 function.
Collapse
Affiliation(s)
- Jason C Kwan
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville FL 32610 (USA); Current address: Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison WI 53705 (USA)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The intrahepatic signalling niche of hedgehog is defined by primary cilia positive cells during chronic liver injury. J Hepatol 2014; 60:143-51. [PMID: 23978713 DOI: 10.1016/j.jhep.2013.08.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/02/2013] [Accepted: 08/05/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS In vertebrates, canonical Hedgehog (Hh) pathway activation requires Smoothened (SMO) translocation to the primary cilium (Pc), followed by a GLI-mediated transcriptional response. In addition, a similar gene regulation occurs in response to growth factors/cytokines, although independently of SMO signalling. The Hh pathway plays a critical role in liver fibrosis/regeneration, however, the mechanism of activation in chronic liver injury is poorly understood. This study aimed to characterise Hh pathway activation upon thioacetamide (TAA)-induced chronic liver injury in vivo by defining Hh-responsive cells, namely cells harbouring Pc and Pc-localised SMO. METHODS C57BL/6 mice (wild-type or Ptc1(+/-)) were TAA-treated. Liver injury and Hh ligand/pathway mRNA and protein expression were assessed in vivo. SMO/GLI manipulation and SMO-dependent/independent activation of GLI-mediated transcriptional response in Pc-positive (Pc(+)) cells were studied in vitro. RESULTS In vivo, Hh activation was progressively induced following TAA. At the epithelial-mesenchymal interface, injured hepatocytes produced Hh ligands. Progenitors, myofibroblasts, leukocytes and hepatocytes were GLI2(+). Pc(+) cells increased following TAA, but only EpCAM(+)/GLI2(+) progenitors were Pc(+)/SMO(+). In vitro, SMO knockdown/hGli3-R overexpression reduced proliferation/viability in Pc(+) progenitors, whilst increased proliferation occurred with hGli1 overexpression. HGF induced GLI transcriptional activity independently of Pc/SMO. Ptc1(+/-) mice exhibited increased progenitor, myofibroblast and fibrosis responses. CONCLUSIONS In chronic liver injury, Pc(+) progenitors receive Hh ligand signals and process it through Pc/SMO-dependent activation of GLI-mediated transcriptional response. Pc/SMO-independent GLI activation likely occurs in Pc(-)/GLI2(+) cells. Increased fibrosis in Hh gain-of-function mice likely occurs by primary progenitor expansion/proliferation and secondary fibrotic myofibroblast expansion, in close contact with progenitors.
Collapse
|
46
|
Keane FM, Yao TW, Seelk S, Gall MG, Chowdhury S, Poplawski SE, Lai JH, Li Y, Wu W, Farrell P, Vieira de Ribeiro AJ, Osborne B, Yu DMT, Seth D, Rahman K, Haber P, Topaloglu AK, Wang C, Thomson S, Hennessy A, Prins J, Twigg SM, McLennan SV, McCaughan GW, Bachovchin WW, Gorrell MD. Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs. FEBS Open Bio 2013; 4:43-54. [PMID: 24371721 PMCID: PMC3871272 DOI: 10.1016/j.fob.2013.12.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/04/2013] [Accepted: 12/04/2013] [Indexed: 02/08/2023] Open
Abstract
The protease fibroblast activation protein (FAP) is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAP's unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20- and 1.3-fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal-infected skin of unhealthy baboons. FAP activity was 14- to 18-fold greater in cirrhotic than in non-diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis. A novel synthetic fluorogenic substrate is proven to be FAP-specific. Mice have higher levels of circulating FAP activity compared to baboons or humans. No FAP activity was detected in urine or bile but bile contained high DPP4 activity. FAP activity is greatest in pancreas, uterus, salivary gland, skin and lymph node. FAP activity and protein is elevated in both serum and liver in human liver disease.
Collapse
Key Words
- ALD, alcoholic liver disease
- AMC, amino-4-methylcoumarin
- Biomarker
- DMSO, dimethyl sulfoxide
- DPP4, dipeptidyl peptidase 4
- Dipeptidyl peptidase
- EDTA, ethylene diamine tetra acetic acid
- FAP, fibroblast activation protein-α
- Fibroblast
- Fibrosis
- HCV, hepatitis C virus
- LDS, lithium dodecyl sulphate
- LN, lymph node
- Liver disease
- ND, non-diseased
- PBC, primary biliary cirrhosis
- PBMC, peripheral blood mononuclear cells
- PBS, phosphate-buffered saline
- PEP, prolyl endopeptidase
- PVDF, polyvinylidene fluoride
- Protease activity
- Protease substrates
- STLV, simian T-cell lymphotrophic virus
- gko, gene knock out
- het, heterozygous
- mAb, monoclonal antibody
- wt, wild type
- yrs, years
Collapse
Affiliation(s)
- Fiona M Keane
- Centenary Institute, Camperdown, NSW, Australia ; Sydney Medical School, University of Sydney, NSW, Australia
| | - Tsun-Wen Yao
- Centenary Institute, Camperdown, NSW, Australia ; Sydney Medical School, University of Sydney, NSW, Australia
| | | | - Margaret G Gall
- Centenary Institute, Camperdown, NSW, Australia ; Sydney Medical School, University of Sydney, NSW, Australia
| | - Sumaiya Chowdhury
- Centenary Institute, Camperdown, NSW, Australia ; Sydney Medical School, University of Sydney, NSW, Australia
| | - Sarah E Poplawski
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Jack H Lai
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Youhua Li
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Wengen Wu
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Penny Farrell
- Department of Renal Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ana Julia Vieira de Ribeiro
- Centenary Institute, Camperdown, NSW, Australia ; Sydney Medical School, University of Sydney, NSW, Australia
| | - Brenna Osborne
- Centenary Institute, Camperdown, NSW, Australia ; Sydney Medical School, University of Sydney, NSW, Australia
| | - Denise M T Yu
- Centenary Institute, Camperdown, NSW, Australia ; Sydney Medical School, University of Sydney, NSW, Australia
| | - Devanshi Seth
- Centenary Institute, Camperdown, NSW, Australia ; Drug Health Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Khairunnessa Rahman
- Drug Health Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Paul Haber
- Sydney Medical School, University of Sydney, NSW, Australia ; Drug Health Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - A Kemal Topaloglu
- Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Chuanmin Wang
- Sydney Medical School, University of Sydney, NSW, Australia ; Collaborative Transplantation Research Group, Bosch Institute, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Sally Thomson
- Sydney Medical School, University of Sydney, NSW, Australia ; Department of Renal Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Annemarie Hennessy
- Department of Renal Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia ; School of Medicine, University of Western Sydney, NSW, Australia
| | - John Prins
- Mater Medical Research Institute, University of Queensland, and Department of Endocrinology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Stephen M Twigg
- Sydney Medical School, University of Sydney, NSW, Australia ; Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Susan V McLennan
- Sydney Medical School, University of Sydney, NSW, Australia ; Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Geoffrey W McCaughan
- Centenary Institute, Camperdown, NSW, Australia ; Sydney Medical School, University of Sydney, NSW, Australia
| | - William W Bachovchin
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Mark D Gorrell
- Centenary Institute, Camperdown, NSW, Australia ; Sydney Medical School, University of Sydney, NSW, Australia
| |
Collapse
|
47
|
Tejera-Alhambra M, Casrouge A, de Andrés C, Ramos-Medina R, Alonso B, Vega J, Albert ML, Sánchez-Ramón S. Low DPP4 expression and activity in multiple sclerosis. Clin Immunol 2013; 150:170-83. [PMID: 24412911 DOI: 10.1016/j.clim.2013.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/31/2013] [Accepted: 11/18/2013] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is a prototypic Th1/Th17 chronic autoimmune disease of the central nervous system. Dipeptidyl peptidase 4 (DPP4 or CD26) is a multifunctional molecule involved in autoimmune diseases' pathophysiology. We sought to integrate disparate pieces of data and analyze the plasma levels of sDPP4, DPP activity and DPP4 surface expression on T-cells in 129 MS patients with different clinical forms and 53 healthy controls, across two independent cohorts. Herein, we provide new evidence that sDPP4 concentration and DPP activity are significantly lower in MS patients than controls (p < 0.0001 and p < 0.01, respectively). In contrast, the frequency of circulating CD8(+)DPP4(hi) T-cells (p = 0.02) was increased in MS patients. This is the first study that simultaneously analyzes DPP4 expression and function in a large cohort of MS patients. Our data indicate a putative role for DPP4 in MS pathophysiology and suggest that a deeper understanding of surface versus shed DPP4 biology is warranted.
Collapse
Affiliation(s)
- Marta Tejera-Alhambra
- Department of Immunology, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain.
| | - Armanda Casrouge
- Centre d'Immunologie Humaine, Department of Immunology, Institut Pasteur, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France; INSERM U818, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Clara de Andrés
- Department of Neurology, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain.
| | - Rocío Ramos-Medina
- Department of Immunology, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain.
| | - Bárbara Alonso
- Department of Immunology, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain.
| | - Janet Vega
- Center Alicia Koplowitz for Multiple Sclerosis of the Community of Madrid, Bulevar de José Prat, 42, 28032 Madrid, Spain.
| | - Matthew L Albert
- Centre d'Immunologie Humaine, Department of Immunology, Institut Pasteur, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France; INSERM U818, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Silvia Sánchez-Ramón
- Department of Immunology, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain.
| |
Collapse
|
48
|
Gall MG, Chen Y, Vieira de Ribeiro AJ, Zhang H, Bailey CG, Spielman DS, Yu DMT, Gorrell MD. Targeted inactivation of dipeptidyl peptidase 9 enzymatic activity causes mouse neonate lethality. PLoS One 2013; 8:e78378. [PMID: 24223149 PMCID: PMC3819388 DOI: 10.1371/journal.pone.0078378] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/18/2013] [Indexed: 12/15/2022] Open
Abstract
Dipeptidyl Peptidase (DPP) 4 and related dipeptidyl peptidases are emerging as current and potential therapeutic targets. DPP9 is an intracellular protease that is regulated by redox status and by SUMO1. DPP9 can influence antigen processing, epidermal growth factor (EGF)-mediated signaling and tumor biology. We made the first gene knock-in (gki) mouse with a serine to alanine point mutation at the DPP9 active site (S729A). Weaned heterozygote DPP9 (wt/S729A) pups from 110 intercrosses were indistinguishable from wild-type littermates. No homozygote DPP9 (S729A/S729A) weaned mice were detected. DPP9 (S729A/S729A) homozygote embryos, which were morphologically indistinguishable from their wild-type littermate embryos at embryonic day (ED) 12.5 to ED 17.5, were born live but these neonates died within 8 to 24 hours of birth. All neonates suckled and contained milk spots and were of similar body weight. No gender differences were seen. No histological or DPP9 immunostaining pattern differences were seen between genotypes in embryos and neonates. Mouse embryonic fibroblasts (MEFs) from DPP9 (S729A/S729A) ED13.5 embryos and neonate DPP9 (S729A/S729A) mouse livers collected within 6 hours after birth had levels of DPP9 protein and DPP9-related proteases that were similar to wild-type but had less DPP9/DPP8-derived activity. These data confirmed the absence of DPP9 enzymatic activity due to the presence of the serine to alanine mutation and no compensation from related proteases. These novel findings suggest that DPP9 enzymatic activity is essential for early neonatal survival in mice.
Collapse
Affiliation(s)
- Margaret G. Gall
- Centenary Institute, Camperdown and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Yiqian Chen
- Centenary Institute, Camperdown and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Ana Julia Vieira de Ribeiro
- Centenary Institute, Camperdown and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Hui Zhang
- Centenary Institute, Camperdown and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Charles G. Bailey
- Centenary Institute, Camperdown and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Derek S. Spielman
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Denise M. T. Yu
- Centenary Institute, Camperdown and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mark D. Gorrell
- Centenary Institute, Camperdown and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
49
|
Zhang H, Chen Y, Keane FM, Gorrell MD. Advances in understanding the expression and function of dipeptidyl peptidase 8 and 9. Mol Cancer Res 2013; 11:1487-96. [PMID: 24038034 DOI: 10.1158/1541-7786.mcr-13-0272] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DPP8 and DPP9 are recently identified members of the dipeptidyl peptidase IV (DPPIV) enzyme family, which is characterized by the rare ability to cleave a post-proline bond two residues from the N-terminus of a substrate. DPP8 and DPP9 have unique cellular localization patterns, are ubiquitously expressed in tissues and cell lines, and evidence suggests important contributions to various biological processes including: cell behavior, cancer biology, disease pathogenesis, and immune responses. Importantly, functional differences between these two proteins have emerged, such as DPP8 may be more associated with gut inflammation whereas DPP9 is involved in antigen presentation and intracellular signaling. Similarly, the DPP9 connections with H-Ras and SUMO1, and its role in AKT1 pathway downregulation provide essential insights into the molecular mechanisms of DPP9 action. The recent discovery of novel natural substrates of DPP8 and DPP9 highlights the potential role of these proteases in energy metabolism and homeostasis. This review focuses on the recent progress made with these post-proline dipeptidyl peptidases and underscores their emerging importance.
Collapse
Affiliation(s)
- Hui Zhang
- Molecular Hepatology, Centenary Institute, Locked Bag No. 6, Newtown, NSW 2042, Australia.
| | | | | | | |
Collapse
|
50
|
Differential expression of dipeptidyl peptidase IV in human versus cynomolgus monkey skin eccrine sweat glands. J Mol Histol 2013; 44:733-47. [DOI: 10.1007/s10735-013-9524-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
|