1
|
Zhu GZ, Zhao K, Li HZ, Wu DZ, Chen YB, Han D, Gao JW, Chen XY, Yu YP, Huang ZW, Tu C, Zhong ZM. Melatonin ameliorates age-related sarcopenia by inhibiting fibrogenic conversion of satellite cell. Mol Med 2024; 30:238. [PMID: 39614149 DOI: 10.1186/s10020-024-00998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
The fibrogenic conversion of satellite cells contributes to the atrophy and fibrosis of skeletal muscle, playing a significant role in the pathogenesis of age-related sarcopenia. Melatonin, a hormone secreted by the pineal gland, exhibits anti-aging and anti-fibrotic effects in various conditions. However, the effect of melatonin on satellite cell fate and age-related sarcopenia remains under-explored. Here, we report that melatonin treatment mitigated the loss of muscle mass and strength in aged mice, replenished the satellite cell pool and curtailed muscle fibrosis. When primary SCs were cultured in vitro and subjected to aging induction via D-galactose, they exhibited a diminished myogenic potential and a conversion from myogenic to fibrogenic lineage. Notably, melatonin treatment effectively restored the myogenic potential and inhibited this lineage conversion. Furthermore, melatonin attenuated the expression of the fibrogenic cytokine, transforming growth factor-β1, and reduced the phosphorylation of its downstream targets Smad2/3 both in vivo and in vitro. In summary, our findings show melatonin's capacity to counteract muscle decline and inhibit fibrogenic conversion in aging SCs and highlight its potential therapeutic value for age-related sarcopenia.
Collapse
Affiliation(s)
- Guo-Zheng Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Zhao
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hong-Zhou Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Di-Zheng Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Yun-Biao Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Dong Han
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Jia-Wen Gao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Xing-Yu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Yong-Peng Yu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Zhi-Wei Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Chen Tu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Zhao-Ming Zhong
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
2
|
Kim SH, Kim CJ, Lee EY, Hwang YH, Joo ST. Chicken Embryo Fibroblast Viability and Trans-Differentiation Potential for Cultured Meat Production Across Passages. Cells 2024; 13:1734. [PMID: 39451252 PMCID: PMC11506350 DOI: 10.3390/cells13201734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
This study was conducted to analyze the viability of primary chicken embryo fibroblasts and the efficiency of adipogenic trans-differentiation for cultured meat production. In isolating chicken embryo fibroblasts (CEFs) from a heterogeneous cell pool containing chicken satellite cells (CSCs), over 90% of CEFs expressed CD29 and vimentin. The analysis of the proliferative capabilities of CEFs revealed no significant differences in EdU-positive cells (%), cumulative cell number, doubling time, and growth rate from passage 1 to passage 9 (p > 0.05). This indicates that CEFs can be isolated by 2 h of pre-plating and survive stably up to passage 9, and that primary fibroblasts can serve as a valuable cell source for the cultured meat industry. Adipogenic trans-differentiation was induced up to passage 9 of CEFs. As passages increased, lipid accumulation and adipocyte size significantly decreased (p < 0.05). The reduced differentiation rate of primary CEFs with increasing passages poses a major challenge to the cost and efficiency of cultured meat production. Thus, effective cell management and the maintenance of cellular characteristics for a long time are crucial for ensuring stable and efficient cultured fat production in the cultured meat industry.
Collapse
Affiliation(s)
- So-Hee Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-H.K.); (C.-J.K.); (E.-Y.L.)
| | - Chan-Jin Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-H.K.); (C.-J.K.); (E.-Y.L.)
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-H.K.); (C.-J.K.); (E.-Y.L.)
| | - Young-Hwa Hwang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-H.K.); (C.-J.K.); (E.-Y.L.)
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| |
Collapse
|
3
|
Corvelyn M, Meirlevede J, Deschrevel J, Huyghe E, De Wachter E, Gayan-Ramirez G, Sampaolesi M, Van Campenhout A, Desloovere K, Costamagna D. Ex vivo adult stem cell characterization from multiple muscles in ambulatory children with cerebral palsy during early development of contractures. Differentiation 2023; 133:25-39. [PMID: 37451110 DOI: 10.1016/j.diff.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Cerebral palsy (CP) is one of the most common conditions leading to lifelong childhood physical disability. Literature reported previously altered muscle properties such as lower number of satellite cells (SCs), with altered fusion capacity. However, these observations highly vary among studies, possibly due to heterogeneity in patient population, lack of appropriate control data, methodology and different assessed muscle. In this study we aimed to strengthen previous observations and to understand the heterogeneity of CP muscle pathology. Myogenic differentiation of SCs from the Medial Gastrocnemius (MG) muscle of patients with CP (n = 16, 3-9 years old) showed higher fusion capacity compared to age-matched typically developing children (TD, n = 13). Furthermore, we uniquely assessed cells of two different lower limb muscles and showed a decreased myogenic potency in cells from the Semitendinosus (ST) compared to the MG (TD: n = 3, CP: n = 6). Longitudinal assessments, one year after the first botulinum toxin treatment, showed slightly reduced SC representations and lower fusion capacity (n = 4). Finally, we proved the robustness of our data, by assessing in parallel the myogenic capacity of two samples from the same TD muscle. In conclusion, these data confirmed previous findings of increased SC fusion capacity from MG muscle of young patients with CP compared to age-matched TD. Further elaboration is reported on potential factors contributing to heterogeneity, such as assessed muscle, CP progression and reliability of primary outcome parameters.
Collapse
Affiliation(s)
- M Corvelyn
- Stem Cell and Developmental Biology, Dept. of Development and Regeneration, KU Leuven, Belgium
| | - J Meirlevede
- Stem Cell and Developmental Biology, Dept. of Development and Regeneration, KU Leuven, Belgium
| | - J Deschrevel
- Laboratory of Respiratory Diseases and Thoracic Surgery, Dept. of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - E Huyghe
- Research Group for Neurorehabilitation, Dept. of Rehabilitation Sciences, KU Leuven, Belgium
| | - E De Wachter
- Dept. of Orthopaedic Surgery, University Hospitals Leuven, Belgium
| | - G Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery, Dept. of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - M Sampaolesi
- Stem Cell and Developmental Biology, Dept. of Development and Regeneration, KU Leuven, Belgium
| | - A Van Campenhout
- Dept. of Orthopaedic Surgery, University Hospitals Leuven, Belgium; Dept. of Development and Regeneration, KU Leuven, Belgium
| | - K Desloovere
- Research Group for Neurorehabilitation, Dept. of Rehabilitation Sciences, KU Leuven, Belgium.
| | - D Costamagna
- Stem Cell and Developmental Biology, Dept. of Development and Regeneration, KU Leuven, Belgium; Research Group for Neurorehabilitation, Dept. of Rehabilitation Sciences, KU Leuven, Belgium.
| |
Collapse
|
4
|
Kahn RE, Krater T, Larson JE, Encarnacion M, Karakostas T, Patel NM, Swaroop VT, Dayanidhi S. Resident muscle stem cell myogenic characteristics in postnatal muscle growth impairments in children with cerebral palsy. Am J Physiol Cell Physiol 2023; 324:C614-C631. [PMID: 36622072 PMCID: PMC9942895 DOI: 10.1152/ajpcell.00499.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023]
Abstract
Children with cerebral palsy (CP), a perinatal brain alteration, have impaired postnatal muscle growth, with some muscles developing contractures. Functionally, children are either able to walk or primarily use wheelchairs. Satellite cells are muscle stem cells (MuSCs) required for postnatal development and source of myonuclei. Only MuSC abundance has been previously reported in contractured muscles, with myogenic characteristics assessed only in vitro. We investigated whether MuSC myogenic, myonuclear, and myofiber characteristics in situ differ between contractured and noncontractured muscles, across functional levels, and compared with typically developing (TD) children with musculoskeletal injury. Open muscle biopsies were obtained from 36 children (30 CP, 6 TD) during surgery; contracture correction for adductors or gastrocnemius, or from vastus lateralis [bony surgery in CP, anterior cruciate ligament (ACL) repair in TD]. Muscle cross sections were immunohistochemically labeled for MuSC abundance, activation, proliferation, nuclei, myofiber borders, type-1 fibers, and collagen content in serial sections. Although MuSC abundance was greater in contractured muscles, primarily in type-1 fibers, their myogenic characteristics (activation, proliferation) were lower compared with noncontractured muscles. Overall, MuSC abundance, activation, and proliferation appear to be associated with collagen content. Myonuclear number was similar between all muscles, but only in contractured muscles were there associations between myonuclear number, MuSC abundance, and fiber cross-sectional area. Puzzlingly, MuSC characteristics were similar between ambulatory and nonambulatory children. Noncontractured muscles in children with CP had a lower MuSC abundance compared with TD-ACL injured children, but similar myogenic characteristics. Contractured muscles may have an intrinsic deficiency in developmental progression for postnatal MuSC pool establishment, needed for lifelong efficient growth and repair.
Collapse
Affiliation(s)
| | | | - Jill E Larson
- Shirley Ryan AbilityLab, Chicago, Illinois
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | | | - Tasos Karakostas
- Shirley Ryan AbilityLab, Chicago, Illinois
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Neeraj M Patel
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Vineeta T Swaroop
- Shirley Ryan AbilityLab, Chicago, Illinois
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLab, Chicago, Illinois
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
5
|
Kim SH, Kim CJ, Lee EY, Son YM, Hwang YH, Joo ST. Optimal Pre-Plating Method of Chicken Satellite Cells for Cultured Meat Production. Food Sci Anim Resour 2022; 42:942-952. [PMID: 36415580 PMCID: PMC9647181 DOI: 10.5851/kosfa.2022.e61] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2023] Open
Abstract
To establish a pre-plating method of chicken satellite cells with high purity, pre-plating was performed under culture conditions of 37°C and 41°C, and the pre-plating time was set from a total of 3 hours to 6 hours in consideration of the cell attachment time. The purity of the cells was confirmed by staining paired box protein 7 (Pax7) after proliferation, and Pax7 expression was the highest in culture flasks shaken for 2 hours after incubation at 41°C for 2 hours to prevent the attachment of satellite cells (p<0.05). Also, when pre-plating and proliferation were performed at 37°C and 41°C, the Pax7 expression rate was higher at 41°C. The differentiation capabilities of the three groups (T3, T6, and T7) with high Pax7 expression were compared and the fusion index (%) and myotube formation area (%) determined by myosin heavy chain (MHC) staining was calculated. The T6 and T7 groups, which were cultured at 41°C, showed significantly higher values than the T3 group (p<0.05). There was no significant difference in the expression of Pax7 and MHC between the T6 and T7 groups (p>0.05). These results suggest that pre-plating at 41°C for a total of 4 hours was the most efficient in terms of cost and time for purifying chicken satellite cells for cultured meat.
Collapse
Affiliation(s)
- So-Hee Kim
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52852,
Korea
| | - Chan-Jin Kim
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52852,
Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52852,
Korea
| | - Yu-Min Son
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52852,
Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52852,
Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52852,
Korea
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52852,
Korea
| |
Collapse
|
6
|
Emerald BS, Al Jailani MA, Ibrahim MF, Kumar CA, Allouh MZ. Cellular and Molecular Variations in Male and Female Murine Skeletal Muscle after Long-Term Feeding with a High-Fat Diet. Int J Mol Sci 2022; 23:ijms23179547. [PMID: 36076943 PMCID: PMC9455932 DOI: 10.3390/ijms23179547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Current information regarding the effects of a high-fat diet (HFD) on skeletal muscle is contradictory. This study aimed to investigate the effects of a long-term HFD on skeletal muscle in male and female mice at the morphological, cellular, and molecular levels. Adult mice of the C57BL/6 strain were fed standard chow or an HFD for 20 weeks. The tibialis anterior muscles were dissected, weighed, and processed for cellular and molecular analyses. Immunocytochemical and morphometric techniques were applied to quantify fiber size, satellite cells (SCs), and myonuclei. Additionally, PCR array and RT-qPCR tests were performed to determine the expression levels of key muscle genes. Muscles from HFD mice showed decreases in weight, SCs, and myonuclei, consistent with the atrophic phenotype. This atrophy was associated with a decrease in the percentage of oxidative fibers within the muscle. These findings were further confirmed by molecular analyses that showed significant reductions in the expression of Pax7, Myh1, and Myh2 genes and increased Mstn gene expression. Male and female mice showed similar trends in response to HFD-induced obesity. These findings indicate that the long-term effects of obesity on skeletal muscle resemble those of age-related sarcopenia.
Collapse
|
7
|
Wang YH, Lin J, Wang J, Wu SG, Qiu K, Zhang HJ, Qi GH. The Role of Incubation Conditions on the Regulation of Muscle Development and Meat Quality in Poultry. Front Physiol 2022; 13:883134. [PMID: 35784883 PMCID: PMC9240787 DOI: 10.3389/fphys.2022.883134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Muscle is the most abundant edible tissue in table poultry, which serves as an important source of high protein for humans. Poultry myofiber originates in the early embryogenic stage, and the overall muscle fiber number is almost determined before hatching. Muscle development in the embryonic stage is critical to the posthatch muscle growth and final meat yield and quality. Incubation conditions including temperature, humidity, oxygen density, ventilation and lighting may substantially affect the number, shape and structure of the muscle fiber, which may produce long-lasting effect on the postnatal muscle growth and meat quality. Suboptimal incubation conditions can induce the onset of myopathies. Early exposure to suitable hatching conditions may modify the muscle histomorphology posthatch and the final muscle mass of the birds by regulating embryonic hormone levels and benefit the muscle cell activity. The elucidation of the muscle development at the embryonic stage would facilitate the modulation of poultry muscle quantity and meat quality. This review starts from the physical and biochemical characteristics of poultry myofiber formation, and brings together recent advances of incubation conditions on satellite cell migration, fiber development and transformation, and subsequent muscle myopathies and other meat quality defects. The underlying molecular and cellular mechanisms for the induced muscle growth and meat quality traits are also discussed. The future studies on the effects of external incubation conditions on the regulation of muscle cell proliferation and meat quality are suggested. This review may broaden our knowledge on the regulation of incubation conditions on poultry muscle development, and provide more informative decisions for hatchery in the selection of hatching parameter for pursuit of more large muscle size and superior meat quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Hai-Jun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Research Institute of Feed, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Research Institute of Feed, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Shirakawa T, Toyono T, Inoue A, Matsubara T, Kawamoto T, Kokabu S. Factors Regulating or Regulated by Myogenic Regulatory Factors in Skeletal Muscle Stem Cells. Cells 2022; 11:cells11091493. [PMID: 35563799 PMCID: PMC9104119 DOI: 10.3390/cells11091493] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
MyoD, Myf5, myogenin, and MRF4 (also known as Myf6 or herculin) are myogenic regulatory factors (MRFs). MRFs are regarded as master transcription factors that are upregulated during myogenesis and influence stem cells to differentiate into myogenic lineage cells. In this review, we summarize MRFs, their regulatory factors, such as TLE3, NF-κB, and MRF target genes, including non-myogenic genes such as taste receptors. Understanding the function of MRFs and the physiology or pathology of satellite cells will contribute to the development of cell therapy and drug discovery for muscle-related diseases.
Collapse
Affiliation(s)
- Tomohiko Shirakawa
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Takashi Toyono
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Asako Inoue
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
- Correspondence: ; Tel.: +81-93-582-1131; Fax: +81-93-285-6000
| |
Collapse
|
9
|
Barrett P, Quick TJ, Mudera V, Player DJ. Neuregulin 1 Drives Morphological and Phenotypical Changes in C2C12 Myotubes: Towards De Novo Formation of Intrafusal Fibres In Vitro. Front Cell Dev Biol 2022; 9:760260. [PMID: 35087826 PMCID: PMC8787273 DOI: 10.3389/fcell.2021.760260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Muscle spindles are sensory organs that detect and mediate both static and dynamic muscle stretch and monitor muscle position, through a specialised cell population, termed intrafusal fibres. It is these fibres that provide a key contribution to proprioception and muscle spindle dysfunction is associated with multiple neuromuscular diseases, aging and nerve injuries. To date, there are few publications focussed on de novo generation and characterisation of intrafusal muscle fibres in vitro. To this end, current models of skeletal muscle focus on extrafusal fibres and lack an appreciation for the afferent functions of the muscle spindle. The goal of this study was to produce and define intrafusal bag and chain myotubes from differentiated C2C12 myoblasts, utilising the addition of the developmentally associated protein, Neuregulin 1 (Nrg-1). Intrafusal bag myotubes have a fusiform shape and were assigned using statistical morphological parameters. The model was further validated using immunofluorescent microscopy and western blot analysis, directed against an extensive list of putative intrafusal specific markers, as identified in vivo. The addition of Nrg-1 treatment resulted in a 5-fold increase in intrafusal bag myotubes (as assessed by morphology) and increased protein and gene expression of the intrafusal specific transcription factor, Egr3. Surprisingly, Nrg-1 treated myotubes had significantly reduced gene and protein expression of many intrafusal specific markers and showed no specificity towards intrafusal bag morphology. Another novel finding highlights a proliferative effect for Nrg-1 during the serum starvation-initiated differentiation phase, leading to increased nuclei counts, paired with less myotube area per myonuclei. Therefore, despite no clear collective evidence for specific intrafusal development, Nrg-1 treated myotubes share two inherent characteristics of intrafusal fibres, which contain increased satellite cell numbers and smaller myonuclear domains compared with their extrafusal neighbours. This research represents a minimalistic, monocellular C2C12 model for progression towards de novo intrafusal skeletal muscle generation, with the most extensive characterisation to date. Integration of intrafusal myotubes, characteristic of native, in vivo intrafusal skeletal muscle into future biomimetic tissue engineered models could provide platforms for developmental or disease state studies, pre-clinical screening, or clinical applications.
Collapse
Affiliation(s)
- Philip Barrett
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Tom J Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, London, United Kingdom.,UCL Centre for Nerve Engineering, University College London, London, United Kingdom
| | - Vivek Mudera
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| |
Collapse
|
10
|
Romagnoli C, Iantomasi T, Brandi ML. Available In Vitro Models for Human Satellite Cells from Skeletal Muscle. Int J Mol Sci 2021; 22:ijms222413221. [PMID: 34948017 PMCID: PMC8706222 DOI: 10.3390/ijms222413221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle accounts for almost 40% of the total adult human body mass. This tissue is essential for structural and mechanical functions such as posture, locomotion, and breathing, and it is endowed with an extraordinary ability to adapt to physiological changes associated with growth and physical exercise, as well as tissue damage. Moreover, skeletal muscle is the most age-sensitive tissue in mammals. Due to aging, but also to several diseases, muscle wasting occurs with a loss of muscle mass and functionality, resulting from disuse atrophy and defective muscle regeneration, associated with dysfunction of satellite cells, which are the cells responsible for maintaining and repairing adult muscle. The most established cell lines commonly used to study muscle homeostasis come from rodents, but there is a need to study skeletal muscle using human models, which, due to ethical implications, consist primarily of in vitro culture, which is the only alternative way to vertebrate model organisms. This review will survey in vitro 2D/3D models of human satellite cells to assess skeletal muscle biology for pre-clinical investigations and future directions.
Collapse
Affiliation(s)
- Cecilia Romagnoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.R.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.R.); (T.I.)
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy
- Correspondence:
| |
Collapse
|
11
|
Sosa P, Alcalde-Estévez E, Asenjo-Bueno A, Plaza P, Carrillo-López N, Olmos G, López-Ongil S, Ruiz-Torres MP. Aging-related hyperphosphatemia impairs myogenic differentiation and enhances fibrosis in skeletal muscle. J Cachexia Sarcopenia Muscle 2021; 12:1266-1279. [PMID: 34337906 PMCID: PMC8517361 DOI: 10.1002/jcsm.12750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hyperphosphatemia has been related to the development of sarcopenia in aging mice. We describe the intracellular mechanisms involved in the impairment of the myogenic differentiation promoted by hyperphosphatemia and analyse these mechanisms in the muscle from older mice. METHODS C2 C12 cells were grown in 2% horse serum in order to promote myogenic differentiation, in the presence or absence of 10 mM beta-glycerophosphate (BGP) for 7 days. Troponin T, paired box 7 (Pax-7), myogenic factor 5 (Myf5), myogenic differentiation 1 (MyoD), myogenin (MyoG), myocyte enhancer factor 2 (MEF2C), P300/CBP-associated factor (PCAF), histone deacetylase 1 (HDAC1), fibronectin, vimentin, and collagen I were analysed at 48, 72, and 168 h, by western blotting or by immunofluorescence staining visualized by confocal microscopy. Studies in mice were performed in 5- and 24-month-old C57BL6 mice. Three months before sacrifice, 21-month-old mice were fed with a standard diet or a low phosphate diet, containing 0.6% or 0.2% phosphate, respectively. Serum phosphate concentration was assessed by a colorimetric method and forelimb strength by a grip test. Fibrosis was observed in the tibialis anterior muscle by Sirius Red staining. In gastrocnemius muscle, MyoG, MEF2C, and fibronectin expressions were analysed by western blotting. RESULTS Cells differentiated in the presence of BGP showed near five times less expression of troponin T and kept higher levels of Pax-7 than control cells indicating a reduced myogenic differentiation. BGP reduced Myf5 about 50% and diminished MyoD transcriptional activity by increasing the expression of HDAC1 and reducing the expression of PCAF. Consequently, BGP reduced to 50% the expression of MyoG and MEF2C. A significant increase in the expression of fibrosis markers as collagen I, vimentin, and fibronectin was found in cells treated with BGP. In mice, serum phosphate (17.24 ± 0.77 mg/dL young; 23.23 ± 0.81 mg/dL old; 19.09 ± 0.75 mg/dL old with low phosphate diet) correlates negatively (r = -0.515, P = 0.001) with the muscular strength (3.13 ± 0.07 gf/g young; 1.70 ± 0.12 gf/g old; 2.10 ± 0.09 gf/g old with low phosphate diet) and with the expression of MyoG (r = -0.535, P = 0.007) and positively with the expression of fibronectin (r = 0.503, P = 0.001) in gastrocnemius muscle. The tibialis anterior muscle from old mice showed muscular fibrosis. Older mice fed with a low phosphate diet showed improved muscular parameters relative to control mice of similar age. CONCLUSIONS Hyperphosphatemia impairs myogenic differentiation, by inhibiting the transcriptional activity of MyoD, and enhances the expression of fibrotic genes in cultured myoblasts. Experiments carried out in older mice demonstrate a close relationship between age-related hyperphosphatemia and the decrease in the expression of myogenic factors and the increase in factors related to muscle fibrosis.
Collapse
Affiliation(s)
- Patricia Sosa
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Elena Alcalde-Estévez
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Ana Asenjo-Bueno
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Patricia Plaza
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| | - Gemma Olmos
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain.,Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| | - Susana López-Ongil
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain.,Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| | - María Piedad Ruiz-Torres
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain.,Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| |
Collapse
|
12
|
Sibley LA, Broda N, Gross WR, Menezes AF, Embry RB, Swaroop VT, Chambers HG, Schipma MJ, Lieber RL, Domenighetti AA. Differential DNA methylation and transcriptional signatures characterize impairment of muscle stem cells in pediatric human muscle contractures after brain injury. FASEB J 2021; 35:e21928. [PMID: 34559924 DOI: 10.1096/fj.202100649r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
Limb contractures are a debilitating and progressive consequence of a wide range of upper motor neuron injuries that affect skeletal muscle function. One type of perinatal brain injury causes cerebral palsy (CP), which affects a child's ability to move and is often painful. While several rehabilitation therapies are used to treat contractures, their long-term effectiveness is marginal since such therapies do not change muscle biological properties. Therefore, new therapies based on a biological understanding of contracture development are needed. Here, we show that myoblast progenitors from contractured muscle in children with CP are hyperproliferative. This phenotype is associated with DNA hypermethylation and specific gene expression patterns that favor cell proliferation over quiescence. Treatment of CP myoblasts with 5-azacytidine, a DNA hypomethylating agent, reduced this epigenetic imprint to TD levels, promoting exit from mitosis and molecular mechanisms of cellular quiescence. Together with previous studies demonstrating reduction in myoblast differentiation, this suggests a mechanism of contracture formation that is due to epigenetic modifications that alter the myogenic program of muscle-generating stem cells. We suggest that normalization of DNA methylation levels could rescue myogenesis and promote regulated muscle growth in muscle contracture and thus may represent a new nonsurgical approach to treating this devastating neuromuscular condition.
Collapse
Affiliation(s)
| | | | | | | | - Ryan B Embry
- NUseq Core, Northwestern University, Chicago, Illinois, USA
| | - Vineeta T Swaroop
- Shirley Ryan AbilityLab, Chicago, Illinois, USA.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Henry G Chambers
- Rady Children's Hospital and Health Center, San Diego, California, USA
| | - Matthew J Schipma
- Rady Children's Hospital and Health Center, San Diego, California, USA
| | - Richard L Lieber
- Shirley Ryan AbilityLab, Chicago, Illinois, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA.,Hines VA Medical Center, Maywood, Illinois, USA
| | - Andrea A Domenighetti
- Shirley Ryan AbilityLab, Chicago, Illinois, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
13
|
Nihashi Y, Shinji S, Umezawa K, Shimosato T, Ono T, Kagami H, Takaya T. Myogenetic oligodeoxynucleotide complexed with berberine promotes differentiation of chicken myoblasts. Anim Sci J 2021; 92:e13597. [PMID: 34309956 DOI: 10.1111/asj.13597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022]
Abstract
Myoblasts are myogenic precursors that develop into myotubes during muscle formation. Improving efficiency of myoblast differentiation is important for advancing meat production by domestic animals. We recently identified novel oligodeoxynucleotides (ODNs) termed myogenetic ODNs (myoDNs) that promote the differentiation of mammalian myoblasts. An isoquinoline alkaloid, berberine, forms a complex with one of the myoDNs, iSN04, and enhances its activities. This study investigated the effects of myoDNs on chicken myoblasts to elucidate their species-specific actions. Seven myoDNs (iSN01-iSN07) were found to facilitate the differentiation of chicken myoblasts into myosin heavy chain (MHC)-positive myotubes. The iSN04-berberine complex exhibited a higher myogenetic activity than iSN04 alone, which was shown to enhance the differentiation of myoblasts into myotubes and the upregulation of myogenic gene expression (MyoD, myogenin, MHC, and myomaker). These data indicate that myoDNs promoting chicken myoblast differentiation may be used as potential feed additives in broiler diets.
Collapse
Affiliation(s)
- Yuma Nihashi
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Sayaka Shinji
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Koji Umezawa
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan.,Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Takeshi Shimosato
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan.,Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan.,Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan.,Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Tamao Ono
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Hiroshi Kagami
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Tomohide Takaya
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan.,Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan.,Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan.,Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
14
|
Asfour HA, Shaqoura EI, Said RS, Mustafa AG, Emerald BS, Allouh MZ. Differential response of oxidative and glycolytic skeletal muscle fibers to mesterolone. Sci Rep 2021; 11:12301. [PMID: 34112889 PMCID: PMC8192902 DOI: 10.1038/s41598-021-91854-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/26/2021] [Indexed: 11/19/2022] Open
Abstract
Oxidative and glycolytic muscle fibers differ in their ultrastructure, metabolism, and responses to physiological stimuli and pathological insults. We examined whether these fibers respond differentially to exogenous anabolic androgenic steroids (AASs) by comparing morphological and histological changes between the oxidative anterior latissimus dorsi (ALD) and glycolytic pectoralis major (PM) fibers in adult avian muscles. Adult female White Leghorn chickens (Gallus gallus) were randomly divided into five groups: a vehicle control and four mesterolone treatment groups (4, 8, 12, and 16 mg/kg). Mesterolone was administered orally every three days for four weeks. Immunocytochemical techniques and morphometric analyses were employed to measure the changes in muscle weight, fiber size, satellite cell (SC) composition, and number of myonuclei. Mesterolone increased both body and muscle weights and induced hypertrophy in glycolytic PM fibers but not in oxidative ALD fibers. Mesterolone induced SC proliferation in both muscles; however, the myonuclear accretion was noticeable only in the PM muscle. In both muscles, the collective changes maintained a constant myonuclear domain size and the changes were dose independent. In conclusion, mesterolone induced distinct dose-independent effects in avian oxidative and glycolytic skeletal muscle fibers; these findings might be clinically valuable in the treatment of age-related sarcopenia.
Collapse
Affiliation(s)
- Hasan A Asfour
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan.,Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France
| | - Emad I Shaqoura
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Raed S Said
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ayman G Mustafa
- Basic Medical Science Department, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Mohammed Z Allouh
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan. .,Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE.
| |
Collapse
|
15
|
Goh Q, Nikolaou S, Shay‐Winkler K, Emmert ME, Cornwall R. Timing of proteasome inhibition as a pharmacologic strategy for prevention of muscle contractures in neonatal brachial plexus injury. FASEB J 2021; 35:e21214. [PMID: 33236396 PMCID: PMC7821701 DOI: 10.1096/fj.202002194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022]
Abstract
Neonatal brachial plexus injury (NBPI) causes disabling and incurable contractures, or limb stiffness, which result from proteasome-mediated protein degradation impairing the longitudinal growth of neonatally denervated muscles. We recently showed in a mouse model that the 20S proteasome inhibitor, bortezomib, prevents contractures after NBPI. Given that contractures uniquely follow neonatal denervation, the current study tests the hypothesis that proteasome inhibition during a finite window of neonatal development can prevent long-term contracture development. Following neonatal forelimb denervation in P5 mice, we first outlined the minimum period for proteasome inhibition to prevent contractures 4 weeks post-NBPI by treating mice with saline or bortezomib for varying durations between P8 and P32. We then compared the ability of varying durations of longer-term proteasome inhibition to prevent contractures at 8 and 12 weeks post-NBPI. Our findings revealed that proteasome inhibition can be delayed 3-4 days after denervation but is required throughout skeletal growth to prevent contractures long term. Furthermore, proteasome inhibition becomes less effective in preventing contractures beyond the neonatal period. These therapeutic effects are primarily associated with bortezomib-induced attenuation of 20S proteasome β1 subunit activity. Our collective results, therefore, demonstrate that temporary neonatal proteasome inhibition is not a viable strategy for preventing contractures long term. Instead, neonatal denervation causes a permanent longitudinal growth deficiency that must be continuously ameliorated during skeletal growth. Additional mechanisms must be explored to minimize the necessary period of proteasome inhibition and reduce the risk of toxicity from long-term treatment.
Collapse
Affiliation(s)
- Qingnian Goh
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Sia Nikolaou
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Kritton Shay‐Winkler
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Marianne E. Emmert
- Department of Biomedical SciencesUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| | - Roger Cornwall
- Division of Orthopaedic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOHUSA
- Division of Developmental BiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
- Department of Orthopaedic SurgeryUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| |
Collapse
|
16
|
Melzener L, Verzijden KE, Buijs AJ, Post MJ, Flack JE. Cultured beef: from small biopsy to substantial quantity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:7-14. [PMID: 32662148 PMCID: PMC7689697 DOI: 10.1002/jsfa.10663] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/19/2020] [Accepted: 07/13/2020] [Indexed: 05/09/2023]
Abstract
Cultured meat is an emerging technology with the potential to solve huge challenges related to the environmental, ethical, and health implications of conventional meat production. Establishing the basic science of cultured meat has been the primary focus of the last decade but it is now feasible that cultured meat products will enter the market within the next 3 to 4 years. This proximity to market introduction demands an evaluation of aspects of the cultured meat production process that have not yet been outlined or discussed in significant detail. For example, one technological approach for the production of cultured meat uses adult muscle stem cells, the limited proliferative capacity of which necessitates repeated collection of tissue samples via biopsies of living donor animals. The selection of donor animals and the details of biopsy processes must be optimized, as this is a key bottleneck in the cultured meat production process. The number of stem cells harvested from a biopsy, together with their proliferative capacity, determines a 'multiplicity factor' achieved by a cultured meat production process, thus dictating the reduction in number of animals required to produce a given quantity of meat. This article considers potential scenarios for these critical upstream steps, focusing on the production of cultured beef as an example. Considerations related to donor selection and details of the biopsy process are discussed in detail. The practicalities of various scenarios for cultured beef production, the health of donor animals, and regulatory issues associated with the safety of cultured meat for consumers are also considered. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Lea Melzener
- Mosa Meat B.V.MaastrichtNetherlands
- Department of PhysiologyMaastricht UniversityMaastrichtNetherlands
| | | | | | - Mark J Post
- Mosa Meat B.V.MaastrichtNetherlands
- Department of PhysiologyMaastricht UniversityMaastrichtNetherlands
| | | |
Collapse
|
17
|
Oviedo-Rondón EO, Velleman SG, Wineland MJ. The Role of Incubation Conditions in the Onset of Avian Myopathies. Front Physiol 2020; 11:545045. [PMID: 33041856 PMCID: PMC7530269 DOI: 10.3389/fphys.2020.545045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
White striping, wooden breast, and spaghetti muscle have become common myopathies in broilers worldwide. Several research reports have indicated that the origin of these lesions is metabolic disorders. These failures in normal metabolism can start very early in life, and suboptimal incubation conditions may trigger some of the key alterations on muscle metabolism. Incubation conditions affect the development of muscle and can be associated with the onset of myopathies. A series of experiments conducted with broilers, turkeys, and ducks are discussed to overview primary information showing the main changes in breast muscle histomorphology, metabolism, and physiology caused by suboptimal incubation conditions. These modifications may be associated with current myopathies. Those effects of incubation on myopathy occurrence and severity have also been confirmed at slaughter age. The impact of egg storage, temperature profiles, oxygen concentrations, and time of hatch have been evaluated. The effects have been observed in diverse species, genetic lines, and both genders. Histological and muscle evaluations have detected that myopathies could be induced by extended hypoxia and high temperatures, and those effects depend on the genetic line. Thus, these modifications in muscle metabolic responses may make hatchlings more susceptible to develop myopathies during grow out due to thermal stress, high-density diets, and fast growth rates.
Collapse
Affiliation(s)
| | - Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
18
|
Dayanidhi S, Kinney MC, Dykstra PB, Lieber RL. Does a Reduced Number of Muscle Stem Cells Impair the Addition of Sarcomeres and Recovery from a Skeletal Muscle Contracture? A Transgenic Mouse Model. Clin Orthop Relat Res 2020; 478:886-899. [PMID: 32011372 PMCID: PMC7282569 DOI: 10.1097/corr.0000000000001134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Children with cerebral palsy have impaired muscle growth and muscular contractures that limit their ROM. Contractures have a decreased number of serial sarcomeres and overstretched lengths, suggesting an association with a reduced ability to add the serial sarcomeres required for normal postnatal growth. Contractures also show a markedly reduced number of satellite cells-the muscle stem cells that are indispensable for postnatal muscle growth, repair, and regeneration. The potential role of the reduced number of muscle stem cells in impaired sarcomere addition leading to contractures must be evaluated. QUESTIONS/PURPOSES (1) Does a reduced satellite cell number impair the addition of serial sarcomeres during recovery from an immobilization-induced contracture? (2) Is the severity of contracture due to the decreased number of serial sarcomeres or increased collagen content? METHODS The hindlimbs of satellite cell-specific Cre-inducible mice (Pax7; Rosa26; n = 10) were maintained in plantarflexion with plaster casts for 2 weeks so that the soleus was chronically shortened and the number of its serial sarcomeres was reduced by approximately 20%. Subsequently, mice were treated with either tamoxifen to reduce the number of satellite cells or a vehicle (an injection and handling control). The transgenic mouse model with satellite cell ablation combined with a casting model to reduce serial sarcomere number recreates two features observed in muscular contractures in children with cerebral palsy. After 30 days, the casts were removed, the mice ankles were in plantarflexion, and the mice's ability to recover its ankle ROM by cage remobilization for 30 days were evaluated. We quantified the number of serial sarcomeres, myofiber area, and collagen content of the soleus muscle as well as maximal ankle dorsiflexion at the end of the recovery period. RESULTS Mice with reduced satellite cell numbers did not regain normal ankle ROM in dorsiflexion; that is, the muscles remained in plantarflexion contracture (-16° ± 13° versus 31° ± 39° for the control group, -47 [95% confidence interval -89 to -5]; p = 0.03). Serial sarcomere number of the soleus was lower on the casted side than the contralateral side of the mice with a reduced number of satellite cells (2214 ± 333 versus 2543 ± 206, -329 [95% CI -650 to -9]; p = 0.04) but not different in the control group (2644 ± 194 versus 2729 ± 249, -85 [95% CI -406 to 236]; p = 0.97). The degree of contracture was strongly associated with the number of sarcomeres and myofiber area (r =0.80; P < 0.01) rather than collagen content. No differences were seen between groups in terms of collagen content and the fraction of muscle area. CONCLUSIONS We found that a reduced number of muscle stem cells in a transgenic mouse model impaired the muscle's ability to add sarcomeres in series and thus to recover from an immobilization-induced contracture. CLINICAL RELEVANCE The results of our study in transgenic mouse muscle suggests there may be a mechanistic relationship between a reduced number of satellite cells and a reduced number of serial sarcomeres. Contracture development, secondary to impaired sarcomere addition in muscles in children with cerebral palsy may be due to a reduced number of muscle stem cells.
Collapse
|
19
|
Halevy O. Timing Is Everything-The High Sensitivity of Avian Satellite Cells to Thermal Conditions During Embryonic and Posthatch Periods. Front Physiol 2020; 11:235. [PMID: 32300304 PMCID: PMC7145400 DOI: 10.3389/fphys.2020.00235] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
Myofiber formation is essentially complete at hatch, but myofiber hypertrophy increases posthatch through the assimilation of satellite cell nuclei into myofibers. Satellite cell proliferation and differentiation occur during the early growth phase, which in meat-type poultry terminates at around 8 days posthatch. Thus, any factor that affects the accumulation of satellite cells during late-term embryogenesis or early posthatch will dictate long-term muscle growth. This review will focus on the intimate relationship between thermal conditions during chick embryogenesis and the early posthatch period, and satellite cell myogenesis and pectoralis growth and development. Satellite cells are highly sensitive to temperature changes, particularly when those changes occur during crucial periods of their myogenic activity. Therefore, timing, temperature, and duration of thermal treatments have a great impact on satellite cell activity and fate, affecting muscle development and growth in the long run. Short and mild thermal manipulations during embryogenesis or thermal conditioning in the early posthatch period promote myogenic cell proliferation and differentiation, and have long-term promotive effects on muscle growth. However, chronic heat stress during the first 2 weeks of life has adverse effects on these parameters and may lead to muscle myopathies.
Collapse
Affiliation(s)
- Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
20
|
Nance ME, Shi R, Hakim CH, Wasala NB, Yue Y, Pan X, Zhang T, Robinson CA, Duan SX, Yao G, Yang NN, Chen SJ, Wagner KR, Gersbach CA, Duan D. AAV9 Edits Muscle Stem Cells in Normal and Dystrophic Adult Mice. Mol Ther 2019; 27:1568-1585. [PMID: 31327755 PMCID: PMC6731180 DOI: 10.1016/j.ymthe.2019.06.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 12/27/2022] Open
Abstract
CRISPR editing of muscle stem cells (MuSCs) with adeno-associated virus serotype-9 (AAV9) holds promise for sustained gene repair therapy for muscular dystrophies. However, conflicting evidence exists on whether AAV9 transduces MuSCs. To rigorously address this question, we used a muscle graft model. The grafted muscle underwent complete necrosis before regenerating from its MuSCs. We injected AAV9.Cre into Ai14 mice. These mice express tdTomato upon Cre-mediated removal of a floxed stop codon. About 28%-47% and 24%-89% of Pax7+ MuSCs expressed tdTomato in pre-grafts and regenerated grafts (p > 0.05), respectively, suggesting AAV9 efficiently transduced MuSCs, and AAV9-edited MuSCs renewed successfully. Robust MuSC transduction was further confirmed by delivering AAV9.Cre to Pax7-ZsGreen-Ai14 mice in which Pax7+ MuSCs are genetically labeled by ZsGreen. Next, we co-injected AAV9.Cas9 and AAV9.gRNA to dystrophic mdx mice to repair the mutated dystrophin gene. CRISPR-treated and untreated muscles were grafted to immune-deficient, dystrophin-null NSG.mdx4cv mice. Grafts regenerated from CRISPR-treated muscle contained the edited genome and yielded 2.7-fold more dystrophin+ cells (p = 0.015). Importantly, increased dystrophin expression was not due to enhanced formation of revertant fibers or de novo transduction by residual CRISPR vectors in the graft. We conclude that AAV9 effectively transduces MuSCs. AAV9 CRISPR editing of MuSCs may provide enduring therapy.
Collapse
MESH Headings
- Animals
- Clustered Regularly Interspaced Short Palindromic Repeats
- Dependovirus/genetics
- Disease Models, Animal
- Dystrophin/chemistry
- Dystrophin/genetics
- Gene Editing
- Gene Expression
- Gene Transfer Techniques
- Genes, Reporter
- Genetic Vectors/genetics
- Mice
- Mice, Knockout
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/therapy
- Myoblasts/metabolism
- RNA, Guide, CRISPR-Cas Systems/genetics
- Regeneration
- Satellite Cells, Skeletal Muscle/metabolism
- Transduction, Genetic
Collapse
Affiliation(s)
- Michael E Nance
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Ruicheng Shi
- Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO 65212, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Nalinda B Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Tracy Zhang
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Carolyn A Robinson
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Sean X Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Gang Yao
- Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO 65212, USA
| | - N Nora Yang
- National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Shi-Jie Chen
- Department of Physics, University of Missouri, Columbia, MO 65212, USA
| | - Kathryn R Wagner
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
21
|
Al-Zghoul MB, El-Bahr SM. Thermal manipulation of the broilers embryos: expression of muscle markers genes and weights of body and internal organs during embryonic and post-hatch days. BMC Vet Res 2019; 15:166. [PMID: 31122240 PMCID: PMC6533759 DOI: 10.1186/s12917-019-1917-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/16/2019] [Indexed: 11/30/2022] Open
Abstract
Background In broilers chickens, the molecular bases for promoting muscle development and growth requires further investigation. Therefore, the current study aimed to investigate the effects of daily thermal manipulation (TM) during embryonic days (ED) 12 to 18 on body, carcass and internal organ weights as well as on the expression of muscle growth markers genes during late embryogenesis and post-hatch days. 1500 fertile Cobb eggs were divided into five groups. The first group was a control group and incubated at 37.8°C. The other four groups were thermally manipulated (TM) and exposed to 38.5°C (TM1), 39°C (TM2), 39.5°C (TM3) and 40°C (TM4) daily for 18 h, respectively, with a relative humidity of 56%. Body weights (BW) from ED 12 to 18 and on post-hatch days 1, 2, 3, 4, 5, 6, 7, 14, 21, 28 and 35 were recorded. mRNA expression levels of muscle growth factor genes (IGF-1 and GH) and muscle marker genes (Myogenic Differentiation Antigen; MyoD), Myogenin, Pax7, and PCNA) during ED 12 to 18 and on post-hatch days 1, 3, 5, 7, 14 were analyzed. On post-hatch day 35, the carcass and internal organ weights have been also evaluated. Results TM during certain days of embryogenesis (ED 12 to 18) did not affect the BW of broilers during their embryonic lives. However, TM, particularly TM1 and TM2, significantly increased BW, carcass and internal weights of hatched chicks near to the marketing age (post-hatch days 28 and 35). Most of TM protocols induced up-regulation of muscle growth factor genes (IGF-1 and GH) and muscle marker genes (MyoD, Myogenin, Pax7, and PCNA) during embryonic life (ED 12 to 18) and on post-hatch days. Conclusion Among the various TM conditions, it seems that,TM1 and TM2 induced a significant increase in BW, carcass and internal weights of hatched chicks near to the marketing age. This increase in BW induced presumably via up-regulation of muscle growth factor genes and muscle growth markers genes during embryonic life (ED 12 to 18) and on post-hatch days. Both protocols (TM1 and TM2) can be used in real-world applications of poultry industry for maximum benefit.
Collapse
Affiliation(s)
- Mohamed Borhan Al-Zghoul
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Sabry Mohamed El-Bahr
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Hufof, 31982, Saudi Arabia. .,Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
22
|
Domenighetti AA, Mathewson MA, Pichika R, Sibley LA, Zhao L, Chambers HG, Lieber RL. Loss of myogenic potential and fusion capacity of muscle stem cells isolated from contractured muscle in children with cerebral palsy. Am J Physiol Cell Physiol 2018; 315:C247-C257. [PMID: 29694232 DOI: 10.1152/ajpcell.00351.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cerebral palsy (CP) is the most common cause of pediatric neurodevelopmental and physical disability in the United States. It is defined as a group of motor disorders caused by a nonprogressive perinatal insult to the brain. Although the brain lesion is nonprogressive, there is a progressive, lifelong impact on skeletal muscles, which are shorter, spastic, and may develop debilitating contractures. Satellite cells are resident muscle stem cells that are indispensable for postnatal growth and regeneration of skeletal muscles. Here we measured the myogenic potential of satellite cells isolated from contractured muscles in children with CP. When compared with typically developing (TD) children, satellite cell-derived myoblasts from CP differentiated more slowly (slope: 0.013 (SD 0.013) CP vs. 0.091 (SD 0.024) TD over 24 h, P < 0.001) and fused less (fusion index: 21.3 (SD 8.6) CP vs. 81.3 (SD 7.7) TD after 48 h, P < 0.001) after exposure to low-serum conditions that stimulated myotube formation. This impairment was associated with downregulation of several markers important for myoblast fusion and myotube formation, including DNA methylation-dependent inhibition of promyogenic integrin-β 1D (ITGB1D) protein expression levels (-50% at 42 h), and ~25% loss of integrin-mediated focal adhesion kinase phosphorylation. The cytidine analog 5-Azacytidine (5-AZA), a demethylating agent, restored ITGB1D levels and promoted myogenesis in CP cultures. Our data demonstrate that muscle contractures in CP are associated with loss of satellite cell myogenic potential that is dependent on DNA methylation patterns affecting expression of genetic programs associated with muscle stem cell differentiation and muscle fiber formation.
Collapse
Affiliation(s)
- Andrea A Domenighetti
- The Shirley Ryan AbilityLab, Chicago, Illinois.,Department of Physical Medicine & Rehabilitation, Northwestern University , Chicago, Illinois.,Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Margie A Mathewson
- Bioengineering Department, University of California, San Diego, La Jolla, California
| | | | | | - Leyna Zhao
- ACEA Biosciences Incorporated, San Diego, California
| | | | - Richard L Lieber
- The Shirley Ryan AbilityLab, Chicago, Illinois.,Department of Physical Medicine & Rehabilitation, Northwestern University , Chicago, Illinois.,Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| |
Collapse
|
23
|
Asfour HA, Allouh MZ, Said RS. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (Maywood) 2018; 243:118-128. [PMID: 29307280 DOI: 10.1177/1535370217749494] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prenatal and postnatal myogenesis share many cellular and molecular aspects. Myogenic regulatory factors are basic Helix-Loop-Helix transcription factors that indispensably regulate both processes. These factors (Myf5, MyoD, Myogenin, and MRF4) function as an orchestrating cascade, with some overlapped actions. Prenatally, myogenic regulatory factors are restrictedly expressed in somite-derived myogenic progenitor cells and their derived myoblasts. Postnatally, myogenic regulatory factors are important in regulating the myogenesis process via satellite cells. Many positive and negative regulatory mechanisms exist either between myogenic regulatory factors themselves or between myogenic regulatory factors and other proteins. Upstream factors and signals are also involved in the control of myogenic regulatory factors expression within different prenatal and postnatal myogenic cells. Here, the authors have conducted a thorough and an up-to-date review of the myogenic regulatory factors since their discovery 30 years ago. This review discusses the myogenic regulatory factors structure, mechanism of action, and roles and regulations during prenatal and postnatal myogenesis. Impact statement Myogenic regulatory factors (MRFs) are key players in the process of myogenesis. Despite a considerable amount of literature regarding these factors, their exact mechanisms of actions are still incompletely understood with several overlapped functions. Herein, we revised what has hitherto been reported in the literature regarding MRF structures, molecular pathways that regulate their activities, and their roles during pre- and post-natal myogenesis. The work submitted in this review article is considered of great importance for researchers in the field of skeletal muscle formation and regeneration, as it provides a comprehensive summary of all the biological aspects of MRFs and advances a better understanding of the cellular and molecular mechanisms regulating myogenesis. Indeed, attaining a better understanding of MRFs could be utilized in developing novel therapeutic protocols for multiple myopathies.
Collapse
Affiliation(s)
- Hasan A Asfour
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Mohammed Z Allouh
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Raed S Said
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| |
Collapse
|
24
|
Murach KA, Fry CS, Kirby TJ, Jackson JR, Lee JD, White SH, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Starring or Supporting Role? Satellite Cells and Skeletal Muscle Fiber Size Regulation. Physiology (Bethesda) 2018; 33:26-38. [PMID: 29212890 PMCID: PMC5866409 DOI: 10.1152/physiol.00019.2017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022] Open
Abstract
Recent loss-of-function studies show that satellite cell depletion does not promote sarcopenia or unloading-induced atrophy, and does not prevent regrowth. Although overload-induced muscle fiber hypertrophy is normally associated with satellite cell-mediated myonuclear accretion, hypertrophic adaptation proceeds in the absence of satellite cells in fully grown adult mice, but not in young growing mice. Emerging evidence also indicates that satellite cells play an important role in remodeling the extracellular matrix during hypertrophy.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Christopher S Fry
- Department of Nutrition and Metabolism, School of Health Professions, University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Tyler J Kirby
- The Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York
| | - Janna R Jackson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Jonah D Lee
- Environment, Health, and Safety, University of Michigan, Ann Arbor, Michigan
| | - Sarah H White
- Department of Animal Science, Texas A&M University, College Station, Texas; and
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky;
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
25
|
Terena SML, Fernandes KPS, Bussadori SK, Deana AM, Mesquita-Ferrari RA. Systematic review of the synergist muscle ablation model for compensatory hypertrophy. Rev Assoc Med Bras (1992) 2017; 63:164-172. [DOI: 10.1590/1806-9282.63.02.164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/26/2016] [Indexed: 11/21/2022] Open
Abstract
Summary Objective: The aim was to evaluate the effectiveness of the experimental synergists muscle ablation model to promote muscle hypertrophy, determine the period of greatest hypertrophy and its influence on muscle fiber types and determine differences in bilateral and unilateral removal to reduce the number of animals used in this model. Method: Following the application of the eligibility criteria for the mechanical overload of the plantar muscle in rats, nineteen papers were included in the review. Results: The results reveal a greatest hypertrophy occurring between days 12 and 15, and based on the findings, synergist muscle ablation is an efficient model for achieving rapid hypertrophy and the contralateral limb can be used as there was no difference between unilateral and bilateral surgery, which reduces the number of animals used in this model. Conclusion: This model differs from other overload models (exercise and training) regarding the characteristics involved in the hypertrophy process (acute) and result in a chronic muscle adaptation with selective regulation and modification of fast-twitch fibers in skeletal muscle. This is an efficient and rapid model for compensatory hypertrophy.
Collapse
|
26
|
S Said R, G Mustafa A, A Asfour H, I Shaqoura E. Myogenic Satellite Cells: Biological Milieu and Possible Clinical Applications. Pak J Biol Sci 2017; 20:1-11. [PMID: 29023009 DOI: 10.3923/pjbs.2017.1.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adult skeletal muscle is a post-mitotic terminally differentiated tissue that possesses an immense potential for regeneration after injury. This regeneration can be achieved by adult stem cells named satellite cells that inhabit the muscular tissue. These cells were first identified in 1961 and were described as being wedged between the plasma membrane of the muscle fiber and the surrounding basement membrane. Since their discovery, many researchers investigated their embryological origin and the exact role they play in muscle regeneration and repair. Under normal conditions, satellite cells are retained in a quiescent state and when required, these cells are activated to proliferate and differentiate to repair pre-existing muscle fibers or to a lesser extent fuse with each other to form new myofibers. During skeletal muscle regeneration, satellite cell actions are regulated through a cascade of complex signaling pathways that are influenced by multiple extrinsic factors within the satellite cell micro-environment. Here, the basic concepts were studied about satellite cells, their development, function, distribution and the different cellular and molecular mechanisms that regulate these cells. The recent findings about some of their clinical applications and potential therapeutic use were also discussed.
Collapse
Affiliation(s)
- Raed S Said
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, 22110 Irbid, Jorda
| | - Ayman G Mustafa
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, 22110 Irbid, Jorda
| | - Hasan A Asfour
- Department of Anatomy, Faculty of Medicine, Jordan Un iversity of Science and Technology, 22110 Irbid, Jorda
| | - Emad I Shaqoura
- Department of Anatomy, Faculty of Medicine, Jordan Un iversity of Science and Technology, 22110 Irbid, Jorda
| |
Collapse
|
27
|
Stuelsatz P, Keire P, Yablonka-Reuveni Z. Isolation, Culture, and Immunostaining of Skeletal Muscle Myofibers from Wildtype and Nestin-GFP Mice as a Means to Analyze Satellite Cell. Methods Mol Biol 2017; 1556:51-102. [PMID: 28247345 DOI: 10.1007/978-1-4939-6771-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multinucleated myofibers, the functional contractile units of adult skeletal muscle, harbor mononuclear Pax7+ myogenic progenitors on their surface between the myofiber basal lamina and plasmalemma. These progenitors, known as satellite cells, are the primary myogenic stem cells in adult muscle. This chapter describes our laboratory protocols for isolating, culturing, and immunostaining intact myofibers from mouse skeletal muscle as a means for studying satellite cell dynamics. The first protocol discusses myofiber isolation from the flexor digitorum brevis (FDB) muscle. These short myofibers are plated in dishes coated with PureCol collagen (formerly known as Vitrogen) and maintained in a mitogen-poor medium (± supplemental growth factors). Employing such conditions, satellite cells remain at the surface of the parent myofiber while synchronously undergoing a limited number of proliferative cycles and rapidly differentiate. The second protocol discusses the isolation of longer myofibers from the extensor digitorum longus (EDL) muscle. These EDL myofibers are routinely plated individually as adherent myofibers in wells coated with Matrigel and maintained in a mitogen-rich medium, conditions in which satellite cells migrate away from the parent myofiber, proliferate extensively, and generate numerous differentiating progeny. Alternatively, these EDL myofibers can be plated as non-adherent myofibers in uncoated wells and maintained in a mitogen-poor medium (± supplemental growth factors), conditions that retain satellite cell progeny at the myofiber niche similar to the FDB myofiber cultures. However, the adherent myofiber format is our preferred choice for monitoring satellite cells in freshly isolated (Time 0) myofibers. We conclude this chapter by promoting the Nestin-GFP transgenic mouse as an efficient tool for direct analysis of satellite cells in isolated myofibers. While satellite cells have been often detected by their expression of the Pax7 protein or the Myf5nLacZ knockin reporter (approaches that are also detailed herein), the Nestin-GFP reporter distinctively permits quantification of satellite cells in live myofibers, which enables linking initial Time 0 numbers and subsequent performance upon culturing. We additionally point out to the implementation of the Nestin-GFP transgene for monitoring other selective cell lineages as illustrated by GFP expression in capillaries, endothelial tubes and neuronal cells. Myofibers from other types of muscles, such as diaphragm, masseter, and extraocular, can also be isolated and analyzed using protocols described herein. Collectively, this chapter provides essential tools for studying satellite cells in their native position and their interplay with the parent myofiber.
Collapse
MESH Headings
- Animals
- Biomarkers
- Cell Culture Techniques
- Cell Differentiation
- Cell Separation/methods
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Immunophenotyping/methods
- Mice
- Mice, Transgenic
- Microscopy, Fluorescence
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/cytology
- Nestin/genetics
- Nestin/metabolism
- Phenotype
- Primary Cell Culture
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/ultrastructure
Collapse
Affiliation(s)
- Pascal Stuelsatz
- Department of Biological Structure, School of Medicine, University of Washington, Health Sciences Building, Room G520, 1959 NE Pacific Street, Box 357420, Seattle, WA, 98195, USA
| | - Paul Keire
- Department of Biological Structure, School of Medicine, University of Washington, Health Sciences Building, Room G520, 1959 NE Pacific Street, Box 357420, Seattle, WA, 98195, USA
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, School of Medicine, University of Washington, Health Sciences Building, Room G520, 1959 NE Pacific Street, Box 357420, Seattle, WA, 98195, USA.
| |
Collapse
|
28
|
Liu Y, Jiang B, Fu C, Hao R. Cloning and characterization of adipogenin and its overexpression enhances fat accumulation of bovine myosatellite cells. Gene 2016; 601:27-35. [PMID: 27914980 DOI: 10.1016/j.gene.2016.11.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 11/17/2022]
Abstract
Adipogenin (ADIG) is an adipocyte-specific membrane protein highly expressed in adipose tissues and is increased during the adipocyte differentiation. However, the roles and mechanisms of ADIG on fat accumulation and adipocyte differentiation in ex vivo still largely unknown. In this study, we isolated bovine myosatellite cells based on adhesion characteristics to investigate whether ADIG overexpression could promote trans-differentiation and increase fat accumulation in myosatellite cells. Immunofluorescence labeling was then used for the phenotypic characteristics of myosatellite. Our results showed that, after induction of differentiation, adenovirus mediated ADIG overexpression could upregulate expression level of PPARγ, and Oil Red O staining showed larger lipid drops compared to control groups. In consistent, key components of Hh signaling pathway were down regulated when infected with ADIG adenovirus, even though treated with inhibitor of Hh signaling pathway together could not induce further decrease. In addition, bioinformatics analysis of ADIG was also performed for its structure and function.
Collapse
Affiliation(s)
- Yang Liu
- Henan Collaborative Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China; Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Bijie Jiang
- Henan Collaborative Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China.
| | - Changzhen Fu
- College of Life Science and Technology, Dalian University, Dalian, Liaoning, 116622, China
| | - Ruijie Hao
- College of Life Science, Xinyang Normal University, Xinyang, Henan, 464000, China
| |
Collapse
|
29
|
Al-Zghoul MB, Al-Natour MQ, Dalab AS, Alturki OI, Althnaian T, Al-ramadan SY, Hannon KM, El-Bahr SM. Thermal Manipulation Mid-term Broiler Chicken Embryogenesis: Effect on Muscle Growth Factors and Muscle Marker Genes. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2016. [DOI: 10.1590/1806-9061-2016-0260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- MB Al-Zghoul
- Jordan University of Science and Technology, Jordan
| | - MQ Al-Natour
- Jordan University of Science and Technology, Jordan
| | - AS Dalab
- King Faisal University, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
30
|
Jan AT, Lee EJ, Ahmad S, Choi I. Meeting the meat: delineating the molecular machinery of muscle development. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2016; 58:18. [PMID: 27168943 PMCID: PMC4862161 DOI: 10.1186/s40781-016-0100-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
Muscle, studied mostly with respect to meat production, represents one of the largest protein reservoirs of the body. As gene expression profiling holds credibility to deal with the increasing demand of food from animal sources, excessive loss due to myopathies and other muscular dystrophies was found detrimental as it aggravates diseases that result in increased morbidity and mortality. Holding key point towards improving the developmental program of muscle in meat producing animals, elucidating the underlying mechanisms of the associated pathways in livestock animals is believed to open up new avenues towards enhancing the lean tissue deposition. To this end, identification of vital candidate genes having no known function in myogenesis, is believed to increase the current understanding of the physiological processes going on in the skeletal muscle tissue. Taking consequences of gene expression changes into account, knowledge of the pathways associated with their activation and as such up-regulation seems critical for the overall muscle homeostasis. Having important implications on livestock production, a thorough understanding of postnatal muscle development seems a timely step to fulfil the growing need of ever increasing populations of the world.
Collapse
Affiliation(s)
- Arif Tasleem Jan
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| | - Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| | - Sarafraz Ahmad
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| |
Collapse
|
31
|
Bakhtiari N, Hosseinkhani S, Soleimani M, Hemmati R, Noori-Zadeh A, Javan M, Tashakor A. Short-term ursolic acid promotes skeletal muscle rejuvenation through enhancing of SIRT1 expression and satellite cells proliferation. Biomed Pharmacother 2016; 78:185-196. [PMID: 26898441 DOI: 10.1016/j.biopha.2016.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/09/2016] [Accepted: 01/13/2016] [Indexed: 10/22/2022] Open
Abstract
Ursolic acid (UA) is a triterpenoid compound, which exerts its influences on the skeletal muscles. However, the mechanisms underlying these effects are still unclear. In this study, muscle satellite cells were isolated and purified by high-throughput pre-plating method (∼>60%) from 10 days old mice skeletal muscles. Evaluation of paired-box 7 (Pax7) expressions then confirmed the purification. Treatment of the cells with UA showed that UA up-regulated SIRT1 (∼35 folds) and overexpressed PGC-1α (∼175 folds) gene significantly. Moreover, the number of muscle satellite cells, which accompanied by initiation of neomyogenesis in the animal skeletal muscles, was increased (∼3.4 times). We also evaluated UA-mediated changes in the cellular energy status in the skeletal muscles. The results revealed that in the UA-treated mice, ATP and ADP contents in the various skeletal muscle tissue types, including: Gastrocnemius (Gas), Tibialis Anterior (Tib) and Gluteus Maximus (Glu) have been significantly decreased (P≤0.001); 2.2, 3.2, 2 times for ATP, and 9.6, 35.7, 11.6 times for ADP, respectively; however to compensate this process mitochondrial biogenesis occurred (12.33%±1.5 times). Furthermore, a rise in ATP/ADP ratio was observed 2.5, 4.5, 2.05 times for Gas, Tib and Glu muscles, respectively (P≤0.001). Alternatively, UA enhanced the expression of myoglobin (∼2 folds) in concert with remodeling of glycolytic muscle fibers to mainly fast IIA (∼30%) and slow-twitch (∼4%) types as well. Finally, our study indicated that UA indirectly mimicked beneficial effects of short-term calorie restriction and exercise (fast-oxidative) by directing the skeletal muscle composition toward oxidative metabolism.
Collapse
MESH Headings
- Adenosine Diphosphate/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Blood Glucose/metabolism
- Cell Line
- Cell Proliferation/drug effects
- Cell Separation
- Energy Metabolism/drug effects
- Fasting/blood
- Male
- Mice, Inbred C57BL
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/physiology
- Myoglobin/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Rejuvenation/physiology
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/drug effects
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/ultrastructure
- Sirtuin 1/metabolism
- Triterpenes/pharmacology
- Ursolic Acid
Collapse
Affiliation(s)
- Nuredin Bakhtiari
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Masoud Soleimani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Iran
| | - Ali Noori-Zadeh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amin Tashakor
- Institute of Biochemistry and Biophysics, Tehran University, Tehran, Iran
| |
Collapse
|
32
|
Piestun Y, Yahav S, Halevy O. Thermal manipulation during embryogenesis affects myoblast proliferation and skeletal muscle growth in meat-type chickens. Poult Sci 2015; 94:2528-36. [PMID: 26316337 DOI: 10.3382/ps/pev245] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/07/2015] [Indexed: 11/20/2022] Open
Abstract
Thermal manipulation (TM) of 39.5°C applied during mid-embryogenesis (embryonic d 7 to 16) has been proven to promote muscle development and enhance muscle growth and meat production in meat-type chickens. This study aimed to elucidate the cellular basis for this effect. Continuous TM or intermittent TM (for 12 h/d) increased myoblast proliferation manifested by higher (25 to 48%) myoblast number in the pectoral muscles during embryonic development but also during the first week posthatch. Proliferation ability of the pectoral-muscle-derived myoblasts in vitro was significantly higher in the TM treatments until embryonic d 15 (intermittent TM) or 13 (continuous TM) compared to that of controls, suggesting increased myogenic progeny reservoir in the muscle. However, the proliferation ability of myoblasts was lower in the TM treatments vs. control during the last days of incubation. This coincided with higher levels of myogenin expression in the muscle, indicating enhanced cell differentiation in the TM muscle. A similar pattern was observed posthatch: Myoblast proliferation was significantly higher in the TM chicks relative to controls during the peak of posthatch cell proliferation until d 6, followed by lower cell number 2 wk posthatch as myoblast number sharply decreases. Higher myogenin expression was observed in the TM chicks on d 6. This resulted in increased muscle growth, manifested by significantly higher relative weight of breast muscle in the embryo and posthatch. It can be concluded that temperature elevation during mid-term embryogenesis promotes myoblast proliferation, thus increasing myogenic progeny reservoir in the muscle, resulting in enhanced muscle growth in the embryo and posthatch.
Collapse
Affiliation(s)
- Yogev Piestun
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel Institute of Animal Sciences, ARO, The Volcani Center, Bet Dagan 50250, Israel
| | - Shlomo Yahav
- Institute of Animal Sciences, ARO, The Volcani Center, Bet Dagan 50250, Israel
| | - Orna Halevy
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
33
|
Bakhtiari N, Hosseinkhani S, Tashakor A, Hemmati R. Ursolic acid ameliorates aging-metabolic phenotype through promoting of skeletal muscle rejuvenation. Med Hypotheses 2015; 85:1-6. [PMID: 25976755 DOI: 10.1016/j.mehy.2015.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/17/2015] [Accepted: 02/25/2015] [Indexed: 12/25/2022]
Abstract
Ursolic acid (UA) is a lipophilic compound, which highly found in apple peels. UA has some certain features, of the most important is its anabolic effects on skeletal muscles, which in turn plays a prominent role in the aging process, encouraged us to evaluate skeletal muscle rejuvenation. This study seeks to address the two following questions: primarily, we wonder to know if UA increases anti-aging biomarkers (SIRT1 and PGC-1α) in the isolated satellite cells, to pave the way for satellite cells proliferation. The results revealed that UA elevated the expression of SIRT1 (∼ 35 folds) and PGC-1α (∼ 175 folds) genes. The other question that needs to be asked, however, is to understand whether it is possible to generalize the in vitro findings to in vivo. For this, a study was designed to investigate the effects of UA on the cellular energy status in the animal models (C57BL/6 mice). We found that UA decreased cellular energy charges such as ATP (∼ 3 times) and ADP (∼ 18 times). With respect to the role of UA in energy expenditure and as an anti-aging biomarker, one might wonder to elucidate skeletal muscle rejuvenation as well as satellite cells proliferation and neomyogenesis. The results illustrated that UA boosted neomyogenesis through enhancing the number of satellite cells. In addition, rejuvenation effects of UA on the skeletal muscle promptly encouraged us to reexamine the performance of skeletal muscles. The results indicated that UA through increasing myoglobin expression (∼ 2 folds) accompanied with transforming of glycolytic to fast oxidative status chiefly and slow-twitch muscle fibers. To the best of our knowledge, it seems that UA might be considered as a potential candidate for treatment of pathological conditions associated with muscular atrophy and dysfunction, including skeletal muscle atrophy, amyotrophic lateral sclerosis (ALS), sarcopenia and metabolic diseases of the muscles.
Collapse
Affiliation(s)
- Nuredin Bakhtiari
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Amin Tashakor
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Iran
| | - Roohullah Hemmati
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
34
|
Joiner KS, Hamlin GA, Lien ARJ, Bilgili SF. Evaluation of capillary and myofiber density in the pectoralis major muscles of rapidly growing, high-yield broiler chickens during increased heat stress. Avian Dis 2015; 58:377-82. [PMID: 25518431 DOI: 10.1637/10733-112513-reg.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Skeletal muscle development proceeds from early embryogenesis through marketing age in broiler chickens. While myofiber formation is essentially complete at hatching, myofiber hypertrophy can increase after hatch by assimilation of satellite cell nuclei into myofibers. As the diameter of the myofibers increases, capillary density peripheral to the myofiber is marginalized, limiting oxygen supply and subsequent diffusion into the myofiber, inducing microischemia. The superficial and deep pectoralis muscles constitute 25% of the total body weight in a market-age bird; thus compromise of those muscle groups can have profound economic impact on broiler production. We hypothesized that marginal capillary support relative to the hypertrophic myofibers increases the incidence of microischemia, especially in contemporary high-yield broilers under stressing conditions such as high environmental temperatures. We evaluated the following parameters in four different broiler strains at 39 and 53 days of age when reared under thermoneutral (20 to 25 C) versus hot (30 to 35 C) environmental conditions: capillary density, myofiber density and diameter, and degree of myodegeneration. Our data demonstrate that myofiber diameter significantly increased with age (P > or = 0.0001), while the absolute numbers of capillaries, blood vessels, and myofibers visible in five 400 x microscopic fields decreased (P > or = 0.0001). This is concomitant with marginalization of vascular support in rapidly growing myofibers. The myofiber diameter was significantly lower with hot environmental temperatures (P > or = 0.001); therefore, the absolute number of myofibers visible in five 400X microscopic fields was significantly higher. The incidence and subjective degree of myodegeneration characterized by loss of cross-striations, myocyte hyperrefractility, sarcoplasmic vacuolation, and nuclear pyknosis or loss also increased in hot conditions. Differences among strains were not observed.
Collapse
|
35
|
Dayanidhi S, Lieber RL. Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve 2014; 50:723-32. [PMID: 25186345 DOI: 10.1002/mus.24441] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 12/15/2022]
Abstract
Satellite cells (SCs) are the muscle stem cells responsible for longitudinal and cross-sectional postnatal growth and repair after injury and which provide new myonuclei when needed. We review their morphology and contribution to development and their role in sarcomere and myonuclear addition. SCs, similar to other tissue stem cells, cycle through different states, such as quiescence, activation, and self-renewal, and thus we consider the signaling mechanisms involved in maintenance of these states. The role of the SC niche and their interactions with other cells, such as fibroblasts and the extracellular matrix, are all emerging as major factors that affect aging and disease. Interestingly, children with cerebral palsy appear to have a reduced SC number, which could play a role in their reduced muscular development and even in muscular contracture formation. Finally, we review the current information on SC dysfunction in children with muscular dystrophy and emerging therapies that target promotion of myogenesis and reduction of fibrosis.
Collapse
Affiliation(s)
- Sudarshan Dayanidhi
- Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Drive, Mail Code 0863, La Jolla, California, 92093-0863, USA; Department of Veterans Affairs Medical Center, San Diego, California, USA
| | | |
Collapse
|
36
|
Specific pattern of cell cycle during limb fetal myogenesis. Dev Biol 2014; 392:308-23. [DOI: 10.1016/j.ydbio.2014.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/24/2014] [Accepted: 05/21/2014] [Indexed: 01/20/2023]
|
37
|
Sharifnezhad A, Marzilger R, Arampatzis A. Effects of load magnitude, muscle length and velocity during eccentric chronic loading on the longitudinal growth of the vastus lateralis muscle. ACTA ACUST UNITED AC 2014; 217:2726-33. [PMID: 24803466 DOI: 10.1242/jeb.100370] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study investigated the longitudinal growth of the vastus lateralis muscle using four eccentric exercise protocols with different mechanical stimuli by modifying the load magnitude, lengthening velocity and muscle length at which the load was applied. Thirty-one participants voluntarily participated in this study in two experimental and one control group. The first experimental group (N=10) exercised the knee extensors of one leg at 65% (low load magnitude) of the maximum isometric voluntary contraction (MVC) and the second leg at 100% MVC (high load magnitude) with 90 deg s(-1) angular velocity, from 25 to 100 deg knee angle. The second experimental group (N=10) exercised one leg at 100% MVC, 90 deg s(-1), from 25 to 65 deg knee angle (short muscle length). The other leg was exercised at 100% MVC, 240 deg s(-1) angular velocity (high muscle lengthening velocity) from 25 to 100 deg. In the pre- and post-intervention measurements, we examined the fascicle length of the vastus lateralis at rest and the moment-angle relationship of the knee extensors. After 10 weeks of intervention, we found a significant increase (~14%) of vastus lateralis fascicle length compared with the control group, yet only in the leg that was exercised with high lengthening velocity. The findings provide evidence that not every eccentric loading causes an increase in fascicle length and that the lengthening velocity of the fascicles during the eccentric loading, particularly in the phase where the knee joint moment decreases (i.e. deactivation of the muscle), seems to be an important factor for longitudinal muscle growth.
Collapse
Affiliation(s)
- Ali Sharifnezhad
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Robert Marzilger
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
38
|
Franchi MV, Atherton PJ, Reeves ND, Flück M, Williams J, Mitchell WK, Selby A, Beltran Valls RM, Narici MV. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol (Oxf) 2014; 210:642-54. [PMID: 24387247 DOI: 10.1111/apha.12225] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/23/2013] [Accepted: 12/30/2013] [Indexed: 12/19/2022]
Abstract
AIM We investigated architectural, functional and molecular responses of human skeletal muscle to concentric (CON) or eccentric (ECC) resistance training (RT). METHODS Twelve young males performed 10 weeks of concentric (CON) or eccentric (ECC) resistance training (RT) (n = 6 CON, 6 ECC). An additional 14 males were recruited to evaluate acute muscle fascicle behaviour and molecular signalling in biopsies collected from vastus lateralis (VL) after 30 min of single bouts of CON or ECC exercise. VL volume was measured by magnetic resonance imaging. Muscle architecture (fascicle length, Lf; pennation angle, PA) was evaluated by ultrasonography. Muscle remodelling signals to CON or ECC loading [MAPK/AKT-mammalian target of rapamycin (mTOR) signalling] and inflammatory pathway (TNFαMurf-1-MAFbx) were evaluated by immunoblotting. RESULTS Despite the ~1.2-fold greater load of the ECC group, similar increases in muscle volume (+8% CON and +6% ECC) and in maximal voluntary isometric contraction (+9% CON and +11% ECC) were found after RT. However, increases in Lf were greater after ECC than CON (+12 vs. +5%) while increases in PA were greater in CON than ECC (+30 vs. +5%). Distinct architectural adaptations were associated with preferential growth in the distal regions of VL for ECC (+ECC +8% vs. +CON +2) and mid belly for CON (ECC +7 vs. CON +11%). While MAPK activation (p38MAPK, ERK1/2, p90RSK) was specific to ECC, neither mode affected AKT-mTOR or inflammatory signalling 30 min after exercise. CONCLUSION Muscle growth with CON and ECC RT occurs with different morphological adaptations reflecting distinct fibre fascicle behaviour and molecular responses.
Collapse
Affiliation(s)
- M. V. Franchi
- School of Graduate Entry Medicine and Health; MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research; University of Nottingham; Derby UK
- School of Healthcare Science; Institute for Biomedical Research into Human Movement and Health; Manchester Metropolitan University; Manchester UK
| | - P. J. Atherton
- School of Graduate Entry Medicine and Health; MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research; University of Nottingham; Derby UK
| | - N. D. Reeves
- School of Healthcare Science; Institute for Biomedical Research into Human Movement and Health; Manchester Metropolitan University; Manchester UK
| | - M. Flück
- Department of Orthopaedics; University of Zurich; Balgrist University Hospital; Zurich Switzerland
| | - J. Williams
- School of Graduate Entry Medicine and Health; MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research; University of Nottingham; Derby UK
| | - W. K. Mitchell
- School of Graduate Entry Medicine and Health; MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research; University of Nottingham; Derby UK
| | - A. Selby
- School of Graduate Entry Medicine and Health; MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research; University of Nottingham; Derby UK
| | - R. M. Beltran Valls
- School of Graduate Entry Medicine and Health; MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research; University of Nottingham; Derby UK
| | - M. V. Narici
- School of Graduate Entry Medicine and Health; MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research; University of Nottingham; Derby UK
| |
Collapse
|
39
|
Chen W, Lv YT, Zhang HX, Ruan D, Wang S, Lin YC. Developmental specificity in skeletal muscle of late-term avian embryos and its potential manipulation. Poult Sci 2013; 92:2754-64. [PMID: 24046424 DOI: 10.3382/ps.2013-03099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Unlike the mammalian fetus, development of the avian embryo is independent of the maternal uterus and is potentially vulnerable to physiological and environmental stresses close to hatch. In contrast to the fetus of late gestation in mammals, skeletal muscle in avian embryos during final incubation shows differential developmental characteristics: 1) muscle mobilization (also called atrophy) is selectively enhanced in the type II fibers (pectoral muscle) but not in the type I fibers (biceps femoris and semimembranosus muscle), involving activation of ubiquitin-mediated protein degradation and suppression of S6K1-mediated protein translation; 2) the proliferative activity of satellite cells is decreased in the atrophied muscle of late-term embryos but enhanced at the day of hatch, probably preparing for the postnatal growth. The mobilization of muscle may represent an adaptive response of avian embryos to external (environmental) or internal (physiological) changes, considering there are developmental transitions both in hormones and requirements for glycolytic substrates from middle-term to late-term incubation. Although the exact mechanism triggering muscle fiber atrophy is still unknown, nutritional and endocrine changes may be of importance. The atrophied muscle fiber recovers as soon as feed and water are available to the hatchling. In ovo feeding of late-term embryos has been applied to improve the nutritional status and therein enhances muscle development. Similarly, in ovo exposure to higher temperature or green light during the critical period of muscle development are also demonstrated to be potential strategies to promote pre- and posthatch muscle growth.
Collapse
Affiliation(s)
- W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
41
|
Li J, Johnson SE. Ephrin-A5 promotes bovine muscle progenitor cell migration before mitotic activation. J Anim Sci 2013; 91:1086-93. [PMID: 23296833 DOI: 10.2527/jas.2012-5728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Satellite cells are the resident stem cell population of adult skeletal muscle tissue that is responsible for growth and regeneration. The cells typically congregate near the tips of the muscle fibers and in close proximity to the neural muscular junction (NMJ). Ephrin-A5 is a chemotactic molecule that participates in the correct positioning and formation of the NMJ. The objective of the experiment was to examine the effects of ephrin-A5 signaling on bovine satellite cell (BSC) biology. Primary cultures of BSC demonstrate changes in velocity with time in culture that is unique to the Paired box protein 7 (Pax7):Myogenic factor 5 (Myf5) subpopulation. Treatment of the BSC with ephrin-A5 causes a reduction (P < 0.05) in velocity with a concomitant increase (P < 0.05) in directed migration. The chemoattractant properties of ephrin-A5 occur before myogenic differentiation 1 (MyoD) expression in the myogenic precursors and are abrogated after their differentiation to committed myoblasts. Ephrin-A5 induced migration appears to require components of the Ras homolog gene family member A (RhoA) and Rho-associated protein kinase (ROCK) signaling machinery. Supplementation of culture media with a chemical ROCK inhibitor suppressed (P < 0.05) ephrin-A5 initiated BSC migration. These results contrast with treatment of BSC with hepatocyte growth factor (HGF), a key modulator of myogenic and motogenic activity. Treatment of BSC with HGF had no effect on cell motility or migration immediately after culture establishment. Twenty-four hours after culture establishment, BSC demonstrated an increase (P < 0.05) in transwell migration toward HGF. These results document that temporal and spatial gradients of chemokines and growth factors participate in the localization of BSC within the niche.
Collapse
Affiliation(s)
- J Li
- Department of Animal Sciences, University of Florida, Gainesville 32611, USA
| | | |
Collapse
|
42
|
Abstract
Multinucleated myofibers are the functional contractile units of skeletal muscle. In adult muscle, mononuclear satellite cells, located between the basal lamina and the plasmalemma of the myofiber, are the primary myogenic stem cells. This chapter describes protocols for isolation, culturing, and immunostaining of myofibers from mouse skeletal muscle. Myofibers are isolated intact and retain their associated satellite cells. The first protocol discusses myofiber isolation from the flexor digitorum brevis (FDB) muscle. These short myofibers are cultured in dishes coated with PureCol collagen (formerly known as Vitrogen) using a serum replacement medium. Employing such culture conditions, satellite cells remain associated with the myofibers, undergoing proliferation and differentiation on the myofiber surface. The second protocol discusses the isolation of longer myofibers from the extensor digitorum longus (EDL) muscle. Different from the FDB preparation, where multiple myofibers are processed together, the longer EDL myofibers are typically processed and cultured individually in dishes coated with Matrigel using a growth factor rich medium. Under these conditions, satellite cells initially remain associated with the parent myofiber and later migrate away, giving rise to proliferating and differentiating progeny. Myofibers from other types of muscles, such as diaphragm, masseter, and extraocular muscles can also be isolated and analyzed using protocols described herein. Overall, cultures of isolated myofibers provide essential tools for studying the interplay between the parent myofiber and its associated satellite cells. The current chapter provides background, procedural, and reagent updates, and step-by-step images of FDB and EDL muscle isolations, not included in our 2005 publication in this series.
Collapse
|
43
|
Allouh MZ, Aldirawi MH. Influence of mesterolone on satellite cell distribution and fiber morphology within maturing chicken pectoralis muscle. Anat Rec (Hoboken) 2012; 295:792-9. [PMID: 22419647 DOI: 10.1002/ar.22439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/11/2012] [Accepted: 02/17/2012] [Indexed: 01/13/2023]
Abstract
Mesterolone is a synthetic oral anabolic androgenic steroid used to treat hypogonadism. There are frequent reports of mesterolone abuse in human and equine sports to increase muscle mass and strength. However, limited information is available about how this drug exerts its effects on skeletal muscle. Satellite cells (SCs) are mononuclear myogenic stem cells that contribute to postnatal muscle growth and repair. As SC activation and subsequent differentiation to new myonuclei is a major event during muscle hypertrophy, this study investigated the influence of mesterolone on SC distribution within the pectoralis muscle of chickens. Specifically, this study tested the hypotheses that mesterolone induces avian skeletal muscle hypertrophy, and that mesterolone increases the number of SCs in avian skeletal muscle. Robust immunocytochemical techniques and morphometric analyses were used to calculate the numbers of SCs and myonuclei. Also, DNA concentration and Pax7 protein levels were measured to confirm immunocytochemical findings. Mesterolone significantly increased pectoralis mass and fiber size. All SC indices and number of myonuclei increased significantly by mesterolone administration. In addition, greater DNA concentration and Pax7 protein expression were found in mesterolone-treated birds. This study indicates that mesterolone can induce avian skeletal muscle hypertrophy and that this is correlated with increased number of SCs. We suggest that SCs are key cellular intermediaries for mesterolone-induced muscle hypertrophy.
Collapse
Affiliation(s)
- Mohammed Z Allouh
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| | | |
Collapse
|
44
|
Liu HH, Wang JW, Zhang RP, Chen X, Yu HY, Jin HB, Li L, Han CC, Xu F, Kang B, He H, Xu HY. In ovo feeding of IGF-1 to ducks influences neonatal skeletal muscle hypertrophy and muscle mass growth upon satellite cell activation. J Cell Physiol 2012; 227:1465-75. [PMID: 21618537 DOI: 10.1002/jcp.22862] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To investigate reasons for the muscle increase observed when eggs are treated by IGF-1 and whether or not satellite cell activation is specific to different types of myofibers, duck eggs were administrated with IGF-1. After injection, during the neonatal stages, the duck breast muscle and leg muscle were isolated for analysis. The muscle weight, muscle fiber diameter (MFD), cross-sectional area (CSA), the number of myofibers per unit area (MFN) and frequency of satellite cell activation and mitosis at the embryo stage of 27 days (27E) and the postnatal stage of 2 days after hatching (P2D) were determined. In addition, expression of two important myogenic transcription factors MyoD and Myf5 were detected and compared in the two types of muscle tissues. Results indicated that IGF-1 administration increased the duck body weight, MFD, CSA, MFN, and quantity of activated satellite cells and mitotic nuclei in the two types of muscle tissues. The MyoD and Myf5 expressed at a higher level in IGF-1-treated muscle. IGF-1 stimulated muscle weight growth more in the leg muscle than in the breast muscle. These results indicate that in ovo feeding of IGF-1 can stimulate duck growth and, especially, lead to increased muscle hypertrophy. These increases appear to be mainly dependent on the activation of satellite cells, some of which proliferate and fuse to the myofiber, enabling increased muscle mass. IGF-1 can indirectly affect satellite cells by regulating the expression of two important myogenic transcription factors, MyoD and Myf5, which help activate satellite cells.
Collapse
Affiliation(s)
- He-He Liu
- Institute of Animal Breeding & Genetic, Sichuan Agricultural University, Ya'an, Sichuan, P R China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ruschke K, Hiepen C, Becker J, Knaus P. BMPs are mediators in tissue crosstalk of the regenerating musculoskeletal system. Cell Tissue Res 2012; 347:521-44. [PMID: 22327483 DOI: 10.1007/s00441-011-1283-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/10/2011] [Indexed: 12/22/2022]
Abstract
The musculoskeletal system is a tight network of many tissues. Coordinated interplay at a biochemical level between tissues is essential for development and repair. Traumatic injury usually affects several tissues and represents a large challenge in clinical settings. The current demand for potent growth factors in such applications thus accompanies the keen interest in molecular mechanisms and orchestration of tissue formation. Of special interest are multitasking growth factors that act as signals in a variety of cell types, both in a paracrine and in an autocrine manner, thereby inducing cell differentiation and coordinating not only tissue assembly at specific sites but also maturation and homeostasis. We concentrate here on bone morphogenetic proteins (BMPs), which are important crosstalk mediators known for their irreplaceable roles in vertebrate development. The molecular crosstalk during embryonic musculoskeletal tissue formation is recapitulated in adult repair. BMPs act at different levels from the initiation to maturation of newly formed tissue. Interestingly, this is influenced by the spatiotemporal expression of different BMPs, their receptors and co-factors at the site of repair. Thus, the regenerative potential of BMPs needs to be evaluated in the context of highly connected tissues such as muscle and bone and might indeed be different in more poorly connected tissues such as cartilage. This highlights the need for an understanding of BMP signaling across tissues in order to eventually improve BMP regenerative potential in clinical applications. In this review, the distinct members of the BMP family and their individual contribution to musculoskeletal tissue repair are summarized by focusing on their paracrine and autocrine functions.
Collapse
Affiliation(s)
- Karen Ruschke
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
46
|
Yablonka-Reuveni Z. The skeletal muscle satellite cell: still young and fascinating at 50. J Histochem Cytochem 2012; 59:1041-59. [PMID: 22147605 DOI: 10.1369/0022155411426780] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell's indispensable role in muscle repair has been reaffirmed.
Collapse
Affiliation(s)
- Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| |
Collapse
|
47
|
Danoviz ME, Yablonka-Reuveni Z. Skeletal muscle satellite cells: background and methods for isolation and analysis in a primary culture system. Methods Mol Biol 2012; 798:21-52. [PMID: 22130829 PMCID: PMC3325159 DOI: 10.1007/978-1-61779-343-1_2] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Repair of adult skeletal muscle depends on satellite cells, myogenic stem cells located between the basal lamina and the plasmalemma of the myofiber. Standardized protocols for the isolation and culture of satellite cells are key tools for understanding cell autonomous and extrinsic factors that regulate their performance. Knowledge gained from such studies can contribute important insights to developing strategies for the improvement of muscle repair following trauma and in muscle wasting disorders. This chapter provides an introduction to satellite cell biology and further describes the basic protocol used in our laboratory to isolate and culture satellite cells from adult skeletal muscle. The cell culture conditions detailed herein support proliferation and differentiation of satellite cell progeny and the development of reserve cells, which are thought to reflect the in vivo self-renewal ability of satellite cells. Additionally, this chapter describes our standard immunostaining protocol that allows the characterization of satellite cell progeny by the temporal expression of characteristic transcription factors and structural proteins associated with different stages of myogenic progression. Although emphasis is given here to the isolation and characterization of satellite cells from mouse hindlimb muscles, the protocols are suitable for other muscle types (such as diaphragm and extraocular muscles) and for muscles from other species, including chicken and rat. Altogether, the basic protocols described are straightforward and facilitate the study of diverse aspects of skeletal muscle stem cells.
Collapse
Affiliation(s)
- Maria Elena Danoviz
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
48
|
Allouh MZ. Effect of Ferula hermonis root extract on rat skeletal muscle adaptation to exercise. Exp Biol Med (Maywood) 2011; 236:1373-8. [PMID: 22101520 DOI: 10.1258/ebm.2011.011164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ferula hermonis Boiss. is an aphrodisiac plant that grows in the Mediterranean region. It has been reported that treatment with acetonic extract from the root of this plant acutely increases serum testosterone in the rat. This study investigated the effects of F. hermonis extract alone or combined with exercise on rat skeletal muscle fibers. Adult male rats were divided into four groups: control-sedentary (CS) that had no treatment or exercise; ferula-sedentary (FS) that was orally treated with ferula extract at a dose of 60 mg/kg/rat every other day over a period of 20 d; control-exercised (CE) that was trained by swimming for 40 min every other day; and ferula-exercised (FE) that received ferula and performed exercise. At the end of experiments, the fiber diameter and number of muscle nuclei of tibialis anterior were measured by using immunofluorescent techniques and software analyses. The FE group showed significant increases in muscle weight, fiber size and nuclear number compared with the other groups. However, no significant changes in the aforementioned parameters were found among the CS, FS and CE groups. Ferula treatment and exercise were additive to each other. In conclusion, short-term exercise combined with administration of F. hermonis extract was more effective in enhancing the growth of skeletal muscle fibers than exercise alone.
Collapse
Affiliation(s)
- Mohammed Z Allouh
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan.
| |
Collapse
|
49
|
Liu HH, Wang JW, Chen X, Zhang RP, Yu HY, Jin HB, Li L, Han CC. In ovo administration of rhIGF-1 to duck eggs affects the expression of myogenic transcription factors and muscle mass during late embryo development. J Appl Physiol (1985) 2011; 111:1789-97. [PMID: 21885804 DOI: 10.1152/japplphysiol.00551.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In ovo administration of IGF-1 to poultry eggs has effective roles on post hatching muscle development. However, the secondary muscle development stages at the late embryo development stage are important for muscle fiber formation and differentiation. To investigate the roles of in ovo administration of IGF-1 on duck secondary muscle development, we injected rhIGF-1 into duck eggs in hatching at day 12. After administration on days 18, 21, 24, and 27 in hatching (E18d, E21d, E24d, and E27d, respectively), muscle samples were isolated, and the muscle tissue weight, muscle fiber parameters, and myoblast proliferation rate in leg and breast muscle were analyzed. Additionally, the expression levels of the transcription factors MyoG and MRF4 were detected using qPCR. Results show that embryo body weight and muscle fiber parameters, including muscle fiber diameter (MFD) and the number of myofibers per unit area, are upregulated in IGF-1-treated groups. Moreover, the transcription factors MyoG and MRF4 are expressed at higher levels in the experimental groups compared with the control groups. These results suggest that in ovo administration of IGF-1 to poultry eggs can mediate the expression of MyoG and MRF4, induce myoblast proliferation, and finally influence muscle development during the secondary muscle development stages.
Collapse
Affiliation(s)
- H H Liu
- Institute of Animal Breeding & Genetics, Sichuan Agricultural University, Ya’an, Sichuan, People’s Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bmp signaling at the tips of skeletal muscles regulates the number of fetal muscle progenitors and satellite cells during development. Dev Cell 2010; 18:643-54. [PMID: 20412778 DOI: 10.1016/j.devcel.2010.02.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/17/2009] [Accepted: 02/01/2010] [Indexed: 11/23/2022]
Abstract
Muscle progenitors, labeled by the transcription factor Pax7, are responsible for muscle growth during development. The signals that regulate the muscle progenitor number during myogenesis are unknown. We show, through in vivo analysis, that Bmp signaling is involved in regulating fetal skeletal muscle growth. Ectopic activation of Bmp signaling in chick limbs increases the number of fetal muscle progenitors and fibers, while blocking Bmp signaling reduces their numbers, ultimately leading to small muscles. The Bmp effect that we observed during fetal myogenesis is diametrically opposed to that previously observed during embryonic myogenesis and that deduced from in vitro work. We also show that Bmp signaling regulates the number of satellite cells during development. Finally, we demonstrate that Bmp signaling is active in a subpopulation of fetal progenitors and satellite cells at the extremities of muscles. Overall, our results show that Bmp signaling plays differential roles in embryonic and fetal myogenesis.
Collapse
|