1
|
Yu H, Zaveri S, Sattar Z, Schaible M, Perez Gandara B, Uddin A, McGarvey LR, Ohlmeyer M, Geraghty P. Protein Phosphatase 2A as a Therapeutic Target in Pulmonary Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1552. [PMID: 37763671 PMCID: PMC10535831 DOI: 10.3390/medicina59091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
New disease targets and medicinal chemistry approaches are urgently needed to develop novel therapeutic strategies for treating pulmonary diseases. Emerging evidence suggests that reduced activity of protein phosphatase 2A (PP2A), a complex heterotrimeric enzyme that regulates dephosphorylation of serine and threonine residues from many proteins, is observed in multiple pulmonary diseases, including lung cancer, smoke-induced chronic obstructive pulmonary disease, alpha-1 antitrypsin deficiency, asthma, and idiopathic pulmonary fibrosis. Loss of PP2A responses is linked to many mechanisms associated with disease progressions, such as senescence, proliferation, inflammation, corticosteroid resistance, enhanced protease responses, and mRNA stability. Therefore, chemical restoration of PP2A may represent a novel treatment for these diseases. This review outlines the potential impact of reduced PP2A activity in pulmonary diseases, endogenous and exogenous inhibitors of PP2A, details the possible PP2A-dependent mechanisms observed in these conditions, and outlines potential therapeutic strategies for treatment. Substantial medicinal chemistry efforts are underway to develop therapeutics targeting PP2A activity. The development of specific activators of PP2A that selectively target PP2A holoenzymes could improve our understanding of the function of PP2A in pulmonary diseases. This may lead to the development of therapeutics for restoring normal PP2A responses within the lung.
Collapse
Affiliation(s)
- Howard Yu
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Sahil Zaveri
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Zeeshan Sattar
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Michael Schaible
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Brais Perez Gandara
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Anwar Uddin
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Lucas R. McGarvey
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | | | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| |
Collapse
|
2
|
Guffens L, Derua R, Janssens V. PME-1 sensitizes glioblastoma cells to oxidative stress-induced cell death by attenuating PP2A-B55α-mediated inactivation of MAPKAPK2-RIPK1 signaling. Cell Death Discov 2023; 9:265. [PMID: 37500619 PMCID: PMC10374899 DOI: 10.1038/s41420-023-01572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults. Current standard therapy is surgery followed by radiotherapy, with concurrent and adjuvant temozolomide chemotherapy. GBM is characterized by almost uniformly fatal outcomes, highlighting the unmet clinical need for more efficient, biomarker-guided treatments. Protein phosphatase methylesterase-1 (PME-1), a regulator of the tumor suppressive phosphatase PP2A, promotes PP2A demethylation and inactivation, and is overexpressed in 44% of GBM, associated with increased tumor grade and cellular proliferation. Here, we aimed to investigate how reactive oxygen species (ROS), a frequent by-product of radiotherapy and temozolomide chemotherapy, regulate PP2A function via its methylesterase PME-1, and how PME-1 overexpression impacts the response of GBM cells to oxidative stress. We found that in two glioblastoma cell lines, U87MG and U251MG, expression of PME-1 is positively correlated with the sensitivity of the cells to H2O2 or t-BHP-induced oxidative stress. Experiments using the irreversible pharmacologic PME-1 inhibitor, AMZ30, and different PME-1 mutants, revealed that the methylesterase function, the PP2A binding capacity, and the nuclear localization of PME-1 are all important for the sensitizing effect of PME-1 expression. Furthermore, we identified increased nuclear localization of the PP2A-B55α subunit, increased binding of PP2A-B55α to PME-1, and increased B55α-bound PP2A-C demethylation upon oxidative stress. Lastly, we uncovered increased stress-induced phosphorylation and activity of MAPKAPK2 and RIPK1 in PME-1 overexpressing U87MG cells, which caused the observed sensitization to t-BHP treatment. Our data reveal a novel role for PME-1 in oxidative stress-induced GBM cell death, regulating nuclear PP2A-B55α activity and MAPKAPK2-RIPK1 signaling. Patients with GBM tumors overexpressing PME-1, although having a worse prognosis due to increased cellular proliferation of the tumor, could actually be more responsive to oxidative stress-inducing therapies.
Collapse
Affiliation(s)
- Liesbeth Guffens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
- SyBioMa, KU Leuven, B-3000, Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium.
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium.
| |
Collapse
|
3
|
Haanen TJ, O'Connor CM, Narla G. Biased holoenzyme assembly of protein phosphatase 2A (PP2A): From cancer to small molecules. J Biol Chem 2022; 298:102656. [PMID: 36328247 PMCID: PMC9707111 DOI: 10.1016/j.jbc.2022.102656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a family of serine threonine phosphatases responsible for regulating protein phosphorylation, thus opposing the activity of cellular kinases. PP2A is composed of a catalytic subunit (PP2A Cα/β) and scaffolding subunit (PP2A Aα/β) and various substrate-directing B regulatory subunits. PP2A biogenesis is regulated at multiple levels. For example, the sequestration of the free catalytic subunit during the process of biogenesis avoids promiscuous phosphatase activity. Posttranslational modifications of PP2A C direct PP2A heterotrimeric formation. Additionally, PP2A functions as a haploinsufficient tumor suppressor, where attenuated PP2A enzymatic activity creates a permissive environment for oncogenic transformation. Recent work studying PP2A in cancer showed that its role in tumorigenesis is more nuanced, with some holoenzymes being tumor suppressive, while others are required for oncogenic transformation. In cancer biology, PP2A function is modulated through various mechanisms including the displacement of specific B regulatory subunits by DNA tumor viral antigens, by recurrent mutations, and through loss of carboxymethyl-sensitive heterotrimeric complexes. In aggregate, these alterations bias PP2A activity away from its tumor suppressive functions and toward oncogenic ones. From a therapeutic perspective, molecular glues and disruptors present opportunities for both the selective stabilization of tumor-suppressive holoenzymes and disruption of holoenzymes that are pro-oncogenic. Collectively, these approaches represent an attractive cancer therapy for a wide range of tumor types. This review will discuss the mechanisms by which PP2A holoenzyme formation is dysregulated in cancer and the current therapies that are aimed at biasing heterotrimer formation of PP2A for the treatment of cancer.
Collapse
Affiliation(s)
- Terrance J Haanen
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Caitlin M O'Connor
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
4
|
Establishment of in vivo proximity labeling with biotin using TurboID in the filamentous fungus Sordaria macrospora. Sci Rep 2022; 12:17727. [PMID: 36272986 PMCID: PMC9588061 DOI: 10.1038/s41598-022-22545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/17/2022] [Indexed: 01/18/2023] Open
Abstract
Proximity-dependent biotin identification (BioID) has emerged as a powerful methodology to identify proteins co-localizing with a given bait protein in vivo. The approach has been established in animal cells, plants and yeast but not yet in filamentous fungi. BioID relies on promiscuous biotin ligases fused to bait proteins to covalently label neighboring proteins with biotin. Biotinylated proteins are specifically enriched through biotin affinity capture from denatured cell lysates and subsequently identified and quantified with liquid chromatography-mass spectrometry (LC-MS). In contrast to many other affinity capture approaches for studying protein-protein interactions, BioID does not rely on physical protein-protein binding within native cell lysates. This feature allows the identification of protein proximities of weak or transient and dynamic nature. Here, we demonstrate the application of BioID for the fungal model organism Sordaria macrospora (Sm) using the example of the STRIPAK complex interactor 1 (SCI1) of the well-characterized striatin-interacting phosphatase and kinase (SmSTRIPAK) complex as proof of concept. For the establishment of BioID in S. macrospora, a codon-optimized TurboID biotin ligase was fused to SCI1. Biotin capture of the known SmSTRIPAK components PRO11, SmMOB3, PRO22 and SmPP2Ac1 demonstrates the successful BioID application in S. macrospora. BioID proximity labeling approaches will provide a powerful proteomics tool for fungal biologists.
Collapse
|
5
|
Meeusen B, Cortesi EE, Domènech Omella J, Sablina A, Ventura JJ, Janssens V. PPP2R4 dysfunction promotes KRAS-mutant lung adenocarcinoma development and mediates opposite responses to MEK and mTOR inhibition. Cancer Lett 2021; 520:57-67. [PMID: 34216687 DOI: 10.1016/j.canlet.2021.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022]
Abstract
KRAS-mutant lung adenocarcinomas represent the largest molecular subgroup of non-small cell lung cancers (NSCLC) and are notorious for their dismal survival perspectives. To gain more insights in etiology and therapeutic response, we focused on the tumor suppressor Protein Phosphatase 2A (PP2A) as a player in KRAS oncogenic signaling. We report that the PP2A activator PTPA (encoded by PPP2R4) is commonly affected in NSCLC by heterozygous loss and low-frequent loss-of-function mutation, and this is specifically associated with poorer overall survival of KRAS-mutant lung adenocarcinoma patients. Reduced or mutant PPP2R4 expression in A549 cells increased anchorage-independent growth in vitro and xenograft growth in vivo, correlating with increased Ki67 and c-MYC expression. Moreover, KrasG12D-induced lung tumorigenesis was significantly accelerated in Ppp2r4 gene trapped mice as compared to Ppp2r4 wild-type. A confined kinase inhibitor screen revealed that PPP2R4-depletion induced resistance against selumetinib (MEK inhibitor), but unexpectedly sensitized cells for temsirolimus (mTOR inhibitor), in vitro and in vivo. Our findings underscore a clinically relevant role for PTPA loss-of-function in KRAS-mutant NSCLC etiology and kinase inhibitor response.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium; KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
| | - Emanuela Elsa Cortesi
- Translational Cell & Tissue Research, Dept. Imaging & Pathology, KU Leuven, B-3000, Leuven, Belgium
| | - Judit Domènech Omella
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium; KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
| | - Anna Sablina
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium; Laboratory for Mechanisms of Cell Transformation, VIB Center for Cancer Biology & Dept. Oncology, KU Leuven, B-3000, Leuven, Belgium
| | - Juan-Jose Ventura
- Translational Cell & Tissue Research, Dept. Imaging & Pathology, KU Leuven, B-3000, Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium; KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium.
| |
Collapse
|
6
|
Frohner IE, Mudrak I, Schüchner S, Anrather D, Hartl M, Sontag JM, Sontag E, Wadzinski BE, Preglej T, Ellmeier W, Ogris E. PP2A C Phospho-Tyr 307 Antibodies Are Not Specific for this Modification but Are Sensitive to Other PP2A C Modifications Including Leu 309 Methylation. Cell Rep 2021; 30:3171-3182.e6. [PMID: 32130916 DOI: 10.1016/j.celrep.2020.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/03/2019] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is an important regulator of signal transduction pathways and a tumor suppressor. Phosphorylation of the PP2A catalytic subunit (PP2AC) at tyrosine 307 has been claimed to inactivate PP2A and was examined in more than 180 studies using commercial antibodies, but this modification was never identified using mass spectrometry. Here we show that the most cited pTyr307 monoclonal antibodies, E155 and F-8, are not specific for phosphorylated Tyr307 but instead are hampered by PP2AC methylation at leucine 309 or phosphorylation at threonine 304. Other pTyr307 antibodies are sensitive to PP2AC methylation as well, and some cross-react with pTyr residues in general, including phosphorylated hemagglutinin tags. We identify pTyr307 using targeted mass spectrometry after transient overexpression of PP2AC and Src kinase. Yet under such conditions, none of the tested antibodies show exclusive pTyr307 specificity. Thus, data generated using these antibodies need to be revisited, and the mechanism of PP2A inactivation needs to be redefined.
Collapse
Affiliation(s)
- Ingrid E Frohner
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Ingrid Mudrak
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Stefan Schüchner
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Dorothea Anrather
- Mass Spectrometry Facility, Max Perutz Labs, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Labs, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brian E Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Egon Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
7
|
Bheri M, Mahiwal S, Sanyal SK, Pandey GK. Plant protein phosphatases: What do we know about their mechanism of action? FEBS J 2020; 288:756-785. [PMID: 32542989 DOI: 10.1111/febs.15454] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Protein phosphorylation is a major reversible post-translational modification. Protein phosphatases function as 'critical regulators' in signaling networks through dephosphorylation of proteins, which have been phosphorylated by protein kinases. A large understanding of their working has been sourced from animal systems rather than the plant or the prokaryotic systems. The eukaryotic protein phosphatases include phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine(Ser)/threonine(Thr)-specific phosphatases (STPs), while PTP family is Tyr specific. Dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. PTPs lack sequence homology with STPs, indicating a difference in catalytic mechanisms, while the PPP and PPM families share a similar structural fold indicating a common catalytic mechanism. The catalytic cysteine (Cys) residue in the conserved HCX5 R active site motif of the PTPs acts as a nucleophile during hydrolysis. The PPP members require metal ions, which coordinate the phosphate group of the substrate, followed by a nucleophilic attack by a water molecule and hydrolysis. The variable holoenzyme assembly of protein phosphatase(s) and the overlap with other post-translational modifications like acetylation and ubiquitination add to their complexity. Though their functional characterization is extensively reported in plants, the mechanistic nature of their action is still being explored by researchers. In this review, we exclusively overview the plant protein phosphatases with an emphasis on their mechanistic action as well as structural characteristics.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
8
|
Devare MN, Kim YH, Jung J, Kang WK, Kwon K, Kim J. TORC1 signaling regulates cytoplasmic pH through Sir2 in yeast. Aging Cell 2020; 19:e13151. [PMID: 32449834 PMCID: PMC7294778 DOI: 10.1111/acel.13151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD+‐dependent protein deacetylase, which regulates the expression of the ATP‐dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho‐mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)‐like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2–Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast.
Collapse
Affiliation(s)
- Mayur Nimbadas Devare
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Yeong Hyeock Kim
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Joohye Jung
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Woo Kyu Kang
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Ki‐Sun Kwon
- Aging Intervention Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon Korea
| | - Jeong‐Yoon Kim
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| |
Collapse
|
9
|
Játiva S, Calabria I, Moyano-Rodriguez Y, Garcia P, Queralt E. Cdc14 activation requires coordinated Cdk1-dependent phosphorylation of Net1 and PP2A-Cdc55 at anaphase onset. Cell Mol Life Sci 2019; 76:3601-3620. [PMID: 30927017 PMCID: PMC11105415 DOI: 10.1007/s00018-019-03086-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 01/21/2023]
Abstract
Exit from mitosis and completion of cytokinesis require the inactivation of mitotic cyclin-dependent kinase (Cdk) activity. In budding yeast, Cdc14 phosphatase is a key mitotic regulator that is activated in anaphase to counteract Cdk activity. In metaphase, Cdc14 is kept inactive in the nucleolus, where it is sequestered by its inhibitor, Net1. At anaphase onset, downregulation of PP2ACdc55 phosphatase by separase and Zds1 protein promotes Net1 phosphorylation and, consequently, Cdc14 release from the nucleolus. The mechanism by which PP2ACdc55 activity is downregulated during anaphase remains to be elucidated. Here, we demonstrate that Cdc55 regulatory subunit is phosphorylated in anaphase in a Cdk1-Clb2-dependent manner. Interestingly, cdc55-ED phosphomimetic mutant inactivates PP2ACdc55 phosphatase activity towards Net1 and promotes Cdc14 activation. Separase and Zds1 facilitate Cdk-dependent Net1 phosphorylation and Cdc14 release from the nucleolus by modulating PP2ACdc55 activity via Cdc55 phosphorylation. In addition, human Cdk1-CyclinB1 phosphorylates human B55, indicating that the mechanism is conserved in higher eukaryotes.
Collapse
Affiliation(s)
- Soraya Játiva
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ines Calabria
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Genomics Unit, Medical Research Institute La Fe, Valencia, Spain
| | - Yolanda Moyano-Rodriguez
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Patricia Garcia
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ethel Queralt
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
10
|
Elgenaidi IS, Spiers JP. Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: A potential therapeutic target? Pharmacol Ther 2019; 198:68-89. [PMID: 30797822 DOI: 10.1016/j.pharmthera.2019.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Phosphoprotein phosphatases are of growing interest in the pathophysiology of many diseases and are often the neglected partner of protein kinases. One family member, PP2A, accounts for dephosphorylation of ~55-70% of all serine/threonine phosphosites. Interestingly, dysregulation of kinase signalling is a hallmark of many diseases in which an increase in oxidative stress is also noted. With this in mind, we assess the evidence to support oxidative stress-mediated regulation of the PP2A system In this article, we first present an overview of the PP2A system before providing an analysis of the regulation of PP2A by endogenous inhibitors, post translational modification, and miRNA. Next, a detailed critique of data implicating reactive oxygen species, ischaemia, ischaemia-reperfusion, and hypoxia in regulating the PP2A holoenzyme and associated regulators is presented. Finally, the pharmacological targeting of PP2A, its endogenous inhibitors, and enzymes responsible for its post-translational modification are covered. There is extensive evidence that oxidative stress modulates multiple components of the PP2A system, however, most of the data pertains to the catalytic subunit of PP2A. Irrespective of the underlying aetiology, free radical-mediated attenuation of PP2A activity is an emerging theme. However, in many instances, a dichotomy exists, which requires clarification and mechanistic insight. Nevertheless, this raises the possibility that pharmacological activation of PP2A, either through small molecule activators of PP2A or CIP2A/SET antagonists may be beneficial in modulating the cellular response to oxidative stress. A better understanding of which, will have wide ranging implications for cancer, heart disease and inflammatory conditions.
Collapse
Affiliation(s)
- I S Elgenaidi
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland
| | - J P Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland.
| |
Collapse
|
11
|
Jain BP. Genome Wide Analysis of WD40 Proteins in Saccharomyces cerevisiae and Their Orthologs in Candida albicans. Protein J 2019; 38:58-75. [PMID: 30511317 DOI: 10.1007/s10930-018-9804-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The WD40 domain containing proteins are present in the lower organisms (Monera) to higher complex metazoans with involvement in diverse cellular processes. The WD40 repeats fold into β propeller structure due to which the proteins harbouring WD40 domains function as scaffold by offering platform for interactions, bring together diverse cellular proteins to form a single complex for mediating downstream effects. Multiple functions of WD40 domain containing proteins in lower eukaryote as in Fungi have been reported with involvement in vegetative and reproductive growth, virulence etc. In this article insilico analysis of the WDR proteins in the budding yeast Saccharomyces cerevisiae was performed. By WDSP software 83 proteins in S. cerevisiae were identified with at least one WD40 motif. WD40 proteins with 6 or more WD40 motifs were considered for further studies. The WD40 proteins in yeast which are involved in various biological processes show distribution on all chromosomes (16 chromosomes in yeast) except chromosome 1. Besides the WD40 domain some of these proteins also contain other protein domains which might be responsible for the diversity in the functions of WD40 proteins in the budding yeast. These proteins in budding yeast were analysed by DAVID and Blast2Go software for functional and domains categorization. Candida albicans, an opportunistic fungal pathogen also have orthologs of these WD40 proteins with possible similar functions. This is the first time genome wide analysis of WD40 proteins in lower eukaryote i.e. budding yeast. This data may be useful in further study of the functional diversity of yeast proteomes.
Collapse
Affiliation(s)
- Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Bihar, Motihari, 845401, India.
| |
Collapse
|
12
|
Liu Z, Liu N, Jiang H, Yan L, Ma Z, Yin Y. The Activators of Type 2A Phosphatases (PP2A) Regulate Multiple Cellular Processes Via PP2A-Dependent and -Independent Mechanisms in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1121-1133. [PMID: 29877164 DOI: 10.1094/mpmi-03-18-0056-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The type 2A protein phosphatases (PP2As) are holoenzymes in all eukaryotes but their activators remain unknown in filamentous fungi. Fusarium graminearum contains three PP2As (FgPp2A, FgSit4, and FgPpg1), which play critical roles in fungal growth, development, and virulence. Here, we identified two PP2A activators (PTPAs), FgRrd1 and FgRrd2, and found that they control PP2A activity in a PP2A-specific manner. FgRrd1 interacts with FgPpg1, but FgRrd2 interacts with FgPp2A and very weakly with FgSit4. Furthermore, FgRrd2 activates FgPp2A via regulating FgPp2A methylation. Phenotypic assays showed that FgRrd1 and FgRrd2 regulate mycelial growth, conidiation, sexual development, and lipid droplet biogenesis. More importantly, both FgRrd1 and FgRrd2 interact with RNA polymerase II, subsequently modulating its enrichments at the promoters of mycotoxin biosynthesis genes, which is independent on PP2A. In addition, FgRrd2 modulates response to phenylpyrrole fungicide, via regulating the phosphorylation of kinase FgHog1 in the high-osmolarity glycerol pathway, and to caffeine, via modulating FgPp2A methylation. Taken together, results of this study indicate that FgRrd1 and FgRrd2 regulate multiple physiological processes via different regulatory mechanisms in F. graminearum, which provides a novel insight into understanding the biological functions of PTPAs in fungi.
Collapse
Affiliation(s)
- Zunyong Liu
- 1 Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Na Liu
- 1 Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Huixian Jiang
- 1 Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Leiyan Yan
- 2 Ningbo Academy of Agricultural Sciences, Ningbo, 315040, China; and
| | - Zhonghua Ma
- 1 Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- 3 State Key Laboratory of Rice Biology, Zhejiang University
| | - Yanni Yin
- 1 Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
13
|
Lee HY, Itahana Y, Schuechner S, Fukuda M, Je HS, Ogris E, Virshup DM, Itahana K. Ca2+-dependent demethylation of phosphatase PP2Ac promotes glucose deprivation–induced cell death independently of inhibiting glycolysis. Sci Signal 2018; 11:11/512/eaam7893. [DOI: 10.1126/scisignal.aam7893] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Sents W, Meeusen B, Kalev P, Radaelli E, Sagaert X, Miermans E, Haesen D, Lambrecht C, Dewerchin M, Carmeliet P, Westermarck J, Sablina A, Janssens V. PP2A Inactivation Mediated by PPP2R4 Haploinsufficiency Promotes Cancer Development. Cancer Res 2017; 77:6825-6837. [DOI: 10.1158/0008-5472.can-16-2911] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 08/19/2017] [Accepted: 10/13/2017] [Indexed: 11/16/2022]
|
15
|
Thai V, Dephoure N, Weiss A, Ferguson J, Leitao R, Gygi SP, Kellogg DR. Protein Kinase C Controls Binding of Igo/ENSA Proteins to Protein Phosphatase 2A in Budding Yeast. J Biol Chem 2017; 292:4925-4941. [PMID: 28100785 DOI: 10.1074/jbc.m116.753004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/09/2017] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) plays important roles in controlling mitosis in all eukaryotic cells. The form of PP2A that controls mitosis is associated with a conserved regulatory subunit that is called B55 in vertebrates and Cdc55 in budding yeast. The activity of this form of PP2A can be inhibited by binding of conserved Igo/ENSA proteins. Although the mechanisms that activate Igo/ENSA to bind and inhibit PP2A are well understood, little is known about how Igo/Ensa are inactivated. Here, we have analyzed regulation of Igo/ENSA in the context of a checkpoint pathway that links mitotic entry to membrane growth in budding yeast. Protein kinase C (Pkc1) relays signals in the pathway by activating PP2ACdc55 We discovered that constitutively active Pkc1 can drive cells through a mitotic checkpoint arrest, which suggests that Pkc1-dependent activation of PP2ACdc55 plays a critical role in checkpoint signaling. We therefore used mass spectrometry to determine how Pkc1 modifies the PP2ACdc55 complex. This revealed that Pkc1 induces changes in the phosphorylation of multiple subunits of the complex, as well as dissociation of Igo/ENSA. Pkc1 directly phosphorylates Cdc55 and Igo/ENSA, and phosphorylation site mapping and mutagenesis indicate that phosphorylation of Cdc55 contributes to Igo/ENSA dissociation. Association of Igo2 with PP2ACdc55 is regulated during the cell cycle, yet mutation of Pkc1-dependent phosphorylation sites on Cdc55 and Igo2 did not cause defects in mitotic progression. Together, the data suggest that Pkc1 controls PP2ACdc55 by multiple overlapping mechanisms.
Collapse
Affiliation(s)
- Vu Thai
- From the Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Noah Dephoure
- the Department of Biochemistry, Weill Cornell Medical College, New York, New York 10021, and
| | - Amit Weiss
- From the Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Jacqueline Ferguson
- From the Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Ricardo Leitao
- From the Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Steven P Gygi
- the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Douglas R Kellogg
- From the Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064,
| |
Collapse
|
16
|
Heim A, Rymarczyk B, Mayer TU. Regulation of Cell Division. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:83-116. [PMID: 27975271 DOI: 10.1007/978-3-319-46095-6_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The challenging task of mitotic cell divisions is to generate two genetically identical daughter cells from a single precursor cell. To accomplish this task, a complex regulatory network evolved, which ensures that all events critical for the duplication of cellular contents and their subsequent segregation occur in the correct order, at specific intervals and with the highest possible fidelity. Transitions between cell cycle stages are triggered by changes in the phosphorylation state and levels of components of the cell cycle machinery. Entry into S-phase and M-phase are mediated by cyclin-dependent kinases (Cdks), serine-threonine kinases that require a regulatory cyclin subunit for their activity. Resetting the system to the interphase state is mediated by protein phosphatases (PPs) that counteract Cdks by dephosphorylating their substrates. To avoid futile cycles of phosphorylation and dephosphorylation, Cdks and PPs must be regulated in a manner such that their activities are mutually exclusive.
Collapse
Affiliation(s)
- Andreas Heim
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Beata Rymarczyk
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Thomas U Mayer
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany.
| |
Collapse
|
17
|
Regulation of protein phosphatase 2A (PP2A) tumor suppressor function by PME-1. Biochem Soc Trans 2016; 44:1683-1693. [DOI: 10.1042/bst20160161] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/06/2016] [Accepted: 09/09/2016] [Indexed: 02/06/2023]
Abstract
Protein phosphatase 2A (PP2A) plays a major role in maintaining cellular signaling homeostasis by dephosphorylation of a variety of signaling proteins and acts as a tumor suppressor. Protein phosphatase methylesterase-1 (PME-1) negatively regulates PP2A activity by highly complex mechanisms that are reviewed here. Importantly, recent studies have shown that PME-1 promotes oncogenic MAPK/ERK and AKT pathway activities in various cancer types. In human glioma, high PME-1 expression correlates with tumor progression and kinase inhibitor resistance. We discuss the emerging cancer-associated function of PME-1 and its potential clinical relevance.
Collapse
|
18
|
Kiely M, Adams DR, Hayes SL, O'Connor R, Baillie GS, Kiely PA. RACK1 stabilises the activity of PP2A to regulate the transformed phenotype in mammary epithelial cells. Cell Signal 2016; 35:290-300. [PMID: 27600565 DOI: 10.1016/j.cellsig.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 02/04/2023]
Abstract
Conflicting reports implicate the scaffolding protein RACK1 in the progression of breast cancer. RACK1 has been identified as a key regulator downstream of growth factor and adhesion signalling and as a direct binding partner of PP2A. Our objective was to further characterise the interaction between PP2A and RACK1 and to advance our understanding of this complex in breast cancer cells. We examined how the PP2A holoenzyme is assembled on the RACK1 scaffold in MCF-7 cells. We used immobilized peptide arrays representing the entire PP2A-catalytic subunit to identify candidate amino acids on the C subunit of PP2A that might be involved in binding of RACK1. We identified the RACK1 interaction sites on PP2A. Stable cell lines expressing PP2A with FR69/70AA, R214A and Y218F substitutions were generated and it was confirmed that the RACK1/PP2A interaction is essential to stabilise PP2A activity. We used Real-Time Cell Analysis and a series of assays to demonstrate that disruption of the RACK1/PP2A complex also reduces the adhesion, proliferation, migration and invasion of breast cancer cells and plays a role in maintenance of the cancer phenotype. This work has significantly advanced our understanding of the RACK1/PP2A complex and suggests a pro-carcinogenic role for the RACK1/PP2A interaction. This work suggests that approaches to target the RACK1/PP2A complex are a viable option to regulate PP2A activity and identifies a novel potential therapeutic target in the treatment of breast cancer.
Collapse
Affiliation(s)
- Maeve Kiely
- Graduate Entry Medical School, Materials and Surface Science Institute and Health Research Institute, University of Limerick, Ireland
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton Campus, Edinburgh EH14AS, UK
| | - Sheri L Hayes
- Graduate Entry Medical School, Materials and Surface Science Institute and Health Research Institute, University of Limerick, Ireland
| | - Rosemary O'Connor
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | - George S Baillie
- Institute of Cardiovascular & Medical Science, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Patrick A Kiely
- Graduate Entry Medical School, Materials and Surface Science Institute and Health Research Institute, University of Limerick, Ireland.
| |
Collapse
|
19
|
Saccharomyces cerevisiae TORC1 Controls Histone Acetylation by Signaling Through the Sit4/PP6 Phosphatase to Regulate Sirtuin Deacetylase Nuclear Accumulation. Genetics 2016; 203:1733-46. [PMID: 27343235 PMCID: PMC4981274 DOI: 10.1534/genetics.116.188458] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/15/2016] [Indexed: 01/09/2023] Open
Abstract
The epigenome responds to changes in the extracellular environment, yet how this information is transmitted to the epigenetic regulatory machinery is unclear. Using a Saccharomyces cerevisiae yeast model, we demonstrate that target of rapamycin complex 1 (TORC1) signaling, which is activated by nitrogen metabolism and amino acid availability, promotes site-specific acetylation of histone H3 and H4 N-terminal tails by opposing the activity of the sirtuin deacetylases Hst3 and Hst4. TORC1 does so through suppression of the Tap42-regulated Sit4 (PP6) phosphatase complex, as sit4Δ rescues histone acetylation under TORC1-repressive conditions. We further demonstrate that TORC1 inhibition, and subsequent PP6 activation, causes a selective, rapid, nuclear accumulation of Hst4, which correlates with decreased histone acetylation. This increased Hst4 nuclear localization precedes an elevation in Hst4 protein expression, which is attributed to reduced protein turnover, suggesting that nutrient signaling through TORC1 may limit Hst4 nuclear accumulation to facilitate Hst4 degradation and maintain histone acetylation. This pathway is functionally relevant to TORC1 signaling since the stress sensitivity of a nonessential TORC1 mutant (tco89Δ) to hydroxyurea and arsenic can be reversed by combining tco89Δ with either hst3Δ, hst4Δ, or sit4Δ. Surprisingly, while hst3Δ or hst4Δ rescues the sensitivity tco89Δ has to low concentrations of the TORC1 inhibitor rapamycin, sit4Δ fails to do so. These results suggest Sit4 provides an additional function necessary for TORC1-dependent cell growth and proliferation. Collectively, this study defines a novel mechanism by which TORC1 suppresses a PP6-regulated sirtuin deacetylase pathway to couple nutrient signaling to epigenetic regulation.
Collapse
|
20
|
Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol 2016; 17:556-64. [PMID: 26974206 PMCID: PMC4837024 DOI: 10.1038/ni.3390] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/18/2015] [Indexed: 12/13/2022]
Abstract
Immune homeostasis depends on the proper function of regulatory T (Treg) cells. Compromised Treg cell suppressive activity leads to autoimmune disease, graft rejection and promotes anti-tumor immunity. Here we report the previously unrecognized requirement of the serine/threonine phosphatase Protein Phosphatase 2A (PP2A) for the function of Treg cells. Treg cells exhibited high PP2A activity and Treg cell-specific ablation of the PP2A complex resulted in a severe, multi-organ, lymphoproliferative autoimmune disorder. Mass spectrometric analysis revealed that PP2A associates with components of the mTOR pathway and suppresses mTORC1 activity. In the absence of PP2A, Treg cells altered their metabolic and cytokine profile and were unable to suppress effector immune responses. Therefore, PP2A is requisite for the function of Treg cells and the prevention of autoimmunity.
Collapse
|
21
|
Feng J, Duan Y, Sun W, Qin Y, Zhuang Z, Zhu D, Sun X, Jiang L. CaTip41 regulates protein phosphatase 2A activity, CaRad53 deactivation and the recovery of DNA damage-induced filamentation to yeast form in Candida albicans. FEMS Yeast Res 2016; 16:fow009. [PMID: 26851402 DOI: 10.1093/femsyr/fow009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
Phosphorylation and dephosphorylation of the checkpoint kinase CaRad53 is crucial for fungal cells in response to genotoxic stresses. The protein phosphatase 2A (PP2A) CaPph3/CaPsy2 phosphatase complex is involved in CaRad53 dephosphorylation in Candida albicans. In view of the role of ScTip41/ScTap42 in regulating PP2A phosphatases in Saccharomyces cerevisiae, we have explored the function of CaTip41 in C. albicans. Here, we show that CaTIP41 is a functional ortholog of ScTIP41 in the sensitivity of S. cerevisiae cells to rapamycin. Deletion of CaTIP41 causes C. albicans cells to be sensitive to DNA damaging agents, methylmethane sulfonate (MMS) and cisplatin, and resistant to both rapamycin and caffeine. Accordingly, expression of CaTip41 increases in response to MMS and cisplatin. In addition, C. albicans cells lacking CaTIP41 show a delay in the recovery from MMS-induced filamentation to yeast form, decreased PP2A activity and a defect in deactivation of CaRad53 during recovery from DNA damage. Through yeast two-hybrid assay we show that CaTip41 interacts with either CaPph3, CaPsy2 or CaTap42. Therefore, CaTip41 plays regulatory roles in both the CaRad53 deactivation during recovery from DNA damage and the target of rapamycin signaling pathway.
Collapse
Affiliation(s)
- Jinrong Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Wei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yongwei Qin
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Zhong Zhuang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Linghuo Jiang
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
22
|
Yabe R, Miura A, Usui T, Mudrak I, Ogris E, Ohama T, Sato K. Protein Phosphatase Methyl-Esterase PME-1 Protects Protein Phosphatase 2A from Ubiquitin/Proteasome Degradation. PLoS One 2015; 10:e0145226. [PMID: 26678046 PMCID: PMC4683032 DOI: 10.1371/journal.pone.0145226] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/01/2015] [Indexed: 11/30/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a conserved essential enzyme that is implicated as a tumor suppressor based on its central role in phosphorylation-dependent signaling pathways. Protein phosphatase methyl esterase (PME-1) catalyzes specifically the demethylation of the C-terminal Leu309 residue of PP2A catalytic subunit (PP2Ac). It has been shown that PME-1 affects the activity of PP2A by demethylating PP2Ac, but also by directly binding to the phosphatase active site, suggesting loss of PME-1 in cells would enhance PP2A activity. However, here we show that PME-1 knockout mouse embryonic fibroblasts (MEFs) exhibit lower PP2A activity than wild type MEFs. Loss of PME-1 enhanced poly-ubiquitination of PP2Ac and shortened the half-life of PP2Ac protein resulting in reduced PP2Ac levels. Chemical inhibition of PME-1 and rescue experiments with wild type and mutated PME-1 revealed methyl-esterase activity was necessary to maintain PP2Ac protein levels. Our data demonstrate that PME-1 methyl-esterase activity protects PP2Ac from ubiquitin/proteasome degradation.
Collapse
Affiliation(s)
- Ryotaro Yabe
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753–8515, Japan
| | - Akane Miura
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753–8515, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Toxicology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753–8515, Japan
| | - Ingrid Mudrak
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, 1030, Austria
| | - Egon Ogris
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, 1030, Austria
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753–8515, Japan
- * E-mail:
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753–8515, Japan
| |
Collapse
|
23
|
Houge G, Haesen D, Vissers LELM, Mehta S, Parker MJ, Wright M, Vogt J, McKee S, Tolmie JL, Cordeiro N, Kleefstra T, Willemsen MH, Reijnders MRF, Berland S, Hayman E, Lahat E, Brilstra EH, van Gassen KLI, Zonneveld-Huijssoon E, de Bie CI, Hoischen A, Eichler EE, Holdhus R, Steen VM, Døskeland SO, Hurles ME, FitzPatrick DR, Janssens V. B56δ-related protein phosphatase 2A dysfunction identified in patients with intellectual disability. J Clin Invest 2015; 125:3051-62. [PMID: 26168268 DOI: 10.1172/jci79860] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/27/2015] [Indexed: 12/17/2022] Open
Abstract
Here we report inherited dysregulation of protein phosphatase activity as a cause of intellectual disability (ID). De novo missense mutations in 2 subunits of serine/threonine (Ser/Thr) protein phosphatase 2A (PP2A) were identified in 16 individuals with mild to severe ID, long-lasting hypotonia, epileptic susceptibility, frontal bossing, mild hypertelorism, and downslanting palpebral fissures. PP2A comprises catalytic (C), scaffolding (A), and regulatory (B) subunits that determine subcellular anchoring, substrate specificity, and physiological function. Ten patients had mutations within a highly conserved acidic loop of the PPP2R5D-encoded B56δ regulatory subunit, with the same E198K mutation present in 6 individuals. Five patients had mutations in the PPP2R1A-encoded scaffolding Aα subunit, with the same R182W mutation in 3 individuals. Some Aα cases presented with large ventricles, causing macrocephaly and hydrocephalus suspicion, and all cases exhibited partial or complete corpus callosum agenesis. Functional evaluation revealed that mutant A and B subunits were stable and uncoupled from phosphatase activity. Mutant B56δ was A and C binding-deficient, while mutant Aα subunits bound B56δ well but were unable to bind C or bound a catalytically impaired C, suggesting a dominant-negative effect where mutant subunits hinder dephosphorylation of B56δ-anchored substrates. Moreover, mutant subunit overexpression resulted in hyperphosphorylation of GSK3β, a B56δ-regulated substrate. This effect was in line with clinical observations, supporting a correlation between the ID degree and biochemical disturbance.
Collapse
|
24
|
Hoffmeister M, Prelle C, Küchler P, Kovacevic I, Moser M, Müller-Esterl W, Oess S. The ubiquitin E3 ligase NOSIP modulates protein phosphatase 2A activity in craniofacial development. PLoS One 2014; 9:e116150. [PMID: 25546391 PMCID: PMC4278855 DOI: 10.1371/journal.pone.0116150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/05/2014] [Indexed: 02/05/2023] Open
Abstract
Holoprosencephaly is a common developmental disorder in humans characterised by incomplete brain hemisphere separation and midface anomalies. The etiology of holoprosencephaly is heterogeneous with environmental and genetic causes, but for a majority of holoprosencephaly cases the genes associated with the pathogenesis could not be identified so far. Here we report the generation of knockout mice for the ubiquitin E3 ligase NOSIP. The loss of NOSIP in mice causes holoprosencephaly and facial anomalies including cleft lip/palate, cyclopia and facial midline clefting. By a mass spectrometry based protein interaction screen we identified NOSIP as a novel interaction partner of protein phosphatase PP2A. NOSIP mediates the monoubiquitination of the PP2A catalytic subunit and the loss of NOSIP results in an increase in PP2A activity in craniofacial tissue in NOSIP knockout mice. We conclude, that NOSIP is a critical modulator of brain and craniofacial development in mice and a candidate gene for holoprosencephaly in humans.
Collapse
Affiliation(s)
- Meike Hoffmeister
- Institute for Biochemistry II, Goethe University Frankfurt Medical School, Frankfurt/Main, Germany
| | - Carola Prelle
- Institute for Biochemistry II, Goethe University Frankfurt Medical School, Frankfurt/Main, Germany
| | - Philipp Küchler
- Institute for Biochemistry II, Goethe University Frankfurt Medical School, Frankfurt/Main, Germany
| | - Igor Kovacevic
- Institute for Biochemistry II, Goethe University Frankfurt Medical School, Frankfurt/Main, Germany
| | - Markus Moser
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Werner Müller-Esterl
- Institute for Biochemistry II, Goethe University Frankfurt Medical School, Frankfurt/Main, Germany
| | - Stefanie Oess
- Institute for Biochemistry II, Goethe University Frankfurt Medical School, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
25
|
Haesen D, Sents W, Lemaire K, Hoorne Y, Janssens V. The Basic Biology of PP2A in Hematologic Cells and Malignancies. Front Oncol 2014; 4:347. [PMID: 25566494 PMCID: PMC4263090 DOI: 10.3389/fonc.2014.00347] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/20/2014] [Indexed: 12/30/2022] Open
Abstract
Reversible protein phosphorylation plays a crucial role in regulating cell signaling. In normal cells, phosphoregulation is tightly controlled by a network of protein kinases counterbalanced by several protein phosphatases. Deregulation of this delicate balance is widely recognized as a central mechanism by which cells escape external and internal self-limiting signals, eventually resulting in malignant transformation. A large fraction of hematologic malignancies is characterized by constitutive or unrestrained activation of oncogenic kinases. This is in part achieved by activating mutations, chromosomal rearrangements, or constitutive activation of upstream kinase regulators, in part by inactivation of their anti-oncogenic phosphatase counterparts. Protein phosphatase 2A (PP2A) represents a large family of cellular serine/threonine phosphatases with suspected tumor suppressive functions. In this review, we highlight our current knowledge about the complex structure and biology of these phosphatases in hematologic cells, thereby providing the rationale behind their diverse signaling functions. Eventually, this basic knowledge is a key to truly understand the tumor suppressive role of PP2A in leukemogenesis and to allow further rational development of therapeutic strategies targeting PP2A.
Collapse
Affiliation(s)
- Dorien Haesen
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Ward Sents
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Katleen Lemaire
- Gene Expression Unit, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Yana Hoorne
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| |
Collapse
|
26
|
Scheidt V, Jüdes A, Bär C, Klassen R, Schaffrath R. Loss of wobble uridine modification in tRNA anticodons interferes with TOR pathway signaling. MICROBIAL CELL 2014; 1:416-424. [PMID: 28357221 PMCID: PMC5349137 DOI: 10.15698/mic2014.12.179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Previous work in yeast has suggested that modification of tRNAs, in particular uridine bases in the anticodon wobble position (U34), is linked to TOR (target of rapamycin) signaling. Hence, U34 modification mutants were found to be hypersensitive to TOR inhibition by rapamycin. To study whether this involves inappropriate TOR signaling, we examined interaction between mutations in TOR pathway genes (tip41∆, sap190∆, ppm1∆, rrd1∆) and U34 modification defects (elp3∆, kti12∆, urm1∆, ncs2∆) and found the rapamycin hypersensitivity in the latter is epistatic to drug resistance of the former. Epistasis, however, is abolished in tandem with a gln3∆ deletion, which inactivates transcription factor Gln3 required for TOR-sensitive activation of NCR (nitrogen catabolite repression) genes. In line with nuclear import of Gln3 being under control of TOR and dephosphorylation by the Sit4 phosphatase, we identify novel TOR-sensitive sit4 mutations that confer rapamycin resistance and importantly, mislocalise Gln3 when TOR is inhibited. This is similar to gln3∆ cells, which abolish the rapamycin hypersensitivity of U34 modification mutants, and suggests TOR deregulation due to tRNA undermodification operates through Gln3. In line with this, loss of U34 modifications (elp3∆, urm1∆) enhances nuclear import of and NCR gene activation (MEP2, GAP1) by Gln3 when TOR activity is low. Strikingly, this stimulatory effect onto Gln3 is suppressed by overexpression of tRNAs that usually carry the U34 modifications. Collectively, our data suggest that proper TOR signaling requires intact tRNA modifications and that loss of U34 modifications impinges on the TOR-sensitive NCR branch via Gln3 misregulation.
Collapse
Affiliation(s)
- Viktor Scheidt
- Institut für Biologie, Abteilung Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany
| | - André Jüdes
- Institut für Biologie, Abteilung Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany
| | - Christian Bär
- Institut für Biologie, Abteilung Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany. ; Present address: Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, Spain
| | - Roland Klassen
- Institut für Biologie, Abteilung Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Abteilung Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany
| |
Collapse
|
27
|
Chen J, Hu R, Zhu Y, Shen G, Zhang H. Arabidopsis PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR is essential for PROTEIN PHOSPHATASE 2A holoenzyme assembly and plays important roles in hormone signaling, salt stress response, and plant development. PLANT PHYSIOLOGY 2014; 166:1519-34. [PMID: 25281708 PMCID: PMC4226365 DOI: 10.1104/pp.114.250563] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/02/2014] [Indexed: 05/19/2023]
Abstract
PROTEIN PHOSPHATASE 2A (PP2A) is a major group of serine/threonine protein phosphatases in eukaryotes. It is composed of three subunits: scaffolding subunit A, regulatory subunit B, and catalytic subunit C. Assembly of the PP2A holoenzyme in Arabidopsis (Arabidopsis thaliana) depends on Arabidopsis PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR (AtPTPA). Reduced expression of AtPTPA leads to severe defects in plant development, altered responses to abscisic acid, ethylene, and sodium chloride, and decreased PP2A activity. In particular, AtPTPA deficiency leads to decreased methylation in PP2A-C subunits (PP2Ac). Complete loss of PP2Ac methylation in the suppressor of brassinosteroid insensitive1 mutant leads to 30% reduction of PP2A activity, suggesting that PP2A with a methylated C subunit is more active than PP2A with an unmethylated C subunit. Like AtPTPA, PP2A-A subunits are also required for PP2Ac methylation. The interaction between AtPTPA and PP2Ac is A subunit dependent. In addition, AtPTPA deficiency leads to reduced interactions of B subunits with C subunits, resulting in reduced functional PP2A holoenzyme formation. Thus, AtPTPA is a critical factor for committing the subunit A/subunit C dimer toward PP2A heterotrimer formation.
Collapse
Affiliation(s)
- Jian Chen
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409 (J.C., R.H., Y.Z., G.S., H.Z.); andZhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China (G.S.)
| | - Rongbin Hu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409 (J.C., R.H., Y.Z., G.S., H.Z.); andZhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China (G.S.)
| | - Yinfeng Zhu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409 (J.C., R.H., Y.Z., G.S., H.Z.); andZhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China (G.S.)
| | - Guoxin Shen
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409 (J.C., R.H., Y.Z., G.S., H.Z.); andZhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China (G.S.)
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409 (J.C., R.H., Y.Z., G.S., H.Z.); andZhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China (G.S.)
| |
Collapse
|
28
|
Sen R, Malik S, Frankland-Searby S, Uprety B, Lahudkar S, Bhaumik SR. Rrd1p, an RNA polymerase II-specific prolyl isomerase and activator of phosphoprotein phosphatase, promotes transcription independently of rapamycin response. Nucleic Acids Res 2014; 42:9892-907. [PMID: 25114048 PMCID: PMC4150799 DOI: 10.1093/nar/gku703] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Rrd1p (resistance to rapamycin deletion 1) has been previously implicated in controlling transcription of rapamycin-regulated genes in response to rapamycin treatment. Intriguingly, we show here that Rrd1p associates with the coding sequence of a galactose-inducible and rapamycin non-responsive GAL1 gene, and promotes the association of RNA polymerase II with GAL1 in the absence of rapamycin treatment following transcriptional induction. Consistently, nucleosomal disassembly at GAL1 is impaired in the absence of Rrd1p, and GAL1 transcription is reduced in the Δrrd1 strain. Likewise, Rrd1p associates with the coding sequences of other rapamycin non-responsive and inducible GAL genes to promote their transcription in the absence of rapamycin treatment. Similarly, inducible, but rapamycin-responsive, non-GAL genes such as CTT1, STL1 and CUP1 are also regulated by Rrd1p. However, transcription of these inducible GAL and non-GAL genes is not altered in the absence of Rrd1p when the steady-state is reached after long transcriptional induction. Consistently, transcription of the constitutively active genes is not changed in the Δrrd1 strain. Taken together, our results demonstrate a new function of Rrd1p in stimulation of initial rounds of transcription, but not steady-state/constitutive transcription, of both rapamycin-responsive and non-responsive genes independently of rapamycin treatment.
Collapse
Affiliation(s)
- Rwik Sen
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Shivani Malik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sarah Frankland-Searby
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Bhawana Uprety
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Shweta Lahudkar
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
29
|
Bernal M, Zhurinsky J, Iglesias-Romero AB, Sanchez-Romero MA, Flor-Parra I, Tomas-Gallardo L, Perez-Pulido AJ, Jimenez J, Daga RR. Proteome-wide search for PP2A substrates in fission yeast. Proteomics 2014; 14:1367-80. [PMID: 24634168 DOI: 10.1002/pmic.201300136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 02/19/2014] [Accepted: 03/07/2014] [Indexed: 11/10/2022]
Abstract
PP2A (protein phosphatase 2A) is a major phosphatase in eukaryotic cells that plays an essential role in many processes. PP2A mutations in Schizosaccharomyces pombe result in defects of cell cycle control, cytokinesis and morphogenesis. Which PP2A substrates are responsible for these changes is not known. In this work, we searched for PP2A substrates in S. pombe using two approaches, 2D-DIGE analysis of PP2A complex mutants and identification of PP2A interacting proteins. In both cases, we used MS to identify proteins of interest. In the DIGE experiment, we compared proteomes of wild-type S. pombe, deletion of pta2, the phosphoactivator of the PP2A catalytic subunit, and pab1-4, a mutant of B-type PP2A regulatory subunit. A total of 1742 protein spots were reproducibly resolved by 2D-DIGE and 51 spots demonstrated significant changes between PP2A mutants and the wild-type control. MS analysis of these spots identified 27 proteins that include key regulators of glycerol synthesis, carbon metabolism, amino acid biosyntesis, vitamin production, and protein folding. Importantly, we independently identified a subset of these proteins as PP2A binding partners by affinity precipitation, suggesting they may be direct targets of PP2A. We have validated our approach by demonstrating that phosphorylation of Gpd1, a key enzyme in glycerol biogenesis, is regulated by PP2A and that ability of cells to respond to osmotic stress by synthesizing glycerol is compromised in the PP2A mutants. Our work contributes to a better understanding of PP2A function and identifies potential PP2A substrates.
Collapse
Affiliation(s)
- Manuel Bernal
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Sevilla, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Stanevich V, Zheng A, Guo F, Jiang L, Wlodarchak N, Xing Y. Mechanisms of the scaffold subunit in facilitating protein phosphatase 2A methylation. PLoS One 2014; 9:e86955. [PMID: 24466300 PMCID: PMC3900686 DOI: 10.1371/journal.pone.0086955] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 12/19/2013] [Indexed: 01/29/2023] Open
Abstract
The function of the biologically essential protein phosphatase 2A (PP2A) relies on formation of diverse heterotrimeric holoenzymes, which involves stable association between PP2A scaffold (A) and catalytic (C or PP2Ac) subunits and binding of variable regulatory subunits. Holoenzyme assembly is highly regulated by carboxyl methylation of PP2Ac-tail; methylation of PP2Ac and association of the A and C subunits are coupled to activation of PP2Ac. Here we showed that PP2A-specific methyltransferase, LCMT-1, exhibits a higher activity toward the core enzyme (A–C heterodimer) than free PP2Ac, and the A-subunit facilitates PP2A methylation via three distinct mechanisms: 1) stabilization of a proper protein fold and an active conformation of PP2Ac; 2) limiting the space of PP2Ac-tail movement for enhanced entry into the LCMT-1 active site; and 3) weak electrostatic interactions between LCMT-1 and the N-terminal HEAT repeats of the A-subunit. Our results revealed a new function and novel mechanisms of the A-subunit in PP2A methylation, and coherent control of PP2A activity, methylation, and holoenzyme assembly.
Collapse
Affiliation(s)
- Vitali Stanevich
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Biophysics Program, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Aiping Zheng
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Feng Guo
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Li Jiang
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Nathan Wlodarchak
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Biophysics Program, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
31
|
Guo F, Stanevich V, Wlodarchak N, Sengupta R, Jiang L, Satyshur KA, Xing Y. Structural basis of PP2A activation by PTPA, an ATP-dependent activation chaperone. Cell Res 2013; 24:190-203. [PMID: 24100351 PMCID: PMC3915903 DOI: 10.1038/cr.2013.138] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/04/2013] [Accepted: 08/13/2013] [Indexed: 11/09/2022] Open
Abstract
Proper activation of protein phosphatase 2A (PP2A) catalytic subunit is central for the complex PP2A regulation and is crucial for broad aspects of cellular function. The crystal structure of PP2A bound to PP2A phosphatase activator (PTPA) and ATPγS reveals that PTPA makes broad contacts with the structural elements surrounding the PP2A active site and the adenine moiety of ATP. PTPA-binding stabilizes the protein fold of apo-PP2A required for activation, and orients ATP phosphoryl groups to bind directly to the PP2A active site. This allows ATP to modulate the metal-binding preferences of the PP2A active site and utilize the PP2A active site for ATP hydrolysis. In vitro, ATP selectively and drastically enhances binding of endogenous catalytic metal ions, which requires ATP hydrolysis and is crucial for acquisition of pSer/Thr-specific phosphatase activity. Furthermore, both PP2A- and ATP-binding are required for PTPA function in cell proliferation and survival. Our results suggest novel mechanisms of PTPA in PP2A activation with structural economy and a unique ATP-binding pocket that could potentially serve as a specific therapeutic target.
Collapse
Affiliation(s)
- Feng Guo
- McArdle Laboratory, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Vitali Stanevich
- McArdle Laboratory, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Nathan Wlodarchak
- McArdle Laboratory, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Rituparna Sengupta
- McArdle Laboratory, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Li Jiang
- McArdle Laboratory, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Kenneth A Satyshur
- McArdle Laboratory, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Yongna Xing
- McArdle Laboratory, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
32
|
Sontag JM, Nunbhakdi-Craig V, Sontag E. Leucine carboxyl methyltransferase 1 (LCMT1)-dependent methylation regulates the association of protein phosphatase 2A and Tau protein with plasma membrane microdomains in neuroblastoma cells. J Biol Chem 2013; 288:27396-27405. [PMID: 23943618 DOI: 10.1074/jbc.m113.490102] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Down-regulation of protein phosphatase 2A (PP2A) methylation occurs in Alzheimer disease (AD). However, the regulation of PP2A methylation remains poorly understood. We have reported that altered leucine carboxyl methyltransferase (LCMT1)-dependent PP2A methylation is associated with down-regulation of PP2A holoenzymes containing the Bα subunit (PP2A/Bα) and subsequent accumulation of phosphorylated Tau in N2a cells, in vivo and in AD. Here, we show that pools of LCMT1, methylated PP2A, and PP2A/Bα are co-enriched in cholesterol-rich plasma membrane microdomains/rafts purified from N2a cells. In contrast, demethylated PP2A is preferentially distributed in non-rafts wherein small amounts of the PP2A methylesterase PME-1 are exclusively present. A methylation-incompetent PP2A mutant is excluded from rafts. Enhanced methylation of PP2A promotes the association of PP2A and Tau with the plasma membrane. Altered PP2A methylation following expression of a catalytically inactive LCMT1 mutant, knockdown of LCMT1, or alterations in one-carbon metabolism all result in a loss of plasma membrane-associated PP2A and Tau in N2a cells. This correlates with accumulation of soluble phosphorylated Tau, a hallmark of AD and other tauopathies. Thus, our findings reveal a distinct compartmentalization of PP2A and PP2A regulatory enzymes in plasma membrane microdomains and identify a novel methylation-dependent mechanism involved in modulating the targeting of PP2A, and its substrate Tau, to the plasma membrane. We propose that alterations in the membrane localization of PP2A and Tau following down-regulation of LCMT1 may lead to PP2A and Tau dysfunction in AD.
Collapse
Affiliation(s)
- Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales 2308, Australia.
| |
Collapse
|
33
|
Juanes MA, Khoueiry R, Kupka T, Castro A, Mudrak I, Ogris E, Lorca T, Piatti S. Budding yeast greatwall and endosulfines control activity and spatial regulation of PP2A(Cdc55) for timely mitotic progression. PLoS Genet 2013; 9:e1003575. [PMID: 23861665 PMCID: PMC3701715 DOI: 10.1371/journal.pgen.1003575] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/02/2013] [Indexed: 12/29/2022] Open
Abstract
Entry into mitosis is triggered by cyclinB/Cdk1, whose activity is abruptly raised by a positive feedback loop. The Greatwall kinase phosphorylates proteins of the endosulfine family and allows them to bind and inhibit the main Cdk1-counteracting PP2A-B55 phosphatase, thereby promoting mitotic entry. In contrast to most eukaryotic systems, Cdc14 is the main Cdk1-antagonizing phosphatase in budding yeast, while the PP2ACdc55 phosphatase promotes, instead of preventing, mitotic entry by participating to the positive feedback loop of Cdk1 activation. Here we show that budding yeast endosulfines (Igo1 and Igo2) bind to PP2ACdc55 in a cell cycle-regulated manner upon Greatwall (Rim15)-dependent phosphorylation. Phosphorylated Igo1 inhibits PP2ACdc55 activity in vitro and induces mitotic entry in Xenopus egg extracts, indicating that it bears a conserved PP2A-binding and -inhibitory activity. Surprisingly, deletion of IGO1 and IGO2 in yeast cells leads to a decrease in PP2A phosphatase activity, suggesting that endosulfines act also as positive regulators of PP2A in yeast. Consistently, RIM15 and IGO1/2 promote, like PP2ACdc55, timely entry into mitosis under temperature-stress, owing to the accumulation of Tyr-phosphorylated Cdk1. In addition, they contribute to the nuclear export of PP2ACdc55, which has recently been proposed to promote mitotic entry. Altogether, our data indicate that Igo proteins participate in the positive feedback loop for Cdk1 activation. We conclude that Greatwall, endosulfines, and PP2A are part of a regulatory module that has been conserved during evolution irrespective of PP2A function in the control of mitosis. However, this conserved module is adapted to account for differences in the regulation of mitotic entry in different organisms. In all eukaryotic cells chromosome partition during mitosis requires a number of processes, including the formation of the mitotic spindle, i.e. the machinery that drives chromosome segregation to the daughter cells. Mitotic entry requires a delicate balance between protein phosphorylation, driven by cyclin-dependent kinases (CDKs), and protein dephosphorylation, carried out by specific phosphatases that counteract CDK activity. A critical threshold in CDK activity is indeed required for mitotic entry. In the past few years the Greatwall kinase has also been implicated in mitotic entry through phosphorylation of proteins of the endosulfine family, which in turn inhibit the activity of the PP2A phosphatase that would otherwise dephosphorylate CDK targets. Whether Greatwall and endosulfines have a mitotic function in budding yeast, where PP2A promotes, rather than inhibits, mitotic entry has not been established. Here we show that the Greatwall-endosulfine-PP2A regulatory module is conserved also in budding yeast and that endosulfines from different species are interchangeable for their mitotic function. However, in budding yeast cells endosulfines contribute to full activation and proper localization of PP2A, suggesting that they act as both inhibitors and activators of PP2A. Our data emphasize how the same regulatory module is adapted to meet specific mitotic features in different organisms.
Collapse
Affiliation(s)
| | - Rita Khoueiry
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
| | - Thomas Kupka
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Anna Castro
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
| | - Ingrid Mudrak
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Egon Ogris
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Thierry Lorca
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
| | - Simonetta Piatti
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
- * E-mail:
| |
Collapse
|
34
|
MacKay KB, Tu Y, Young SG, Clarke SG. Circumventing embryonic lethality with Lcmt1 deficiency: generation of hypomorphic Lcmt1 mice with reduced protein phosphatase 2A methyltransferase expression and defects in insulin signaling. PLoS One 2013; 8:e65967. [PMID: 23840384 PMCID: PMC3688711 DOI: 10.1371/journal.pone.0065967] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/03/2013] [Indexed: 11/18/2022] Open
Abstract
Protein phosphatase 2A (PP2A), the major serine/threonine phosphatase in eukaryotic cells, is a heterotrimeric protein composed of structural, catalytic, and targeting subunits. PP2A assembly is governed by a variety of mechanisms, one of which is carboxyl-terminal methylation of the catalytic subunit by the leucine carboxyl methyltransferase LCMT1. PP2A is nearly stoichiometrically methylated in the cytosol, and although some PP2A targeting subunits bind independently of methylation, this modification is required for the binding of others. To examine the role of this methylation reaction in mammalian tissues, we generated a mouse harboring a gene-trap cassette within intron 1 of Lcmt1. Due to splicing around the insertion, Lcmt1 transcript and LCMT1 protein levels were reduced but not eliminated. LCMT1 activity and methylation of PP2A were reduced in a coordinate fashion, suggesting that LCMT1 is the only PP2A methyltransferase. These mice exhibited an insulin-resistance phenotype, indicating a role for this methyltransferase in signaling in insulin-sensitive tissues. Tissues from these animals will be vital for the in vivo identification of methylation-sensitive substrates of PP2A and how they respond to differing physiological conditions.
Collapse
Affiliation(s)
- Kennen B. MacKay
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yiping Tu
- Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Stephen G. Young
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Circumventing cellular control of PP2A by methylation promotes transformation in an Akt-dependent manner. Neoplasia 2013; 14:585-99. [PMID: 22904676 DOI: 10.1593/neo.12768] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 12/28/2022]
Abstract
Heterotrimeric protein phosphatase 2A (PP2A) consists of catalytic C (PP2Ac), structural A, and regulatory B-type subunits, and its dysfunction has been linked to cancer. Reversible methylation of PP2Ac by leucine carboxyl methyltransferase 1 (LCMT-1) and protein phosphatase methylesterase 1 (PME-1) differentially regulates B-type subunit binding and thus PP2A function. Polyomavirus middle (PyMT) and small (PyST) tumor antigens and SV40 small tumor antigen (SVST) are oncoproteins that block PP2A function by replacing certain B-type subunits, resulting in cellular transformation. Whereas the B-type subunits replaced by these oncoproteins seem to exhibit a binding preference for methylated PP2Ac, PyMT does not. We hypothesize that circumventing the normal cellular control of PP2A by PP2Ac methylation is a general strategy for ST- and MT-mediated transformation. Two predictions of this hypothesis are (1) that PyST and SVST also bind PP2A in a methylation-insensitive manner and (2) that down-regulation of PP2Ac methylation will activate progrowth and prosurvival signaling and promote transformation. We found that SVST and PyST, like PyMT, indeed form PP2A heterotrimers independently of PP2Ac methylation. In addition, reducing PP2Ac methylation through LCMT-1 knockdown or PME-1 overexpression enhanced transformation by activating the Akt and p70/p85 S6 kinase (S6K) pathways, pathways also activated by MT and ST oncoproteins. These results support the hypothesis that MT and ST oncoproteins circumvent cellular control of PP2A by methylation to promote transformation. They also implicate LCMT-1 as a negative regulator of Akt and p70/p85 S6K. Therefore, disruption of PP2Ac methylation may contribute to cancer, and modulation of this methylation may serve as an anticancer target.
Collapse
|
36
|
Abstract
Protein phosphatases of the type 2A family (PP2A) represent a major fraction of cellular Ser/Thr phosphatase activity in any given human tissue. In this review, we describe how the holoenzymic nature of PP2A and the existence of several distinct PP2A composing subunits allow for the generation of multiple structurally and functionally different PP2A complexes, explaining why PP2A is involved in the regulation of so many diverse cell biological and physiological processes. Moreover, in human disease, most notably in several cancers and Alzheimer's Disease, PP2A expression and/or activity have been found significantly decreased, underscoring its important functions as a major tumor suppressor and tau phosphatase. Hence, several recent preclinical studies have demonstrated that pharmacological restoration of PP2A activity, as well as pharmacological PP2A inhibition, under certain conditions, may be of significant future therapeutic value.
Collapse
|
37
|
Moir RD, Willis IM. Regulation of pol III transcription by nutrient and stress signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:361-75. [PMID: 23165150 DOI: 10.1016/j.bbagrm.2012.11.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 12/29/2022]
Abstract
Transcription by RNA polymerase III (pol III) is responsible for ~15% of total cellular transcription through the generation of small structured RNAs such as tRNA and 5S RNA. The coordinate synthesis of these molecules with ribosomal protein mRNAs and rRNA couples the production of ribosomes and their tRNA substrates and balances protein synthetic capacity with the growth requirements of the cell. Ribosome biogenesis in general and pol III transcription in particular is known to be regulated by nutrient availability, cell stress and cell cycle stage and is perturbed in pathological states. High throughput proteomic studies have catalogued modifications to pol III subunits, assembly, initiation and accessory factors but most of these modifications have yet to be linked to functional consequences. Here we review our current understanding of the major points of regulation in the pol III transcription apparatus, the targets of regulation and the signaling pathways known to regulate their function. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Robyn D Moir
- Departments of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
38
|
Yao XQ, Li XC, Zhang XX, Yin YY, Liu B, Luo DJ, Wang Q, Wang JZ, Liu GP. Glycogen synthase kinase-3β regulates leucine-309 demethylation of protein phosphatase-2A via PPMT1 and PME-1. FEBS Lett 2012; 586:2522-8. [PMID: 22732552 DOI: 10.1016/j.febslet.2012.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 11/29/2022]
Abstract
Protein phosphatase-2A (PP2A) activity is significantly suppressed in Alzheimer's disease. We have reported that glycogen synthase kinase-3β (GSK-3β) inhibits PP2A via upregulating the phosphorylation of PP2A catalytic subunit (PP2A(C)). Here we studied the effects of GSK-3β on the inhibitory demethylation of PP2A at leucine-309 (dmL309-PP2A(C)). We found that GSK-3β regulates dmL309-PP2A(C) level by regulating PME-1 and PPMT1. Knockdown of PME-1 or PPMT1 eliminated the effects of GSK-3β on PP2A(C). GSK-3 could negatively regulate PP2A regulatory subunit protein level. We conclude that GSK-3β can inhibit PP2A by increasing the inhibitory L309-demethylation involving upregulation of PME-1 and inhibition of PPMT1.
Collapse
Affiliation(s)
- Xiu-Qing Yao
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Chinese Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
This review traces the historical origins and conceptual developments leading to the current state of knowledge of the three superfamilies of protein Ser/Thr phosphatases. 'PR enzyme' was identified as an enzyme that inactivates glycogen phosphorylase, although it took 10 years before this ugly duckling was recognized for its true identity as a protein Ser/Thr phosphatase. Ethanol denaturation for purification in the 1970s yielded a phosphatase that exhibited broad specificity, which was resolved into type-1 and type-2 phosphatases in the 1980s. More recent developments show that regulation and specificity are achieved through assembly of multisubunit holoenzymes, transient phosphorylation and the action of inhibitor proteins. Still not widely appreciated, there are hundreds of discrete protein Ser/Thr phosphatases available to counteract protein kinases, offering potential therapeutic targets. Signalling networks and modelling schemes need to incorporate the full gamut of protein Ser/Thr phosphatases and their interconnections.
Collapse
Affiliation(s)
- David L Brautigan
- Department of Microbiology, Immunology and Cancer Biology, Center for Cell Signaling, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
40
|
Benziane B, Björnholm M, Pirkmajer S, Austin RL, Kotova O, Viollet B, Zierath JR, Chibalin AV. Activation of AMP-activated protein kinase stimulates Na+,K+-ATPase activity in skeletal muscle cells. J Biol Chem 2012; 287:23451-63. [PMID: 22610379 DOI: 10.1074/jbc.m111.331926] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Contraction stimulates Na(+),K(+)-ATPase and AMP-activated protein kinase (AMPK) activity in skeletal muscle. Whether AMPK activation affects Na(+),K(+)-ATPase activity in skeletal muscle remains to be determined. Short term stimulation of rat L6 myotubes with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), activates AMPK and promotes translocation of the Na(+),K(+)-ATPase α(1)-subunit to the plasma membrane and increases Na(+),K(+)-ATPase activity as assessed by ouabain-sensitive (86)Rb(+) uptake. Cyanide-induced artificial anoxia, as well as a direct AMPK activator (A-769662) also increase AMPK phosphorylation and Na(+),K(+)-ATPase activity. Thus, different stimuli that target AMPK concomitantly increase Na(+),K(+)-ATPase activity. The effect of AICAR on Na(+),K(+)-ATPase in L6 myotubes was attenuated by Compound C, an AMPK inhibitor, as well as siRNA-mediated AMPK silencing. The effects of AICAR on Na(+),K(+)-ATPase were completely abolished in cultured primary mouse muscle cells lacking AMPK α-subunits. AMPK stimulation leads to Na(+),K(+)-ATPase α(1)-subunit dephosphorylation at Ser(18), which may prevent endocytosis of the sodium pump. AICAR stimulation leads to methylation and dephosphorylation of the catalytic subunit of the protein phosphatase (PP) 2A in L6 myotubes. Moreover, AICAR-triggered dephosphorylation of the Na(+),K(+)-ATPase was prevented in L6 myotubes deficient in PP2A-specific protein phosphatase methylesterase-1 (PME-1), indicating a role for the PP2A·PME-1 complex in AMPK-mediated regulation of Na(+),K(+)-ATPase. Thus contrary to the common paradigm, we report AMPK-dependent activation of an energy-consuming ion pumping process. This activation may be a potential mechanism by which exercise and metabolic stress activate the sodium pump in skeletal muscle.
Collapse
Affiliation(s)
- Boubacar Benziane
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sents W, Ivanova E, Lambrecht C, Haesen D, Janssens V. The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. FEBS J 2012; 280:644-61. [PMID: 22443683 DOI: 10.1111/j.1742-4658.2012.08579.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protein phosphatase type 2A (PP2A) enzymes constitute a large family of Ser/Thr phosphatases with multiple functions in cellular signaling and physiology. The composition of heterotrimeric PP2A holoenzymes, resulting from the combinatorial assembly of a catalytic C subunit, a structural A subunit, and regulatory B-type subunit, provides the essential determinants for substrate specificity, subcellular targeting, and fine-tuning of phosphatase activity, largely explaining why PP2A is functionally involved in so many diverse physiological processes, sometimes in seemingly opposing ways. In this review, we highlight how PP2A holoenzyme biogenesis and enzymatic activity are controlled by a sophisticatedly coordinated network of five PP2A modulators, consisting of α4, phosphatase 2A phosphatase activator (PTPA), leucine carboxyl methyl transferase 1 (LCMT1), PP2A methyl esterase 1 (PME-1) and, potentially, target of rapamycin signaling pathway regulator-like 1 (TIPRL1), which serve to prevent promiscuous phosphatase activity until the holoenzyme is completely assembled. Likewise, these modulators may come into play when PP2A holoenzymes are disassembled following particular cellular stresses. Malfunctioning of these cellular control mechanisms contributes to human disease. The potential therapeutic benefits or pitfalls of interfering with these regulatory mechanisms will be briefly discussed.
Collapse
Affiliation(s)
- Ward Sents
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
42
|
Calabria I, Baro B, Rodriguez-Rodriguez JA, Russiñol N, Queralt E. Zds1 regulates PP2A(Cdc55) activity and Cdc14 activation during mitotic exit through its Zds_C motif. J Cell Sci 2012; 125:2875-84. [PMID: 22427694 PMCID: PMC3434804 DOI: 10.1242/jcs.097865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
At anaphase onset, highly active mitotic cyclin-dependent kinase (Cdk) is inactivated to promote exit from mitosis and completion of cytokinesis. The budding yeast Cdc14p phosphatase is a key mitotic regulator that counteracts cyclin-dependent kinase (Cdk) activity during mitotic exit. Separase, together with Zds1p, promotes the downregulation of the protein phosphatase 2A in conjunction with its Cdc55p regulatory subunit (PP2A(Cdc55)) in early anaphase, enabling accumulation of phosphorylated forms of Net1p and release of Cdc14p from the nucleolus. Here we show that the C-terminal domain of Zds1p, called the Zds_C motif, is required for Zds1-induced release of Cdc14p, and the N-terminal domain of the protein might be involved in regulating this activity. More interestingly, Zds1p physically interacts with Cdc55p, and regulates its localization through the Zds_C motif. Nevertheless, expression of the Zds_C motif at endogenous levels cannot induce timely release of Cdc14p from the nucleolus, despite the proper (nucleolar) localization of Cdc55p. Our results suggest that the activity of PP2A(Cdc55) cannot be modulated solely through regulation of its localization, and that an additional regulatory step is probably required. These results suggest that Zds1p recruits PP2A(Cdc55) to the nucleolus and induces its inactivation by an unknown mechanism.
Collapse
Affiliation(s)
- Ines Calabria
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | |
Collapse
|
43
|
Bernal M, Sanchez-Romero MA, Salas-Pino S, Daga RR. Regulation of fission yeast morphogenesis by PP2A activator pta2. PLoS One 2012; 7:e32823. [PMID: 22403715 PMCID: PMC3293916 DOI: 10.1371/journal.pone.0032823] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/06/2012] [Indexed: 12/17/2022] Open
Abstract
Cell polarization is key for the function of most eukaryotic cells, and regulates cell shape, migration and tissue architecture. Fission yeast, Schizosaccharomyces pombe cells are cylindrical and polarize cell growth to one or both cell tips dependent on the cell cycle stage. Whereas microtubule cytoskeleton contributes to the positioning of the growth sites by delivering polarity factors to the cell ends, the Cdc42 GTPase polarizes secretion via actin-dependent delivery and tethering of secretory vesicles to plasma membrane. How growth is restricted to cell tips and how re-initiation of tip growth is regulated in the cell cycle remains poorly understood. In this work we investigated the function of protein phosphatase type 2A (PP2A) in S. pombe morphogenesis by deleting the evolutionary conserved PTPA-type regulatory subunit that we named pta2. pta2-deleted cells showed morphological defects and altered growth pattern. Consistent with this, actin patches and active Cdc42 were mislocalized in the pta2 deletion. These defects were additive to the lack of Cdc42-GAP Rga4. pta2Δ cells show upregulated Cdc42 activity and pta2 interacts genetically with polarisome components Tea1, Tea4 and For3 leading to complete loss of cell polarity and rounded morphology. Thus, regulation of polarity by PP2A requires the polarisome and involves Pta2-dependent control of Cdc42 activity.
Collapse
Affiliation(s)
| | | | | | - Rafael R. Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, Sevilla, Spain
- * E-mail:
| |
Collapse
|
44
|
Castermans D, Somers I, Kriel J, Louwet W, Wera S, Versele M, Janssens V, Thevelein JM. Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast. Cell Res 2012; 22:1058-77. [PMID: 22290422 PMCID: PMC3367521 DOI: 10.1038/cr.2012.20] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation.
Collapse
Affiliation(s)
- Dries Castermans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KULeuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Characterization of ypa1 and ypa2, the Schizosaccharomyces pombe orthologs of the peptidyl proyl isomerases that activate PP2A, reveals a role for Ypa2p in the regulation of cytokinesis. Genetics 2012; 190:1235-50. [PMID: 22267499 DOI: 10.1534/genetics.111.138040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Schizosaccharomyces pombe septation initiation network (SIN) regulates cytokinesis. Cdc7p is the first kinase in the core SIN; we have screened genetically for SIN regulators by isolating cold-sensitive suppressors of cdc7-24. Our screen yielded a mutant in SPAC1782.05, one of the two fission yeast orthologs of mammalian phosphotyrosyl phosphatase activator. We have characterized this gene and its ortholog SPAC4F10.04, which we have named ypa2 and ypa1, respectively. We find that Ypa2p is the major form of protein phosphatase type 2A activator in S. pombe. A double ypa1-Δ ypa2-Δ null mutant is inviable, indicating that the two gene products have at least one essential overlapping function. Individually, the ypa1 and ypa2 genes are essential for survival only at low temperatures. The ypa2-Δ mutant divides at a reduced cell size and displays aberrant cell morphology and cytokinesis. Genetic analysis implicates Ypa2p as an inhibitor of the septation initiation network. We also isolated a cold-sensitive allele of ppa2, the major protein phosphatase type 2A catalytic subunit, implicating this enzyme as a regulator of the septation initiation network.
Collapse
|
46
|
Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism. PLoS One 2011; 6:e27424. [PMID: 22087313 PMCID: PMC3210172 DOI: 10.1371/journal.pone.0027424] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/17/2011] [Indexed: 12/24/2022] Open
Abstract
In type 2 Diabetes (T2D) free fatty acids (FFAs) in plasma are increased and hepatic insulin resistance is “selective”, in the sense that the insulin-mediated decrease of glucose production is blunted while insulin's effect on stimulating lipogenesis is maintained. We investigated the molecular mechanisms underlying this pathogenic paradox. Primary rat hepatocytes were exposed to palmitate for twenty hours. To establish the physiological relevance of the in vitro findings, we also studied insulin-resistant Zucker Diabetic Fatty (ZDF) rats. While insulin-receptor phosphorylation was unaffected, activation of Akt and inactivation of the downstream targets Glycogen synthase kinase 3α (Gsk3α and Forkhead box O1 (FoxO1) was inhibited in palmitate-exposed cells. Accordingly, dose-response curves for insulin-mediated suppression of the FoxO1-induced gluconeogenic genes and for de novo glucose production were right shifted, and insulin-stimulated glucose oxidation and glycogen synthesis were impaired. In contrast, similar to findings in human T2D, the ability of insulin to induce triglyceride (TG) accumulation and transcription of the enzymes that catalyze de novo lipogenesis and TG assembly was unaffected. Insulin-induction of these genes could, however, be blocked by inhibition of the atypical PKCs (aPKCs). The activity of the Akt-inactivating Protein Phosphatase 2A (PP2A) was increased in the insulin-resistant cells. Furthermore, inhibition of PP2A by specific inhibitors increased insulin-stimulated activation of Akt and phosphorylation of FoxO1 and Gsk3α. Finally, PP2A mRNA levels were increased in liver, muscle and adipose tissue, while PP2A activity was increased in liver and muscle tissue in insulin-resistant ZDF rats. In conclusion, our findings indicate that FFAs may cause a selective impairment of insulin action upon hepatic glucose metabolism by increasing PP2A activity.
Collapse
|
47
|
Poschmann J, Drouin S, Jacques PE, El Fadili K, Newmarch M, Robert F, Ramotar D. The peptidyl prolyl isomerase Rrd1 regulates the elongation of RNA polymerase II during transcriptional stresses. PLoS One 2011; 6:e23159. [PMID: 21887235 PMCID: PMC3160861 DOI: 10.1371/journal.pone.0023159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/07/2011] [Indexed: 11/18/2022] Open
Abstract
Rapamycin is an anticancer agent and immunosuppressant that acts by inhibiting the TOR signaling pathway. In yeast, rapamycin mediates a profound transcriptional response for which the RRD1 gene is required. To further investigate this connection, we performed genome-wide location analysis of RNA polymerase II (RNAPII) and Rrd1 in response to rapamycin and found that Rrd1 colocalizes with RNAPII on actively transcribed genes and that both are recruited to rapamycin responsive genes. Strikingly, when Rrd1 is lacking, RNAPII remains inappropriately associated to ribosomal genes and fails to be recruited to rapamycin responsive genes. This occurs independently of TATA box binding protein recruitment but involves the modulation of the phosphorylation status of RNAPII CTD by Rrd1. Further, we demonstrate that Rrd1 is also involved in various other transcriptional stress responses besides rapamycin. We propose that Rrd1 is a novel transcription elongation factor that fine-tunes the transcriptional stress response of RNAPII.
Collapse
Affiliation(s)
- Jeremie Poschmann
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, University of Montreal, Montréal, Québec, Canada
| | - Simon Drouin
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | | | - Karima El Fadili
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, University of Montreal, Montréal, Québec, Canada
| | - Michael Newmarch
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, University of Montreal, Montréal, Québec, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (FR); (DR)
| | - Dindial Ramotar
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, University of Montreal, Montréal, Québec, Canada
- * E-mail: (FR); (DR)
| |
Collapse
|
48
|
Bizzari F, Marston AL. Cdc55 coordinates spindle assembly and chromosome disjunction during meiosis. J Cell Biol 2011; 193:1213-28. [PMID: 21690308 PMCID: PMC3216325 DOI: 10.1083/jcb.201103076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/24/2011] [Indexed: 12/15/2022] Open
Abstract
During meiosis, two consecutive nuclear divisions follow a single round of deoxyribonucleic acid replication. In meiosis I, homologues are segregated, whereas in meiosis II, sister chromatids are segregated. This requires that the sequential assembly and dissolution of specialized chromosomal factors are coordinated with two rounds of spindle assembly and disassembly. How these events are coupled is unknown. In this paper, we show, in budding yeast, that the protein phosphatase 2A regulatory subunit Cdc55 couples the loss of linkages between chromosomes with nuclear division by restraining two other phosphatases, Cdc14 and PP2A(Rts1). Cdc55 maintains Cdc14 sequestration in the nucleolus during early meiosis, and this is essential for the assembly of the meiosis I spindle but not for chromosomes to separate. Cdc55 also limits the formation of PP2A holocomplexes containing the alternative regulatory subunit Rts1, which is crucial for the timely dissolution of sister chromatid cohesion. Therefore, Cdc55 orders passage through the meiotic divisions by ensuring a balance of phosphatases.
Collapse
Affiliation(s)
- Farid Bizzari
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
49
|
Marrakchi R, Chouchani C, Cherif M, Boudabbous A, Ramotar D. The isomerase Rrd1 mediates rapid loss of the Sgs1 helicase in response to rapamycin. Biochem Cell Biol 2011; 89:332-40. [DOI: 10.1139/o11-006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In Saccharomyces cerevisiae , rapamycin exposure inhibits the target of rapamycin (TOR) signaling pathway, causing a profound alteration in the transcription pattern of many genes, including those involved in ribosome biogenesis and nutritional changes. Deletion of the RRD1 gene encoding a peptidyl prolyl isomerase resulted in mutants that are resistant to rapamycin. These rrd1Δ mutants are unable to efficiently downregulate genes such as ribosomal protein genes, or to upregulate genes involved in diauxic shift. It is believed that the isomerase function of Rrd1 plays a role in changing the transcriptional profile upon rapamycin exposure. Herein, we set out to search for genes that when deleted in the rrd1Δ mutant would suppress the rapamycin-resistant phenotype. The analysis revealed that deletion of the SGS1 gene in the rrd1Δ mutant partially suppresses the rapamycin-resistant phenotype of the single rrd1Δ mutant. SGS1 encodes a helicase that functions in many biological processes, including transcriptional regulation. We further show, and for the first time, that Sgs1 is rapidly lost in the parent cells in response to rapamycin, but not by other agents. Interestingly, Sgs1 reduction was completely blocked in the rrd1Δ mutant, suggesting that Rrd1 is required to mediate this process. Genes such as PUT4 and HSP42, known to be upregulated in the parent in response to rapamycin, were not induced in the rrd1Δ mutant if the SGS1 gene was deleted. Since Sgs1 plays a role in transcriptional regulation, we propose that it acts as a repressor of a subset of rapamycin responsive genes. Thus, the observed Rrd1-dependent reduction in Sgs1 level may promote expression of specific classes of genes in response to rapamycin.
Collapse
Affiliation(s)
- Rim Marrakchi
- University 7-November, Carthage, High Institute of Environmental Sciences and technologies, Borj-Cedria Science and Technology Park, PB-1003, Hammam-Lif 2050, Tunisia
- Faculty of Sciences of Tunis, BSB Street, 2092 El-ManarII, Tunisia
- University of Montreal, Maisonneuve-Rosemont Hospital, Research Center, 5415 de l'Assomption, Montreal, QC H1T 2M4, Canada
| | - Chedly Chouchani
- University 7-November, Carthage, High Institute of Environmental Sciences and technologies, Borj-Cedria Science and Technology Park, PB-1003, Hammam-Lif 2050, Tunisia
| | - Mohamed Cherif
- National Institute of Agronomy, 43 Charles Nicolle Street, 1082 Tunis- Mahrajène, Tunisia
| | | | - Dindial Ramotar
- University of Montreal, Maisonneuve-Rosemont Hospital, Research Center, 5415 de l'Assomption, Montreal, QC H1T 2M4, Canada
| |
Collapse
|
50
|
Stanevich V, Jiang L, Satyshur KA, Li Y, Jeffrey PD, Li Z, Menden P, Semmelhack MF, Xing Y. The structural basis for tight control of PP2A methylation and function by LCMT-1. Mol Cell 2011; 41:331-42. [PMID: 21292165 DOI: 10.1016/j.molcel.2010.12.030] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 10/18/2010] [Accepted: 12/06/2010] [Indexed: 01/26/2023]
Abstract
Proper formation of protein phosphatase 2A (PP2A) holoenzymes is essential for the fitness of all eukaryotic cells. Carboxyl methylation of the PP2A catalytic subunit plays a critical role in regulating holoenzyme assembly; methylation is catalyzed by PP2A-specific methyltransferase LCMT-1, an enzyme required for cell survival. We determined crystal structures of human LCMT-1 in isolation and in complex with PP2A stabilized by a cofactor mimic. The structures show that the LCMT-1 active-site pocket recognizes the carboxyl terminus of PP2A, and, interestingly, the PP2A active site makes extensive contacts to LCMT-1. We demonstrated that activation of the PP2A active site stimulates methylation, suggesting a mechanism for efficient conversion of activated PP2A into substrate-specific holoenzymes, thus minimizing unregulated phosphatase activity or formation of inactive holoenzymes. A dominant-negative LCMT-1 mutant attenuates the cell cycle without causing cell death, likely by inhibiting uncontrolled phosphatase activity. Our studies suggested mechanisms of LCMT-1 in tight control of PP2A function, important for the cell cycle and cell survival.
Collapse
Affiliation(s)
- Vitali Stanevich
- McArdle Laboratory, Department of Oncology, School of Medicine and Public Health, University of Wisconsin at Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|