1
|
Tobita H, Kiuchi T. Knockout of cryptochrome 1 disrupts circadian rhythm and photoperiodic diapause induction in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 172:104153. [PMID: 38964485 DOI: 10.1016/j.ibmb.2024.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Most insects enter diapause, a state of physiological dormancy crucial for enduring harsh seasons, with photoperiod serving as the primary cue for its induction, ensuring proper seasonal timing of the process. Although the involvement of the circadian clock in the photoperiodic time measurement has been demonstrated through knockdown or knockout of clock genes, the involvement of clock gene cryptochrome 1 (cry1), which functions as a photoreceptor implicated in photoentrainment of the circadian clock across various insect species, remains unclear. In bivoltine strains of the silkworm, Bombyx mori, embryonic diapause is maternally controlled and affected by environmental conditions experienced by mother moths during embryonic and larval stages. Previous research highlighted the role of core clock genes, including period (per), timeless (tim), Clock (Clk) and cycle (cyc), in photoperiodic diapause induction in B. mori. In this study, we focused on the involvement of cry1 gene in B. mori photoperiodism. Phylogenetic analysis and conserved domain identification confirmed the presence of both Drosophila-type cry (cry1) and mammalian-type cry (cry2) genes in the B. mori genome, akin to other lepidopterans. Temporal expression analysis revealed higher cry1 gene expression during the photophase and lower expression during the scotophase, with knockouts of core clock genes (per, tim, Clk and cyc) disrupting this temporal expression pattern. Using CRISPR/Cas9-mediated genome editing, we established a cry1 knockout strain in p50T, a bivoltine strain exhibiting clear photoperiodism during both embryonic and larval stages. Although the wild-type strain displayed circadian rhythm in eclosion under continuous darkness, the cry1 knockout strain exhibited arrhythmic eclosion, implicating B. mori cry1 in the circadian clock feedback loop governing behavior rhythms. Females of the cry1 knockout strain failed to control photoperiodic diapause induction during both embryonic and larval stages, mirroring the diapause phenotype of the wild-type individuals reared under constant darkness, indicating that B. mori CRY1 contributes to photoperiodic time measurement as a photoreceptor. Furthermore, photoperiodic diapause induction during the larval stage was abolished in a cry1/tim double-knockout strain, suggesting that photic information received by CRY1 is relayed to the circadian clock. Overall, this study represents the first evidence of cry1 involvement in insect photoperiodism, specifically in diapause induction.
Collapse
Affiliation(s)
- Hisashi Tobita
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
2
|
Tan L, Wu H, Wang X, Liu Z, Hu J, Zheng X. Regulation of opsin and circadian clock genes on mate-finding behavior of the day-flying red moth, Phauda flammans (Walker). Chronobiol Int 2024; 41:1142-1155. [PMID: 39046293 DOI: 10.1080/07420528.2024.2382315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
First, significantly higher mate-finding success was found under light condition than under constant darkness condition in Phauda flammans, a typical diurnal moth. We speculate that mate-finding behavior in P. flammans may be influenced by the light-sensitive opsin genes Long wavelength opsin (PfLW), Ultraviolet opsin (PfUV) and Blue opsin (PfBL), which are potentially regulated by both light-cues and endogenous circadian rhythms. Second, the circadian clock genes Period (PfPer), Timeless (PfTim), Cryptochrome1 (PfCry1), Cryptochrome2 (PfCRY2), Cryptochrome3 (PfCry-like), Clock (PfClk), Cycle (PfCyc), Vrille (PfVri), and Slimb (PfSli) were identified in P. flammans. Third, circadian rhythms in the relative expression levels of opsin and circadian clock genes were demonstrated via quantitative real-time PCR analysis, with peak expression coinciding with the mate-finding peak. Notably, the relative expression of PfLW in males P. flammans was significantly higher than that in females P. flammans at the mate-finding peaks Zeitgeber time (ZT) 8 and ZT 10 under light, while the expression of the opsin gene PfBL showed a similar pattern at ZT 10 under light. Additionally, the expression of the clock gene PfCry-like was significantly higher in males than in females at ZT 8 and ZT 10 under light, while PfPer, PfTim, PfClk and PfCyc exhibited similar male-biased expression patterns at ZT 10 under light. Conversely, PfCry1 and PfVri expression was significantly higher in females than in male at ZT 8 under light. In conclusion, sex differences were detected in the expression of opsin and circadian clock genes, which indicated that light-mediated regulation of these genes may contribute to the daytime mate-finding behavior of P. flammans.
Collapse
Affiliation(s)
- Liusu Tan
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Haipan Wu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoyun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Zuojun Liu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Jin Hu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xialin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Takeuchi K, Tomioka K. OpsinLW2 serves as a circadian photoreceptor in the entrainment of circadian locomotor rhythm of a firebrat. JOURNAL OF INSECT PHYSIOLOGY 2024; 155:104636. [PMID: 38609008 DOI: 10.1016/j.jinsphys.2024.104636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Photic entrainment is an essential function of the circadian clock, which enables organisms to set the appropriate timing of daily behavioral and physiological events. Recent studies have shown that the mechanisms of the circadian clock and photic entrainment vary among insect species. This study aimed to elucidate the circadian photoreceptors necessary for photic entrainment in firebrats Thermobia domestica, one of the most primitive apterygote insects. A homology search of publicly available RNA sequence (RNA-seq) data from T. domestica exhibited a cryptochrome 2 (cry2) gene and three opsin genes, opsin long wavelength 1 (opLW1), opLW2, and opUV, as candidate circadian photoreceptors. We examined the possible involvement of these genes in photic entrainment of firebrat locomotor rhythms. Firebrats had the highest entrainability to the light-dark cycle of green light. Treatment with dsRNA of the candidate genes strongly downregulated the respective targeted genes, and in the case of opsin genes, other untargeted genes were occasionally downregulated to various degrees. Under constant light, most control firebrats became arrhythmic, whereas a fraction of those treated with double RNAi of the two opLWs remained rhythmic. Behavioral experiments revealed that the transient cycles necessary for re-entrainment to shifted light cycles were lengthened when opLW2 expression was reduced. These results suggest that opLW2 is involved in the photic entrainment of circadian rhythm in firebrats.
Collapse
Affiliation(s)
- Kazuki Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
4
|
Abe S, Takahata Y, Miyakawa H. Daphnia uses its circadian clock for short-day recognition in environmental sex determination. Curr Biol 2024; 34:2002-2010.e3. [PMID: 38579713 DOI: 10.1016/j.cub.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Some organisms have developed a mechanism called environmental sex determination (ESD), which allows environmental cues, rather than sex chromosomes or genes, to determine offspring sex.1,2,3,4 ESD is advantageous to optimize sex ratios according to environmental conditions, enhancing reproductive success.5,6 However, the process by which organisms perceive and translate diverse environmental signals into offspring sex remains unclear. Here, we analyzed the environmental perception mechanism in the crustacean, Daphnia pulex, a seasonal (photoperiodic) ESD arthropod, capable of producing females under long days and males under short days.7,8,9,10 Through breeding experiments, we found that their circadian clock likely contributes to perception of day length. To explore this further, we created a genetically modified daphnid by knocking out the clock gene, period, using genome editing. Knockout disrupted the daphnid's ability to sustain diel vertical migration (DVM) under constant darkness, driven by the circadian clock, and leading them to produce females regardless of day length. Additionally, when exposed to an analog of juvenile hormone (JH), an endocrine factor synthesized in mothers during male production, or subjected to unfavorable conditions of high density and low food availability, these knockout daphnids produced males regardless of day length, like wild-type daphnids. Based on these findings, we propose that recognizing short days via the circadian clock is the initial step in sex determination. This recognition subsequently triggers male production by signaling the endocrine system, specifically via the JH signal. Establishment of a connection between these two processes may be the crucial element in evolution of ESD in Daphnia.
Collapse
Affiliation(s)
- Shione Abe
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Yugo Takahata
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan.
| |
Collapse
|
5
|
Green DA, Polidori S, Stratton SM. Modular switches shift monarch butterfly migratory flight behavior at their Mexican overwintering sites. iScience 2024; 27:109063. [PMID: 38420583 PMCID: PMC10901092 DOI: 10.1016/j.isci.2024.109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Eastern North American migratory monarch butterflies exhibit migratory behavioral states in fall and spring characterized by sun-dependent oriented flight. However, it is unclear how monarchs transition between these behavioral states at their overwintering site. Using a modified Mouritsen-Frost flight simulator, we confirm individual directionality and compass-based orientation (leading to group orientation) in fall migrants, and also uncover sustained flight propensity and direction-based flight reinforcement as distinctly migratory behavioral traits. By testing monarchs at their Mexican overwintering sites, we show that overwintering monarchs show reduced propensity for sustained flight and lose individual directionality, leading to the loss of group-level orientation. Overwintering fliers orient axially in a time-of-day dependent manner, which may indicate local versus long-distance directional heading. These results support a model of migratory flight behavior in which modular, state-dependent switches for flight propensity and orientation control are highly dynamic and are controlled in season- and location-dependent manners.
Collapse
Affiliation(s)
- Delbert A. Green
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Sean Polidori
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Samuel M. Stratton
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Chen W, Wang D, Yu L, Zhong W, Yuan Y, Yang G. Comparative analysis of locomotor behavior and head diurnal transcriptome regulation by PERIOD and CRY2 in the diamondback moth. INSECT SCIENCE 2024. [PMID: 38414323 DOI: 10.1111/1744-7917.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Earth's rotation shapes a 24-h cycle, governing circadian rhythms in organisms. In mammals, the core clock genes, CLOCK and BMAL1, are regulated by PERIODs (PERs) and CRYPTOCHROMEs (CRYs), but their roles remain unclear in the diamondback moth, Plutella xylostella. To explore this, we studied P. xylostella, which possesses a simplified circadian system compared to mammals. In P. xylostella, we observed rhythmic expressions of the Pxper and Pxcry2 genes in their heads, with differing phases. In vitro experiments revealed that PxCRY2 repressed monarch butterfly CLK:BMAL1 transcriptional activation, while PxPER and other CRY-like proteins did not. However, PxPER showed an inhibitory effect on PxCLK/PxCYCLE. Using CRISPR/Cas9, we individually and in combination knocked out Pxper and Pxcry2, then conducted gene function studies and circadian transcriptome sequencing. Loss of either Pxper or Pxcry2 eliminated the activity peak after lights-off in light-dark cycles, and Pxcry2 loss reduced overall activity. Pxcry2 was crucial for maintaining endogenous rhythms in constant darkness. Under light-dark conditions, 1 098 genes exhibited rhythmic expression in wild-type P. xylostella heads, with 749 relying on Pxper and Pxcry2 for their rhythms. Most core clock genes lost their rhythmicity in Pxper and Pxcry2 mutants, while Pxcry2 sustained rhythmic expression, albeit with reduced amplitude and altered phase. Additionally, rhythmic genes were linked to biological processes like the spliceosome and Toll signaling pathway, with these rhythms depending on Pxper or Pxcry2 function. In summary, our study unveils differences in circadian rhythm regulation by Pxper and Pxcry2 in P. xylostella. This provides a valuable model for understanding circadian clock regulation in nocturnal animals.
Collapse
Affiliation(s)
- Wenfeng Chen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Danfeng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingqi Yu
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Wenmiao Zhong
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yao Yuan
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Iiams SE, Wan G, Zhang J, Lugena AB, Zhang Y, Hayden AN, Merlin C. Loss of functional cryptochrome 1 reduces robustness of 24-hour behavioral rhythms in monarch butterflies. iScience 2024; 27:108980. [PMID: 38333697 PMCID: PMC10850777 DOI: 10.1016/j.isci.2024.108980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Light is one of the strongest cues for entrainment of circadian clocks. While some insect species rely only on visual input, others like Drosophila melanogaster use both the visual system and the deep-brain blue-light photoreceptor cryptochrome for entraining circadian rhythms. Here, we used the monarch butterfly Danaus plexippus (dp), which possesses a light-sensitive cryptochrome 1 (dpCry1), to test the conservation of mechanisms of clock entrainment. We showed that loss of functional dpCry1 reduced the amplitude and altered the phase of adult eclosion rhythms, and disrupted brain molecular circadian rhythms. Robust rhythms could be restored by entrainment to temperature cycles, indicating a likely functional core circadian clock in dpCry1 mutants. We also showed that rhythmic flight activity was less robust in dpCry1 mutants, and that visual impairment in dpNinaB1 mutants impacted flight suppression at night. Our data suggest that dpCRY1 is a major photoreceptor for light-entrainment of the monarch circadian clock.
Collapse
Affiliation(s)
- Samantha E. Iiams
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
- Genetics Interdisciplinary Program, Texas A&M University, College Station, TX 77843, USA
| | - Guijun Wan
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiwei Zhang
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Aldrin B. Lugena
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Ying Zhang
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Ashley N. Hayden
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
- Genetics Interdisciplinary Program, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Wei Q, Feng ZL, Cai YD, He JC, Lai FX, Wan PJ, Wang WX, Yao Q, Chiu JC, Fu Q. Characterization of light-dependent rhythm of courtship vibrational signals in Nilaparvata lugens: essential involvement of cryptochrome genes. PEST MANAGEMENT SCIENCE 2024; 80:508-517. [PMID: 37735824 DOI: 10.1002/ps.7782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Vibrational signal plays a crucial role in courtship communication in many insects. However, it remains unclear whether insect vibrational signals exhibit daily rhythmicity in response to changes in environmental cues. RESULTS In this study, we observed daily rhythms of both female vibrational signals (FVS) and male vibrational signals (MVS) in the brown planthopper (BPH), Nilaparvata lugens (Stål), one of the most notorious rice pests across Asia. Notably, oscillations of FVS and MVS in paired BPHs were synchronized as part of male-female duetting interactions, displaying significant day-night rhythmicity. Furthermore, we observed light dependency of FVS emissions under different photoperiodic regimes (18 L:6 D and 6 L:18 D) and illumination intensity levels (>300 lx, 50 lx, and 25 lx). Subsequently, the potential role of circadian clock genes cryptochromes (Nlcry1 and Nlcry2) in regulating FVS daily oscillations was examined using gene knockdown via RNA interference. We observed sharp declines and disrupted rhythms in FVS frequencies when either of the Nlcrys was downregulated, with Nlcry2 knockdown showing a more prominent effect. Moreover, we recorded a novel FVS variant (with a dominant frequency of 361.76 ± 4.31 Hz) emitted by dsNlcry1-treated BPH females, which significantly diminished the impact of courtship stimuli on receptive males. CONCLUSION We observed light-dependent daily rhythms of substrate-borne vibrational signals (SBVS) in BPH and demonstrated essential yet distinct roles of the two Nlcrys. These findings enhanced our understanding of insect SBVS and illustrated the potential of novel precision physical control strategies for disrupting mating behaviors in this rice pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Wei
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Ze-Lin Feng
- School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, USA
| | - Jia-Chun He
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Feng-Xiang Lai
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Pin-Jun Wan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Wei-Xia Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Qing Yao
- School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, USA
| | - Qiang Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
9
|
Force E, Sokolowski MBC, Suray C, Debernard S, Chatterjee A, Dacher M. Regulation of feeding dynamics by the circadian clock, light and sex in an adult nocturnal insect. Front Physiol 2024; 14:1304626. [PMID: 38264330 PMCID: PMC10803417 DOI: 10.3389/fphys.2023.1304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Animals invest crucial resources in foraging to support development, sustenance, and reproduction. Foraging and feeding behaviors are rhythmically expressed by most insects. Rhythmic behaviors are modified by exogenous factors like temperature and photoperiod, and internal factors such as the physiological status of the individual. However, the interactions between these factors and the circadian clock to pattern feeding behavior remains elusive. As Drosophila, a standard insect model, spends nearly all its life on food, we rather chose to focus on the adults of a non-model insect, Agrotis ipsilon, a nocturnal cosmopolitan crop pest moth having structured feeding activity. Our study aimed to explore the impact of environmental cues on directly measured feeding behavior rhythms. We took advantage of a new experimental set-up, mimicking an artificial flower, allowing us to specifically monitor feeding behavior in a naturalistic setting, e.g., the need to enter a flower to get food. We show that the frequency of flower visits is under the control of the circadian clock in males and females. Feeding behavior occurs only during the scotophase, informed by internal clock status and external photic input, and females start to visit flowers earlier than males. Shorter duration visits predominate as the night progresses. Importantly, food availability reorganizes the microstructure of feeding behavior, revealing its plasticity. Interestingly, males show a constant number of daily visits during the 5 days of adult life whereas females decrease visitations after the third day of adult life. Taken together, our results provide evidence that the rhythmicity of feeding behavior is sexually dimorphic and controlled by photoperiodic conditions through circadian clock-dependent and independent pathways. In addition, the use of the new experimental set-up provides future opportunities to examine the regulatory mechanisms of feeding behavior paving the way to investigate complex relationships between feeding, mating, and sleep-wake rhythms in insects.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Paris, France
| | | | - Caroline Suray
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
| | - Stéphane Debernard
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Paris, France
| | - Abhishek Chatterjee
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
| | - Matthieu Dacher
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Paris, France
| |
Collapse
|
10
|
Gao Y, Xu H, Jia B, Liu Y, Hassan A, Huang Q. Circadian Rhythms of Locomotor Activity Mediated by Cryptochrome 2 and Period 1 Genes in the Termites Reticulitermes chinensis and Odontotermes formosanus. INSECTS 2023; 15:1. [PMID: 38276815 PMCID: PMC10816429 DOI: 10.3390/insects15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024]
Abstract
Locomotor activity rhythms are crucial for foraging, mating and predator avoidance in insects. Although the circadian rhythms of activity have been studied in several termite species, the molecular mechanisms of circadian rhythms in termites are still unclear. In this study, we found that two termite species, R. chinensis and O. formosanus, exhibited clear circadian rhythms of locomotor activity in constant darkness along with rhythmically expressed core clock genes, Cry2 and Per1. The knockdown of Cry2 or Per1 expression in the two termite species disrupted the circadian rhythms of locomotor activity and markedly reduced locomotor activity in constant darkness, which demonstrates that Cry2 and Per1 can mediate the circadian rhythms of locomotor activity in termites in constant darkness. We suggest that locomotor activity in subterranean termites is controlled by the circadian clock.
Collapse
Affiliation(s)
- Yongyong Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.X.); (B.J.); (Y.L.); (A.H.)
- Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, College of Life Science, Yan’an University, Yan’an 716000, China
- Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.X.); (B.J.); (Y.L.); (A.H.)
- Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, College of Life Science, Yan’an University, Yan’an 716000, China
- Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, China
| | - Bao Jia
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.X.); (B.J.); (Y.L.); (A.H.)
| | - Yutong Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.X.); (B.J.); (Y.L.); (A.H.)
| | - Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.X.); (B.J.); (Y.L.); (A.H.)
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.X.); (B.J.); (Y.L.); (A.H.)
- Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Boehm EC, Jaeger AS, Ries HJ, Castañeda D, Weiler AM, Valencia CC, Weger-Lucarelli J, Ebel GD, O’Connor SL, Friedrich TC, Zamanian M, Aliota MT. Wolbachia -mediated resistance to Zika virus infection in Aedes aegypti is dominated by diverse transcriptional regulation and weak evolutionary pressures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546271. [PMID: 37425681 PMCID: PMC10327090 DOI: 10.1101/2023.06.26.546271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A promising candidate for arbovirus control and prevention relies on replacing arbovirus-susceptible Aedes aegypti populations with mosquitoes that have been colonized by the intracellular bacterium Wolbachia and thus have a reduced capacity to transmit arboviruses. This reduced capacity to transmit arboviruses is mediated through a phenomenon referred to as pathogen blocking. Pathogen blocking has primarily been proposed as a tool to control dengue virus (DENV) transmission, however it works against a range of viruses, including Zika virus (ZIKV). Despite years of research, the molecular mechanisms underlying pathogen blocking still need to be better understood. Here, we used RNA-seq to characterize mosquito gene transcription dynamics in Ae. aegypti infected with the w Mel strain of Wolbachia that are being released by the World Mosquito Program in Medellín, Colombia. Comparative analyses using ZIKV-infected, uninfected tissues, and mosquitoes without Wolbachia revealed that the influence of w Mel on mosquito gene transcription is multifactorial. Importantly, because Wolbachia limits, but does not completely prevent, replication of ZIKV and other viruses in coinfected mosquitoes, there is a possibility that these viruses could evolve resistance to pathogen blocking. Therefore, to understand the influence of Wolbachia on within-host ZIKV evolution, we characterized the genetic diversity of molecularly barcoded ZIKV virus populations replicating in Wolbachia -infected mosquitoes and found that within-host ZIKV evolution was subject to weak purifying selection and, unexpectedly, loose anatomical bottlenecks in the presence and absence of Wolbachia . Together, these findings suggest that there is no clear transcriptional profile associated with Wolbachia -mediated ZIKV restriction, and that there is no evidence for ZIKV escape from this restriction in our system. Author Summary When Wolbachia bacteria infect Aedes aegypti mosquitoes, they dramatically reduce the mosquitoes' susceptibility to infection with a range of arthropod-borne viruses, including Zika virus (ZIKV). Although this pathogen-blocking effect has been widely recognized, its mechanisms remain unclear. Furthermore, because Wolbachia limits, but does not completely prevent, replication of ZIKV and other viruses in coinfected mosquitoes, there is a possibility that these viruses could evolve resistance to Wolbachia -mediated blocking. Here, we use host transcriptomics and viral genome sequencing to examine the mechanisms of ZIKV pathogen blocking by Wolbachia and viral evolutionary dynamics in Ae. aegypti mosquitoes. We find complex transcriptome patterns that do not suggest a single clear mechanism for pathogen blocking. We also find no evidence that Wolbachia exerts detectable selective pressures on ZIKV in coinfected mosquitoes. Together our data suggest that it may be difficult for ZIKV to evolve Wolbachia resistance, perhaps due to the complexity of the pathogen blockade mechanism.
Collapse
Affiliation(s)
- Emma C. Boehm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Hunter J. Ries
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - David Castañeda
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Corina C. Valencia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States
| | | | | | - Shelby L. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI, United States
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| |
Collapse
|
12
|
Teng Z, Huo M, Zhou Y, Zhou Y, Liu Y, Lin Y, Zhang Q, Zhang Z, Wan F, Zhou H. Circadian Activity and Clock Genes in Pachycrepoideus vindemmiae: Implications for Field Applications and Circadian Clock Mechanisms of Parasitoid Wasps. INSECTS 2023; 14:insects14050486. [PMID: 37233114 DOI: 10.3390/insects14050486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Despite the importance of circadian rhythms in insect behavior, our understanding of circadian activity and the molecular oscillatory mechanism in parasitoid wasp circadian clocks is limited. In this study, behavioral activities expected to be under the control of the endogenous circadian system were characterized in an ectoparasitoid wasp, Pachycrepoideus vindemmiae. Most adults exhibited emergence between late night and early morning, while mating only occurred during the daytime, with a peak at midday. Oviposition had three peaks in the early morning, late day, or early night and late night. Additionally, we identified eight putative clock genes from P. vindemmiae. The quantitative PCR (qPCR) results indicate that most clock genes showed significant rhythmic expressions. Our comparative analysis of clock genes in P. vindemmiae and 43 other parasitoid wasps revealed that none of the wasps possessed the timeless and cry1 genes commonly found in some other insect species, suggesting that the circadian clock system in parasitoid wasps is distinct from that in other non-Hymenoptera insects such as Drosophila. Thus, this study attempted to build the first hypothetical circadian clock model for a parasitoid wasp, thus generating hypotheses and providing a platform for the future functional characterization of P. vindemmiae clock genes as well as those of other parasitoid wasps. Finally, these findings on P. vindemmiae circadian activity will aid the development of effective field release programs for biological control, which can be tested under field conditions.
Collapse
Affiliation(s)
- Ziwen Teng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengran Huo
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanan Zhou
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuqi Zhou
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yunjie Liu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Lin
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Qi Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhiqi Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Fanghao Wan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hongxu Zhou
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
13
|
Liu X, Cai L, Zhu L, Tian Z, Shen Z, Cheng J, Zhang S, Li Z, Liu X. Mutation of the clock gene timeless disturbs diapause induction and adult emergence rhythm in Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2023; 79:1876-1884. [PMID: 36654480 DOI: 10.1002/ps.7363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Circadian rhythms are physical and behavioral changes that follow the 24-h cycle of Earth's light and temperature and are regulated by clock genes. Timeless (Tim) has been identified as a canonical clock gene in some insects, however, its functions have been little studied in lepidopteran pests. RESULTS To investigate Tim (HaTim) gene function in Helicoverpa armigera, an important lepidopteran pest, we obtained the HaTim mutant using the CRISPR/Cas9 gene editing system. Our results showed that the transcript levels of HaTim rhythmically peaked at night in heads of the wild larvae and adult, and the diel expression of HaTim was sensitive to photoperiod and temperature. The expression rhythms of other clock genes, such as HaPer, HaCry1, HaCry2 and HaCwo, were disturbed in the HaTim mutant larvae, as that stage is a sensitivity period for diapause induction. Fifth-instar wild-type larvae could be induced to pupate in diapause under a short-day photoperiod and low temperature, however, fifth-instar HaTim mutant larvae could not be induced under the same conditions. In addition, the emergence of wild-type adults peaked early at night, but the rhythm was disturbed in the HaTim mutant with arrhythmic expression of some clock genes, such as HaPer, HaCry1 and HaCwo in adults. CONCLUSION Our results suggest that the clock gene Tim is involved in diapause induction and adult emergence in H. armigera, and is a potential target gene for controlling pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Limei Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lin Zhu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhiqiang Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhongjian Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Cheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Qiu J, Dai T, Luo C, Cui W, Liu K, Li J, Sima Y, Xu S. Circadian clock regulates developmental time through ecdysone and juvenile hormones in Bombyx mori. INSECT MOLECULAR BIOLOGY 2023. [PMID: 36815346 DOI: 10.1111/imb.12835] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The circadian clock plays an integral role in hormone biosynthesis and secretion. However, how the circadian clock precisely coordinates hormonal homeostasis to maintain normal animal development remains unclear. Here, we show that knocking out the core clock gene Cryptochrome 1 (Cry1) significantly delays the developmental time in Bombyx mori. This study focuses on the ecdysone and juvenile hormone signalling pathways of fifth instar larvae with the longest developmental time delay. We found that the mutant reduced prothoracicotropic hormone synthesis in the brain, and could not produce sufficient ecdysone in the prothoracic gland, resulting in a delayed peak of 20-hydroxyecdysone titre in the hemolymph of fifth instar larvae, prolonging developmental time. Moreover, further investigation revealed that the mutant enhanced juvenile hormone biosynthesis and signalling pathway and that this higher juvenile hormone titre also resulted in prolonged developmental time in fifth instar larvae. Our results provide insights into the molecular mechanisms by which the circadian clock regulates animal development by maintaining hormonal homeostasis.
Collapse
Affiliation(s)
- Jianfeng Qiu
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Taiming Dai
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Cheng Luo
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Wenzhao Cui
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Kai Liu
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Jianglan Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Yanghu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Shiqing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| |
Collapse
|
15
|
Matsumura K, Miyatake T. Dominance and inheritance patterns of mobility and death feigning in beetle strains selected for moving activity. Genetica 2023; 151:1-10. [PMID: 36401717 DOI: 10.1007/s10709-022-00174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
Abstract
Reciprocal crossing of different strains is a suitable method to investigate the dominance and inheritance of a focal trait. Herein, we performed reciprocal crossing among strains of Tribolium castaneum exhibiting a genetically high (H strain) and low (L strain) moving activity and investigated the related heritable factors in the F1 and F2 generations. We also evaluated death-feigning behavior, which negatively responded to artificial selection for moving activity in T. castaneum. The results obtained for the F1 generation suggest that low moving activity and short duration of death feigning were dominant. In the F2 generation, movement and death feigning exhibited continuous segregation. The distribution of each trait value in the F2 generation differed from that in the parental generation, and no individuals transgressing the distribution of trait values in the parental generation emerged in the F2 generation. These results suggest that the genetic correlation between movement and death-feigning behavior is controlled in a polygenic manner. Moreover, the examination of the proportions of both behaviors (high vs. low moving activity and long vs. short death-feigning duration) in the F1 generation revealed that the two behaviors may be controlled by the maternal genotype, suggesting that the gene(s) that control movement and death feigning are located on the sex chromosome in T. castaneum.
Collapse
Affiliation(s)
- Kentarou Matsumura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| | - Takahisa Miyatake
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
16
|
Deppisch P, Kirsch V, Helfrich-Förster C, Senthilan PR. Contribution of cryptochromes and photolyases for insect life under sunlight. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:373-389. [PMID: 36609567 PMCID: PMC10102093 DOI: 10.1007/s00359-022-01607-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
The cryptochrome/photolyase (CRY/PL) family is essential for life under sunlight because photolyases repair UV-damaged DNA and cryptochromes are normally part of the circadian clock that controls the activity-sleep cycle within the 24-h day. In this study, we aim to understand how the lineage and habitat of an insect affects its CRY/PL composition. To this end, we searched the large number of annotated protein sequences of 340 insect species already available in databases for CRY/PLs. Using phylogenetic tree and motif analyses, we identified four frequent CRY/PLs in insects: the photolyases 6-4 PL and CPDII PL, as well as the mammalian-type cryptochrome (MCRY) and Drosophila-type cryptochrome (DCRY). Assignment of CRY/PLs to the corresponding insects confirmed that light-exposed insects tend to have more CRY/PLs than insects with little light exposure. Nevertheless, even insects with greatly reduced CRY/PLs still possess MCRY, which can be regarded as the major insect cryptochrome. Only flies of the genus Schizophora, which includes Drosophila melanogaster, lost MCRY. Moreover, we found that MCRY and CPDII PL as well as DCRY and 6-4 PL occur very frequently together, suggesting an interaction between the two pairs.
Collapse
Affiliation(s)
- Peter Deppisch
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, Julius-Maximilians-University Würzburg, 97074, Würzburg, Germany
| | - Valentina Kirsch
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, Julius-Maximilians-University Würzburg, 97074, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, Julius-Maximilians-University Würzburg, 97074, Würzburg, Germany
| | - Pingkalai R Senthilan
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, Julius-Maximilians-University Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
17
|
Chen SP, Wang DF, Ma WF, Lin XL, Yang G. Knockout of cryptochrome 1 disturbs the locomotor circadian rhythm and development of Plutella xylostella. INSECT SCIENCE 2022. [PMID: 36380712 DOI: 10.1111/1744-7917.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Cryptochrome 1 (CRY1) functions as a light-responsive photoreceptor, which is crucial for circadian rhythms. The identity and function of CRY1 in Plutella xylostella remain unknown. In this study, cry1 was cloned and identified in P. xylostella. Then, a cry1-knockout strain (Cry1-KO) of P. xylostella with a 2-bp deletion was established from the strain Geneva 88 (G88) using the CRISPR/Cas9 technology. No daily temporal oscillation of cry1 was observed in G88 and Cry1-KO, and cry1 mean daily transcription of Cry1-KO was lower than that of G88. Both G88 and Cry1-KO demonstrated rhythmic locomotion under the light/dark condition with Cry1-KO being more active than G88 in the daytime, whereas Cry1-KO completely lost rhythmicity under constant darkness. The developmental period of pre-adult of Cry1-KO was longer than that of G88; the lifespan of the Cry1-KO male adult was shorter than that of G88; the fecundity of Cry1-KO was lower than that of G88; and Cry1-KO showed lower intrinsic rate of increase (r), net reproduction rate (R0 ), finite increase rate (λ), and longer mean generation time (T) than G88. Our results indicate that cry1 is involved in the regulation of locomotor circadian rhythm and development in P. xylostella, providing a potential target gene for controlling the pest and a basis for further investigation on circadian rhythms in lepidopterans.
Collapse
Affiliation(s)
- Shao-Ping Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Dan-Feng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Wei-Feng Ma
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xiao-Lu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| |
Collapse
|
18
|
Tobita H, Kiuchi T. Knockouts of positive and negative elements of the circadian clock disrupt photoperiodic diapause induction in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 149:103842. [PMID: 36115518 DOI: 10.1016/j.ibmb.2022.103842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Diapause is one of the most important traits that have sustained insects to thrive. To survive harsh seasons, most insects can arrest their development and enter diapause. The photoperiod is the signal that indicates insects the proper timing to enter diapause. Circadian clock genes are shown to be involved in photoperiodic diapause induction in various insect species. The silkworm, Bombyx mori, enters diapause at the embryonic stage. In bivoltine strains, diapause determination is under maternal control and affected by temperature and photoperiodic conditions that mothers experienced during embryonic and larval stages. Two independent studies showed that knocking out the core clock gene, period, perturb photoperiodic diapause induction in B. mori. However, whether the circadian clock as whole or individual clock genes are responsible for the photoperiodic diapause induction remains unknown. In this study, using CRISPR/Cas9 we knocked out negative (period and timeless) and positive elements (Clock and cycle) in p50T, a bivoltine strain which exhibits photoperiodic diapause induction during both embryonic and larval stages. The temporal expression patterns of clock genes changed in each core clock gene knockout strain, suggesting disruption of normal feedback loops produced by circadian clock genes. Furthermore, the ability of female moths to appropriately produce diapause or non-diapause eggs in response to photoperiod in both embryonic and larval stages was lost in all knockout strains. Our results indicate the involvement of circadian clock in photoperiodic diapause induction in B. mori.
Collapse
Affiliation(s)
- Hisashi Tobita
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
19
|
Full-Length Transcriptome Maps of Reef-Building Coral Illuminate the Molecular Basis of Calcification, Symbiosis, and Circa-Dian Genes. Int J Mol Sci 2022; 23:ijms231911135. [PMID: 36232445 PMCID: PMC9570262 DOI: 10.3390/ijms231911135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Coral transcriptomic data largely rely on short-read sequencing, which severely limits the understanding of coral molecular mechanisms and leaves many important biological questions unresolved. Here, we sequence the full-length transcriptomes of four common and frequently dominant reef-building corals using the PacBio Sequel II platform. We obtain information on reported gene functions, structures, and expression profiles. Among them, a comparative analysis of biomineralization-related genes provides insights into the molecular basis of coral skeletal density. The gene expression profiles of the symbiont Symbiodiniaceae are also isolated and annotated from the holobiont sequence data. Finally, a phylogenetic analysis of key circadian clock genes among 40 evolutionarily representative species indicates that there are four key members in early metazoans, including cry genes; Clock or Npas2; cyc or Arntl; and tim, while per, as the fifth member, occurs in Bilateria. In summary, this work provides a foundation for further work on the manipulation of skeleton production or symbiosis to promote the survival of these important organisms.
Collapse
|
20
|
Matsumura K, Abe MS, Miyatake T. Responses to artificial selection of dispersal activity in the circadian rhythm of the red flour beetle Tribolium castaneum. J ETHOL 2022. [DOI: 10.1007/s10164-022-00757-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
21
|
Moriyama Y, Takeuchi K, Shinohara T, Miyagawa K, Matsuka M, Yoshii T, Tomioka K. Timeless Plays an Important Role in Compound Eye-Dependent Photic Entrainment of the Circadian Rhythm in the Cricket Gryllus bimaculatus. Zoolog Sci 2022; 39. [PMID: 35960036 DOI: 10.2108/zs220011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/16/2022] [Indexed: 11/17/2022]
Abstract
The light cycle is the most powerful Zeitgeber entraining the circadian clock in most organisms. Insects use CRYPTOCHROMEs (CRYs) and/or the compound eye for the light perception necessary for photic entrainment. The molecular mechanism underlying CRY-dependent entrainment is well understood, while that of the compound eye-dependent entrainment remains to be elucidated. Using molecular and behavioral experiments, we investigated the role of timeless (tim) in the photic entrainment mechanism in the cricket Gryllus bimaculatus. RNA interference of tim (timRNAi) disrupted the entrainment or prolonged the transients for resynchronization to phase-delayed light-dark cycles. The treatment reduced the magnitude of phase delay caused by delayed light-off, but augmented advance shifts caused by light exposure at late night. TIM protein levels showed daily cycling with an increase during the night and reduction by light exposure at both early and late night. These results suggest that tim plays a critical role in the entrainment to delayed light cycles.
Collapse
Affiliation(s)
- Yoshiyuki Moriyama
- Department of Natural Sciences, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Kazuki Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tsugumichi Shinohara
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Koichi Miyagawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Mirai Matsuka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan,
| |
Collapse
|
22
|
Parlin AF, Stratton SM, Guerra PA. Oriented migratory flight at night: Consequences of nighttime light pollution for monarch butterflies. iScience 2022; 25:104310. [PMID: 35573206 PMCID: PMC9097705 DOI: 10.1016/j.isci.2022.104310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/23/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022] Open
Abstract
We show that light trespass—a form of nighttime light pollution (NLP)—elicits normal daytime clock-mediated migratory behavior in fall monarch butterflies during their night-cycle. In controlled indoor flight simulator studies isolating the role of NLP on the expression of oriented migratory flight using a time-compensated sun compass,a full-spectrum light source consistent with lights used outdoors at night by the public,triggered proper fall directional flight at night in monarchs. Monarchs remained quiescent when initially placed in the flight simulator in the dark, but flight was immediately triggered when our light source was turned on. This nighttime behavior was identical to that seen in outdoor free-flying fall conspecifics during the day. The light source provided directional cues equivalent to those provided by the sun and could either phase-advance or phase-delay monarchs. Our study highlights the negative consequences of NLP on diurnal animals, especially those that rely on clock-mediated behavior. Nighttime light pollution can disturb diurnal migratory monarch butterflies Exposure to this pollution induces abnormal activity in normally quiescent monarchs This pollution acts as sensory noise that perturbs the circadian clock of monarchs Conservation should consider susceptibility of habitat to nighttime light pollution
Collapse
Affiliation(s)
- Adam F. Parlin
- Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA
| | - Samuel M. Stratton
- Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 N University Avenue, Ann Arbor, MI 48109, USA
| | - Patrick A. Guerra
- Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA
- Corresponding author
| |
Collapse
|
23
|
Homma S, Murata A, Ikegami M, Kobayashi M, Yamazaki M, Ikeda K, Daimon T, Numata H, Mizoguchi A, Shiomi K. Circadian Clock Genes Regulate Temperature-Dependent Diapause Induction in Silkworm Bombyx mori. Front Physiol 2022; 13:863380. [PMID: 35574475 PMCID: PMC9091332 DOI: 10.3389/fphys.2022.863380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022] Open
Abstract
The bivoltine strain of the domestic silkworm, Bombyx mori, exhibits a facultative diapause phenotype that is determined by maternal environmental conditions during embryonic and larval development. Although a recent study implicated a circadian clock gene period (per) in circadian rhythms and photoperiod-induced diapause, the roles of other core feedback loop genes, including timeless (tim), Clock (Clk), cycle (cyc), and cryptochrome2 (cry2), have to be clarified yet. Therefore, the aim of this study was to elucidate the roles of circadian clock genes in temperature-dependent diapause induction. To achieve this, per, tim, Clk, cyc, and cry2 knockout (KO) mutants were generated, and the percentages of diapause and non-diapause eggs were determined. The results show that per, tim, Clk, cyc, and cry2 regulated temperature-induced diapause by acting upstream of cerebral γ-aminobutyric acid (GABA)ergic and diapause hormone signaling pathways. Moreover, the temporal expression of the clock genes in wild-type (wt) silkworms was significantly different from that of thermosensitive transient receptor potential ankyrin 1 (TRPA1) KO mutants during embryonic development. Overall, the findings of this study provide target genes for regulating temperature-dependent diapause induction in silkworms.
Collapse
Affiliation(s)
- Satoshi Homma
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Akihisa Murata
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Masato Ikegami
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Masakazu Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Maki Yamazaki
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Kento Ikeda
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takaaki Daimon
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Japan
| | - Kunihiro Shiomi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| |
Collapse
|
24
|
Reynolds M, de Oliveira L, Vosburg C, Paris T, Massimino C, Norus J, Ortiz Y, Espino M, Davis N, Masse R, Neiman A, Holcomb R, Gervais K, Kemp M, Hoang M, Shippy TD, Hosmani PS, Flores-Gonzalez M, Pelz-Stelinski K, Qureshi JA, Mueller LA, Hunter WB, Benoit JB, Brown SJ, D’Elia T, Saha S. Annotation of putative circadian rhythm-associated genes in Diaphorina citri (Hemiptera: Liviidae). GIGABYTE 2022; 2022:gigabyte48. [PMID: 36824532 PMCID: PMC9662589 DOI: 10.46471/gigabyte.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
The circadian rhythm involves multiple genes that generate an internal molecular clock, allowing organisms to anticipate environmental conditions produced by the Earth's rotation on its axis. Here, we present the results of the manual curation of 27 genes that are associated with circadian rhythm in the genome of Diaphorina citri, the Asian citrus psyllid. This insect is the vector for the bacterial pathogen Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening disease (Huanglongbing). This disease severely affects citrus industries and has drastically decreased crop yields worldwide. Based on cry1 and cry2 identified in the psyllid genome, D. citri likely possesses a circadian model similar to the lepidopteran butterfly, Danaus plexippus. Manual annotation will improve the quality of circadian rhythm gene models, allowing the future development of molecular therapeutics, such as RNA interference or antisense technologies, to target these genes to disrupt the psyllid biology.
Collapse
Affiliation(s)
- Max Reynolds
- Indian River State College, Fort Pierce, FL 34981, USA
| | | | - Chad Vosburg
- Indian River State College, Fort Pierce, FL 34981, USA
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Thomson Paris
- Entomology and Nematology Department, University of Florida, North Florida Research and Education Center, Research Road, Quincy 32351, Florida, USA
| | | | - Jordan Norus
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Yasmin Ortiz
- Indian River State College, Fort Pierce, FL 34981, USA
| | | | - Nina Davis
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Ron Masse
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Alan Neiman
- Indian River State College, Fort Pierce, FL 34981, USA
| | | | - Kylie Gervais
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Melissa Kemp
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Maria Hoang
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Teresa D. Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | - Kirsten Pelz-Stelinski
- Department of Entomology and Nematology, University of Florida, Lake Alfred, FL 33850, USA
| | - Jawwad A. Qureshi
- Indian River Research and Education Center, University of Florida, IFAS, 2199 South Rock Road, Fort Pierce, FL 34945-3138, USA
- Southwest Florida Research and Education Center, University of Florida, IFAS, 2685 State Road 29 North, Immokalee, FL 34142, USA
| | | | - Wayne B. Hunter
- USDA-ARS, US Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D’Elia
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
25
|
Barberà M, Collantes-Alegre JM, Martínez-Torres D. Mapping and quantification of cryptochrome expression in the brain of the pea aphid Acyrthosiphon pisum. INSECT MOLECULAR BIOLOGY 2022; 31:159-169. [PMID: 34743397 DOI: 10.1111/imb.12747] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Aphids are paradigmatic photoperiodic animals often used to study the role of the circadian clock in the seasonal response. Previously, we described some elements of the circadian clock core (genes period and timeless) and output (melatonin, AANATs and PTTH) that could have a role in the regulation of the aphid seasonal response. More recently, we identified two opsins (C-ops and SWO4) as candidate input photoperiodic receptors. In the present report, we focus on the study of cryptochromes (cry) as photoreceptors of the circadian clock and discuss their involvement in the seasonal response. We analyse the expression of cry1 and cry2 genes in a circadian and seasonal context, and map their expression sites in the brain. We observe a robust rhythmic expression of cry2 peaking at dusk in phase with core clock genes period and timeless, while cry1 shows a weaker rhythm. Changes in cry1 and cry2 expression correlate with activation of the seasonal response, suggesting a possible link. Finally, we map the expression of cry1 and cry2 genes to clock neurons in the pars lateralis, a region essential for the photoperiodic response. Our results support a role for cry as elements of the aphid circadian clock and suggest a role in photoreception for cry1 and in clock repression for cry2.
Collapse
Affiliation(s)
- Miquel Barberà
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, Paterna, València, Spain
| | | | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, Paterna, València, Spain
| |
Collapse
|
26
|
Yildirim E, Curtis R, Hwangbo DS. Roles of peripheral clocks: lessons from the fly. FEBS Lett 2022; 596:263-293. [PMID: 34862983 PMCID: PMC8844272 DOI: 10.1002/1873-3468.14251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
To adapt to and anticipate rhythmic changes in the environment such as daily light-dark and temperature cycles, internal timekeeping mechanisms called biological clocks evolved in a diverse set of organisms, from unicellular bacteria to humans. These biological clocks play critical roles in organisms' fitness and survival by temporally aligning physiological and behavioral processes to the external cues. The central clock is located in a small subset of neurons in the brain and drives daily activity rhythms, whereas most peripheral tissues harbor their own clock systems, which generate metabolic and physiological rhythms. Since the discovery of Drosophila melanogaster clock mutants in the early 1970s, the fruit fly has become an extensively studied model organism to investigate the mechanism and functions of circadian clocks. In this review, we primarily focus on D. melanogaster to survey key discoveries and progresses made over the past two decades in our understanding of peripheral clocks. We discuss physiological roles and molecular mechanisms of peripheral clocks in several different peripheral tissues of the fly.
Collapse
Affiliation(s)
| | - Rachel Curtis
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Dae-Sung Hwangbo
- Department of Biology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
27
|
Xu JW, Li LL, Wang M, Yang HH, Yao WC, Dewer Y, Zhu XY, Zhang YN. Identification and dynamic expression profiling of circadian clock genes in Spodoptera litura provide new insights into the regulation of sex pheromone communication. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:78-90. [PMID: 35225175 DOI: 10.1017/s0007485321000559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Spodoptera litura is an important pest that causes significant economic damage to numerous crops worldwide. Sex pheromones (SPs) mediate sexual communication in S. litura and show a characteristic degree of rhythmic activity, occurring mainly during the scotophase; however, the specific regulatory mechanisms remain unclear. Here, we employed a genome-wide analysis to identify eight candidate circadian clock genes in S. litura. Sequence characteristics and expression patterns were analyzed. Our results demonstrated that some circadian clock genes might regulate the biosynthesis and perception of SPs by regulating the rhythmic expression of SP biosynthesis-related genes and SP perception-related genes. Interestingly, all potential genes exhibited peak expression in the scotophase, consistent with the SP could mediate courtship and mating behavior in S. litura. Our findings are helpful in elucidating the molecular mechanism by which circadian clock genes regulate sexual communication in S. litura.
Collapse
Affiliation(s)
- Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Lu-Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Meng Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Hui-Hui Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki12618, Giza, Egypt
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| |
Collapse
|
28
|
TRITHORAX-dependent arginine methylation of HSP68 mediates circadian repression by PERIOD in the monarch butterfly. Proc Natl Acad Sci U S A 2022; 119:2115711119. [PMID: 35064085 PMCID: PMC8795551 DOI: 10.1073/pnas.2115711119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
Circadian repression drives the transcriptional feedback loops that keep circadian (∼24-h) time and synchronize an animal’s physiology and behavior to the daily environmental changes. Although PERIOD (PER) is known to initiate transcriptional repression by displacing the transcription activator CLOCK:BMAL1 from DNA, the underlying mechanism remains unknown. Using the monarch butterfly as a model harboring a simplified version of the mammalian circadian clock, we demonstrate that the binding of heat shock protein 68 (HSP68) to a region homologous to CLOCK mouse exon 19 is essential for CLK–PER interaction and PER repression. We further show that CLK–PER interaction and PER repression are promoted by the methylation of a single arginine methylation site (R45) on HSP68 via TRITHORAX catalytic activity. Transcriptional repression drives feedback loops that are central to the generation of circadian (∼24-h) rhythms. In mammals, circadian repression of circadian locomotor output cycles kaput, and brain and muscle ARNT-like 1 (CLOCK:BMAL1)-mediated transcription is provided by a complex formed by PERIOD (PER) and CRYPTOCHROME (CRY) proteins. PER initiates transcriptional repression by binding CLK:BMAL1, which ultimately results in their removal from DNA. Although PER’s ability to repress transcription is widely recognized, how PER binding triggers repression by removing CLK:BMAL1 from DNA is not known. Here, we use the monarch butterfly as a model system to address this problem because it harbors a simplified version of the CLK:BMAL1-activated circadian clock present in mammals. We report that an intact CLOCK mouse exon 19 homologous region (CLKe19r) and the histone methyltransferase TRITHORAX (TRX) are both necessary for monarch CLK:BMAL1-mediated transcriptional activation, CLK–PER interaction, and PER repression. Our results show that TRX catalytic activity is essential for CLK–PER interaction and PER repression via the methylation of a single arginine methylation site (R45) on heat shock protein 68 (HSP68). Our study reveals TRX and HSP68 as essential links between circadian activation and PER-mediated repression and suggests a potential conserved clock function for HSPs in eukaryotes.
Collapse
|
29
|
Lindestad O, Nylin S, Wheat CW, Gotthard K. Local adaptation of life cycles in a butterfly is associated with variation in several circadian clock genes. Mol Ecol 2021; 31:1461-1475. [PMID: 34931388 DOI: 10.1111/mec.16331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022]
Abstract
Many insects exhibit geographical variation in voltinism, the number of generations produced per year. This includes high-latitude species in previously glaciated areas, meaning that divergent selection on life cycle traits has taken place during or shortly after recent colonization. Here, we use a population genomics approach to compare a set of nine Scandinavian populations of the butterfly Pararge aegeria that differ in life cycle traits (diapause thresholds and voltinism) along both north-south and east-west clines. Using a de novo-assembled genome, we reconstruct colonization histories and demographic relationships. Based on the inferred population structure, we then scan the genome for candidate loci showing signs of divergent selection potentially associated with population differences in life cycle traits. The identified candidate genes include a number of components of the insect circadian clock (timeless, timeless2, period, cryptochrome and clockwork orange). Most notably, the gene timeless, which has previously been experimentally linked to life cycle regulation in P. aegeria, is here found to contain a novel 97-amino acid deletion unique to, and fixed in, a single population. These results add to a growing body of research framing circadian gene variation as a potential mechanism for generating local adaptation of life cycles.
Collapse
Affiliation(s)
- Olle Lindestad
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
30
|
Xu S, Kong X, Liu J. Expression of CRY2 Gene in the Brain Is Related to Human Navigation. FRONTIERS IN RADIOLOGY 2021; 1:731070. [PMID: 37492180 PMCID: PMC10365100 DOI: 10.3389/fradi.2021.731070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/18/2021] [Indexed: 07/27/2023]
Abstract
Navigation is a complex cognitive process. CRY2 gene has been proposed to play an important role in navigation behaviors in various non-human animal species. Utilizing a recently developed neuroimaging-transcriptomics approach, the present study reported a tentative link between the CRY2 gene and human navigation. Specifically, we showed a significant pattern similarity between CRY2 gene expression in the human brain and navigation-related neural activation in functional magnetic resonance imaging. To further illuminate the functionality of CRY2 in human navigation, we examined the correlation between CRY2 expression and various cognitive processes underlying navigation, and found high correlation of CRY2 expression with neural activity of multiple cognitive domains, particularly object and shape perception and spatial memory. Further analyses on the relation between the neural activity of human navigation and the expression maps of genes of two CRY2-related pathways, i.e., the magnetoreceptive and circadian-related functions, found a trend of correlation for the CLOCK gene, a core circadian regulator gene, suggesting that CRY2 may modulate human navigation through its role in circadian rhythm. This observation was further confirmed by a behavioral study where individuals with better circadian regularity in daily life showed better sense of direction. Taken together, our study presents the first neural evidence that links CRY2 with human navigation, possibly through the modulation of circadian rhythm.
Collapse
Affiliation(s)
- Shan Xu
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Jia Liu
- Department of Psychology and Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|
31
|
Brady D, Saviane A, Cappellozza S, Sandrelli F. The Circadian Clock in Lepidoptera. Front Physiol 2021; 12:776826. [PMID: 34867483 PMCID: PMC8635995 DOI: 10.3389/fphys.2021.776826] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
With approximately 160,000 identified species of butterflies and moths, Lepidoptera are among the most species-rich and diverse insect orders. Lepidopteran insects have fundamental ecosystem functions as pollinators and valuable food sources for countless animals. Furthermore, Lepidoptera have a significant impact on the economy and global food security because many species in their larval stage are harmful pests of staple food crops. Moreover, domesticated species such as the silkworm Bombyx mori produce silk and silk byproducts that are utilized by the luxury textile, biomedical, and cosmetics sectors. Several Lepidoptera have been fundamental as model organisms for basic biological research, from formal genetics to evolutionary studies. Regarding chronobiology, in the 1970s, Truman's seminal transplantation experiments on different lepidopteran species were the first to show that the circadian clock resides in the brain. With the implementation of molecular genetics, subsequent studies identified key differences in core components of the molecular circadian clock of Lepidoptera compared to the dipteran Drosophila melanogaster, the dominant insect species in chronobiological research. More recently, studies on the butterfly Danaus plexippus have been fundamental in characterizing the interplay between the circadian clock and navigation during the seasonal migration of this species. Moreover, the advent of Next Generation Omic technologies has resulted in the production of many publicly available datasets regarding circadian clocks in pest and beneficial Lepidoptera. This review presents an updated overview of the molecular and anatomical organization of the circadian clock in Lepidoptera. We report different behavioral circadian rhythms currently identified, focusing on the importance of the circadian clock in controlling developmental, mating and migration phenotypes. We then describe the ecological importance of circadian clocks detailing the complex interplay between the feeding behavior of these organisms and plants. Finally, we discuss how the characterization of these features could be useful in both pest control, and in optimizing rearing of beneficial Lepidoptera.
Collapse
Affiliation(s)
- Daniel Brady
- Department of Biology, Università di Padova, Padova, Italy
| | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Padova, Italy
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Padova, Italy
| | | |
Collapse
|
32
|
Wang Y, Fang G, Chen X, Cao Y, Wu N, Cui Q, Zhu C, Qian L, Huang Y, Zhan S. The genome of the black cutworm Agrotis ipsilon. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103665. [PMID: 34624466 DOI: 10.1016/j.ibmb.2021.103665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The black cutworm (BCW), Agrotis ipsilon, is a worldwide polyphagous and underground pest that causes a high level of economic loss to a wide range of crops through the damage of roots. This species performs non-directed migration throughout East and Southeast Asia seasonally. Lack of a genome information has limited further studies on its unique biology and the development of novel management approaches. In this study, we present a 476 Mb de novo assembly of BCW, along with a consensus gene set of 14,801 protein-coding gene models. Quality controls show that both genome assembly and annotations are high-quality and mostly complete. We focus manual annotation and comparative genomics on gene families that related to the unique attributes of this species, such as nocturnality, long-distance migration, and host adaptation. We find that the BCW genome encodes a similar gene repertoire in various migration-related gene families to the diural migratory butterfly Danaus plexiipus, with additional copies of long wavelength opsin and two eye development-related genes. On the other hand, we find that the genomes of BCW and many other polyphagous lepidopterans encode many more gustatory receptor genes, particularly the lineage-specific expanded bitter receptor genes, than the mono- or oligo-phagous species, suggesting a common role of gustatory receptors (GRs) expansion in host range expansion. The availability of a BCW genome provides valuable resources to study the molecular mechanisms of non-directed migration in lepidopteran pests and to develop novel strategies to control migratory nocturnal pests.
Collapse
Affiliation(s)
- Yaohui Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xi'en Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanghui Cao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ningning Wu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian Cui
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chenxu Zhu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lansa Qian
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
33
|
Nartey MA, Sun X, Qin S, Hou CX, Li MW. CRISPR/Cas9-based knockout reveals that the clock gene timeless is indispensable for regulating circadian behavioral rhythms in Bombyx mori. INSECT SCIENCE 2021; 28:1414-1425. [PMID: 32830431 DOI: 10.1111/1744-7917.12864] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/05/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Circadian rhythms, which are ubiquitous and adaptive, occur across all species, from microbes to humans, in which they organize and modify behavior and physiology. timeless (tim) is a canonical clock gene. The core composition of the Drosophila melanogaster endogenous circadian clock has been extensively investigated; however, in lepidopteran insects, including Bombyx mori, the mechanism is complicated and little is known regarding the participation of tim in the negative feedback loop responsible for behavioral activities. To arrive at a comprehensive understanding of the role of tim in the B. mori endogenous circadian clock, we exploited the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 gene editing system. We attempted to elucidate the functions of tim in the circadian clock of B. mori using Bmtim mutants. The knockouts affected two circadian behavioral activities: adult emergence and embryo hatching rhythms. Quantitative real-time polymerase chain reaction results confirmed that tim-knockouts induced relative reductions in the expression levels, and thereby the oscillation amplitudes, of Bmper and Bmclk messenger RNAs during both the photophase and scotophase. Additionally, the daily rhythmic expression of Bmdbt was upregulated in the photophase and downregulated in the scotophase in a tim-knockout. Our study reveals that tim is integral to the B. mori circadian clock and may be involved in regulating eclosion and hatching rhythms.
Collapse
Affiliation(s)
- Moses Addo Nartey
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xia Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Cheng-Xiang Hou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
34
|
Chowdhury S, Fuller RA, Dingle H, Chapman JW, Zalucki MP. Migration in butterflies: a global overview. Biol Rev Camb Philos Soc 2021; 96:1462-1483. [PMID: 33783119 DOI: 10.1111/brv.12714] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/13/2023]
Abstract
Insect populations including butterflies are declining worldwide, and they are becoming an urgent conservation priority in many regions. Understanding which butterfly species migrate is critical to planning for their conservation, because management actions for migrants need to be coordinated across time and space. Yet, while migration appears to be widespread among butterflies, its prevalence, as well as its taxonomic and geographic distribution are poorly understood. The study of insect migration is hampered by their small size and the difficulty of tracking individuals over long distances. Here we review the literature on migration in butterflies, one of the best-known insect groups. We find that nearly 600 butterfly species show evidence of migratory movements. Indeed, the rate of 'discovery' of migratory movements in butterflies suggests that many more species might in fact be migratory. Butterfly migration occurs across all families, in tropical as well as temperate taxa; Nymphalidae has more migratory species than any other family (275 species), and Pieridae has the highest proportion of migrants (13%; 133 species). Some 13 lines of evidence have been used to ascribe migration status in the literature, but only a single line of evidence is available for 92% of the migratory species identified, with four or more lines of evidence available for only 10 species - all from the Pieridae and Nymphalidae. Migratory butterflies occur worldwide, although the geographic distribution of migration in butterflies is poorly resolved, with most data so far coming from Europe, USA, and Australia. Migration is much more widespread in butterflies than previously realised - extending far beyond the well-known examples of the monarch Danaus plexippus and the painted lady Vanessa cardui - and actions to conserve butterflies and insects in general must account for the spatial dependencies introduced by migratory movements.
Collapse
Affiliation(s)
- Shawan Chowdhury
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Richard A Fuller
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Hugh Dingle
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Jason W Chapman
- Biosciences, Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK.,College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
35
|
Ohguro C, Moriyama Y, Tomioka K. The Compound Eye Possesses a Self-Sustaining Circadian Oscillator in the Cricket Gryllus bimaculatus. Zoolog Sci 2021; 38:82-89. [PMID: 33639722 DOI: 10.2108/zs200118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022]
Abstract
Many insects show daily and circadian changes in morphology and physiology in their compound eye. In this study, we investigated whether the compound eye had an intrinsic circadian rhythm in the cricket Gryllus bimaculatus. We found that clock genes period (per), timeless (tim), cryptochrome 2 (cry2), and cycle (cyc) were rhythmically expressed in the compound eye under 12-h light/12-h dark cycles (LD 12:12) and constant darkness (DD) at a constant temperature. After the optic nerves were severed (ONX), a weak but significant rhythmic expression persisted for per and tim under LD 12:12, while under DD, tim and cyc showed rhythmic expression. We also found that more than half of the ONX compound eyes exhibited weak but significant circadian electroretinographic rhythms. These results clearly demonstrate that the cricket compound eye possesses an intrinsic circadian oscillator which can drive the circadian light sensitivity rhythm in the eye, and that the circadian clock in the optic lobe exerts its influence on the oscillator in the eye.
Collapse
Affiliation(s)
- Chikako Ohguro
- Department of Biology, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Yoshiyuki Moriyama
- Department of Natural Sciences, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan,
| |
Collapse
|
36
|
Zhang J, Li S, Li W, Chen Z, Guo H, Liu J, Xu Y, Xiao Y, Zhang L, Arunkumar KP, Smagghe G, Xia Q, Goldsmith MR, Takeda M, Mita K. Circadian regulation of night feeding and daytime detoxification in a formidable Asian pest Spodoptera litura. Commun Biol 2021; 4:286. [PMID: 33674721 PMCID: PMC7935888 DOI: 10.1038/s42003-021-01816-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/08/2021] [Indexed: 01/08/2023] Open
Abstract
Voracious feeding, trans-continental migration and insecticide resistance make Spodoptera litura among the most difficult Asian agricultural pests to control. Larvae exhibit strong circadian behavior, feeding actively at night and hiding in soil during daytime. The daily pattern of larval metabolism was reversed, with higher transcription levels of genes for digestion (amylase, protease, lipase) and detoxification (CYP450s, GSTs, COEs) in daytime than at night. To investigate the control of these processes, we annotated nine essential clock genes and analyzed their transcription patterns, followed by functional analysis of their coupling using siRNA knockdown of interlocked negative feedback system core and repressor genes (SlituClk, SlituBmal1 and SlituCwo). Based on phase relationships and overexpression in cultured cells the controlling mechanism seems to involve direct coupling of the circadian processes to E-boxes in responding promoters. Additional manipulations involving exposure to the neonicotinoid imidacloprid suggested that insecticide application must be based on chronotoxicological considerations for optimal effectiveness. Zhang et al. show that the circadian gene coupling between night feeding and day detoxification is regulated through the binding of circadian elements to E-boxes in Spodoptera litura, one of the most difficult Asian agricultural pests to control. Exposure of these larvae to a pesticide affects them more at night than during the day, suggesting the need for time-of-day considerations for pesticide application.
Collapse
Affiliation(s)
- Jiwei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Shenglong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Wanshun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Zhiwei Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Jianqiu Liu
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Yajing Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Yingdan Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Liying Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Kallare P Arunkumar
- Central Muga Eri Research and Training Institute, (CMER&TI), Central Silk Board, Lahdoigarh, Jorhat, India
| | - Guy Smagghe
- College of Plant Protection and Academy of Agricultural Sciences, Southwest University, Chongqing, China.,Department of Plants and Crops, Laboratory of Agrozoology and International Joint China-Belgium Laboratory on Sustainable Control of Crop Pests, Ghent University, Ghent, Belgium
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Marian R Goldsmith
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA.
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China. .,Biological Science Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
37
|
Cai YD, Xue Y, Truong CC, Del Carmen-Li J, Ochoa C, Vanselow JT, Murphy KA, Li YH, Liu X, Kunimoto BL, Zheng H, Zhao C, Zhang Y, Schlosser A, Chiu JC. CK2 Inhibits TIMELESS Nuclear Export and Modulates CLOCK Transcriptional Activity to Regulate Circadian Rhythms. Curr Biol 2021; 31:502-514.e7. [PMID: 33217322 PMCID: PMC7878342 DOI: 10.1016/j.cub.2020.10.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 11/06/2022]
Abstract
Circadian clocks orchestrate daily rhythms in organismal physiology and behavior to promote optimal performance and fitness. In Drosophila, key pacemaker proteins PERIOD (PER) and TIMELESS (TIM) are progressively phosphorylated to perform phase-specific functions. Whereas PER phosphorylation has been extensively studied, systematic analysis of site-specific TIM phosphorylation is lacking. Here, we identified phosphorylation sites of PER-bound TIM by mass spectrometry, given the importance of TIM as a modulator of PER function in the pacemaker. Among the 12 TIM phosphorylation sites we identified, at least two of them are critical for circadian timekeeping as mutants expressing non-phosphorylatable mutations exhibit altered behavioral rhythms. In particular, we observed that CK2-dependent phosphorylation of TIM(S1404) promotes nuclear accumulation of PER-TIM heterodimers by inhibiting the interaction of TIM and nuclear export component, Exportin 1 (XPO1). We propose that proper level of nuclear PER-TIM accumulation is necessary to facilitate kinase recruitment for the regulation of daily phosphorylation rhythm and phase-specific transcriptional activity of CLOCK (CLK). Our results highlight the contribution of phosphorylation-dependent nuclear export of PER-TIM heterodimers to the maintenance of circadian periodicity and identify a new mechanism by which the negative elements of the circadian clock (PER-TIM) regulate the positive elements (CLK-CYC). Finally, because the molecular phenotype of tim(S1404A) non-phosphorylatable mutant exhibits remarkable similarity to that of a mutation in human timeless that underlies familial advanced sleep phase syndrome (FASPS), our results revealed an unexpected parallel between the functions of Drosophila and human TIM and may provide new insights into the molecular mechanisms underlying human FASPS. Organisms in all domains of life exhibit circadian rhythms. Cai et al. reveal that phosphorylation of TIMELESS modulates kinase accessibility to CLOCK in the nucleus. This mechanism is important in controlling daily phosphorylation rhythm of CLOCK, which is critical for its function as a key regulator of circadian rhythms.
Collapse
Affiliation(s)
- Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yongbo Xue
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Cindy C Truong
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jose Del Carmen-Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christopher Ochoa
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jens T Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Wurzburg, Wurzburg, Germany
| | - Katherine A Murphy
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ying H Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ben L Kunimoto
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Wurzburg, Wurzburg, Germany
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
38
|
Wan G, Hayden AN, Iiams SE, Merlin C. Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies. Nat Commun 2021; 12:771. [PMID: 33536422 PMCID: PMC7859408 DOI: 10.1038/s41467-021-21002-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 01/05/2021] [Indexed: 11/09/2022] Open
Abstract
Many animals use the Earth's geomagnetic field for orientation and navigation. Yet, the molecular and cellular underpinnings of the magnetic sense remain largely unknown. A biophysical model proposed that magnetoreception can be achieved through quantum effects of magnetically-sensitive radical pairs formed by the photoexcitation of cryptochrome (CRY) proteins. Studies in Drosophila are the only ones to date to have provided compelling evidence for the ultraviolet (UV)-A/blue light-sensitive type 1 CRY (CRY1) involvement in animal magnetoreception, and surprisingly extended this discovery to the light-insensitive mammalian-like type 2 CRYs (CRY2s) of both monarchs and humans. Here, we show that monarchs respond to a reversal of the inclination of the Earth's magnetic field in an UV-A/blue light and CRY1, but not CRY2, dependent manner. We further demonstrate that both antennae and eyes, which express CRY1, are magnetosensory organs. Our work argues that only light-sensitive CRYs function in animal light-dependent inclination-based magnetic sensing.
Collapse
Affiliation(s)
- Guijun Wan
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA. .,Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| | - Ashley N Hayden
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA
| | - Samantha E Iiams
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA.,Genetics Interdisciplinary Program, Texas A&M University, College Station, TX, USA
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA. .,Genetics Interdisciplinary Program, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
39
|
Adams KL, Sun EF, Alaidrous W, de Roode JC. Constant Light and Frequent Schedule Changes Do Not Impact Resistance to Parasites in Monarch Butterflies. J Biol Rhythms 2021; 36:286-296. [PMID: 33445989 DOI: 10.1177/0748730420985312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Organisms have evolved internal biological clocks to regulate their activities based on external environmental cues, such as light, temperature, and food. Environmental disruption of these rhythms, such as caused by constant light or frequent light schedule changes, has been shown to impair development, reduce survival, and increase infection susceptibility and disease progression in numerous organisms. However, the precise role of the biological clock in host-parasite interactions is understudied and has focused on unnatural host-parasite combinations in lab-adapted inbred models. Here, we use the natural interaction between monarch butterflies (Danaus plexippus) and their virulent protozoan parasite, Ophryocystis elektroscirrha, to investigate the effects of constant light and frequent light schedule changes on development, survival, and parasite susceptibility. We show that constant light exposure slows the monarchs' rate of development but does not increase susceptibility to parasitic infection. Furthermore, frequent schedule changes decrease parasite growth, but have no effect on egg-to-adult survival of infected monarchs. Interestingly, these conditions are usually disruptive to the biological clock, but do not significantly impact the clock of monarch larvae. These unexpected findings show that constant light and frequent schedule changes can uncouple host and parasite performance and highlight how natural relationships are needed to expand our understanding of clocks in host-parasite interactions.
Collapse
Affiliation(s)
- Kandis L Adams
- Department of Biology, Emory University, Atlanta, GA, USA
| | | | - Wajd Alaidrous
- Department of Biology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
40
|
Cao LJ, Song W, Yue L, Guo SK, Chen JC, Gong YJ, Hoffmann AA, Wei SJ. Chromosome-level genome of the peach fruit moth Carposina sasakii (Lepidoptera: Carposinidae) provides a resource for evolutionary studies on moths. Mol Ecol Resour 2020; 21:834-848. [PMID: 33098233 DOI: 10.1111/1755-0998.13288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 01/22/2023]
Abstract
The peach fruit moth (PFM), Carposina sasakii Matsumura, is a major phytophagous orchard pest widely distributed across Northeast Asia. Here, we report the chromosome-level genome for the PFM, representing the first genome for the family Carposinidae, from the lepidopteran superfamily Copromorphoidea. The genome was assembled into 404.83 Mb sequences using PacBio long-read and Illumina short-read sequences, including 275 contigs, with a contig N50 length of 2.62 Mb. All contigs were assembled into 31 linkage groups assisted by the Hi-C technique, including 30 autosomes and a Z chromosome. BUSCO analysis showed that 98.3% of genes were complete and 0.4% of genes were fragmented, while 1.3% of genes were missing in the assembled genome. In total, 21,697 protein-coding genes were predicted, of which 84.80% were functionally annotated. Because of the importance of diapause triggered by photoperiod in PFM, five circadian genes in the PFM as well as in the other related species were annotated, and potential genes related to diapause and photoperiodic reaction were also identified from transcriptome sequencing. In addition, manual annotation of detoxification gene families was undertaken and showed a higher number of glutathione S-transferase (GST) gene in PFM than in most other lepidopterans, in contrast to a lower number of uridine diphosphate (UDP)-glycosyltransferase (UGT) gene, carboxyl/cholinesterases (CCE) gene and cytochrome P450 monooxygenase (P450) gene, suggesting different detoxication pathways in this moth. The high-quality genome provides a resource for comparative evolutionary studies of this moth and its relatives within the context of radiations across Lepidoptera.
Collapse
Affiliation(s)
- Li-Jun Cao
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Song
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lei Yue
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shao-Kun Guo
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ya-Jun Gong
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ary Anthony Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Vic, Australia
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
41
|
Beer K, Helfrich-Förster C. Model and Non-model Insects in Chronobiology. Front Behav Neurosci 2020; 14:601676. [PMID: 33328925 PMCID: PMC7732648 DOI: 10.3389/fnbeh.2020.601676] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in D. melanogaster is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee Apis mellifera, of which diurnal foraging behavior has been described already in the early twentieth century. A. mellifera hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as Chymomyza costata or D. ezoana, cosmopolitan D. melanogaster flies do not display a photoperiodic diapause. Similarly, A. mellifera bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects D. melanogaster and A. mellifera, compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, Am Hubland, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
42
|
Bonadè M, Ogura A, Corre E, Bassaglia Y, Bonnaud-Ponticelli L. Diversity of Light Sensing Molecules and Their Expression During the Embryogenesis of the Cuttlefish ( Sepia officinalis). Front Physiol 2020; 11:521989. [PMID: 33117186 PMCID: PMC7553075 DOI: 10.3389/fphys.2020.521989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022] Open
Abstract
Eyes morphologies may differ but those differences are not reflected at the molecular level. Indeed, the ability to perceive light is thought to come from the same conserved gene families: opsins and cryptochromes. Even though cuttlefish (Cephalopoda) are known for their visually guided behaviors, there is a lack of data about the different opsins and cryptochromes orthologs represented in the genome and their expressions. Here we studied the evolutionary history of opsins, cryptochromes but also visual arrestins in molluscs with an emphasis on cephalopods. We identified 6 opsins, 2 cryptochromes and 1 visual arrestin in Sepia officinalis and we showed these families undergo several duplication events in Mollusca: one duplication in the arrestin family and two in the opsin family. In cuttlefish, we studied the temporal expression of these genes in the eyes of embryos from stage 23 to hatching and their expression in two extraocular tissues, skin and central nervous system (CNS = brain + optic lobes). We showed in embryos that some of these genes (Sof_CRY6, Sof_reti-1, Sof_reti-2, Sof_r-opsin1 and Sof_v-arr) are expressed in the eyes and not in the skin or CNS. By looking at a juvenile and an adult S. officinalis, it seems that some of these genes (Sof_r-opsin1 and Sof_reti1) are used for light detection in these extraocular tissues but that they set-up later in development than in the eyes. We also showed that their expression (except for Sof_CRY6) undergoes an increase in the eyes from stage 25 to 28 thus confirming their role in the ability of the cuttlefish embryos to perceive light through the egg capsule. This study raises the question of the role of Sof_CRY6 in the developing eyes in cuttlefish embryos and the role and localization of xenopsins and r-opsin2. Consequently, the diversity of molecular actors involved in light detection both in the eyes and extraocular tissues is higher than previously known. These results open the way for studying new molecules such as those of the signal transduction cascade.
Collapse
Affiliation(s)
- Morgane Bonadè
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d'Histoire Naturelle, Sorbonne Université, Centre National de la Recherche Française (FRE2030), Université de Caen Normandie, Institut de Recherche pour le Développement (IRD 207), Université des Antilles, Paris, France
| | - Atsushi Ogura
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Erwan Corre
- Station biologique de Roscoff, plateforme ABiMS, FR2424 CNRS-Sorbonne Université (UPMC), Roscoff, France
| | - Yann Bassaglia
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d'Histoire Naturelle, Sorbonne Université, Centre National de la Recherche Française (FRE2030), Université de Caen Normandie, Institut de Recherche pour le Développement (IRD 207), Université des Antilles, Paris, France.,Université Paris Est Créteil-Val de Marne (UPEC), Créteil, France
| | - Laure Bonnaud-Ponticelli
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d'Histoire Naturelle, Sorbonne Université, Centre National de la Recherche Française (FRE2030), Université de Caen Normandie, Institut de Recherche pour le Développement (IRD 207), Université des Antilles, Paris, France
| |
Collapse
|
43
|
Merlin C, Iiams SE, Lugena AB. Monarch Butterfly Migration Moving into the Genetic Era. Trends Genet 2020; 36:689-701. [DOI: 10.1016/j.tig.2020.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
|
44
|
Andreatta G, Tessmar-Raible K. The Still Dark Side of the Moon: Molecular Mechanisms of Lunar-Controlled Rhythms and Clocks. J Mol Biol 2020; 432:3525-3546. [PMID: 32198116 PMCID: PMC7322537 DOI: 10.1016/j.jmb.2020.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Starting with the beginning of the last century, a multitude of scientific studies has documented that the lunar cycle times behaviors and physiology in many organisms. It is plausible that even the first life forms adapted to the different rhythms controlled by the moon. Consistently, many marine species exhibit lunar rhythms, and also the number of documented "lunar-rhythmic" terrestrial species is increasing. Organisms follow diverse lunar geophysical/astronomical rhythms, which differ significantly in terms of period length: from hours (circalunidian and circatidal rhythms) to days (circasemilunar and circalunar cycles). Evidence for internal circatital and circalunar oscillators exists for a range of species based on past behavioral studies, but those species with well-documented behaviorally free-running lunar rhythms are not typically used for molecular studies. Thus, the underlying molecular mechanisms are largely obscure: the dark side of the moon. Here we review findings that start to connect molecular pathways with moon-controlled physiology and behaviors. The present data indicate connections between metabolic/endocrine pathways and moon-controlled rhythms, as well as interactions between circadian and circatidal/circalunar rhythms. Moreover, recent high-throughput analyses provide useful leads toward pathways, as well as molecular markers. However, for each interpretation, it is important to carefully consider the, partly substantially differing, conditions used in each experimental paradigm. In the future, it will be important to use lab experiments to delineate the specific mechanisms of the different solar- and lunar-controlled rhythms, but to also start integrating them together, as life has evolved equally long under rhythms of both sun and moon.
Collapse
Affiliation(s)
- Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria; Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria; Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| |
Collapse
|
45
|
Leach WB, Reitzel AM. Decoupling behavioral and transcriptional responses to color in an eyeless cnidarian. BMC Genomics 2020; 21:361. [PMID: 32410571 PMCID: PMC7222589 DOI: 10.1186/s12864-020-6766-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background Animals have specific molecular, physiological, and behavioral responses to light that are influenced by wavelength and intensity. Predictable environmental changes – predominantly solar and lunar cycles – drive endogenous daily oscillations by setting internal pacemakers, otherwise known as the circadian clock. Cnidarians have been a focal group to discern the evolution of light responsiveness due to their phylogenetic position as a sister phylum to bilaterians and broad range of light-responsive behaviors and physiology. Marine species that occupy a range of depths will experience different ranges of wavelengths and light intensities, which may result in variable phenotypic responses. Here, we utilize the eyeless sea anemone Nematostella vectensis, an estuarine anemone that typically resides in shallow water habitats, to compare behavioral and molecular responses when exposed to different light conditions. Results Quantitative measures of locomotion clearly showed that this species responds to light in the blue and green spectral range with a circadian activity profile, in contrast to a circatidal activity profile in the red spectral range and in constant darkness. Differences in average day/night locomotion was significant in each condition, with overall peak activity during the dark period. Comparative analyses of 96 transcriptomes from individuals sampled every 4 h in each lighting treatment revealed complex differences in gene expression between colors, including in many of the genes likely involved in the cnidarian circadian clock. Transcriptional profiling showed the majority of genes are differentially expressed when comparing mid-day with mid-night, and mostly in red light. Gene expression profiles were largely unique in each color, although animals in blue and green were overall more similar to each other than to red light. Conclusions Together, these analyses support the hypothesis that cnidarians are sensitive to red light, and this perception results in a rich transcriptional and divergent behavioral response. Future work determining the specific molecular mechanisms driving the circadian and potential circatidal rhythms measured here would be impactful to connect gene expression variation with behavioral variation in this eyeless species.
Collapse
Affiliation(s)
- Whitney B Leach
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Woodward Hall, Room 381A, Charlotte, NC, 28223, USA.
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Woodward Hall, Room 381A, Charlotte, NC, 28223, USA
| |
Collapse
|
46
|
Keshvari M, Nejadtaghi M, Hosseini-Beheshti F, Rastqar A, Patel N. Exploring the role of circadian clock gene and association with cancer pathophysiology. Chronobiol Int 2019; 37:151-175. [PMID: 31791146 DOI: 10.1080/07420528.2019.1681440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most of the processes that occur in the mind and body follow natural rhythms. Those with a cycle length of about one day are called circadian rhythms. These rhythms are driven by a system of self-sustained clocks and are entrained by environmental cues such as light-dark cycles as well as food intake. In mammals, the circadian clock system is hierarchically organized such that the master clock in the suprachiasmatic nuclei of the hypothalamus integrates environmental information and synchronizes the phase of oscillators in peripheral tissues.The circadian system is responsible for regulating a variety of physiological and behavioral processes, including feeding behavior and energy metabolism. Studies revealed that the circadian clock system consists primarily of a set of clock genes. Several genes control the biological clock, including BMAL1, CLOCK (positive regulators), CRY1, CRY2, PER1, PER2, and PER3 (negative regulators) as indicators of the peripheral clock.Circadian has increasingly become an important area of medical research, with hundreds of studies pointing to the body's internal clocks as a factor in both health and disease. Thousands of biochemical processes from sleep and wakefulness to DNA repair are scheduled and dictated by these internal clocks. Cancer is an example of health problems where chronotherapy can be used to improve outcomes and deliver a higher quality of care to patients.In this article, we will discuss knowledge about molecular mechanisms of the circadian clock and the role of clocks in physiology and pathophysiology of concerns.
Collapse
Affiliation(s)
- Mahtab Keshvari
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Mahdieh Nejadtaghi
- Department of Medical Genetics, faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Ali Rastqar
- Department of Psychiatry and Neuroscience, Université Laval, Quebec, Canada
| | - Niraj Patel
- Centre de Recherche CERVO, Université Laval, Québec, Canada
| |
Collapse
|
47
|
Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly. Proc Natl Acad Sci U S A 2019; 116:25214-25221. [PMID: 31767753 DOI: 10.1073/pnas.1913915116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Seasonal adaptation to changes in light:dark regimes (i.e., photoperiod) allows organisms living at temperate latitudes to anticipate environmental changes. In nearly all animals studied so far, the circadian system has been implicated in measurement and response to the photoperiod. In insects, genetic evidence further supports the involvement of several clock genes in photoperiodic responses. Yet, the key molecular pathways linking clock genes or the circadian clock to insect photoperiodic responses remain largely unknown. Here, we show that inactivating the clock in the North American monarch butterfly using loss-of-function mutants for the circadian activators CLOCK and BMAL1 and the circadian repressor CRYPTOCHROME 2 abolishes photoperiodic responses in reproductive output. Transcriptomic approaches in the brain of monarchs raised in long and short photoperiods, summer monarchs, and fall migrants revealed a molecular signature of seasonal-specific rhythmic gene expression that included several genes belonging to the vitamin A pathway. We found that the rhythmic expression of these genes was abolished in clock-deficient mutants, suggesting that the vitamin A pathway operates downstream of the circadian clock. Importantly, we showed that a CRISPR/Cas9-mediated loss-of-function mutation in the gene encoding the pathway's rate-limiting enzyme, ninaB1, abolished photoperiod responsiveness independently of visual function in the compound eye and without affecting circadian rhythms. Together, these results provide genetic evidence that the clock-controlled vitamin A pathway mediates photoperiod responsiveness in an insect. Given previously reported seasonal changes associated with this pathway in the mammalian brain, our findings suggest an evolutionarily conserved function of vitamin A in animal photoperiodism.
Collapse
|
48
|
Yang L, Liu Y, Donkersley P, Xu P. Up-regulation of cryptochrome 1 gene expression in cotton bollworm ( Helicoverpa armigera) during migration over the Bohai Sea. PeerJ 2019; 7:e8071. [PMID: 31741806 PMCID: PMC6859876 DOI: 10.7717/peerj.8071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/21/2019] [Indexed: 11/20/2022] Open
Abstract
Cryptochromes (CRYs) are flavoproteins and play a pivotal role in circadian clocks which mediate behavior of organisms such as feeding, mating and migrating navigation. Herein, we identified novel transcripts in Helicoverpa armigera of six isoforms of cry1 and seven isoforms of cry2 by Sanger sequencing. Phylogenetic analysis showed that the transcripts of cry1 and cry2 align closely with other insect crys, indicating within-species divergence of Hacry. A dn/ds analysis revealed that the encoding sequence of the cry1 was under purifying selection by a strong negative selection pressure whereas the cry2 was less constraint and showed a less strong purification selection than cry1. In general, Hacrys were more abundantly transcribed in wild migrating populations than that in laboratory maintained populations, and expression of the cry2 was lower than cry1 in all samples tested. Moreover, when compared with the migrating parental population, offspring reared in laboratory conditions showed a significant reduction on transcription of the cry1 but not cry2. These results strongly suggest that cry1 was more related to the migration behavior of H. armigera than cry2.
Collapse
Affiliation(s)
- Liyu Yang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, Shandong, China
| | - Yingjie Liu
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, Shandong, China
| | | | - Pengjun Xu
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, Shandong, China
| |
Collapse
|
49
|
Artificial Light at Night Influences Clock-Gene Expression, Activity, and Fecundity in the Mosquito Culex pipiens f. molestus. SUSTAINABILITY 2019. [DOI: 10.3390/su11226220] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Light is an important environmental cue, and exposure to artificial light at night (ALAN) may disrupt organismal physiology and behavior. We investigated whether ALAN led to changes in clock-gene expression, diel activity patterns, and fecundity in laboratory populations of the mosquito Culex pipiens f. molestus (Diptera, Culicidae), a species that occurs in urban areas and is thus regularly exposed to ALAN. Populations were kept under 16hours (h):8h light:dark cycles or were subjected to an additional 3.5 h of light (100–300 lx) in the evenings. ALAN induced significant changes in expression in all genes studied, either alone (period) or as an interaction with time (timeless, cryptochrome2, Clock, cycle). Changes were sex-specific: period was down-regulated in both sexes, cycle was up-regulated in females, and Clock was down-regulated in males. ALAN-exposed mosquitoes were less active during the extra-light phase, but exposed females were more active later in the night. ALAN-exposed females also produced smaller and fewer eggs. Our findings indicate a sex-specific impact of ALAN on the physiology and behavior of Culex pipiens f. molestus and that changes in clock-gene expression, activity, and fecundity may be linked.
Collapse
|
50
|
Helfrich-Förster C. Light input pathways to the circadian clock of insects with an emphasis on the fruit fly Drosophila melanogaster. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:259-272. [PMID: 31691095 PMCID: PMC7069913 DOI: 10.1007/s00359-019-01379-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/19/2019] [Accepted: 10/26/2019] [Indexed: 12/26/2022]
Abstract
Light is the most important Zeitgeber for entraining animal activity rhythms to the 24-h day. In all animals, the eyes are the main visual organs that are not only responsible for motion and colour (image) vision, but also transfer light information to the circadian clock in the brain. The way in which light entrains the circadian clock appears, however, variable in different species. As do vertebrates, insects possess extraretinal photoreceptors in addition to their eyes (and ocelli) that are sometimes located close to (underneath) the eyes, but sometimes even in the central brain. These extraretinal photoreceptors contribute to entrainment of their circadian clocks to different degrees. The fruit fly Drosophila melanogaster is special, because it expresses the blue light-sensitive cryptochrome (CRY) directly in its circadian clock neurons, and CRY is usually regarded as the fly’s main circadian photoreceptor. Nevertheless, recent studies show that the retinal and extraretinal eyes transfer light information to almost every clock neuron and that the eyes are similarly important for entraining the fly’s activity rhythm as in other insects, or more generally spoken in other animals. Here, I compare the light input pathways between selected insect species with a focus on Drosophila’s special case.
Collapse
|