1
|
Tong D, Wu F, Chen X, Du Z, Zhou J, Zhang J, Yang Y, Du A, Ma G. The mrp-3 gene is involved in haem efflux and detoxification in a blood-feeding nematode. BMC Biol 2024; 22:199. [PMID: 39256727 PMCID: PMC11389519 DOI: 10.1186/s12915-024-02001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Haem is essential but toxic for metazoan organisms. Auxotrophic nematodes can acquire sufficient haem from the environment or their hosts in the meanwhile eliminate or detoxify excessive haem through tightly controlled machinery. In previous work, we reported a role of the unique transporter protein HRG-1 in the haem acquisition and homeostasis of parasitic nematodes. However, little is known about the haem efflux and detoxification via ABC transporters, particularly the multiple drug resistance proteins (MRPs). RESULTS Here, we further elucidate that a member of the mrp family (mrp-3) is involved in haem efflux and detoxification in a blood-feeding model gastrointestinal parasite, Haemonchus contortus. This gene is haem-responsive and dominantly expressed in the intestine and inner membrane of the hypodermis of this parasite. RNA interference of mrp-3 resulted in a disturbance of genes (e.g. hrg-1, hrg-2 and gst-1) that are known to be involved in haem homeostasis and an increased formation of haemozoin in the treated larvae and lethality in vitro, particularly when exposed to exogenous haem. Notably, the nuclear hormone receptor NHR-14 appears to be associated the regulation of mrp-3 expression for haem homeostasis and detoxification. Gene knockdown of nhr-14 and/or mrp-3 increases the sensitivity of treated larvae to exogenous haem and consequently a high death rate (> 80%). CONCLUSIONS These findings demonstrate that MRP-3 and the associated molecules are essential for haematophagous nematodes, suggesting novel intervention targets for these pathogens in humans and animals.
Collapse
Affiliation(s)
- Danni Tong
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Fei Wu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhendong Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingru Zhou
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Jingju Zhang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
2
|
Schmeisser K, Kaptan D, Raghuraman BK, Shevchenko A, Rodenfels J, Penkov S, Kurzchalia TV. Mobilization of cholesterol induces the transition from quiescence to growth in Caenorhabditis elegans through steroid hormone and mTOR signaling. Commun Biol 2024; 7:121. [PMID: 38267699 PMCID: PMC10808130 DOI: 10.1038/s42003-024-05804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Recovery from the quiescent developmental stage called dauer is an essential process in C. elegans and provides an excellent model to understand how metabolic transitions contribute to developmental plasticity. Here we show that cholesterol bound to the small secreted proteins SCL-12 or SCL-13 is sequestered in the gut lumen during the dauer state. Upon recovery from dauer, bound cholesterol undergoes endocytosis into lysosomes of intestinal cells, where SCL-12 and SCL-13 are degraded and cholesterol is released. Free cholesterol activates mTORC1 and is used for the production of dafachronic acids. This leads to promotion of protein synthesis and growth, and a metabolic switch at the transcriptional level. Thus, mobilization of sequestered cholesterol stores is the key event for transition from quiescence to growth, and cholesterol is the major signaling molecule in this process.
Collapse
Affiliation(s)
- Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Damla Kaptan
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jonathan Rodenfels
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Physics of Life (PoL), Technical University Dresden, Dresden, Germany
| | - Sider Penkov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | | |
Collapse
|
3
|
Godoy LF, Hochbaum D. Transcriptional and spatiotemporal regulation of the dauer program. Transcription 2023; 14:27-48. [PMID: 36951297 PMCID: PMC10353326 DOI: 10.1080/21541264.2023.2190295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
Caenorhabditis elegans can enter a diapause stage called "dauer" when it senses that the environment is not suitable for development. This implies a detour from the typical developmental trajectory and requires a tight control of the developmental clock and a massive tissue remodeling. In the last decades, core components of the signaling pathways that govern the dauer development decision have been identified, but the tissues where they function for the acquisition of dauer-specific traits are still under intense study. Growing evidence demonstrates that these pathways engage in complex cross-talk and feedback loops. In this review, we summarize the current knowledge regarding the transcriptional regulation of the dauer program and the relevant tissues for its achievement. A better understanding of this process will provide insight on how developmental plasticity is achieved and how development decisions are under a robust regulation to ensure an all-or-nothing response. Furthermore, this developmental decision can also serve as a simplified model for relevant developmental disorders.Abbreviations: AID Auxin Induced Degron DA dafachronic acid Daf-c dauer formation constitutive Daf-d dauer formation defective DTC Distal Tip Cells ECM modified extracellular matrix GPCRs G protein-coupled receptors IIS insulin/IGF-1 signaling ILPs insulin-like peptides LBD Ligand Binding Domain PDL4 Post Dauer L4 TGF-β transforming growth factor beta WT wild-type.
Collapse
Affiliation(s)
- Luciana F Godoy
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniel Hochbaum
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Li Z, Bhat B, Frank ET, Oliveira-Honorato T, Azuma F, Bachmann V, Parker DJ, Schmitt T, Economo EP, Ulrich Y. Behavioural individuality determines infection risk in clonal ant colonies. Nat Commun 2023; 14:5233. [PMID: 37634010 PMCID: PMC10460416 DOI: 10.1038/s41467-023-40983-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/17/2023] [Indexed: 08/28/2023] Open
Abstract
In social groups, infection risk is not distributed evenly across individuals. Individual behaviour is a key source of variation in infection risk, yet its effects are difficult to separate from other factors (e.g., age). Here, we combine epidemiological experiments with chemical, transcriptomic, and automated behavioural analyses in clonal ant colonies, where behavioural individuality emerges among identical workers. We find that: (1) Caenorhabditis-related nematodes parasitise ant heads and affect their survival and physiology, (2) differences in infection emerge from behavioural variation alone, and reflect spatially-organised division of labour, (3) infections affect colony social organisation by causing infected workers to stay in the nest. By disproportionately infecting some workers and shifting their spatial distribution, infections reduce division of labour and increase spatial overlap between hosts, which should facilitate parasite transmission. Thus, division of labour, a defining feature of societies, not only shapes infection risk and distribution but is also modulated by parasites.
Collapse
Affiliation(s)
- Zimai Li
- Max Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Bhoomika Bhat
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Erik T Frank
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | | | - Fumika Azuma
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Valérie Bachmann
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Yuko Ulrich
- Max Planck Institute for Chemical Ecology, Jena, Germany.
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Kandoor A, Fierst J. Dauer fate in a Caenorhabditis elegans Boolean network model. PeerJ 2023; 11:e14713. [PMID: 36710867 PMCID: PMC9879150 DOI: 10.7717/peerj.14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/16/2022] [Indexed: 01/24/2023] Open
Abstract
Cellular fates are determined by genes interacting across large, complex biological networks. A critical question is how to identify causal relationships spanning distinct signaling pathways and underlying organismal phenotypes. Here, we address this question by constructing a Boolean model of a well-studied developmental network and analyzing information flows through the system. Depending on environmental signals Caenorhabditis elegans develop normally to sexual maturity or enter a reproductively delayed, developmentally quiescent 'dauer' state, progressing to maturity when the environment changes. The developmental network that starts with environmental signal and ends in the dauer/no dauer fate involves genes across 4 signaling pathways including cyclic GMP, Insulin/IGF-1, TGF-β and steroid hormone synthesis. We identified three stable motifs leading to normal development, each composed of genes interacting across the Insulin/IGF-1, TGF-β and steroid hormone synthesis pathways. Three genes known to influence dauer fate, daf-2, daf-7 and hsf-1, acted as driver nodes in the system. Using causal logic analysis, we identified a five gene cyclic subgraph integrating the information flow from environmental signal to dauer fate. Perturbation analysis showed that a multifactorial insulin profile determined the stable motifs the system entered and interacted with daf-12 as the switchpoint driving the dauer/no dauer fate. Our results show that complex organismal systems can be distilled into abstract representations that permit full characterization of the causal relationships driving developmental fates. Analyzing organismal systems from this perspective of logic and function has important implications for studies examining the evolution and conservation of signaling pathways.
Collapse
Affiliation(s)
- Alekhya Kandoor
- Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
| | - Janna Fierst
- Biomolecular Sciences Institute and Department of Biology, Florida International University, Miami, FL, United States of America
| |
Collapse
|
6
|
Dhawale S, Pandit M, Thete K, Ighe D, Gawale S, Bhosle P, Lokwani DK. In silico approach towards polyphenols as targeting glucosamine-6-phosphate synthase for Candida albicans. J Biomol Struct Dyn 2023; 41:12038-12054. [PMID: 36629053 DOI: 10.1080/07391102.2022.2164797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023]
Abstract
Candida albicans is one of the most common species of fungus with life-threatening systemic infections and a high mortality rate. The outer cell wall layer of C. albicans is packed with mannoproteins and glycosylated polysaccharide moieties that play an essential role in the interaction with host cells and tissues. The glucosamine-6-phosphate synthase enzyme produces N-acetylglucosamine, which is a crucial chemical component of the cell wall of Candida albicans. Collectively, these components are essential to maintain the cell shape and for infection. So, its disruption can have serious effects on cell growth and morphology, resulting in cell death. Hence, it is considered a good antifungal target. In this study, we have performed an in silico approach to analyze the inhibitory potential of some polyphenols obtained from plants. Those can be considered important in targeting against the enzyme glucosamine-6-phosphate synthase (PDB-2VF5). The results of the study revealed that the binding affinity of complexes theaflavin and 3-o-malonylglucoside have significant docking scores and binding free energy followed by significant ADMET parameters that predict the drug-likeness property and toxicity of polyphenols as potential ligands. A molecular dynamic simulation was used to test the validity of the docking scores, and it showed that the complex remained stable during the period of the simulation, which ranged from 0 to 100 ns. Theaflavins and 3-o-malonylglucoside may be effective against Candida albicans using a computer-aided drug design methodology that will further enable researchers for future in vitro and in vivo studies, according to our in silico study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sachin Dhawale
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Madhuri Pandit
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Kanchan Thete
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Dnyaneshwari Ighe
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Sachin Gawale
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Pallavi Bhosle
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | | |
Collapse
|
7
|
Neurobiological Basis of Aversion-Resistant Ethanol Seeking in C. elegans. Metabolites 2022; 13:metabo13010062. [PMID: 36676987 PMCID: PMC9861758 DOI: 10.3390/metabo13010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Persistent alcohol seeking despite the risk of aversive consequences is a crucial characteristic of alcohol use disorders (AUDs). Therefore, an improved understanding of the molecular basis of alcohol seeking despite aversive stimuli or punishment in animal models is an important strategy to understand the mechanism that underpins the pathology of AUDs. Aversion-resistant seeking (ARS) is characterized by disruption in control of alcohol use featured by an imbalance between the urge for alcohol and the mediation of aversive stimuli. We exploited C. elegans, a genetically tractable invertebrate, as a model to elucidate genetic components related to this behavior. We assessed the seb-3 neuropeptide system and its transcriptional regulation to progress aversion-resistant ethanol seeking at the system level. Our functional genomic approach preferentially selected molecular components thought to be involved in cholesterol metabolism, and an orthogonal test defined functional roles in ARS through behavioral elucidation. Our findings suggest that fmo-2 (flavin-containing monooxygenase-2) plays a role in the progression of aversion-resistant ethanol seeking in C. elegans.
Collapse
|
8
|
Cabianca A, Ruthes AC, Pawlowski K, Dahlin P. Tomato Sterol 22-desaturase Gene CYP710A11: Its Roles in Meloidogyne incognita Infection and Plant Stigmasterol Alteration. Int J Mol Sci 2022; 23:15111. [PMID: 36499431 PMCID: PMC9735470 DOI: 10.3390/ijms232315111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Sterols are isoprenoid-derived lipids that play essential structural and functional roles in eukaryotic cells. Plants produce a complex mixture of sterols, and changes in plant sterol profiles have been linked to plant-pathogen interactions. β-Sitosterol and stigmasterol, in particular, have been associated with plant defense. As nematodes have lost the ability to synthesize sterols de novo, they require sterols from the host. Tomato (Solanum lycopersicum) plants infected by the plant parasitic nematode Meloidogyne incognita show a reduced level of stigmasterol and a repression of the gene CYP710A11, encoding the sterol C-22 desaturase that is responsible for the conversion of β-sitosterol to stigmasterol. In this study, we investigated the role of the tomato sterol C-22 desaturase gene CYP710A11 in the response to infection by M. incognita. We explored the plant-nematode interaction over time by analyzing the plant sterol composition and CYP710A11 gene regulation in S. lycopersicum after M. incognita infection. The temporal gene expression analysis showed that 3 days after inoculation with M. incognita, the CYP710A11 expression was significantly suppressed in the tomato roots, while a significant decrease in the stigmasterol content was observed after 14 days. A cyp710a11 knockout mutant tomato line lacking stigmasterol was analyzed to better understand the role of CYP710A11 in nematode development. M. incognita grown in the mutant line showed reduced egg mass counts, presumably due to the impaired growth of the mutant. However, the nematodes developed as well as they did in the wild-type line. Thus, while the suppression of CYP710A11 expression during nematode development may be a defense response of the plant against the nematode, the lack of stigmasterol did not seem to affect the nematode. This study contributes to the understanding of the role of stigmasterol in the interaction between M. incognita and tomato plants and shows that the sterol C-22 desaturase is not essential for the success of M. incognita.
Collapse
Affiliation(s)
- Alessandro Cabianca
- Entomology and Nematology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | - Andrea Caroline Ruthes
- Mycology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Paul Dahlin
- Entomology and Nematology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| |
Collapse
|
9
|
Hernandez-Cravero B, Gallino S, Florman J, Vranych C, Diaz P, Elgoyhen AB, Alkema MJ, de Mendoza D. Cannabinoids activate the insulin pathway to modulate mobilization of cholesterol in C. elegans. PLoS Genet 2022; 18:e1010346. [PMID: 36346800 PMCID: PMC9674138 DOI: 10.1371/journal.pgen.1010346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/18/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is critical. Previously, we demonstrated that the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) plays a key role in C. elegans since it modulates sterol mobilization. However, the mechanism remains unknown. Here we show that mutations in the ocr-2 and osm-9 genes, coding for transient receptors potential V (TRPV) ion channels, dramatically reduce the effect of 2-AG in cholesterol mobilization. Through genetic analysis in combination with the rescue of larval arrest induced by sterol starvation, we found that the insulin/IGF-1signaling (IIS) pathway and UNC-31/CAPS, a calcium-activated regulator of neural dense-core vesicles release, are essential for 2-AG-mediated stimulation of cholesterol mobilization. These findings indicate that 2-AG-dependent cholesterol trafficking requires the release of insulin peptides and signaling through the DAF-2 insulin receptor. These results suggest that 2-AG acts as an endogenous modulator of TRPV signal transduction to control intracellular sterol trafficking through modulation of the IGF-1 signaling pathway
Collapse
Affiliation(s)
- Bruno Hernandez-Cravero
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sofia Gallino
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), CONICET, Buenos Aires, Argentina
| | - Jeremy Florman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Cecilia Vranych
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Philippe Diaz
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
| | - Ana Belén Elgoyhen
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), CONICET, Buenos Aires, Argentina
| | - Mark J. Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Diego de Mendoza
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
10
|
Cai Y, Zhang Y, Bao H, Chen J, Chen J, Shen W. Squalene Monooxygenase Gene SsCI80130 Regulates Sporisorium scitamineum Mating/Filamentation and Pathogenicity. J Fungi (Basel) 2022; 8:jof8050470. [PMID: 35628726 PMCID: PMC9143649 DOI: 10.3390/jof8050470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Sugarcane is an important sugar crop and energy crop worldwide. Sugarcane smut caused by Sporisorium scitamineum is a serious fungal disease that occurs worldwide, seriously affecting the yield and quality of sugarcane. It is essential to reveal the molecular pathogenesis of S. scitamineum to explore a new control strategy of sugarcane smut. Based on transcriptome sequencing data of two S. scitamineum strains Ss16 and Ss47, each with a different pathogenicity, our laboratory screened out the SsCI80130 gene predicted to encode squalene monooxygenase. In this study, we obtained the knockout mutants (ΔSs80130+ and ΔSs80130−) and complementary mutants (COM80130+ and COM80130−) of this gene by the polyethylene glycol-mediated (PEG-mediated) protoplast transformation technology, and then performed a functional analysis of the gene. The results showed that the deletion of the SsCI80130 gene resulted in the increased content of squalene (substrate for squalene monooxygenase) and decreased content of ergosterol (the final product of the ergosterol synthesis pathway) in S. scitamineum. Meanwhile, the sporidial growth rate of the knockout mutants was significantly slower than that of the wild type and complementary mutants; under cell-wall stress or oxidative stress, the growth of the knockout mutants was significantly inhibited. In addition, the sexual mating ability and pathogenicity of knockout mutants were significantly weakened, while the sexual mating ability could be restored by adding exogenous small-molecular signal substance cAMP (cyclic adenosine monophosphate) or tryptophol. It is speculated that the SsCI80130 gene was involved in the ergosterol biosynthesis in S. scitamineum and played an important role in the sporidial growth, stress response to different abiotic stresses (including cell wall stress and oxidative stress), sexual mating/filamentation and pathogenicity. Moreover, the SsCI80130 gene may affect the sexual mating and pathogenicity of S. scitamineum by regulating the ergosterol synthesis and the synthesis of the small-molecular signal substance cAMP or tryptophol required for sexual mating. This study reveals for the first time that the gene encoding squalene monooxygenase is involved in regulating the sexual mating and pathogenicity of S. scitamineum, providing a basis for the molecular pathogenic mechanism of S. scitamineum.
Collapse
Affiliation(s)
- Yichang Cai
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.Z.); (H.B.); (J.C.); (J.C.)
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Yi Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.Z.); (H.B.); (J.C.); (J.C.)
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Han Bao
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.Z.); (H.B.); (J.C.); (J.C.)
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Jiaoyun Chen
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.Z.); (H.B.); (J.C.); (J.C.)
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Jianwen Chen
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.Z.); (H.B.); (J.C.); (J.C.)
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Wankuan Shen
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.C.); (Y.Z.); (H.B.); (J.C.); (J.C.)
- Sugarcane Research Laboratory, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Areas, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-8528-0306; Fax: +86-20-8528-0203
| |
Collapse
|
11
|
Kim K, Gade VR, Kurzchalia TV, Guck J. Quantitative imaging of Caenorhabditis elegans dauer larvae during cryptobiotic transition. Biophys J 2022; 121:1219-1229. [PMID: 35192842 PMCID: PMC9034246 DOI: 10.1016/j.bpj.2022.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 02/16/2022] [Indexed: 11/02/2022] Open
Abstract
Upon starvation or overcrowding, the nematode Caenorhabditis elegans enters diapause by forming a dauer larva, which can then further survive harsh desiccation in an anhydrobiotic state. We have previously identified the genetic and biochemical pathways essential for survival-but without detailed knowledge of their material properties, the mechanistic understanding of this intriguing phenomenon remains incomplete. Here we employed optical diffraction tomography (ODT) to quantitatively assess the internal mass density distribution of living larvae in the reproductive and diapause stages. ODT revealed that the properties of the dauer larvae undergo a dramatic transition upon harsh desiccation. Moreover, mutants that are sensitive to desiccation displayed structural abnormalities in the anhydrobiotic stage that could not be observed by conventional microscopy. Our advance opens a door to quantitatively assessing the transitions in material properties and structure necessary to fully understand an organism on the verge of life and death.
Collapse
Affiliation(s)
- Kyoohyun Kim
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Vamshidhar R Gade
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| |
Collapse
|
12
|
Desaka N, Ota C, Nishikawa H, Yasuda K, Ishii N, Bito T, Kishinaga Y, Naito Y, Higashimura Y. Streptococcus thermophilus extends lifespan through activation of DAF-16-mediated antioxidant pathway in Caenorhabditis elegans. J Clin Biochem Nutr 2022; 70:7-13. [PMID: 35068675 PMCID: PMC8764109 DOI: 10.3164/jcbn.21-56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Natsumi Desaka
- Department of Food Science, Ishikawa Prefectural University
| | - Chinatsu Ota
- United Graduate School of Agricultural Sciences, Tottori University
| | | | - Kayo Yasuda
- Department of Health Management, Tokai University Undergraduate School of Health Studies
| | - Naoaki Ishii
- Department of Health Management, Tokai University Undergraduate School of Health Studies
| | - Tomohiro Bito
- United Graduate School of Agricultural Sciences, Tottori University
| | - Yukio Kishinaga
- Research and Development Group, Mill Souhonsha Company Limited
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine
| | | |
Collapse
|
13
|
Trabelcy B, Gerchman Y, Sapir A. A sterol-defined system for quantitative studies of sterol metabolism in C. elegans. STAR Protoc 2021; 2:100710. [PMID: 34409305 PMCID: PMC8361321 DOI: 10.1016/j.xpro.2021.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This protocol describes the culturing of the nematode Caenorhabditis elegans (C. elegans) in a sterol-defined experimental system and the subsequent quantitative analysis of C. elegans sterols through gas chromatography-mass spectrometry. Although studied primarily in mammals, sterols are essential biomolecules for most eukaryotes. C. elegans cannot synthesize sterols and thus relies on the uptake of dietary sterols. Therefore, C. elegans is a powerful system to study metabolism in sterol-defined conditions that are described in our protocol. For complete details on the use and execution of this protocol, please refer to Shamsuzzama et al. (2020).
Collapse
Affiliation(s)
- Benjamin Trabelcy
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838 Israel
- Corresponding author
| | - Yoram Gerchman
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838 Israel
| | - Amir Sapir
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838 Israel
- Corresponding author
| |
Collapse
|
14
|
Cadena Del Castillo CE, Hannich JT, Kaech A, Chiyoda H, Brewer J, Fukuyama M, Færgeman NJ, Riezman H, Spang A. Patched regulates lipid homeostasis by controlling cellular cholesterol levels. Nat Commun 2021; 12:4898. [PMID: 34385431 PMCID: PMC8361143 DOI: 10.1038/s41467-021-24995-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 07/11/2021] [Indexed: 02/07/2023] Open
Abstract
Hedgehog (Hh) signaling is essential during development and in organ physiology. In the canonical pathway, Hh binding to Patched (PTCH) relieves the inhibition of Smoothened (SMO). Yet, PTCH may also perform SMO-independent functions. While the PTCH homolog PTC-3 is essential in C. elegans, worms lack SMO, providing an excellent model to probe non-canonical PTCH function. Here, we show that PTC-3 is a cholesterol transporter. ptc-3(RNAi) leads to accumulation of intracellular cholesterol and defects in ER structure and lipid droplet formation. These phenotypes were accompanied by a reduction in acyl chain (FA) length and desaturation. ptc-3(RNAi)-induced lethality, fat content and ER morphology defects were rescued by reducing dietary cholesterol. We provide evidence that cholesterol accumulation modulates the function of nuclear hormone receptors such as of the PPARα homolog NHR-49 and NHR-181, and affects FA composition. Our data uncover a role for PTCH in organelle structure maintenance and fat metabolism.
Collapse
Affiliation(s)
| | - J Thomas Hannich
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Hirohisa Chiyoda
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Jonathan Brewer
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Masamitsu Fukuyama
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Howard Riezman
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
15
|
Matos ALL, Keller F, Wegner T, del Castillo CEC, Grill D, Kudruk S, Spang A, Glorius F, Heuer A, Gerke V. CHIMs are versatile cholesterol analogs mimicking and visualizing cholesterol behavior in lipid bilayers and cells. Commun Biol 2021; 4:720. [PMID: 34117357 PMCID: PMC8196198 DOI: 10.1038/s42003-021-02252-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Cholesterol is an essential component of cellular membranes regulating the structural integrity and fluidity of biological bilayers and cellular processes such as signal transduction and membrane trafficking. However, tools to investigate the role and dynamics of cholesterol in live cells are still scarce and often show limited applicability. To address this, we previously developed a class of imidazolium-based cholesterol analogs, CHIMs. Here we confirm that CHIM membrane integration characteristics largely mimic those of cholesterol. Computational studies in simulated phospholipid bilayers and biophysical analyses of model membranes reveal that in biologically relevant systems CHIMs behave similarly to natural cholesterol. Importantly, the analogs can functionally replace cholesterol in membranes, can be readily labeled by click chemistry and follow trafficking pathways of cholesterol in live cells. Thus, CHIMs represent chemically versatile cholesterol analogs that can serve as a flexible toolbox to study cholesterol behavior and function in live cells and organisms.
Collapse
Affiliation(s)
- Anna L. L. Matos
- grid.5949.10000 0001 2172 9288Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Fabian Keller
- grid.5949.10000 0001 2172 9288Physical Chemistry Institute, University of Münster, Münster, Germany ,Center for Multiscale Theory and Computation (CMTC), Münster, Germany
| | - Tristan Wegner
- grid.5949.10000 0001 2172 9288Institute of Organic Chemistry, University of Münster, Münster, Germany
| | | | - David Grill
- grid.5949.10000 0001 2172 9288Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Sergej Kudruk
- grid.5949.10000 0001 2172 9288Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Anne Spang
- grid.6612.30000 0004 1937 0642Biozentrum, University of Basel, Basel, Switzerland
| | - Frank Glorius
- grid.5949.10000 0001 2172 9288Institute of Organic Chemistry, University of Münster, Münster, Germany
| | - Andreas Heuer
- grid.5949.10000 0001 2172 9288Physical Chemistry Institute, University of Münster, Münster, Germany ,Center for Multiscale Theory and Computation (CMTC), Münster, Germany
| | - Volker Gerke
- grid.5949.10000 0001 2172 9288Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| |
Collapse
|
16
|
Carstensen HR, Villalon RM, Banerjee N, Hallem EA, Hong RL. Steroid hormone pathways coordinate developmental diapause and olfactory remodeling in Pristionchus pacificus. Genetics 2021; 218:6272519. [PMID: 33963848 DOI: 10.1093/genetics/iyab071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Developmental and behavioral plasticity allow animals to prioritize alternative genetic programs during fluctuating environments. Behavioral remodeling may be acute in animals that interact with host organisms, since reproductive adults and the developmentally arrested larvae often have different ethological needs for chemical stimuli. To understand the genes that coordinate the development and host-seeking behavior, we used the entomophilic nematode Pristionchus pacificus to characterize dauer-constitutive mutants (Daf-c) that inappropriately enter developmental diapause to become dauer larvae. We found two Daf-c loci with dauer-constitutive and cuticle exsheathment phenotypes that can be rescued by the feeding of Δ7-dafachronic acid, and that are dependent on the conserved canonical steroid hormone receptor Ppa-DAF-12. Specifically at one locus, deletions in the sole hydroxysteroid dehydrogenase (HSD) in P. pacificus resulted in Daf-c phenotypes. Ppa-hsd-2 is expressed in the canal-associated neurons (CANs) and excretory cells whose homologous cells in Caenorhabditis elegans are not known to be involved in the dauer decision. While in wildtype only dauer larvae are attracted to host odors, hsd-2 mutant adults show enhanced attraction to the host beetle pheromone, along with ectopic activation of a marker for putative olfactory neurons, Ppa-odr-3. Surprisingly, this enhanced odor attraction acts independently of the Δ7-DA/DAF-12 module, suggesting that Ppa-HSD-2 may be responsible for several steroid hormone products involved in coordinating the dauer decision and host-seeking behavior in P. pacificus.
Collapse
Affiliation(s)
- Heather R Carstensen
- Department of Biology, California State University, Northridge, Northridge, CA 91330-8303, USA
| | - Reinard M Villalon
- Department of Biology, California State University, Northridge, Northridge, CA 91330-8303, USA
| | - Navonil Banerjee
- Department of Microbiology, Immunology & Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology & Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ray L Hong
- Department of Biology, California State University, Northridge, Northridge, CA 91330-8303, USA
| |
Collapse
|
17
|
Aghayeva U, Bhattacharya A, Sural S, Jaeger E, Churgin M, Fang-Yen C, Hobert O. DAF-16/FoxO and DAF-12/VDR control cellular plasticity both cell-autonomously and via interorgan signaling. PLoS Biol 2021; 19:e3001204. [PMID: 33891586 PMCID: PMC8099054 DOI: 10.1371/journal.pbio.3001204] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/05/2021] [Accepted: 03/23/2021] [Indexed: 01/08/2023] Open
Abstract
Many cell types display the remarkable ability to alter their cellular phenotype in response to specific external or internal signals. Such phenotypic plasticity is apparent in the nematode Caenorhabditis elegans when adverse environmental conditions trigger entry into the dauer diapause stage. This entry is accompanied by structural, molecular, and functional remodeling of a number of distinct tissue types of the animal, including its nervous system. The transcription factor (TF) effectors of 3 different hormonal signaling systems, the insulin-responsive DAF-16/FoxO TF, the TGFβ-responsive DAF-3/SMAD TF, and the steroid nuclear hormone receptor, DAF-12/VDR, a homolog of the vitamin D receptor (VDR), were previously shown to be required for entering the dauer arrest stage, but their cellular and temporal focus of action for the underlying cellular remodeling processes remained incompletely understood. Through the generation of conditional alleles that allowed us to spatially and temporally control gene activity, we show here that all 3 TFs are not only required to initiate tissue remodeling upon entry into the dauer stage, as shown before, but are also continuously required to maintain the remodeled state. We show that DAF-3/SMAD is required in sensory neurons to promote and then maintain animal-wide tissue remodeling events. In contrast, DAF-16/FoxO or DAF-12/VDR act cell-autonomously to control anatomical, molecular, and behavioral remodeling events in specific cell types. Intriguingly, we also uncover non-cell autonomous function of DAF-16/FoxO and DAF-12/VDR in nervous system remodeling, indicating the presence of several insulin-dependent interorgan signaling axes. Our findings provide novel perspectives into how hormonal systems control tissue remodeling.
Collapse
Affiliation(s)
- Ulkar Aghayeva
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Abhishek Bhattacharya
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Surojit Sural
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Eliza Jaeger
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Matthew Churgin
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Preliminary evaluations of 3-dimensional human skin models for their ability to facilitate in vitro the long-term development of the debilitating obligatory human parasite Onchocerca volvulus. PLoS Negl Trop Dis 2020; 14:e0008503. [PMID: 33151944 PMCID: PMC7671495 DOI: 10.1371/journal.pntd.0008503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/17/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022] Open
Abstract
Onchocerciasis also known as river blindness is a neglected tropical disease and the world's second-leading infectious cause of blindness in humans; it is caused by Onchocerca volvulus. Current treatment with ivermectin targets microfilariae and transmission and does not kill the adult parasites, which reside within subcutaneous nodules. To support the development of macrofilaricidal drugs that target the adult worm to further support the elimination of onchocerciasis, an in-depth understanding of O. volvulus biology especially the factors that support the longevity of these worms in the human host (>10 years) is required. However, research is hampered by a lack of access to adult worms. O. volvulus is an obligatory human parasite and no small animal models that can propagate this parasite were successfully developed. The current optimized 2-dimensional (2-D) in vitro culturing method starting with O. volvulus infective larvae does not yet support the development of mature adult worms. To overcome these limitations, we have developed and applied 3-dimensional (3-D) culture systems with O. volvulus larvae that simulate the human in vivo niche using in vitro engineered skin and adipose tissue. Our proof of concept studies have shown that an optimized indirect co-culture of in vitro skin tissue supported a significant increase in growth of the fourth-stage larvae to the pre-adult stage with a median length of 816–831 μm as compared to 767 μm of 2-D cultured larvae. Notably, when larvae were co-cultured directly with adipose tissue models, a significant improvement for larval motility and thus fitness was observed; 95% compared to 26% in the 2-D system. These promising co-culture concepts are a first step to further optimize the culturing conditions and improve the long-term development of adult worms in vitro. Ultimately, it could provide the filarial research community with a valuable source of O. volvulus worms at various developmental stages, which may accelerate innovative unsolved biomedical inquiries into the parasite’s biology. The filarial nematode Onchocerca volvulus is an obligatory human parasite and the causative agent of onchocerciasis, better known as river blindness. In 2017, more than 20 million infections with O. volvulus were estimated worldwide, 99% of the patients live in Africa. Current international control programs focus on the reduction of microfilaridermia by mass drug administration of ivermectin. However, to meet the elimination goals, additional treatment strategies are needed that also target the adult worms. As this parasite is obliged to humans, there are no small animal models that sustain the full life cycle of the parasite, thus greatly impeding the research on this filarial nematode. To overcome these drawbacks, we have developed co-culture systems based on engineered human skin and adipose tissue that represent the in vivo niche of O. volvulus adult worms that improved the culturing conditions and the development to the pre-adult stages of the parasite. Furthermore, our new culture approach could significantly reduce the use of surrogate animal models currently used for macrofilaricidal drug testing.
Collapse
|
19
|
Identification of a Novel Link between the Intermediate Filament Organizer IFO-1 and Cholesterol Metabolism in the Caenorhabditis elegans Intestine. Int J Mol Sci 2020; 21:ijms21218219. [PMID: 33153048 PMCID: PMC7672635 DOI: 10.3390/ijms21218219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 01/16/2023] Open
Abstract
The intestine is an organ essential to organismal nutrient absorption, metabolic control, barrier function and immunoprotection. The Caenorhabditis elegans intestine consists of 20 cells harboring a dense intermediate filament network positioned below the apical plasma membrane that forms a junction-anchored sheath around the intestinal lumen. This evolutionarily conserved arrangement provides mechanical and overall stress-protection, and it serves as an important model for deciphering the role of intestinal architecture in metazoan biology. We recently reported that the loss-of-function mutation of the intestinal intermediate filament organizer IFO-1 perturbs this architecture, leading to reduced body size and reproduction. Here, we demonstrate that the IFO-1 mutation dramatically affects cholesterol metabolism. Mutants showed an increased sensitivity to cholesterol depletion, reduced cholesterol uptake, and cholesterol transfer to the gonads, which is also observed in worms completely lacking an intermediate filament network. Accordingly, we found striking similarities to transcriptome and lipidome profiles of a nuclear hormone receptor (NHR)-8 mutant. NHR-8 is homologous to mammalian LXR (liver X receptor) that serves as a sterol sensor and transcriptional regulator of lipid metabolism. Remarkably, increasing exogenous cholesterol partially rescues the developmental retardation in IFO-1 mutants. Our results uncover a novel link of the intestinal intermediate filament cytoskeleton to cholesterol metabolism that contributes to compromised growth and reproduction.
Collapse
|
20
|
Luo Q, Liu J, Wang H, Zhou Y, Liu X, Liu Z. Structural characterization of ginseng oligopeptides and anti-aging potency evaluation in Caenorhabditis elegans. RSC Adv 2020; 10:39485-39494. [PMID: 35515402 PMCID: PMC9057432 DOI: 10.1039/d0ra06093c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/06/2020] [Indexed: 02/04/2023] Open
Abstract
The functions of ginseng polysaccharide have been widely explored, yet, the antiaging activity of ginseng oligopeptides (GOPs) has not been well explored. In the current study, seven novel GOPs were isolated, and their antiaging activity was explored in a Caenorhabditis elegans (C. elegans) model. Of interest, all the GOPs showed lifespan extending effects in C. elegans models. Out of the GOPs treatments, 0.75 mM GOP-1 (EHGEYE) prolonged the N2 nematodes lifespan by 42.5%. Additionally, GOP-1 had a strong free radical-scavenging activity, and up-regulated the survival of the N2 C. elegans under oxidative and thermal stresses. Further study revealed that GOP-1 up-regulated the transcription factor daf-16 and jnk-1 expressions, thus we inferred that GOP-1 promotes the lifespan and stress resistances through a JNK-1-DAF-16 pathway. The current study revealed that the ginseng oligopeptides are potential antiaging agents.
Collapse
Affiliation(s)
- Qiang Luo
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine Shenzhen 518071 China +86 755-86671911
| | - Jie Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine Shenzhen 518071 China +86 755-86671911
| | - Huailing Wang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine Shenzhen 518071 China +86 755-86671911
| | - Yi Zhou
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine Shenzhen 518071 China +86 755-86671911
| | - Xiaoyu Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine Shenzhen 518071 China +86 755-86671911
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine Shenzhen 518071 China +86 755-86671911
| |
Collapse
|
21
|
Capell-Hattam IM, Brown AJ. Sterol Evolution: Cholesterol Synthesis in Animals Is Less a Required Trait Than an Acquired Taste. Curr Biol 2020; 30:R886-R888. [PMID: 32750350 DOI: 10.1016/j.cub.2020.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although cholesterol is considered a vital lipid for animals, not all animals can make cholesterol. A new study employing that celebrated elegant worm, Caenorhabditis elegans, investigates mechanisms that evolved in a sterol auxotroph to enable survival without sterol synthesis.
Collapse
Affiliation(s)
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
22
|
Otarigho B, Aballay A. Cholesterol Regulates Innate Immunity via Nuclear Hormone Receptor NHR-8. iScience 2020; 23:101068. [PMID: 32361270 PMCID: PMC7195545 DOI: 10.1016/j.isci.2020.101068] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/09/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cholesterol is an essential nutrient for the function of diverse biological processes and for steroid biosynthesis across metazoans. However, the role of cholesterol in immune function remains understudied. Using the nematode Caenorhabditis elegans, which depends on the external environment for cholesterol, we studied the relationship between cholesterol and innate immunity. We found that the transporter CHUP-1 is required for the effect of cholesterol in the development of innate immunity and that the cholesterol-mediated immune response requires the nuclear hormone receptor NHR-8. Cholesterol acts through NHR-8 to transcriptionally regulate immune genes that are controlled by conserved immune pathways, including a p38/PMK-1 MAPK pathway, a DAF-2/DAF-16 insulin pathway, and an Nrf/SKN-1 pathway. Our results indicate that cholesterol plays a key role in the activation of conserved microbicidal pathways that are essential for survival against bacterial infections.
Collapse
Affiliation(s)
- Benson Otarigho
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
23
|
Penkov S, Raghuraman BK, Erkut C, Oertel J, Galli R, Ackerman EJM, Vorkel D, Verbavatz JM, Koch E, Fahmy K, Shevchenko A, Kurzchalia TV. A metabolic switch regulates the transition between growth and diapause in C. elegans. BMC Biol 2020; 18:31. [PMID: 32188449 PMCID: PMC7081555 DOI: 10.1186/s12915-020-0760-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Metabolic activity alternates between high and low states during different stages of an organism's life cycle. During the transition from growth to quiescence, a major metabolic shift often occurs from oxidative phosphorylation to glycolysis and gluconeogenesis. We use the entry of Caenorhabditis elegans into the dauer larval stage, a developmentally arrested stage formed in response to harsh environmental conditions, as a model to study the global metabolic changes and underlying molecular mechanisms associated with growth to quiescence transition. RESULTS Here, we show that the metabolic switch involves the concerted activity of several regulatory pathways. Whereas the steroid hormone receptor DAF-12 controls dauer morphogenesis, the insulin pathway maintains low energy expenditure through DAF-16/FoxO, which also requires AAK-2/AMPKα. DAF-12 and AAK-2 separately promote a shift in the molar ratios between competing enzymes at two key branch points within the central carbon metabolic pathway diverting carbon atoms from the TCA cycle and directing them to gluconeogenesis. When both AAK-2 and DAF-12 are suppressed, the TCA cycle is active and the developmental arrest is bypassed. CONCLUSIONS The metabolic status of each developmental stage is defined by stoichiometric ratios within the constellation of metabolic enzymes driving metabolic flux and controls the transition between growth and quiescence.
Collapse
Affiliation(s)
- Sider Penkov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany. .,Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany. .,Institute for Clinical Chemistry and Laboratory Medicine, University Clinic and Medical Faculty, TU Dresden, Dresden, Germany.
| | | | - Cihan Erkut
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Present address: German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana Oertel
- Institute of Resource Ecology at the Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Roberta Galli
- Faculty of Medicine Carl Gustav Carus, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, TU Dresden, Dresden, Germany
| | | | - Daniela Vorkel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jean-Marc Verbavatz
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Institut Jacques Monod, Université de Paris/CNRS, Paris, France
| | - Edmund Koch
- Faculty of Medicine Carl Gustav Carus, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, TU Dresden, Dresden, Germany
| | - Karim Fahmy
- Institute of Resource Ecology at the Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
24
|
Rashid S, Pho KB, Mesbahi H, MacNeil LT. Nutrient Sensing and Response Drive Developmental Progression in Caenorhabditis elegans. Bioessays 2020; 42:e1900194. [PMID: 32003906 DOI: 10.1002/bies.201900194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/22/2019] [Indexed: 12/18/2022]
Abstract
In response to nutrient limitation, many animals, including Caenorhabditis elegans, slow or arrest their development. This process requires mechanisms that sense essential nutrients and induce appropriate responses. When faced with nutrient limitation, C. elegans can induce both short and long-term survival strategies, including larval arrest, decreased developmental rate, and dauer formation. To select the most advantageous strategy, information from many different sensors must be integrated into signaling pathways, including target of rapamycin (TOR) and insulin, that regulate developmental progression. Here, how nutrient information is sensed and integrated into developmental decisions that determine developmental rate and progression in C. elegans is reviewed.
Collapse
Affiliation(s)
- Sabih Rashid
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Kim B Pho
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Hiva Mesbahi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4K1, Ontario, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, L8S 4K1, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, L8S 4K1, Ontario, Canada
| |
Collapse
|
25
|
Chen Y, Panter B, Hussain A, Gibbs K, Ferreira D, Allard P. BPA interferes with StAR-mediated mitochondrial cholesterol transport to induce germline dysfunctions. Reprod Toxicol 2019; 90:24-32. [PMID: 31445225 DOI: 10.1016/j.reprotox.2019.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
Abstract
Bisphenol A is an endocrine disruptor associated with hormone synthesis and reproduction alterations. However, the initiating events underpinning these dysfunctions are still unclear. Here, we address the hypothesis that BPA interferes with the highly evolutionary conserved process of mitochondrial cholesterol transport, a crucial step in steroid hormone biosynthesis, by using the model organism C. elegans. We observed that embryonic lethality and germline apoptosis, hallmarks of BPA's reproductive toxicity in C. elegans, are fully rescued by low exogenous cholesterol supplementation. We also observed that increasing BPA concentrations proportionally reduced mitochondrial cholesterol levels. Mutants for strl-1 (ortholog of StAR), but not C41G7.9 (ortholog of TSPO), show reproductive defects similar to BPA's while BPA exposure in a strl-1 background did not worsen these effects. Finally, cholesterol supplementation rescued these defects for all strl-1 genotype/BPA combinations assessed. Together, these results uncover a novel mechanism underlying BPA's germline toxicity through the alteration of cholesterol transport.
Collapse
Affiliation(s)
- Yichang Chen
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Blake Panter
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aleena Hussain
- California State University Northridge, Northridge, CA 91330, USA
| | - Katherine Gibbs
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel Ferreira
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick Allard
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
26
|
Butcher RA. Natural products as chemical tools to dissect complex biology in C. elegans. Curr Opin Chem Biol 2019; 50:138-144. [PMID: 31102973 DOI: 10.1016/j.cbpa.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
The search for novel pheromones, hormones, and other types of natural products in the nematode Caenorhabditis elegans has accelerated over the last 10-15 years. Many of these natural products perturb fundamental processes such as developmental progression, metabolism, reproductive and somatic aging, and various behaviors and have thus become essential tools for probing these processes, which are difficult to study in higher organisms. Furthermore, given the similarity between C. elegans and parasitic nematodes, these natural products could potentially be used to manipulate the development and behavior of parasitic nematodes and target the infections caused by them.
Collapse
Affiliation(s)
- Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
27
|
Dulovic A, Streit A. RNAi-mediated knockdown of daf-12 in the model parasitic nematode Strongyloides ratti. PLoS Pathog 2019; 15:e1007705. [PMID: 30925161 PMCID: PMC6457571 DOI: 10.1371/journal.ppat.1007705] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/10/2019] [Accepted: 03/13/2019] [Indexed: 01/27/2023] Open
Abstract
The gene daf-12 has long shown to be involved in the dauer pathway in Caenorhabditis elegans (C. elegans). Due to the similarities of the dauer larvae of C. elegans and infective larvae of certain parasitic nematodes such as Strongyloides spp., this gene has also been suspected to be involved in the development of infective larvae. Previous research has shown that the application of dafachronic acid, the steroid hormone ligand of DAF-12 in C. elegans, affects the development of infective larvae and metabolism in Strongyloides. However, a lack of tools for either forward or reverse genetics within Strongyloides has limited studies of gene function within these important parasites. After determining whether Strongyloides had the requisite proteins for RNAi, we developed and report here the first successful RNAi by soaking protocol for Strongyloides ratti (S. ratti) and use this protocol to study the functions of daf-12 within S. ratti. Suppression of daf-12 in S. ratti severely impairs the formation of infective larvae of the direct cycle and redirects development towards the non-infective (non-dauer) free-living life cycle. Further, daf-12(RNAi) S. ratti produce slightly but significantly fewer offspring and these offspring are developmentally delayed or incapable of completing their development to infective larvae (L3i). Whilst the successful daf-12(RNAi) L3i are still able to infect a new host, the resulting infection is less productive and shorter lived. Further, daf-12 knockdown affects metabolism in S. ratti resulting in a shift from aerobic towards anaerobic fat metabolism. Finally, daf-12(RNAi) S. ratti have reduced tolerance of temperature stress.
Collapse
Affiliation(s)
- Alex Dulovic
- Department of Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Baden-Württemberg, Germany
| | - Adrian Streit
- Department of Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Baden-Württemberg, Germany
| |
Collapse
|
28
|
Metabolism and Biological Activities of 4-Methyl-Sterols. Molecules 2019; 24:molecules24030451. [PMID: 30691248 PMCID: PMC6385002 DOI: 10.3390/molecules24030451] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
4,4-Dimethylsterols and 4-methylsterols are sterol biosynthetic intermediates (C4-SBIs) acting as precursors of cholesterol, ergosterol, and phytosterols. Their accumulation caused by genetic lesions or biochemical inhibition causes severe cellular and developmental phenotypes in all organisms. Functional evidence supports their role as meiosis activators or as signaling molecules in mammals or plants. Oxygenated C4-SBIs like 4-carboxysterols act in major biological processes like auxin signaling in plants and immune system development in mammals. It is the purpose of this article to point out important milestones and significant advances in the understanding of the biogenesis and biological activities of C4-SBIs.
Collapse
|
29
|
Galles C, Prez GM, Penkov S, Boland S, Porta EOJ, Altabe SG, Labadie GR, Schmidt U, Knölker HJ, Kurzchalia TV, de Mendoza D. Endocannabinoids in Caenorhabditis elegans are essential for the mobilization of cholesterol from internal reserves. Sci Rep 2018; 8:6398. [PMID: 29686301 PMCID: PMC5913221 DOI: 10.1038/s41598-018-24925-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Abstract
Proper cholesterol transport is crucial for the functionality of cells. In C. elegans, certain cholesterol derivatives called dafachronic acids (DAs) govern the entry into diapause. In their absence, worms form a developmentally arrested dauer larva. Thus, cholesterol transport to appropriate places for DA biosynthesis warrants the reproductive growth. Recently, we discovered a novel class of glycosphingolipids, PEGCs, required for cholesterol mobilization/transport from internal storage pools. Here, we identify other components involved in this process. We found that strains lacking polyunsaturated fatty acids (PUFAs) undergo increased dauer arrest when grown without cholesterol. This correlates with the depletion of the PUFA-derived endocannabinoids 2-arachidonoyl glycerol and anandamide. Feeding of these endocannabinoids inhibits dauer formation caused by PUFAs deficiency or impaired cholesterol trafficking (e.g. in Niemann-Pick C1 or DAF-7/TGF-β mutants). Moreover, in parallel to PEGCs, endocannabinoids abolish the arrest induced by cholesterol depletion. These findings reveal an unsuspected function of endocannabinoids in cholesterol trafficking regulation.
Collapse
Affiliation(s)
- Celina Galles
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Gastón M Prez
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Sider Penkov
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Sebastian Boland
- Department of Genetics and Complex Diseases and Department of Cell Biology, Harvard T.H. Chan School of Public Health and Harvard Medical School, Boston, MA, 02115, USA
| | - Exequiel O J Porta
- Instituto de Química Rosario (IQUIR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Silvia G Altabe
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Guillermo R Labadie
- Instituto de Química Rosario (IQUIR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Ulrike Schmidt
- Department Chemie, Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Teymuras V Kurzchalia
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany.
| | - Diego de Mendoza
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina.
| |
Collapse
|
30
|
Shanmugam G, Mohankumar A, Kalaiselvi D, Nivitha S, Murugesh E, Shanmughavel P, Sundararaj P. Diosgenin a phytosterol substitute for cholesterol, prolongs the lifespan and mitigates glucose toxicity via DAF-16/FOXO and GST-4 in Caenorhabditis elegans. Biomed Pharmacother 2017; 95:1693-1703. [DOI: 10.1016/j.biopha.2017.09.096] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/21/2017] [Accepted: 09/18/2017] [Indexed: 11/29/2022] Open
|
31
|
Androwski RJ, Flatt KM, Schroeder NE. Phenotypic plasticity and remodeling in the stress-induced Caenorhabditis elegans dauer. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.278. [PMID: 28544390 PMCID: PMC5626018 DOI: 10.1002/wdev.278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/23/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
Organisms are often capable of modifying their development to better suit their environment. Under adverse conditions, the nematode Caenorhabditis elegans develops into a stress-resistant alternative larval stage called dauer. The dauer stage is the primary survival stage for C. elegans in nature. Large-scale tissue remodeling during dauer conveys resistance to harsh environments. The environmental and genetic regulation of the decision to enter dauer has been extensively studied. However, less is known about the mechanisms regulating tissue remodeling. Changes to the cuticle and suppression of feeding in dauers lead to an increased resistance to external stressors. Meanwhile reproductive development arrests during dauer while preserving the ability to reproduce once favorable environmental conditions return. Dramatic remodeling of neurons, glia, and muscles during dauer likely facilitate dauer-specific behaviors. Dauer-specific pulsation of the excretory duct likely mediates a response to osmotic stress. The power of C. elegans genetics has uncovered some of the molecular pathways regulating dauer tissue remodeling. In addition to genes that regulate single remodeling events, several mutants result in pleiotropic defects in dauer remodeling. This review details the individual aspects of morphological changes that occur during dauer formation and discusses molecular mechanisms regulating these processes. The dauer stage provides us with an excellent model for understanding phenotypic plasticity and remodeling from the individual cell to an entire animal. WIREs Dev Biol 2017, 6:e278. doi: 10.1002/wdev.278 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rebecca J Androwski
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Kristen M Flatt
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Nathan E Schroeder
- Neuroscience Program and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
32
|
Farina F, Lambert E, Commeau L, Lejeune FX, Roudier N, Fonte C, Parker JA, Boddaert J, Verny M, Baulieu EE, Neri C. The stress response factor daf-16/FOXO is required for multiple compound families to prolong the function of neurons with Huntington's disease. Sci Rep 2017. [PMID: 28638078 PMCID: PMC5479833 DOI: 10.1038/s41598-017-04256-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helping neurons to compensate for proteotoxic stress and maintain function over time (neuronal compensation) has therapeutic potential in aging and neurodegenerative disease. The stress response factor FOXO3 is neuroprotective in models of Huntington’s disease (HD), Parkinson’s disease and motor-neuron diseases. Neuroprotective compounds acting in a FOXO-dependent manner could thus constitute bona fide drugs for promoting neuronal compensation. However, whether FOXO-dependent neuroprotection is a common feature of several compound families remains unknown. Using drug screening in C. elegans nematodes with neuronal expression of human exon-1 huntingtin (128Q), we found that 3ß-Methoxy-Pregnenolone (MAP4343), 17ß-oestradiol (17ßE2) and 12 flavonoids including isoquercitrin promote neuronal function in 128Q nematodes. MAP4343, 17ßE2 and isoquercitrin also promote stress resistance in mutant Htt striatal cells derived from knock-in HD mice. Interestingly, daf-16/FOXO is required for MAP4343, 17ßE2 and isoquercitrin to sustain neuronal function in 128Q nematodes. This similarly applies to the GSK3 inhibitor lithium chloride (LiCl) and, as previously described, to resveratrol and the AMPK activator metformin. Daf-16/FOXO and the targets engaged by these compounds define a sub-network enriched for stress-response and neuronally-active pathways. Collectively, these data highlights the dependence on a daf-16/FOXO-interaction network as a common feature of several compound families for prolonging neuronal function in HD.
Collapse
Affiliation(s)
- Francesca Farina
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
| | - Emmanuel Lambert
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
| | - Lucie Commeau
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
| | - François-Xavier Lejeune
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
| | | | - Cosima Fonte
- Inserm, UMR 1195, 94276, Le Kremlin-Bicêtre, Cedex, France
| | - J Alex Parker
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France.,CRCHUM, Montréal, Canada and Department de Neurosciences, Faculté de médecine, Université de Montréal, Montréal, Canada
| | - Jacques Boddaert
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France.,Department of Geriatrics, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris (APHP), 75013, Paris, France
| | - Marc Verny
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France.,Department of Geriatrics, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris (APHP), 75013, Paris, France
| | - Etienne-Emile Baulieu
- Inserm, UMR 1195, 94276, Le Kremlin-Bicêtre, Cedex, France. .,MAPREG, 94276, Le Kremlin-Bicêtre, Cedex, France.
| | - Christian Neri
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France. .,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France.
| |
Collapse
|
33
|
Small-molecule pheromones and hormones controlling nematode development. Nat Chem Biol 2017; 13:577-586. [PMID: 28514418 DOI: 10.1038/nchembio.2356] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022]
Abstract
The existence of small-molecule signals that influence development in Caenorhabditis elegans has been known for several decades, but only in recent years have the chemical structures of several of these signals been established. The identification of these signals has enabled connections to be made between these small molecules and fundamental signaling pathways in C. elegans that influence not only development but also metabolism, fertility, and lifespan. Spurred by these important discoveries and aided by recent advances in comparative metabolomics and NMR spectroscopy, the field of nematode chemistry has the potential to expand dramatically in the coming years. This Perspective will focus on small-molecule pheromones and hormones that influence developmental events in the nematode life cycle (ascarosides, dafachronic acids, and nemamides), will cover more recent work regarding the biosynthesis of these signals, and will explore how the discovery of these signals is transforming our understanding of nematode development and physiology.
Collapse
|
34
|
Lažetić V, Fay DS. Molting in C. elegans. WORM 2017; 6:e1330246. [PMID: 28702275 DOI: 10.1080/21624054.2017.1330246] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022]
Abstract
Molting is an essential developmental process for the majority of animal species on Earth. During the molting process, which is a specialized form of extracellular matrix (ECM) remodeling, the old apical ECM, or cuticle, is replaced with a new one. Many of the genes and pathways identified as important for molting in nematodes are highly conserved in vertebrates and include regulators and components of vesicular trafficking, steroid-hormone signaling, developmental timers, and hedgehog-like signaling. In this review, we discuss what is known about molting, with a focus on studies in Caenorhabditis elegans. We also describe the key structural elements of the cuticle that must be released, newly synthesized, or remodeled for proper molting to occur.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
35
|
Phosphorylated glycosphingolipids essential for cholesterol mobilization in Caenorhabditis elegans. Nat Chem Biol 2017; 13:647-654. [PMID: 28369040 DOI: 10.1038/nchembio.2347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 01/12/2017] [Indexed: 11/08/2022]
Abstract
The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is indispensable. Here, we present a novel class of C. elegans phosphorylated glycosphingolipids, phosphoethanolamine glucosylceramides (PEGCs), capable of rescuing larval arrest induced by sterol starvation. We describe the total synthesis of a major PEGC species and demonstrate that the PEGC synthetic counterpart suppresses the dauer-constitutive phenotype of Niemann-Pick C1 (NPC1) and DAF-7/TGF-β mutant worms caused by impaired intracellular sterol trafficking. PEGC biosynthesis depends on functional NPC1 and TGF-β, indicating that these proteins control larval development at least partly through PEGC. Furthermore, glucosylceramide deficiency dramatically reduced PEGC amounts. However, the resulting developmental arrest could be rescued by oversaturation of food with cholesterol. Taken together, these data show that PEGC is essential for C. elegans development through its regulation of sterol mobilization.
Collapse
|
36
|
Gillet FX, Bournaud C, Antonino de Souza Júnior JD, Grossi-de-Sa MF. Plant-parasitic nematodes: towards understanding molecular players in stress responses. ANNALS OF BOTANY 2017; 119:775-789. [PMID: 28087659 PMCID: PMC5378187 DOI: 10.1093/aob/mcw260] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/24/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plant-parasitic nematode interactions occur within a vast molecular plant immunity network. Following initial contact with the host plant roots, plant-parasitic nematodes (PPNs) activate basal immune responses. Defence priming involves the release in the apoplast of toxic molecules derived from reactive species or secondary metabolism. In turn, PPNs must overcome the poisonous and stressful environment at the plant-nematode interface. The ability of PPNs to escape this first line of plant immunity is crucial and will determine its virulence. SCOPE Nematodes trigger crucial regulatory cytoprotective mechanisms, including antioxidant and detoxification pathways. Knowledge of the upstream regulatory components that contribute to both of these pathways in PPNs remains elusive. In this review, we discuss how PPNs probably orchestrate cytoprotection to resist plant immune responses, postulating that it may be derived from ancient molecular mechanisms. The review focuses on two transcription factors, DAF-16 and SKN-1 , which are conserved in the animal kingdom and are central regulators of cell homeostasis and immune function. Both regulate the unfolding protein response and the antioxidant and detoxification pathways. DAF-16 and SKN-1 target a broad spectrum of Caenorhabditis elegans genes coding for numerous protein families present in the secretome of PPNs. Moreover, some regulatory elements of DAF-16 and SKN-1 from C. elegans have already been identified as important genes for PPN infection. CONCLUSION DAF-16 and SKN-1 genes may play a pivotal role in PPNs during parasitism. In the context of their hub status and mode of regulation, we suggest alternative strategies for control of PPNs through RNAi approaches.
Collapse
Affiliation(s)
- François-Xavier Gillet
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, CEP 70·770-900, Brasília, DF, Brazil
| | - Caroline Bournaud
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, CEP 70·770-900, Brasília, DF, Brazil
| | | | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, CEP 70·770-900, Brasília, DF, Brazil
- Catholic University of Brasilia, Brasília-DF, Brazil
| |
Collapse
|
37
|
Cholesterol regulates DAF-16 nuclear localization and fasting-induced longevity in C. elegans. Exp Gerontol 2016; 87:40-47. [PMID: 27989925 DOI: 10.1016/j.exger.2016.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 12/16/2022]
Abstract
Cholesterol has attracted significant attention as a possible lifespan regulator. It has been reported that serum cholesterol levels have an impact on mortality due to age-related disorders such as cardiovascular disease. Diet is also known to be an important lifespan regulator. Dietary restriction retards the onset of age-related diseases and extends lifespan in various organisms. Although cholesterol and dietary restriction are known to be lifespan regulators, it remains to be established whether cholesterol is involved in dietary restriction-induced longevity. Here, we show that cholesterol deprivation suppresses longevity induced by intermittent fasting, which is one of the dietary restriction regimens that effectively extend lifespan. We also found that cholesterol is required for the fasting-induced upregulation of transcriptional target genes such as the insulin/IGF-1 pathway effector DAF-16 and that cholesterol deprivation suppresses the long lifespan of the insulin/IGF-1 receptor daf-2 mutant. Remarkably, we found that cholesterol plays an important role in the fasting-induced nuclear accumulation of DAF-16. Moreover, knockdown of the cholesterol-binding protein NSBP-1, which has been shown to bind to DAF-16 in a cholesterol-dependent manner and to regulate DAF-16 activity, suppresses both fasting-induced longevity and DAF-16 nuclear accumulation. Furthermore, this suppression was not additive to the cholesterol deprivation-induced suppression, which suggests that NSBP-1 mediates, at least in part, the action of cholesterol to promote fasting-induced longevity and DAF-16 nuclear accumulation. These findings identify a novel role for cholesterol in the regulation of lifespan.
Collapse
|
38
|
Melo CFOR, Esteves CZ, de Oliveira RN, Guerreiro TM, de Oliveira DN, Lima EDO, Miné JC, Allegretti SM, Catharino RR. Early developmental stages of Ascaris lumbricoides featured by high-resolution mass spectrometry. Parasitol Res 2016; 115:4107-4114. [PMID: 27412760 DOI: 10.1007/s00436-016-5183-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/23/2016] [Indexed: 11/26/2022]
Abstract
Ascaris lumbricoides is responsible for a highly disseminated helminth parasitic disease, ascariosis, a relevant parasitosis that responds for great financial burden on the public health system of developing countries. In this work, metabolic fingerprinting using high-resolution mass spectrometry (HRMS) was employed to identify marker molecules from A. lumbricoides in different development stages. We have identified nine biomarkers, such as pheromones and steroidal prohormones in early stages, among other molecules in late development stages, making up four molecules for fertilized eggs, four marker molecules for first larvae (L1) and one marker molecule for third larvae (L3). Therefore, our findings indicate that this approach is suitable for biochemical characterization of A. lumbricoides development stages. Moreover, the straightforward analytical method employed, with almost no sample preparation from a complex matrix (feces) using high-resolution mass spectrometry, suggests that it is possible to seek for an easier and faster way to study animal molding processes.
Collapse
Affiliation(s)
| | - Cibele Zanardi Esteves
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Tatiane Melina Guerreiro
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Diogo Noin de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Estela de Oliveira Lima
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Júlio César Miné
- Department of Clinical and Toxicological Analysis, State University of Ponta Grossa- UEPG, Ponta Grossa, Paraná, Brazil
| | | | - Rodrigo Ramos Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
39
|
Erkut C, Gade VR, Laxman S, Kurzchalia TV. The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast. eLife 2016; 5. [PMID: 27090086 PMCID: PMC4880444 DOI: 10.7554/elife.13614] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/18/2016] [Indexed: 02/04/2023] Open
Abstract
Many organisms, including species from all kingdoms of life, can survive desiccation by entering a state with no detectable metabolism. To survive, C. elegans dauer larvae and stationary phase S. cerevisiae require elevated amounts of the disaccharide trehalose. We found that dauer larvae and stationary phase yeast switched into a gluconeogenic mode in which metabolism was reoriented toward production of sugars from non-carbohydrate sources. This mode depended on full activity of the glyoxylate shunt (GS), which enables synthesis of trehalose from acetate. The GS was especially critical during preparation of worms for harsh desiccation (preconditioning) and during the entry of yeast into stationary phase. Loss of the GS dramatically decreased desiccation tolerance in both organisms. Our results reveal a novel physiological role for the GS and elucidate a conserved metabolic rewiring that confers desiccation tolerance on organisms as diverse as worm and yeast.
Collapse
Affiliation(s)
- Cihan Erkut
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Vamshidhar R Gade
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sunil Laxman
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | | |
Collapse
|
40
|
The Aspergillus fumigatus Damage Resistance Protein Family Coordinately Regulates Ergosterol Biosynthesis and Azole Susceptibility. mBio 2016; 7:e01919-15. [PMID: 26908577 PMCID: PMC4791848 DOI: 10.1128/mbio.01919-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ergosterol is a major and specific component of the fungal plasma membrane, and thus, the cytochrome P450 enzymes (Erg proteins) that catalyze ergosterol synthesis have been selected as valuable targets of azole antifungals. However, the opportunistic pathogen Aspergillus fumigatus has developed worldwide resistance to azoles largely through mutations in the cytochrome P450 enzyme Cyp51 (Erg11). In this study, we demonstrate that a cytochrome b5-like heme-binding damage resistance protein (Dap) family, comprised of DapA, DapB, and DapC, coordinately regulates the functionality of cytochrome P450 enzymes Erg5 and Erg11 and oppositely affects susceptibility to azoles. The expression of all three genes is induced in an azole concentration-dependent way, and the decreased susceptibility to azoles requires DapA stabilization of cytochrome P450 protein activity. In contrast, overexpression of DapB and DapC causes dysfunction of Erg5 and Erg11, resulting in abnormal accumulation of sterol intermediates and further accentuating the sensitivity of ΔdapA strains to azoles. The results of exogenous-hemin rescue and heme-binding-site mutagenesis experiments demonstrate that the heme binding of DapA contributes the decreased azole susceptibility, while DapB and -C are capable of reducing the activities of Erg5 and Erg11 through depletion of heme. In vivo data demonstrate that inactivated DapA combined with activated DapB yields an A. fumigatus mutant that is easily treatable with azoles in an immunocompromised mouse model of invasive pulmonary aspergillosis. Compared to the single Dap proteins found in Saccharomyces cerevisiae and Schizosaccharomyces pombe, we suggest that this complex Dap family regulatory system emerged during the evolution of fungi as an adaptive means to regulate ergosterol synthesis in response to environmental stimuli. Knowledge of the ergosterol biosynthesis route in fungal pathogens is useful in the design of new antifungal drugs and could aid in the study of antifungal-drug resistance mechanisms. In this study, we demonstrate that three cytochrome b5-like Dap proteins coordinately regulate the azole resistance and ergosterol biosynthesis catalyzed by cytochrome P450 proteins. Our new insights into the Dap regulatory system in fungal pathogens may have broad therapeutic ramifications beyond their usefulness for classic azole antifungals. Moreover, our elucidation of the molecular mechanism of Dap regulation of cytochrome P450 protein functionality through heme-binding activity may extend beyond the Kingdom Fungi with applicability toward Dap protein regulation of mammalian sterol synthesis.
Collapse
|
41
|
Witting M, Schmitt-Kopplin P. The Caenorhabditis elegans lipidome. Arch Biochem Biophys 2016; 589:27-37. [DOI: 10.1016/j.abb.2015.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/30/2022]
|
42
|
Integration of carbohydrate metabolism and redox state controls dauer larva formation in Caenorhabditis elegans. Nat Commun 2015; 6:8060. [PMID: 26290173 DOI: 10.1038/ncomms9060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/14/2015] [Indexed: 11/09/2022] Open
Abstract
Under adverse conditions, Caenorhabditis elegans enters a diapause stage called the dauer larva. External cues signal the nuclear hormone receptor DAF-12, the activity of which is regulated by its ligands: dafachronic acids (DAs). DAs are synthesized from cholesterol, with the last synthesis step requiring NADPH, and their absence stimulates dauer formation. Here we show that NADPH levels determine dauer formation in a regulatory mechanism involving key carbohydrate and redox metabolic enzymes. Elevated trehalose biosynthesis diverts glucose-6-phosphate from the pentose phosphate pathway, which is the major source of cellular NADPH. This enhances dauer formation due to the decrease in the DA level. Moreover, DAF-12, in cooperation with DAF-16/FoxO, induces negative feedback of DA synthesis via activation of the trehalose-producing enzymes TPS-1/2 and inhibition of the NADPH-producing enzyme IDH-1. Thus, the dauer developmental decision is controlled by integration of the metabolic flux of carbohydrates and cellular redox potential.
Collapse
|
43
|
Liu W, Li X, Chen J, Li T, Dong M, Lei X. Site-Selective and Metal-Free Aliphatic CH Oxidation Enabled Synthesis of [5,24,25-D3]-(25S)-Δ7-Dafachronic acid. Chemistry 2015; 21:5345-9. [DOI: 10.1002/chem.201500324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 11/07/2022]
|
44
|
Taylor MJ, Garrard TA, O'Donahoo FJ, Ross KE. Human strongyloidiasis: identifying knowledge gaps, with emphasis on environmental control. Res Rep Trop Med 2014; 5:55-63. [PMID: 32669892 PMCID: PMC7337148 DOI: 10.2147/rrtm.s63138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 11/23/2022] Open
Abstract
Strongyloides is a human parasitic nematode that is poorly understood outside a clinical context. This article identifies gaps within the literature, with particular emphasis on gaps that are hindering environmental control of Strongyloides. The prevalence and distribution of Strongyloides is unclear. An estimate of 100-370 million people infected worldwide has been proposed; however, inaccuracy of diagnosis, unreliability of prevalence mapping, and the fact that strongyloidiasis remains a neglected disease suggest that the higher figure of more than 300 million cases is likely to be a more accurate estimate. The complexity of Strongyloides life cycle means that laboratory cultures cannot be maintained outside of a host. This currently limits the range of laboratory-based research, which is vital to controlling Strongyloides through environmental alteration or treatment. Successful clinical treatment with antihelminthic drugs has meant that controlling Strongyloides through environmental control, rather than clinical intervention, has been largely overlooked. These control measures may encompass alteration of the soil environment through physical means, such as desiccation or removal of nutrients, or through chemical or biological agents. Repeated antihelminthic treatment of individuals with recurrent strongyloidiasis has not been observed to result in the selection of resistant strains; however, this has not been explicitly demonstrated, and relying on such assumptions in the long-term may prove to be shortsighted. It is ultimately naive to assume that continued administration of antihelminthics will be without any negative long-term effects. In Australia, strongyloidiasis primarily affects Indigenous communities, including communities from arid central Australia. This suggests that the range of Strongyloides extends beyond the reported tropical/subtropical boundary. Localized conditions that might result in this extended boundary include accumulation of moisture within housing because of malfunctioning health hardware inside and outside the house and the presence of dog fecal matter inside or outside housing areas.
Collapse
Affiliation(s)
- Michael J Taylor
- Health and Environment, School of the Environment, Flinders University, Adelaide, SA, Australia
| | - Tara A Garrard
- Health and Environment, School of the Environment, Flinders University, Adelaide, SA, Australia
| | - Francis J O'Donahoo
- Health and Environment, School of the Environment, Flinders University, Adelaide, SA, Australia
| | - Kirstin E Ross
- Health and Environment, School of the Environment, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
45
|
Niwa R, Niwa YS. Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond. Biosci Biotechnol Biochem 2014; 78:1283-92. [DOI: 10.1080/09168451.2014.942250] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Steroid hormones are responsible for the coordinated regulation of many aspects of biological processes in multicellular organisms. Since the last century, many studies have identified and characterized steroidogenic enzymes in vertebrates, including mammals. However, much less is known about invertebrate steroidogenic enzymes. In the last 15 years, a number of steroidogenic enzymes and their functions have been characterized in ecdysozoan animals, especially in the fruit fly Drosophila melanogaster. In this review, we summarize the latest knowledge of enzymes crucial for synthesizing ecdysteroids, the principal insect steroid hormones. We also discuss the functional conservation and diversity of ecdysteroidogenic enzymes in other insects and even non-insect species, such as nematodes, vertebrates, and lower eukaryotes.
Collapse
Affiliation(s)
- Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Yuko S Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
46
|
Toyoda Y, Erkut C, Pan-Montojo F, Boland S, Stewart MP, Müller DJ, Wurst W, Hyman AA, Kurzchalia TV. Products of the Parkinson's disease-related glyoxalase DJ-1, D-lactate and glycolate, support mitochondrial membrane potential and neuronal survival. Biol Open 2014; 3:777-84. [PMID: 25063200 PMCID: PMC4133730 DOI: 10.1242/bio.20149399] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease is associated with mitochondrial decline in dopaminergic neurons of the substantia nigra. One of the genes linked with the onset of Parkinson's disease, DJ-1/PARK7, belongs to a novel glyoxalase family and influences mitochondrial activity. It has been assumed that glyoxalases fulfill this task by detoxifying aggressive aldehyde by-products of metabolism. Here we show that supplying either D-lactate or glycolate, products of DJ-1, rescues the requirement for the enzyme in maintenance of mitochondrial potential. We further show that glycolic acid and D-lactic acid can elevate lowered mitochondrial membrane potential caused by silencing PINK-1, another Parkinson's related gene, as well as by paraquat, an environmental toxin known to be linked with Parkinson's disease. We propose that DJ-1 and consequently its products are components of a novel pathway that stabilizes mitochondria during cellular stress. We go on to show that survival of cultured mesencephalic dopaminergic neurons, defective in Parkinson's disease, is enhanced by glycolate and D-lactate. Because glycolic and D-lactic acids occur naturally, they are therefore a potential therapeutic route for treatment or prevention of Parkinson's disease.
Collapse
Affiliation(s)
- Yusuke Toyoda
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Cihan Erkut
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Francisco Pan-Montojo
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München Schillerstrasse 44, 80336 Munich, Germany Present address: Neurologische Klinik und Poliklinik, Klinikum der Universität Muenchen, Marchioninistrasse 15, 81377 Munich, Germany
| | - Sebastian Boland
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Martin P Stewart
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland Present address: Koch Institute at MIT, 500 Main Street, Cambridge, MA 02139, USA
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Wolfgang Wurst
- Technische Universität München-Weihenstephan, c/o Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg/Munich, Germany German Center for Neurodegenerative Diseases (DZNE), Site Munich Schillerstrasse 44, 80336 Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München Schillerstrasse 44, 80336 Munich, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Teymuras V Kurzchalia
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
47
|
Identification of late larval stage developmental checkpoints in Caenorhabditis elegans regulated by insulin/IGF and steroid hormone signaling pathways. PLoS Genet 2014; 10:e1004426. [PMID: 24945623 PMCID: PMC4063711 DOI: 10.1371/journal.pgen.1004426] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/20/2014] [Indexed: 01/10/2023] Open
Abstract
Organisms in the wild develop with varying food availability. During periods of nutritional scarcity, development may slow or arrest until conditions improve. The ability to modulate developmental programs in response to poor nutritional conditions requires a means of sensing the changing nutritional environment and limiting tissue growth. The mechanisms by which organisms accomplish this adaptation are not well understood. We sought to study this question by examining the effects of nutrient deprivation on Caenorhabditis elegans development during the late larval stages, L3 and L4, a period of extensive tissue growth and morphogenesis. By removing animals from food at different times, we show here that specific checkpoints exist in the early L3 and early L4 stages that systemically arrest the development of diverse tissues and cellular processes. These checkpoints occur once in each larval stage after molting and prior to initiation of the subsequent molting cycle. DAF-2, the insulin/insulin-like growth factor receptor, regulates passage through the L3 and L4 checkpoints in response to nutrition. The FOXO transcription factor DAF-16, a major target of insulin-like signaling, functions cell-nonautonomously in the hypodermis (skin) to arrest developmental upon nutrient removal. The effects of DAF-16 on progression through the L3 and L4 stages are mediated by DAF-9, a cytochrome P450 ortholog involved in the production of C. elegans steroid hormones. Our results identify a novel mode of C. elegans growth in which development progresses from one checkpoint to the next. At each checkpoint, nutritional conditions determine whether animals remain arrested or continue development to the next checkpoint. Organisms in the wild often face long periods in which food is scarce. This may occur due to seasonal effects, loss of territory, or changes in predator-to-prey ratio. During periods of scarcity, organisms undergo adaptations to conserve resources and prolong survival. When nutrient deprivation occurs during development, physical growth and maturation to adulthood is delayed. These effects are also observed in malnourished individuals, who are smaller and reach puberty at later ages. Developmental arrest in response to nutrient scarcity requires a means of sensing changing nutrient conditions and coordinating an organism-wide response. How this occurs is not well understood. We assessed the developmental response to nutrient withdrawal in the nematode worm Caenorhabditis elegans. By removing food in the late larval stages, a period of extensive tissue formation, we have uncovered previously unknown checkpoints that occur at precise times in development. Diverse tissues and cellular processes arrest at the checkpoints. Insulin-like signaling and steroid hormone signaling regulate tissue arrest following nutrient withdrawal. These pathways are conserved in mammals and are linked to growth processes and diseases. Given that the pathways that respond to nutrition are conserved in animals, it is possible that similar checkpoints may also be important in human development.
Collapse
|
48
|
Erkut C, Vasilj A, Boland S, Habermann B, Shevchenko A, Kurzchalia TV. Molecular strategies of the Caenorhabditis elegans dauer larva to survive extreme desiccation. PLoS One 2013; 8:e82473. [PMID: 24324795 PMCID: PMC3853187 DOI: 10.1371/journal.pone.0082473] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/02/2013] [Indexed: 11/19/2022] Open
Abstract
Massive water loss is a serious challenge for terrestrial animals, which usually has fatal consequences. However, some organisms have developed means to survive this stress by entering an ametabolic state called anhydrobiosis. The molecular and cellular mechanisms underlying this phenomenon are poorly understood. We recently showed that Caenorhabditis elegans dauer larva, an arrested stage specialized for survival in adverse conditions, is resistant to severe desiccation. However, this requires a preconditioning step at a mild desiccative environment to prepare the organism for harsher desiccation conditions. A systems approach was used to identify factors that are activated during this preconditioning. Using microarray analysis, proteomics, and bioinformatics, genes, proteins, and biochemical pathways that are upregulated during this process were identified. These pathways were validated via reverse genetics by testing the desiccation tolerances of mutants. These data show that the desiccation response is activated by hygrosensation (sensing the desiccative environment) via head neurons. This leads to elimination of reactive oxygen species and xenobiotics, expression of heat shock and intrinsically disordered proteins, polyamine utilization, and induction of fatty acid desaturation pathway. Remarkably, this response is specific and involves a small number of functional pathways, which represent the generic toolkit for anhydrobiosis in plants and animals.
Collapse
Affiliation(s)
- Cihan Erkut
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Kawasaki I, Jeong MH, Yun YJ, Shin YK, Shim YH. Cholesterol-responsive metabolic proteins are required for larval development in Caenorhabditis elegans. Mol Cells 2013; 36:410-6. [PMID: 24218109 PMCID: PMC3887944 DOI: 10.1007/s10059-013-0170-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/07/2013] [Accepted: 09/09/2013] [Indexed: 01/12/2023] Open
Abstract
Caenorhabditis elegans, a cholesterol auxotroph, showed defects in larval development upon cholesterol starvation (CS) in a previous study. To identify cholesterol-responsive proteins likely responsible for the larval arrest upon CS, a comparative proteomic analysis was performed between C. elegans grown in normal medium supplemented with cholesterol (CN) and those grown in medium not supplemented with cholesterol (cholesterol starvation, CS). Our analysis revealed significant change (more than 2.2-fold, p < 0.05) in nine proteins upon CS. Six proteins were down-regulated [CE01270 (EEF-1A.1), CE08852 (SAMS-1), CE11068 (PMT-2), CE09015 (ACDH-1), CE12564 (R07H5.8), and CE09655 (RLA-0)], and three proteins were up-regulated [CE29645 (LEC-1), CE16576 (LEC-5), and CE01431 (NEX-1)]. RNAi phenotypes of two of the down-regulated genes, R07H5.8 (adenosine kinase) and rla-0 (ribosomal protein), in CN were similar to that of larval arrest in CS, and RNAi of a down-regulated gene, R07H5.8, in CS further enhanced the effects of CS, suggesting that down-regulation of these genes is likely responsible for the larval arrest in CS. All three up-regulated genes contain putative DAF-16 binding sites and mRNA levels of these three genes were all decreased in daf-16 mutants in CN, suggesting that DAF-16 activates expression of these genes.
Collapse
Affiliation(s)
- Ichiro Kawasaki
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Myung-Hwan Jeong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Yu-Joun Yun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Yun-Kyung Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Yhong-Hee Shim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
- Institute of KU Biotechnology, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
50
|
Liu JL, Hekimi S. The impact of mitochondrial oxidative stress on bile acid-like molecules in C. elegans provides a new perspective on human metabolic diseases. WORM 2013; 2:e21457. [PMID: 24058856 PMCID: PMC3670457 DOI: 10.4161/worm.21457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/11/2012] [Indexed: 12/19/2022]
Abstract
C. elegans is a model used to study cholesterol metabolism and the functions of its metabolites. Several studies have reported that, in worms, cholesterol is not a structural component of the membrane as it is in vertebrates. However, as in other animals, it is used for the synthesis of steroid hormones that regulate physiological processes such as dauer formation, molting and defecation. After cholesterol is taken up by the gut, mechanisms of transport of cholesterol between tissues in C. elegans involve lipoproteins, as in mammals. A recent study shows that both cholesterol uptake and lipoprotein metabolism in C. elegans are regulated by molecules whose activities, biosynthesis, and secretion strongly resemble those of mammalian bile acids, which are metabolites of cholesterol that act on metabolism in a variety of ways. Importantly, it was found that oxidative stress upsets the regulation of the synthesis of these molecules. Given the known function of mammalian bile acids as metabolic regulators of lipid and glucose homeostasis, future investigations of the biology of C. elegans bile acid-like molecules could provide information on the etiology of human metabolic disorders that are characterized by elevated oxidative stress.
Collapse
Affiliation(s)
- Ju-Ling Liu
- Department of Biology; McGill University; Montreal, Québec, Canada
| | | |
Collapse
|