1
|
Sternini C, Rozengurt E. Bitter taste receptors as sensors of gut luminal contents. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-01005-z. [PMID: 39468215 DOI: 10.1038/s41575-024-01005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Taste is important in the selection of food and is orchestrated by a group of distinct receptors, the taste G protein-coupled receptors (GPCRs). Taste 1 receptors (Tas1rs in mice and TAS1Rs in humans; also known as T1Rs) detect sweet and umami tastes, and taste 2 receptors (Tas2rs in mice and TAS2Rs in humans; also known as T2Rs) detect bitterness. These receptors are also expressed in extraoral sites, including the gastrointestinal mucosa. Tas2rs/TAS2Rs have gained interest as potential targets to prevent or treat metabolic disorders. These bitter taste receptors are expressed in functionally distinct types of gastrointestinal mucosal cells, including enteroendocrine cells, which, upon stimulation, increase intracellular Ca2+ and release signalling molecules that regulate gut chemosensory processes critical for digestion and absorption of nutrients, for neutralization and expulsion of harmful substances, and for metabolic regulation. Expression of Tas2rs/TAS2Rs in gut mucosa is upregulated by high-fat diets, and intraluminal bitter 'tastants' affect gastrointestinal functions and ingestive behaviour through local and gut-brain axis signalling. Tas2rs/TAS2Rs are also found in Paneth and goblet cells, which release antimicrobial peptides and glycoproteins, and in tuft cells, which trigger type 2 immune response against parasites, thus providing a direct line of defence against pathogens. This Review will focus on gut Tas2r/TAS2R distribution, signalling and regulation in enteroendocrine cells, supporting their role as chemosensors of luminal content that serve distinct functions as regulators of body homeostasis and immune response.
Collapse
Affiliation(s)
- Catia Sternini
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Keshavarz M, Ruppert AL, Meiners M, Poharkar K, Liu S, Mahmoud W, Winterberg S, Hartmann P, Mermer P, Perniss A, Offermanns S, Kummer W, Schütz B. Bitter tastants relax the mouse gallbladder smooth muscle independent of signaling through tuft cells and bitter taste receptors. Sci Rep 2024; 14:18447. [PMID: 39117690 PMCID: PMC11310472 DOI: 10.1038/s41598-024-69287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Disorders of gallbladder motility can lead to serious pathology. Bitter tastants acting upon bitter taste receptors (TAS2R family) have been proposed as a novel class of smooth muscle relaxants to combat excessive contraction in the airways and other organs. To explore whether this might also emerge as an option for gallbladder diseases, we here tested bitter tastants for relaxant properties and profiled Tas2r expression in the mouse gallbladder. In organ bath experiments, the bitter tastants denatonium, quinine, dextromethorphan, and noscapine, dose-dependently relaxed the pre-contracted gallbladder. Utilizing gene-deficient mouse strains, neither transient receptor potential family member 5 (TRPM5), nor the Tas2r143/Tas2r135/Tas2r126 gene cluster, nor tuft cells proved to be required for this relaxation, indicating direct action upon smooth muscle cells (SMC). Accordingly, denatonium, quinine and dextromethorphan increased intracellular calcium concentration preferentially in isolated gallbladder SMC and, again, this effect was independent of TRPM5. RT-PCR revealed transcripts of Tas2r108, Tas2r126, Tas2r135, Tas2r137, and Tas2r143, and analysis of gallbladders from mice lacking tuft cells revealed preferential expression of Tas2r108 and Tas2r137 in tuft cells. A TAS2R143-mCherry reporter mouse labeled tuft cells in the gallbladder epithelium. An in silico analysis of a scRNA sequencing data set revealed Tas2r expression in only few cells of different identity, and from in situ hybridization histochemistry, which did not label distinct cells. Our findings demonstrate profound tuft cell- and TRPM5-independent relaxing effects of bitter tastants on gallbladder smooth muscle, but do not support the concept that these effects are mediated by bitter receptors.
Collapse
Affiliation(s)
- Maryam Keshavarz
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University, Giessen, Germany.
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany.
- Anatomy and Cell Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
| | - Anna-Lena Ruppert
- Institute for Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Mirjam Meiners
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany
| | - Krupali Poharkar
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany
| | - Shuya Liu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Wafaa Mahmoud
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Sarah Winterberg
- Institute for Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Petra Hartmann
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany
| | - Petra Mermer
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany
| | - Alexander Perniss
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany
- Division of Allergy and Clinical Immunology, Department of Medicine, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan Offermanns
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University, Giessen, Germany.
- Excellence Cluster Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany.
| | - Burkhard Schütz
- Institute for Anatomy and Cell Biology, Philipps-University, Marburg, Germany.
| |
Collapse
|
3
|
Conaway S, Huang W, Hernandez-Lara MA, Kane MA, Penn RB, Deshpande DA. Molecular mechanism of bitter taste receptor agonist-mediated relaxation of airway smooth muscle. FASEB J 2024; 38:e23842. [PMID: 39037554 PMCID: PMC11299423 DOI: 10.1096/fj.202400452r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
G-protein-coupled receptors (GPCRs) belonging to the type 2 taste receptors (TAS2Rs) family are predominantly present in taste cells to allow the perception of bitter-tasting compounds. TAS2Rs have also been shown to be expressed in human airway smooth muscle (ASM), and TAS2R agonists relax ASM cells and bronchodilate airways despite elevating intracellular calcium. This calcium "paradox" (calcium mediates contraction by pro-contractile Gq-coupled GPCRs) and the mechanisms by which TAS2R agonists relax ASM remain poorly understood. To gain insight into pro-relaxant mechanisms effected by TAS2Rs, we employed an unbiased phosphoproteomic approach involving dual-mass spectrometry to determine differences in the phosphorylation of contractile-related proteins in ASM following the stimulation of cells with TAS2R agonists, histamine (an agonist of the Gq-coupled H1 histamine receptor) or isoproterenol (an agonist of the Gs-coupled β2-adrenoceptor) alone or in combination. Our study identified differential phosphorylation of proteins regulating contraction, including A-kinase anchoring protein (AKAP)2, AKAP12, and RhoA guanine nucleotide exchange factor (ARHGEF)12. Subsequent signaling analyses revealed RhoA and the T853 residue on myosin light chain phosphatase (MYPT)1 as points of mechanistic divergence between TAS2R and Gs-coupled GPCR pathways. Unlike Gs-coupled receptor signaling, which inhibits histamine-induced myosin light chain (MLC)20 phosphorylation via protein kinase A (PKA)-dependent inhibition of intracellular calcium mobilization, HSP20 and ERK1/2 activity, TAS2Rs are shown to inhibit histamine-induced pMLC20 via inhibition of RhoA activity and MYPT1 phosphorylation at the T853 residue. These findings provide insight into the TAS2R signaling in ASM by defining a distinct signaling mechanism modulating inhibition of pMLC20 to relax contracted ASM.
Collapse
Affiliation(s)
- Stanley Conaway
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, U.S.A., 19107
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, U.S.A., 21201
| | - Miguel A. Hernandez-Lara
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, U.S.A., 19107
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, U.S.A., 21201
| | - Raymond B. Penn
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, U.S.A., 19107
| | - Deepak A. Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, U.S.A., 19107
| |
Collapse
|
4
|
Liu XM, Li J, Chen D, Li H, Qin XY, Wang YX, Gu YZ, Li N, Zhou LG, Feng M. Ano1 regulates embryo transport by modulating intracellular calcium levels in oviduct smooth muscle. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167059. [PMID: 38336104 DOI: 10.1016/j.bbadis.2024.167059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Oviductal smooth muscle exhibits spontaneous rhythmic contraction (SRC) and controls the passage of the ova at the exact time, but its mechanistic regulation remains to be determined. In this study, female mice with Ano1SMKO (smooth muscle-specific deletion of Ano1) had reduced fertility. Deficiency of Ano1 in mice resulted in impaired oviductal SRC function and reduced calcium signaling in individual smooth muscle cells in the oviduct. The Ano1 antagonist T16Ainh-A01 dose-dependently inhibited SRCs and [Ca2+]i in the oviducts of humans and mice. A similar inhibitory effect of SRCs and [Ca2+]i was observed after treatment with nifedipine. In our study, ANO1 acted primarily as an activator or amplifier in [Ca2+]i and contraction of tubal smooth muscle cells. We found that tubal SRC was markedly attenuated in patients with ectopic pregnancy. Then, our study was designed to determine whether chloride channel Ano1-mediated smooth muscle motility is associated with tubal SRC. Our findings reveal a new mechanism for the regulation of tubal motility that may be associated with abnormal pregnancies such as ectopic pregnancies.
Collapse
Affiliation(s)
- Xiao-Man Liu
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China; Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, PR China
| | - Juan Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Defang Chen
- Office of Operation Management Committee, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Hao Li
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Xiao-Yan Qin
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Yun-Xia Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Yong-Zhong Gu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Na Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Li-Guang Zhou
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Mei Feng
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China; Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, PR China.
| |
Collapse
|
5
|
Ni K, Che B, Gu R, Wang C, Xu H, Li H, Cen S, Luo M, Deng L. BitterDB database analysis plus cell stiffness screening identify flufenamic acid as the most potent TAS2R14-based relaxant of airway smooth muscle cells for therapeutic bronchodilation. Theranostics 2024; 14:1744-1763. [PMID: 38389834 PMCID: PMC10879871 DOI: 10.7150/thno.92492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: Bitter taste receptors (TAS2Rs) are abundantly expressed in airway smooth muscle cells (ASMCs), which have been recognized as promising targets for bitter agonists to initiate relaxation and thereby prevent excessive airway constriction as the main characteristic of asthma. However, due to the current lack of tested safe and potent agonists functioning at low effective concentrations, there has been no clinically approved TAS2R-based drug for bronchodilation in asthma therapy. This study thus aimed at exploring TAS2R agonists with bronchodilator potential by BitterDB database analysis and cell stiffness screening. Methods: Bitter compounds in the BitterDB database were retrieved and analyzed for their working subtype of TAS2R and effective concentration. Compounds activating TAS2R5, 10, and 14 at < 100 μM effective concentration were identified and subsequently screened by cell stiffness assay using optical magnetic twisting cytometry (OMTC) to identify the most potent to relax ASMCs. Then the compound identified was further characterized for efficacy on various aspects related to relaxation of ASMCs, incl. but not limited to traction force by Fourier transform traction force microscopy (FTTFM), [Ca2+]i signaling by Fluo-4/AM intensity, cell migration by scratch wound healing, mRNA expression by qPCR, and protein expressing by ELISA. The compound identified was also compared to conventional β-agonist (isoproterenol and salbutamol) for efficacy in reducing cell stiffness of cultured ASMCs and airway resistance of ovalbumin-treated mice. Results: BitterDB analysis found 18 compounds activating TAS2R5, 10, and 14 at < 100 μM effective concentration. Cell stiffness screening of these compounds eventually identified flufenamic acid (FFA) as the most potent compound to rapidly reduce cell stiffness at 1 μM. The efficacy of FFA to relax ASMCs in vitro and abrogate airway resistance in vivo was equivalent to that of conventional β-agonists. The FFA-induced effect on ASMCs was mediated by TAS2R14 activation, endoplasmic reticulum Ca2+ release, and large-conductance Ca2+-activated K+ (BKCa) channel opening. FFA also attenuated lipopolysaccharide-induced inflammatory response in cultured ASMCs. Conclusions: FFA as a potent TAS2R14 agonist to relax ASMCs while suppressing cytokine release might be a favorite drug agent for further development of TAS2R-based novel dual functional medication for bronchodilation and anti-inflammation in asthma therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, and School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, and School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| |
Collapse
|
6
|
Lu P, Simas TAM, Delpapa E, ZhuGe R. Bitter taste receptors in the reproductive system: Function and therapeutic implications. J Cell Physiol 2024; 239:e31179. [PMID: 38219077 PMCID: PMC10922893 DOI: 10.1002/jcp.31179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
Type 2 taste receptors (TAS2Rs), traditionally known for their role in bitter taste perception, are present in diverse reproductive tissues of both sexes. This review explores our current understanding of TAS2R functions with a particular focus on reproductive health. In males, TAS2Rs are believed to play potential roles in processes such as sperm chemotaxis and male fertility. Genetic insights from mouse models and human polymorphism studies provide some evidence for their contribution to male infertility. In female reproduction, it is speculated that TAS2Rs influence the ovarian milieu, shaping the functions of granulosa and cumulus cells and their interactions with oocytes. In the uterus, TAS2Rs contribute to uterine relaxation and hold potential as therapeutic targets for preventing preterm birth. In the placenta, they are proposed to function as vigilant sentinels, responding to infection and potentially modulating mechanisms of fetal protection. In the cervix and vagina, their analogous functions to those in other extraoral tissues suggest a potential role in infection defense. In addition, TAS2Rs exhibit altered expression patterns that profoundly affect cancer cell proliferation and apoptosis in reproductive cancers. Notably, TAS2R agonists show promise in inducing apoptosis and overcoming chemoresistance in these malignancies. Despite these advances, challenges remain, including a lack of genetic and functional studies. The application of techniques such as single-cell RNA sequencing and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated endonuclease 9 gene editing could provide deeper insights into TAS2Rs in reproduction, paving the way for novel therapeutic strategies for reproductive disorders.
Collapse
Affiliation(s)
- Ping Lu
- Department of Microbiology and Physiological System, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| | - Tiffany A. Moore Simas
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, Memorial Campus 119 Belmont St., Worcester, MA, USA
| | - Ellen Delpapa
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, Memorial Campus 119 Belmont St., Worcester, MA, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological System, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| |
Collapse
|
7
|
Talmon M, Pollastro F, Fresu LG. The Complex Journey of the Calcium Regulation Downstream of TAS2R Activation. Cells 2022; 11:cells11223638. [PMID: 36429066 PMCID: PMC9688576 DOI: 10.3390/cells11223638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Bitter taste receptors (TAS2Rs) have recently arisen as a potential drug target for asthma due to their localization in airway cells. These receptors are expressed in all cell types of the respiratory system comprising epithelial, smooth muscle and immune cells; however, the expression pattern of the subtypes is different in each cell type and, accordingly, so is their role, for example, anti-inflammatory or bronchodilator. The most challenging aspect in studying TAS2Rs has been the identification of the downstream signaling cascades. Indeed, TAS2R activation leads to canonical IP3-dependent calcium release from the ER, but, alongside, there are other mechanisms that differ according to the histological localization. In this review, we summarize the current knowledge on the cytosolic calcium modulation downstream of TAS2R activation in the epithelial, smooth muscle and immune cells of the airway system.
Collapse
Affiliation(s)
- Maria Talmon
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Correspondence: (M.T.); (L.G.F.); Tel.: +39-0321-660589 (M.T.); +39-0321-660687 (L.G.F.)
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Luigia Grazia Fresu
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Correspondence: (M.T.); (L.G.F.); Tel.: +39-0321-660589 (M.T.); +39-0321-660687 (L.G.F.)
| |
Collapse
|
8
|
Tas2R activation relaxes airway smooth muscle by release of Gα t targeting on AChR signaling. Proc Natl Acad Sci U S A 2022; 119:e2121513119. [PMID: 35737832 PMCID: PMC9245679 DOI: 10.1073/pnas.2121513119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Both chronic obstructive pulmonary disease (COPD) and asthma are severe respiratory diseases. Bitter receptor-mediated bronchodilation is a potential therapy for asthma, but the mechanism underlying the agonistic relaxation of airway smooth muscle (ASM) is not well defined. By exploring the ASM relaxation mechanism of bitter substances, we observed that pretreatment with the bitter substances nearly abolished the methacholine (MCh)-induced increase in the ASM cell (ASMC) calcium concentration, thereby suppressing the calcium-induced contraction release. The ASM relaxation was significantly inhibited by simultaneous deletion of three Gαt proteins, suggesting an interaction between Tas2R and AChR signaling cascades in the relaxation process. Biochemically, the Gαt released by Tas2R activation complexes with AChR and blocks the Gαq cycling of AChR signal transduction. More importantly, a bitter substance, kudinoside A, not only attenuates airway constriction but also significantly inhibits pulmonary inflammation and tissue remodeling in COPD rats, indicating its modulation of additional Gαq-associated pathological processes. Thus, our results suggest that Tas2R activation may be an ideal strategy for halting multiple pathological processes of COPD.
Collapse
|
9
|
Carey RM, Hariri BM, Adappa ND, Palmer JN, Lee RJ. HSP90 Modulates T2R Bitter Taste Receptor Nitric Oxide Production and Innate Immune Responses in Human Airway Epithelial Cells and Macrophages. Cells 2022; 11:1478. [PMID: 35563784 PMCID: PMC9101439 DOI: 10.3390/cells11091478] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Bitter taste receptors (T2Rs) are G protein-coupled receptors (GPCRs) expressed in various cell types including ciliated airway epithelial cells and macrophages. T2Rs in these two innate immune cell types are activated by bitter products, including those secreted by Pseudomonas aeruginosa, leading to Ca2+-dependent activation of endothelial nitric oxide (NO) synthase (eNOS). NO enhances mucociliary clearance and has direct antibacterial effects in ciliated epithelial cells. NO also increases phagocytosis by macrophages. Using biochemistry and live-cell imaging, we explored the role of heat shock protein 90 (HSP90) in regulating T2R-dependent NO pathways in primary sinonasal epithelial cells, primary monocyte-derived macrophages, and a human bronchiolar cell line (H441). Immunofluorescence showed that H441 cells express eNOS and T2Rs and that the bitter agonist denatonium benzoate activates NO production in a Ca2+- and HSP90-dependent manner in cells grown either as submerged cultures or at the air-liquid interface. In primary sinonasal epithelial cells, we determined that HSP90 inhibition reduces T2R-stimulated NO production and ciliary beating, which likely limits pathogen clearance. In primary monocyte-derived macrophages, we found that HSP-90 is integral to T2R-stimulated NO production and phagocytosis of FITC-labeled Escherichia coli and pHrodo-Staphylococcus aureus. Our study demonstrates that HSP90 serves as an innate immune modulator by regulating NO production downstream of T2R signaling by augmenting eNOS activation without impairing upstream Ca2+ signaling. These findings suggest that HSP90 plays an important role in airway antibacterial innate immunity and may be an important target in airway diseases such as chronic rhinosinusitis, asthma, or cystic fibrosis.
Collapse
Affiliation(s)
- Ryan M. Carey
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - Benjamin M. Hariri
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - Nithin D. Adappa
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - James N. Palmer
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - Robert J. Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Lu P, ElMallah MK, Liu Z, Wu C, Chen J, Lifshitz LM, ZhuGe R. Genetic deletion of the Tas2r143/Tas2r135/Tas2r126 cluster reveals that TAS2Rs may not mediate bitter tastant-induced bronchodilation. J Cell Physiol 2021; 236:6407-6423. [PMID: 33559206 PMCID: PMC8223514 DOI: 10.1002/jcp.30315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/09/2022]
Abstract
Bitter taste receptors (TAS2Rs) and their signaling elements are detected throughout the body, and bitter tastants induce a wide variety of biological responses in tissues and organs outside the mouth. However, the roles of TAS2Rs in these responses remain to be tested and established genetically. Here, we employed the CRISPR/Cas9 gene-editing technique to delete three bitter taste receptors-Tas2r143/Tas2r135/Tas2r126 (i.e., Tas2r triple knockout [TKO]) in mice. The fidelity and effectiveness of the Tas2r deletions were validated genetically at DNA and messenger RNA levels and functionally based on the tasting of TAS2R135 and TAS2R126 agonists. Bitter tastants are known to relax airways completely. However, TAS2R135 or TAS2R126 agonists either failed to induce relaxation of pre-contracted airways in wild-type mice and Tas2r TKO mice or relaxed them dose-dependently, but to the same extent in both types of mice. These results indicate that TAS2Rs are not required for bitter tastant-induced bronchodilation. The Tas2r TKO mice also provide a valuable model to resolve whether TAS2Rs mediate bitter tastant-induced responses in many other extraoral tissues.
Collapse
Affiliation(s)
- Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mai K ElMallah
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Zeyu Liu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chan Wu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jun Chen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
11
|
Sharma P, Penn RB. Can GPCRs Be Targeted to Control Inflammation in Asthma? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:1-20. [PMID: 34019260 DOI: 10.1007/978-3-030-68748-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Historically, the drugs used to manage obstructive lung diseases (OLDs), asthma, and chronic obstructive pulmonary disease (COPD) either (1) directly regulate airway contraction by blocking or relaxing airway smooth muscle (ASM) contraction or (2) indirectly regulate ASM contraction by inhibiting the principal cause of ASM contraction/bronchoconstriction and airway inflammation. To date, these tasks have been respectively assigned to two diverse drug types: agonists/antagonists of G protein-coupled receptors (GPCRs) and inhaled or systemic steroids. These two types of drugs "stay in their lane" with respect to their actions and consequently require the addition of the other drug to effectively manage both inflammation and bronchoconstriction in OLDs. Indeed, it has been speculated that safety issues historically associated with beta-agonist use (beta-agonists activate the beta-2-adrenoceptor (β2AR) on airway smooth muscle (ASM) to provide bronchoprotection/bronchorelaxation) are a function of pro-inflammatory actions of β2AR agonism. Recently, however, previously unappreciated roles of various GPCRs on ASM contractility and on airway inflammation have been elucidated, raising the possibility that novel GPCR ligands targeting these GPCRs can be developed as anti-inflammatory therapeutics. Moreover, we now know that many GPCRs can be "tuned" and not just turned "off" or "on" to specifically activate the beneficial therapeutic signaling a receptor can transduce while avoiding detrimental signaling. Thus, the fledging field of biased agonism pharmacology has the potential to turn the β2AR into an anti-inflammatory facilitator in asthma, possibly reducing or eliminating the need for steroids.
Collapse
Affiliation(s)
- Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy, & Critical Care Medicine Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond B Penn
- Center for Translational Medicine, Division of Pulmonary, Allergy, & Critical Care Medicine Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Role of Airway Smooth Muscle in Inflammation Related to Asthma and COPD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:139-172. [PMID: 33788192 DOI: 10.1007/978-3-030-63046-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Airway smooth muscle contributes to both contractility and inflammation in the pathophysiology of asthma and COPD. Airway smooth muscle cells can change the degree of a variety of functions, including contraction, proliferation, migration, and the secretion of inflammatory mediators (phenotype plasticity). Airflow limitation, airway hyperresponsiveness, β2-adrenergic desensitization, and airway remodeling, which are fundamental characteristic features of these diseases, are caused by phenotype changes in airway smooth muscle cells. Alterations between contractile and hyper-contractile, synthetic/proliferative phenotypes result from Ca2+ dynamics and Ca2+ sensitization. Modulation of Ca2+ dynamics through the large-conductance Ca2+-activated K+ channel/L-type voltage-dependent Ca2+ channel linkage and of Ca2+ sensitization through the RhoA/Rho-kinase pathway contributes not only to alterations in the contractile phenotype involved in airflow limitation, airway hyperresponsiveness, and β2-adrenergic desensitization but also to alteration of the synthetic/proliferative phenotype involved in airway remodeling. These Ca2+ signal pathways are also associated with synergistic effects due to allosteric modulation between β2-adrenergic agonists and muscarinic antagonists. Therefore, airway smooth muscle may be a target tissue in the therapy for these diseases. Moreover, the phenotype changing in airway smooth muscle cells with focuses on Ca2+ signaling may provide novel strategies for research and development of effective remedies against both bronchoconstriction and inflammation.
Collapse
|
13
|
Abstract
G protein-coupled receptors (GPCRs) play a central role in regulating the functions of a diverse range of cell types in the airway. Taste 2 receptor (T2R) family of GPCRs is responsible for the transduction of bitter taste; however, recent studies have demonstrated that different subtypes of T2Rs and key components of T2R signaling are expressed in several extra-oral tissues including airways with many physiological roles. In the lung, expression of T2Rs has been confirmed in multiple airway cell types including airway smooth muscle (ASM) cells, various epithelial cell subtypes, and on both resident and migratory immune cells. Most importantly, activation of T2Rs with a variety of putative agonists elicits unique signaling in ASM and specialized airway epithelial cells resulting in the inhibition of ASM contraction and proliferation, promotion of ciliary motility, and innate immune response in chemosensory airway epithelial cells. Here we discuss the expression of T2Rs and the mechanistic basis of their function in the structural cells of the airways with some useful insights on immune cells in the context of allergic asthma and other upper airway inflammatory disorders. Emphasis on T2R biology and pharmacology in airway cells has an ulterior goal of exploiting T2Rs for therapeutic benefit in obstructive airway diseases.
Collapse
|
14
|
ZhuGe R, Roura E, Behrens M. Editorial: Extra-Oral Taste Receptors: Function, Disease and Evolution. Front Physiol 2020; 11:607134. [PMID: 33192623 PMCID: PMC7662156 DOI: 10.3389/fphys.2020.607134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
15
|
Gopallawa I, Lee RJ. Targeting the phosphoinositide-3-kinase/protein kinase B pathway in airway innate immunity. World J Biol Chem 2020; 11:30-51. [PMID: 33024516 PMCID: PMC7520643 DOI: 10.4331/wjbc.v11.i2.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The airway innate immune system maintains the first line of defense against respiratory infections. The airway epithelium and associated immune cells protect the respiratory system from inhaled foreign organisms. These cells sense pathogens via activation of receptors like toll-like receptors and taste family 2 receptors (T2Rs) and respond by producing antimicrobials, inflammatory cytokines, and chemokines. Coordinated regulation of fluid secretion and ciliary beating facilitates clearance of pathogens via mucociliary transport. Airway cells also secrete antimicrobial peptides and radicals to directly kill microorganisms and inactivate viruses. The phosphoinositide-3-kinase/protein kinase B (Akt) kinase pathway regulates multiple cellular targets that modulate cell survival and proliferation. Akt also regulates proteins involved in innate immune pathways. Akt phosphorylates endothelial nitric oxide synthase (eNOS) enzymes expressed in airway epithelial cells. Activation of eNOS can have anti-inflammatory, anti-bacterial, and anti-viral roles. Moreover, Akt can increase the activity of the transcription factor nuclear factor erythroid 2 related factor-2 that protects cells from oxidative stress and may limit inflammation. In this review, we summarize the recent findings of non-cancerous functions of Akt signaling in airway innate host defense mechanisms, including an overview of several known downstream targets of Akt involved in innate immunity.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Robert J Lee
- Department of Otorhinolaryngology and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
16
|
Elucidating the Pivotal Immunomodulatory and Anti-Inflammatory Potentials of Chloroquine and Hydroxychloroquine. J Immunol Res 2020; 2020:4582612. [PMID: 33062720 PMCID: PMC7533005 DOI: 10.1155/2020/4582612] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022] Open
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are derivatives of 4-aminoquinoline compounds with over 60 years of safe clinical usage. CQ and HCQ are able to inhibit the production of cytokines such as interleukin- (IL-) 1, IL-2, IL-6, IL-17, and IL-22. Also, CQ and HCQ inhibit the production of interferon- (IFN-) α and IFN-γ and/or tumor necrotizing factor- (TNF-) α. Furthermore, CQ blocks the production of prostaglandins (PGs) in the intact cell by inhibiting substrate accessibility of arachidonic acid necessary for the production of PGs. Moreover, CQ affects the stability between T-helper cell (Th) 1 and Th2 cytokine secretion by augmenting IL-10 production in peripheral blood mononuclear cells (PBMCs). Additionally, CQ is capable of blocking lipopolysaccharide- (LPS-) triggered stimulation of extracellular signal-modulated extracellular signal-regulated kinases 1/2 in human PBMCs. HCQ at clinical levels effectively blocks CpG-triggered class-switched memory B-cells from differentiating into plasmablasts as well as producing IgG. Also, HCQ inhibits cytokine generation from all the B-cell subsets. IgM memory B-cells exhibits the utmost cytokine production. Nevertheless, CQ triggers the production of reactive oxygen species. A rare, but serious, side effect of CQ or HCQ in nondiabetic patients is hypoglycaemia. Thus, in critically ill patients, CQ and HCQ are most likely to deplete all the energy stores of the body leaving the patient very weak and sicker. We advocate that, during clinical usage of CQ and HCQ in critically ill patients, it is very essential to strengthen the CQ or HCQ with glucose infusion. CQ and HCQ are thus potential inhibitors of the COVID-19 cytokine storm.
Collapse
|
17
|
Jeruzal-Świątecka J, Fendler W, Pietruszewska W. Clinical Role of Extraoral Bitter Taste Receptors. Int J Mol Sci 2020; 21:E5156. [PMID: 32708215 PMCID: PMC7404188 DOI: 10.3390/ijms21145156] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Humans can recognise five basic tastes: sweet, sour, salty, bitter and umami. Sour and salty substances are linked to ion channels, while sweet, bitter and umami flavours are transmitted through receptors linked to the G protein (G protein-coupled receptors; GPCRs). There are two main types of GPCRs that transmit information about sweet, umami and bitter tastes-the Tas1r and TAS2R families. There are about 25 functional TAS2R genes coding bitter taste receptor proteins. They are found not only in the mouth and throat, but also in the intestines, brain, bladder and lower and upper respiratory tract. The determination of their purpose in these locations has become an inspiration for much research. Their presence has also been confirmed in breast cancer cells, ovarian cancer cells and neuroblastoma, revealing a promising new oncological marker. Polymorphisms of TAS2R38 have been proven to have an influence on the course of chronic rhinosinusitis and upper airway defensive mechanisms. TAS2R receptors mediate the bronchodilatory effect in human airway smooth muscle, which may lead to the creation of another medicine group used in asthma or chronic obstructive pulmonary disease. The discovery that functionally compromised TAS2R receptors negatively impact glucose homeostasis has produced a new area of diabetes research. In this article, we would like to focus on what facts have been already established in the matter of extraoral TAS2R receptors in humans.
Collapse
Affiliation(s)
- Joanna Jeruzal-Świątecka
- Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 90-419 Lodz, Poland;
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Wioletta Pietruszewska
- Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
18
|
Chen D, Meng W, Shu L, Liu S, Gu Y, Wang X, Feng M. ANO1 in urethral SMCs contributes to sex differences in urethral spontaneous tone. Am J Physiol Renal Physiol 2020; 319:F394-F402. [PMID: 32686521 DOI: 10.1152/ajprenal.00174.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stress urinary incontinence (SUI) is more common in women than in men, and sex differences in anatomic structure and physiology have been suggested as causes; however, the underlying cellular and molecular mechanisms remain unclear. The spontaneous tone (STT) of the urethra has been shown to have a fundamental effect on preventing the occurrence of SUI. Here, we investigated whether the urethral STT exhibited sex differences. First, we isolated urethral smooth muscle (USM) and detected STT in female mice and women. No STT was found in male mice or men. Furthermore, caffeine induced increased contractility and intracellular Ca2+ concentration in urethrae from female mice compared with male mice. EACT [an N-aroylaminothiazole, anoctamin-1 (ANO1) activator] elicited increased intracellular Ca2+ concentration and stronger currents in female mice than in male mice. Moreover, ANO1 expression in single USM cells from women and female mice was almost twofold higher than that found in cells from men and male mice. In summary, ANO1 in USM contributes to sex differences in urethral spontaneous tone. This finding may provide new guidance for the treatment of SUI in women and men.
Collapse
Affiliation(s)
- Defang Chen
- Department of Outpatient, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wen Meng
- Pharmacy Intravenous Admixture Services, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ling Shu
- Operating Room, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuang Liu
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yongzhong Gu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyan Wang
- General Practice Department, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mei Feng
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
19
|
Qiu JY, Ma LQ, Liu BB, Zhang WJ, Liu MS, Wang GG, Zhao XX, Luo X, Wang Q, Xu H, Zang DA, Shen J, Peng YB, Zhao P, Xue L, Yu MF, Chen W, Dai J, Liu QH. Folium Sennae and emodin reverse airway smooth muscle contraction. Cell Biol Int 2020; 44:1870-1880. [PMID: 32437058 DOI: 10.1002/cbin.11393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/26/2020] [Accepted: 05/18/2020] [Indexed: 11/09/2022]
Abstract
The objective of this project was to find a bronchodilatory compound from herbs and clarify the mechanism. We found that the ethanol extract of Folium Sennae (EEFS) can relax airway smooth muscle (ASM). EEFS inhibited ASM contraction, induced by acetylcholine, in mouse tracheal rings and lung slices. High-performance liquid chromatography assay showed that EEFS contained emodin. Emodin had a similar reversal action. Acetylcholine-evoked contraction was also partially reduced by nifedipine (a selective inhibitor of L-type voltage-dependent Ca2+ channels, LVDCCs), YM-58483 (a selective inhibitor of store-operated Ca2+ entry, SOCE), as well as Y-27632 (an inhibitor of Rho-associated protein kinase). In addition, LVDCC- and SOCE-mediated currents and cytosolic Ca2+ elevations were inhibited by emodin. Emodin reversed acetylcholine-caused increases in phosphorylation of myosin phosphatase target subunit 1. Furthermore, emodin, in vivo, inhibited acetylcholine-induced respiratory system resistance in mice. These results indicate that EEFS-induced relaxation results from emodin inhibiting LVDCC, SOCE, and Ca2+ sensitization. These findings suggest that Folium Sennae and emodin may be new sources of bronchodilators.
Collapse
Affiliation(s)
- Jun-Ying Qiu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Li-Qun Ma
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bei-Bei Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wen-Jing Zhang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Meng-Su Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ge-Ge Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiao-Xue Zhao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xi Luo
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qian Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hao Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Dun-An Zang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhua Shen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yong-Bo Peng
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ping Zhao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lu Xue
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Meng-Fei Yu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Weiwei Chen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Engineering, South-Central University for Nationalities, Wuhan, China
| | - Qing-Hua Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area and Hubei Medical Biology International Science and Technology Cooperation Base, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
20
|
Luo M, Yu P, Ni K, Jin Y, Liu L, Li J, Pan Y, Deng L. Sanguinarine Rapidly Relaxes Rat Airway Smooth Muscle Cells Dependent on TAS2R Signaling. Biol Pharm Bull 2020; 43:1027-1034. [PMID: 32404582 DOI: 10.1248/bpb.b19-00825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excessive contraction of airway smooth muscle cells (ASMCs) is a hallmark feature of asthma. Intriguing, the activation of bitter taste receptor (TAS2R) in ASMCs can relax ASMCs. However, there is a lack of potent TAS2R agonists that can be used in asthma therapies since those tested agonists cannot relax ASMCs at the dose below a few hundred micromolar. Considering that sanguinarine (SA) is a bitter substance often used in small doses for the treatment of asthma in folk medicine, the present study was to determine the rapid relaxation effect of SA on ASMCs and to reveal the underlying mechanisms associated with TAS2R signaling. Here, cell stiffness, traction force, calcium signaling, cAMP levels, and the mRNA expression were evaluated by using optical magnetic twisting cytometry, traction force microscopy, Fluo-4/AM labeling, enzyme-linked immunosorbent assay (ELISA), and quantitative (q)RT-PCR, respectively. We found that 0.5 µM SA immediately decreased cell stiffness and traction force, which is comparable with the effect of 5 µM isoproterenol. In addition, 0.5 µM SA immediately increased intracellular free calcium concentration ([Ca2+]i) and decreased the mRNA expression of contractile proteins such as calponin and α-smooth muscle actin after the treatment for 24 h. Furthermore, SA-mediated decrease in cell stiffness/traction force and increase in [Ca2+]i were significantly blunted by inhibiting the TAS2Rs signaling. These findings establish the rapid relaxation effect of SA at low concentration (<1 µM) on cultured ASMCs depending on TAS2R signaling, indicating that SA might be developed as a useful bronchodilator in asthma therapy.
Collapse
Affiliation(s)
- Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University
| | - Peili Yu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University
| | - Kai Ni
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University
| | - Yang Jin
- Key Lab of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University
| | - Lei Liu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University
| | - Jingjing Li
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University
| | - Yan Pan
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University
| |
Collapse
|
21
|
Bloxham CJ, Foster SR, Thomas WG. A Bitter Taste in Your Heart. Front Physiol 2020; 11:431. [PMID: 32457649 PMCID: PMC7225360 DOI: 10.3389/fphys.2020.00431] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human genome contains ∼29 bitter taste receptors (T2Rs), which are responsible for detecting thousands of bitter ligands, including toxic and aversive compounds. This sentinel function varies between individuals and is underpinned by naturally occurring T2R polymorphisms, which have also been associated with disease. Recent studies have reported the expression of T2Rs and their downstream signaling components within non-gustatory tissues, including the heart. Though the precise role of T2Rs in the heart remains unclear, evidence points toward a role in cardiac contractility and overall vascular tone. In this review, we summarize the extra-oral expression of T2Rs, focusing on evidence for expression in heart; we speculate on the range of potential ligands that may activate them; we define the possible signaling pathways they activate; and we argue that their discovery in heart predicts an, as yet, unappreciated cardiac physiology.
Collapse
Affiliation(s)
- Conor J Bloxham
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Simon R Foster
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
22
|
Conaway S, Nayak AP, Deshpande DA. Therapeutic potential and challenges of bitter taste receptors on lung cells. Curr Opin Pharmacol 2020; 51:43-49. [PMID: 32810767 PMCID: PMC7530014 DOI: 10.1016/j.coph.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/27/2020] [Accepted: 07/09/2020] [Indexed: 11/26/2022]
Abstract
Airway smooth muscle (ASM) hyperresponsiveness and airway remodeling are pathological drivers of disease progression and mortality in asthma. Importantly, approximately 50% of affected individuals are unable to reliably manage disease symptoms using the current standard of care. Recently, T2Rs have been identified as a novel class of G protein-coupled receptors expressed in the airway that on activation can induce ASM relaxation and reduction in airway tone. Further, agonists of T2Rs may also remedy airway remodeling, which has been difficult to manage with currently available medications. In this review, we will discuss the recent developments in T2R biology and their role in cellular physiology (particularly ASM) and expand on the therapeutic potential of T2R agonists in treatment of asthma.
Collapse
Affiliation(s)
- Stanley Conaway
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Ajay P Nayak
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Deepak A Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| |
Collapse
|
23
|
Gopallawa I, Freund JR, Lee RJ. Bitter taste receptors stimulate phagocytosis in human macrophages through calcium, nitric oxide, and cyclic-GMP signaling. Cell Mol Life Sci 2020; 78:271-286. [PMID: 32172302 DOI: 10.1007/s00018-020-03494-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/30/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023]
Abstract
Bitter taste receptors (T2Rs) are GPCRs involved in detection of bitter compounds by type 2 taste cells of the tongue, but are also expressed in other tissues throughout the body, including the airways, gastrointestinal tract, and brain. These T2Rs can be activated by several bacterial products and regulate innate immune responses in several cell types. Expression of T2Rs has been demonstrated in immune cells like neutrophils; however, the molecular details of their signaling are unknown. We examined mechanisms of T2R signaling in primary human monocyte-derived unprimed (M0) macrophages (M[Formula: see text]s) using live cell imaging techniques. Known bitter compounds and bacterial T2R agonists activated low-level calcium signals through a pertussis toxin (PTX)-sensitive, phospholipase C-dependent, and inositol trisphosphate receptor-dependent calcium release pathway. These calcium signals activated low-level nitric oxide (NO) production via endothelial and neuronal NO synthase (NOS) isoforms. NO production increased cellular cGMP and enhanced acute phagocytosis ~ threefold over 30-60 min via protein kinase G. In parallel with calcium elevation, T2R activation lowered cAMP, also through a PTX-sensitive pathway. The cAMP decrease also contributed to enhanced phagocytosis. Moreover, a co-culture model with airway epithelial cells demonstrated that NO produced by epithelial cells can also acutely enhance M[Formula: see text] phagocytosis. Together, these data define M[Formula: see text] T2R signal transduction and support an immune recognition role for T2Rs in M[Formula: see text] cell physiology.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Ravdin, 5th Floor, Suite A , 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Jenna R Freund
- Department of Otorhinolaryngology, Head and Neck Surgery, Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Ravdin, 5th Floor, Suite A , 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology, Head and Neck Surgery, Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Ravdin, 5th Floor, Suite A , 3400 Spruce Street, Philadelphia, PA, 19104, USA. .,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA.
| |
Collapse
|
24
|
Crowe MS, Wang H, Blakeney BA, Mahavadi S, Singh K, Murthy KS, Grider JR. Expression and function of umami receptors T1R1/T1R3 in gastric smooth muscle. Neurogastroenterol Motil 2020; 32:e13737. [PMID: 31721379 PMCID: PMC7008388 DOI: 10.1111/nmo.13737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/19/2019] [Accepted: 09/16/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND l-amino acids, such as monosodium glutamate (MSG), activate the umami receptor T1R1/T1R3. We previously showed increased peristalsis in response to activation of T1R1/T1R3 by MSG in mouse colon. However, the expression and function of these receptors in the different regions of the stomach are not clear. METHODS Mouse gastric smooth muscle cells (SMCs) were isolated and cultured in Dulbecco's Modified Eagle Medium. Expression of T1R1 and T1R3 was measured by RT-PCR and Western blot. The effect of MSG with and without inosine monophosphate (IMP, an allosteric activator of T1R1/T1R3) on acetylcholine (ACh)-induced contraction was measured in muscle strips and isolated SMCs by scanning micrometry. The effect of MSG with or without IMP on activation of G proteins and ACh-induced Ca2+ release was measured in SMCs. KEY RESULTS Monosodium glutamate inhibited ACh-induced contractions in muscle strips from both antrum and fundus and the effect of MSG was augmented by IMP; the effects were concentration-dependent and not affected by the nitric oxide synthase inhibitor, L-NNA, or tetrodotoxin suggesting a direct effect on SMCs. In isolated gastric SMCs, T1R1 and T1R3 transcripts and protein were identified. Addition of MSG with or without IMP inhibited ACh-induced Ca2+ release and muscle contraction; the effect on contraction was blocked by pertussis toxin suggesting activation of Gαi proteins. MSG in the presence of IMP selectively activated Gαi2 . CONCLUSIONS AND INFERENCES Umami receptors (T1R1/T1R3) are present on SMCs of the stomach, and activation of these receptors induces muscle relaxation by decreasing [Ca2+ ]i via Gαi2 .
Collapse
Affiliation(s)
- Molly S. Crowe
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - Hongxia Wang
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - Bryan A. Blakeney
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - Sunila Mahavadi
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - Kulpreet Singh
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - Karnam S. Murthy
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - John R. Grider
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| |
Collapse
|
25
|
Cazzola M, Rogliani P, Matera MG. The future of bronchodilation: looking for new classes of bronchodilators. Eur Respir Rev 2019; 28:28/154/190095. [PMID: 31871127 DOI: 10.1183/16000617.0095-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Available bronchodilators can satisfy many of the needs of patients suffering from airway disorders, but they often do not relieve symptoms and their long-term use raises safety concerns. Therefore, there is interest in developing new classes that could help to overcome the limits that characterise the existing classes.At least nine potential new classes of bronchodilators have been identified: 1) selective phosphodiesterase inhibitors; 2) bitter-taste receptor agonists; 3) E-prostanoid receptor 4 agonists; 4) Rho kinase inhibitors; 5) calcilytics; 6) agonists of peroxisome proliferator-activated receptor-γ; 7) agonists of relaxin receptor 1; 8) soluble guanylyl cyclase activators; and 9) pepducins. They are under consideration, but they are mostly in a preclinical phase and, consequently, we still do not know which classes will actually be developed for clinical use and whether it will be proven that a possible clinical benefit outweighs the impact of any adverse effect.It is likely that if developed, these new classes may be a useful addition to, rather than a substitution of, the bronchodilator therapy currently used, in order to achieve further optimisation of bronchodilation.
Collapse
Affiliation(s)
- Mario Cazzola
- Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
26
|
Nayak AP, Villalba D, Deshpande DA. Bitter Taste Receptors: an Answer to Comprehensive Asthma Control? Curr Allergy Asthma Rep 2019; 19:48. [PMID: 31486942 DOI: 10.1007/s11882-019-0876-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Asthma is marked by peculiar pathological features involving airway contraction, an impinging inflammation in the lungs, and an inexorably progressive remodeling of pulmonary architecture. Current medications for management of asthma exacerbations fail to optimally mitigate these pathologies, which is partly due to the intrinsic heterogeneity in the development and progression of asthma within different populations. In recent years, the discovery of the ectopic expression of TAS2Rs in extraoral tissues and different cell types, combined with significant strides in gaining mechanistic understanding into receptor signaling and function, has revealed the potential to target TAS2Rs for asthma relief. RECENT FINDINGS TAS2R activation leads to relaxation of airway smooth muscle cells and bronchodilation. In addition, findings from preclinical studies in murine model of asthma suggest that TAS2R agonists inhibit allergen-induced airway inflammation, remodeling, and hyperresponsiveness. In this review, we expand on the opportunity presented by TAS2Rs in the development of a comprehensive asthma treatment that overcomes the limitations set forth by current asthma therapeutics.
Collapse
Affiliation(s)
- Ajay P Nayak
- Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine; and Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Jefferson Alumni Hall, Room 543, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Dominic Villalba
- Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine; and Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Jefferson Alumni Hall, Room 543, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine; and Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Jefferson Alumni Hall, Room 543, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
27
|
Luo M, Ni K, Jin Y, Yu Z, Deng L. Toward the Identification of Extra-Oral TAS2R Agonists as Drug Agents for Muscle Relaxation Therapies via Bioinformatics-Aided Screening of Bitter Compounds in Traditional Chinese Medicine. Front Physiol 2019; 10:861. [PMID: 31379593 PMCID: PMC6647893 DOI: 10.3389/fphys.2019.00861] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/20/2019] [Indexed: 12/29/2022] Open
Abstract
Significant advances have been made in the past decade in mapping the distributions and the physiological functions of extra-oral bitter taste receptors (TAS2Rs) in non-gustatory tissues. In particular, it has been found that TAS2Rs are expressed in various muscle tissues and activation of TAS2Rs can lead to muscle cell relaxation, which suggests that TAS2Rs may be important new targets in muscle relaxation therapy for various muscle-related diseases. So far, however, there is a lack of potent extra-oral TAS2R agonists that can be used as novel drug agents in muscle relaxation therapies. Interestingly, traditional Chinese medicine (TCM) often characterizes a drug’s property in terms of five distinct flavors (bitter, sweet, sour, salty, and pungent) according to its taste and function, and commonly regards “bitterness” as an intrinsic property of “good medicine.” In addition, many bitter flavored TCM are known in practice to cause muscle relaxation after long term use, and in lab experiments the compounds identified from some bitter flavored TCM do activate TAS2Rs and thus relax muscle cells. Therefore, it is highly possible to discover very useful extra-oral TAS2R agonists for muscle relaxation therapies among the abundant bitter compounds used in bitter flavored TCM. With this perspective, we reviewed in literature the distribution of TAS2Rs in different muscle systems with a focus on the map of bitter flavored TCM which can regulate muscle contractility and related functional chemical components. We also reviewed the recently established databases of TCM chemical components and the bioinformatics software which can be used for high-throughput screening and data mining of the chemical components associated with bitter flavored TCM. All together, we aim to present a knowledge-based approach and technological platform for identification or discovery of extra-oral TAS2R agonists that can be used as novel drug agents for muscle relaxation therapies through screening and evaluation of chemical compounds used in bitter flavored TCM.
Collapse
Affiliation(s)
- Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Kai Ni
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Yang Jin
- Bioengineering College, Chongqing University, Chongqing, China
| | - Zifan Yu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| |
Collapse
|
28
|
Nayak AP, Shah SD, Michael JV, Deshpande DA. Bitter Taste Receptors for Asthma Therapeutics. Front Physiol 2019; 10:884. [PMID: 31379597 PMCID: PMC6647873 DOI: 10.3389/fphys.2019.00884] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/24/2019] [Indexed: 01/12/2023] Open
Abstract
Clinical management of asthma and chronic obstructive pulmonary disease (COPD) has primarily relied on the use of beta 2 adrenergic receptor agonists (bronchodilators) and corticosteroids, and more recently, monoclonal antibody therapies (biologics) targeting specific cytokines and their functions. Although these approaches provide relief from exacerbations, questions remain on their long-term efficacy and safety. Furthermore, current therapeutics do not address progressive airway remodeling (AR), a key pathological feature of severe obstructive lung disease. Strikingly, agonists of the bitter taste receptors (TAS2Rs) deliver robust bronchodilation, curtail allergen-induced inflammatory responses in the airways and regulate airway smooth muscle (ASM) cell proliferation and mitigate features of AR in vitro and in animal models. The scope of this review is to provide a comprehensive and systematic insight into our current understanding of TAS2Rs with an emphasis on the molecular events that ensue TAS2R activation in distinct airway cell types and expand on the pleiotropic effects of TAS2R targeting in mitigating various pathological features of obstructive lung diseases. Finally, we will discuss specific opportunities that could help the development of selective agonists for specific TAS2R subtypes in the treatment of asthma.
Collapse
Affiliation(s)
- Ajay P Nayak
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Medicine, Department of Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sushrut D Shah
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Medicine, Department of Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, United States
| | - James V Michael
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Medicine, Department of Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, United States
| | - Deepak A Deshpande
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Medicine, Department of Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
29
|
Talmon M, Rossi S, Lim D, Pollastro F, Palattella G, Ruffinatti FA, Marotta P, Boldorini R, Genazzani AA, Fresu LG. Absinthin, an agonist of the bitter taste receptor hTAS2R46, uncovers an ER-to-mitochondria Ca 2+-shuttling event. J Biol Chem 2019; 294:12472-12482. [PMID: 31248983 DOI: 10.1074/jbc.ra119.007763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/17/2019] [Indexed: 01/04/2023] Open
Abstract
Type 2 taste receptors (TAS2R) are G protein-coupled receptors first described in the gustatory system, but have also been shown to have extraoral localizations, including airway smooth muscle (ASM) cells, in which TAS2R have been reported to induce relaxation. TAS2R46 is an unexplored subtype that responds to its highly specific agonist absinthin. Here, we first demonstrate that, unlike other bitter-taste receptor agonists, absinthin alone (1 μm) in ASM cells does not induce Ca2+ signals but reduces histamine-induced cytosolic Ca2+ increases. To investigate this mechanism, we introduced into ASM cells aequorin-based Ca2+ probes targeted to the cytosol, subplasma membrane domain, or the mitochondrial matrix. We show that absinthin reduces cytosolic histamine-induced Ca2+ rises and simultaneously increases Ca2+ influx into mitochondria. We found that this effect is inhibited by the potent human TAS2R46 (hTAS2R46) antagonist 3β-hydroxydihydrocostunolide and is no longer evident in hTAS2R46-silenced ASM cells, indicating that it is hTAS2R46-dependent. Furthermore, these changes were sensitive to the mitochondrial uncoupler carbonyl cyanide p-(trifluoromethoxy)phenyl-hydrazone (FCCP); the mitochondrial calcium uniporter inhibitor KB-R7943 (carbamimidothioic acid); the cytoskeletal disrupter latrunculin; and an inhibitor of the exchange protein directly activated by cAMP (EPAC), ESI-09. Similarly, the β2 agonist salbutamol also could induce Ca2+ shuttling from cytoplasm to mitochondria, suggesting that this new mechanism might be generalizable. Moreover, forskolin and an EPAC activator mimicked this effect in HeLa cells. Our findings support the hypothesis that plasma membrane receptors can positively regulate mitochondrial Ca2+ uptake, adding a further facet to the ability of cells to encode complex Ca2+ signals.
Collapse
Affiliation(s)
- Maria Talmon
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli, 17-28100 Novara, Italy
| | - Silvia Rossi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli, 17-28100 Novara, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio, 6-28100 Novara, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio, 6-28100 Novara, Italy
| | - Gioele Palattella
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli, 17-28100 Novara, Italy
| | - Federico A Ruffinatti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio, 6-28100 Novara, Italy
| | - Patrizia Marotta
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio, 6-28100 Novara, Italy
| | - Renzo Boldorini
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli, 17-28100 Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio, 6-28100 Novara, Italy.
| | - Luigia G Fresu
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli, 17-28100 Novara, Italy.
| |
Collapse
|
30
|
Feng M, Wang Z, Liu Z, Liu D, Zheng K, Lu P, Liu C, Zhang M, Li J. The RyR–Cl
Ca
–VDCC axis contributes to spontaneous tone in urethral smooth muscle. J Cell Physiol 2019; 234:23256-23267. [PMID: 31161632 DOI: 10.1002/jcp.28892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Mei Feng
- Central Laboratory Shandong Provincial Hospital Affiliated to Shandong University Jinan China
- Department of Microbiology and Physiological Systems University of Massachusetts Medical School Worcester Massachusetts
- Central Laboratory Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan China
| | - Zhaoyang Wang
- Operating Room Jinan Central Hospital Affiliated to Shandong University Jinan China
| | - Zheng Liu
- Department of Urology Shandong Provincial Hospital Affiliated to Shandong University Jinan China
| | - Donghai Liu
- Department of Microbiology and Physiological Systems University of Massachusetts Medical School Worcester Massachusetts
| | - Kaizhi Zheng
- Department of Microbiology and Physiological Systems University of Massachusetts Medical School Worcester Massachusetts
| | - Ping Lu
- Department of Microbiology and Physiological Systems University of Massachusetts Medical School Worcester Massachusetts
| | - Chuanyong Liu
- Department of Physiology, School of Basic Medicine, Cheeloo College of Medicine Shandong University Jinan China
| | - Min Zhang
- Arts and Science Department University of Toronto Toronto Canada
| | - Jingxin Li
- Department of Physiology, School of Basic Medicine, Cheeloo College of Medicine Shandong University Jinan China
| |
Collapse
|
31
|
Wang Q, Yu MF, Zhang WJ, Liu BB, Zhao QY, Luo X, Xu H, She YS, Zang DA, Qiu JY, Shen J, Peng YB, Zhao P, Xue L, Chen W, Ma LQ, Nie X, Shen C, Chen S, Chen S, Liu Q, Dai J, Qin G, Zheng YM, Wang YX, ZhuGe R, Chen J, Liu QH. Azithromycin inhibits muscarinic 2 receptor-activated and voltage-activated Ca 2+ permeant ion channels and Ca 2+ sensitization, relaxing airway smooth muscle contraction. Clin Exp Pharmacol Physiol 2019; 46:329-336. [PMID: 30609110 DOI: 10.1111/1440-1681.13062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/06/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022]
Abstract
Azithromycin (AZM) has been used for the treatment of asthma and chronic obstructive pulmonary disease (COPD); however, the effects and underlying mechanisms of AZM remain largely unknown. The effects of AZM on airway smooth muscles (ASMs) and the underlying mechanisms were studied using isometric muscle force measurements, the examination of lung slices, imaging, and patch-clamp techniques. AZM completely inhibited acetylcholine (ACH)-induced precontraction of ASMs in animals (mice, guinea pigs, and rabbits) and humans. Two other macrolide antibiotics, roxithromycin and Klaricid, displayed a decreased inhibitory activity, and the aminoglycoside antibiotics penicillin and streptomycin did not have an inhibitory effect. Precontractions were partially inhibited by nifedipine (selective inhibitor of L-type voltage-dependent Ca2+ channels (LVDCCs)), Pyr3 (selective inhibitor of TRPC3 and/or STIM/Orai channels, which are nonselective cation channels (NSCCs)), and Y-27632 (selective inhibitor of Rho-associated kinase (ROCK)). Moreover, LVDCC- and NSCC-mediated currents were inhibited by AZM, and the latter were suppressed by the muscarinic (M) 2 receptor inhibitor methoctramine. AZM inhibited LVDCC Ca2+ permeant ion channels, M2 receptors, and TRPC3 and/or STIM/Orai, which decreased cytosolic Ca2+ concentrations and led to muscle relaxation. This relaxation was also enhanced by the inhibition of Ca2+ sensitization. Therefore, AZM has potential as a novel and potent bronchodilator. The findings of this study improve the understanding of the effects of AZM on asthma and COPD.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Meng-Fei Yu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wen-Jing Zhang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bei-Bei Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qing-Yang Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xi Luo
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hao Xu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yu-Shan She
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Dun-An Zang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jun-Ying Qiu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yong-Bo Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ping Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Weiwei Chen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Li-Qun Ma
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaowei Nie
- Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Chenyou Shen
- Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Quan Liu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Engineering, South-Central University for Nationalities, Wuhan, China
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine & School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yun-Min Zheng
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | - Yong-Xiao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | - Ronghua ZhuGe
- Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jingyu Chen
- Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Qing-Hua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
32
|
Shaik FA, Medapati MR, Chelikani P. Cholesterol modulates the signaling of chemosensory bitter taste receptor T2R14 in human airway cells. Am J Physiol Lung Cell Mol Physiol 2019; 316:L45-L57. [PMID: 30358435 DOI: 10.1152/ajplung.00169.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bitter taste receptors (T2Rs) are a group of 25 chemosensory receptors expressed at significant levels in the human airways. In human airways, bitter taste receptor 14 (T2R14)-mediated physiological response in ameliorating obstructive airway disorders is an active area of investigation. Therefore, understanding various factors regulating the structure and function of T2R14 will be beneficial. We hypothesize that membrane lipids like cholesterol play a regulatory role in T2R14 signaling in airway cells. We confirmed the expression and signaling of T2R14 in primary human airway smooth muscle (HASM) cells and the human airway epithelial cell line (NuLi-1) using immunoblot analysis and intracellular calcium concentration mobilization experiments, respectively. Next, T2R14 signaling was examined in membrane cholesterol-altered environments by methyl-β-cyclodextrin or cholesterol oxidase treatments. In the cells analyzed, cholesterol depletion affected the agonist-induced T2R14 signaling, and cholesterol replenishment rescued its efficacy. An alternative approach for cholesterol depletion (with cholesterol oxidase pretreatment) also negatively affected the agonist potency at T2R14 in HASM cells. To understand the molecular mechanism of interaction between cholesterol and T2R14, we used site-directed mutagenesis coupled with functional assays and examined the role of putative cholesterol-binding motifs (CRAC and CARC) in T2R14. Functional characterization of wild-type and mutant T2R14 receptors suggests that amino acid residues K110, F236, and L239 are crucial in T2R14-cholesterol functional interaction. In conclusion, our results show that cholesterol influences the T2R14 signaling efficacy by forming direct interactions with the receptor and consequently plays a regulatory role in T2R14-mediated signaling in human airway cells.
Collapse
Affiliation(s)
- Feroz Ahmed Shaik
- Manitoba Chemosensory Biology Research Group, University of Manitoba, Manitoba, Canada.,Department of Oral Biology, University of Manitoba, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba , Winnipeg, Manitoba , Canada
| | - Manoj Reddy Medapati
- Manitoba Chemosensory Biology Research Group, University of Manitoba, Manitoba, Canada.,Department of Oral Biology, University of Manitoba, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba , Winnipeg, Manitoba , Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, University of Manitoba, Manitoba, Canada.,Department of Oral Biology, University of Manitoba, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba , Winnipeg, Manitoba , Canada
| |
Collapse
|
33
|
She YS, Ma LQ, Liu BB, Zhang WJ, Qiu JY, Chen YY, Li MY, Xue L, Luo X, Wang Q, Xu H, Zang DA, Zhao XX, Cao L, Shen J, Peng YB, Zhao P, Yu MF, Chen W, Nie X, Shen C, Chen S, Chen S, Qin G, Dai J, Chen J, Liu QH. Semen cassiae Extract Inhibits Contraction of Airway Smooth Muscle. Front Pharmacol 2018; 9:1389. [PMID: 30564120 PMCID: PMC6288305 DOI: 10.3389/fphar.2018.01389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022] Open
Abstract
β2-adrenoceptor agonists are commonly used as bronchodilators to treat obstructive lung diseases such as asthma and chronic obstructive pulmonary disease (COPD), however, they induce severe side effects. Therefore, developing new bronchodilators is essential. Herbal plants were extracted and the extracts’ effect on airway smooth muscle (ASM) precontraction was assessed. The ethyl alcohol extract of semen cassiae (EESC) was extracted from Semen cassia. The effects of EESC on the ACh- and 80 mM K+-induced sustained precontraction in mouse and human ASM were evaluated. Ca2+ permeant ion channel currents and intracellular Ca2+ concentration were measured. HPLC analysis was employed to determine which compound was responsible for the EESC-induced relaxation. The EESC reversibly inhibited the ACh- and 80 mM K+-induced precontraction. The sustained precontraction depends on Ca2+ influx, and it was mediated by voltage-dependent L-type Ca2+ channels (LVDCCs), store-operated channels (SOCs), TRPC3/STIM/Orai channels. These channels were inhibited by aurantio-obtusin, one component of EESC. When aurantio-obtusin removed, EESC’s action disappeared. In addition, aurantio-obtusin inhibited the precontraction of mouse and human ASM and intracellular Ca2+ increases. These results indicate that Semen cassia-contained aurantio-obtusin inhibits sustained precontraction of ASM via inhibiting Ca2+-permeant ion channels, thereby, which could be used to develop new bronchodilators.
Collapse
Affiliation(s)
- Yu-Shan She
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Li-Qun Ma
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bei-Bei Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wen-Jing Zhang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jun-Ying Qiu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yuan-Yuan Chen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Meng-Yue Li
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lu Xue
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xi Luo
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qian Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hao Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Dun-An Zang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiao-Xue Zhao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lei Cao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhua Shen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yong-Bo Peng
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ping Zhao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Meng-Fei Yu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Weiwei Chen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaowei Nie
- Lung Transplant Group, Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Chenyou Shen
- Lung Transplant Group, Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Engineering, South-Central University for Nationalities, Wuhan, China
| | - Jingyu Chen
- Lung Transplant Group, Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Qing-Hua Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
34
|
Jaggupilli A, Singh N, Jesus VCD, Duan K, Chelikani P. Characterization of the Binding Sites for Bacterial Acyl Homoserine Lactones (AHLs) on Human Bitter Taste Receptors (T2Rs). ACS Infect Dis 2018; 4:1146-1156. [PMID: 29799189 DOI: 10.1021/acsinfecdis.8b00094] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 25 bitter taste receptors (T2Rs) in humans are novel players in mediating host-pathogen responses in the airways and innate immunity. The chemosensory T2Rs are expressed in different extraoral tissues and perform diverse pathophysiological roles from mediating bronchodilation to detecting bacterial infection in the airways. T2Rs were suggested to be activated by multiple bacterial quorum sensing molecules (QSMs). However, whether bacterial QSMs bind to T2Rs and the structural features on T2Rs has not yet been characterized. Here, we analyzed the taste sensory profiles of QSMs including acyl homoserine lactones (C4-AHL, C8-AHL, and 3-oxo-C12-AHL) and hydroxyquinolones (HHQ and NHQ) predominantly secreted by Gram-negative bacteria and characterized the candidate T2Rs interacting with different QSMs using structure-function approaches. The potency of the above QSMs for T2Rs significantly expressed in the airways, namely T2R4, T2R14, and T2R20, was characterized. 3-Oxo-C12-AHL activated T2R4, T2R14, and T2R20, while C8-AHL activated T2R4 and T2R14 with strong potency. The T2R amino acid residues involved in the interactions were characterized by molecular-model-guided site-directed mutagenesis. AHLs bind to a similar orthosteric site present on the extracellular surface in all three T2Rs with significant contributions from residues in extracellular loop 2. Our results reveal the mode of binding of AHLs for different T2Rs and provide biochemical insights into their interactions. This study will facilitate mechanistic studies aimed at understanding the role of these T2Rs as "sensors" of bacteria and in host-pathogen interactions.
Collapse
Affiliation(s)
- Appalaraju Jaggupilli
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 0W4, Canada
| | - Nisha Singh
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 0W4, Canada
| | - Vivianne Cruz De Jesus
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 0W4, Canada
| | - Kangmin Duan
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 0W4, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 0W4, Canada
| |
Collapse
|
35
|
Zhang C, Alashi AM, Singh N, Liu K, Chelikani P, Aluko RE. Beef Protein-Derived Peptides as Bitter Taste Receptor T2R4 Blockers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4902-4912. [PMID: 29706068 DOI: 10.1021/acs.jafc.8b00830] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The aim of this work was to determine the T2R4 bitter taste receptor-blocking ability of enzymatic beef protein hydrolysates and identified peptide sequences. Beef protein was hydrolyzed with each of six commercial enzymes (alcalase, chymotrypsin, trypsin, pepsin, flavourzyme, and thermoase). Electronic tongue measurements showed that the hydrolysates had significantly ( p < 0.05) lower bitter scores than quinine. Addition of the hydrolysates to quinine led to reduced bitterness intensity of quinine with trypsin and pepsin hydrolysates being the most effective. Addition of the hydrolysates to HEK293T cells that heterologously express one of the bitter taste receptors (T2R4) showed alcalase, thermoase, pepsin, and trypsin hydrolysates as the most effective in reducing calcium mobilization. Eight peptides that were identified from the alcalase and chymotrypsin hydrolysates also suppressed quinine-dependent calcium release from T2R4 with AGDDAPRAVF and ETSARHL being the most effective. We conclude that short peptide lengths or the presence of multiple serine residues may not be desirable structural requirements for blocking quinine-dependent T2R4 activation.
Collapse
|
36
|
Freund JR, Mansfield CJ, Doghramji LJ, Adappa ND, Palmer JN, Kennedy DW, Reed DR, Jiang P, Lee RJ. Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling. J Biol Chem 2018; 293:9824-9840. [PMID: 29748385 DOI: 10.1074/jbc.ra117.001005] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
Bitter taste receptors (taste family 2 bitter receptor proteins; T2Rs), discovered in many tissues outside the tongue, have recently become potential therapeutic targets. We have shown previously that airway epithelial cells express several T2Rs that activate innate immune responses that may be important for treatment of airway diseases such as chronic rhinosinusitis. It is imperative to more clearly understand what compounds activate airway T2Rs as well as their full range of functions. T2R isoforms in airway motile cilia (T2R4, -14, -16, and -38) produce bactericidal levels of nitric oxide (NO) that also increase ciliary beating, promoting clearance of mucus and trapped pathogens. Bacterial quorum-sensing acyl-homoserine lactones activate T2Rs and stimulate these responses in primary airway cells. Quinolones are another type of quorum-sensing molecule used by Pseudomonas aeruginosa To elucidate whether bacterial quinolones activate airway T2Rs, we analyzed calcium, cAMP, and NO dynamics using a combination of fluorescent indicator dyes and FRET-based protein biosensors. T2R-transfected HEK293T cells, several lung epithelial cell lines, and primary sinonasal cells grown and differentiated at the air-liquid interface were tested with 2-heptyl-3-hydroxy-4-quinolone (known as Pseudomonas quinolone signal; PQS), 2,4-dihydroxyquinolone, and 4-hydroxy-2-heptylquinolone (HHQ). In HEK293T cells, PQS activated T2R4, -16, and -38, whereas HHQ activated T2R14. 2,4-Dihydroxyquinolone had no effect. PQS and HHQ increased calcium and decreased both baseline and stimulated cAMP levels in cultured and primary airway cells. In primary cells, PQS and HHQ activated levels of NO synthesis previously shown to be bactericidal. This study suggests that airway T2R-mediated immune responses are activated by bacterial quinolones as well as acyl-homoserine lactones.
Collapse
Affiliation(s)
- Jenna R Freund
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and
| | | | | | - Nithin D Adappa
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and
| | - James N Palmer
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and
| | - David W Kennedy
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and
| | - Danielle R Reed
- the Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104
| | - Peihua Jiang
- the Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104
| | - Robert J Lee
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and .,Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104 and
| |
Collapse
|
37
|
Abstract
Nutrient-sensing mechanisms have emerged as the fringe articulating nutritional needs with dietary choices. Carbohydrate, amino acid, fatty acid, mineral, and water-sensing receptors are highly conserved across mammals and birds, consisting of a repertoire of 22 genes known to date. In contrast, bitter receptors are highly divergent and have a high incidence of polymorphisms within and between mammals and birds and are involved in the adaptation of species to specific environments. In addition, the expression of nutrient-sensing genes outside the oral cavity seems to mediate the required decision-making dialogue between the gut and the brain by translating exogenous chemical stimuli into neuronal inputs, and vice versa, to translate the endogenous signals relevant to the nutritional status into specific appetites and the control of feed intake. The relevance of these sensors in nondigestive systems has uncovered fascinating potential as pharmacological targets relevant to respiratory and cardiovascular diseases.
Collapse
Affiliation(s)
- Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, and School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Simon R. Foster
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| |
Collapse
|
38
|
Luo X, Xue L, Xu H, Zhao QY, Wang Q, She YS, Zang DA, Shen J, Peng YB, Zhao P, Yu MF, Chen W, Ma LQ, Chen S, Chen S, Fu X, Hu S, Nie X, Shen C, Zou C, Qin G, Dai J, Ji G, Su Y, Hu S, Chen J, Liu QH. Polygonum aviculare L. extract and quercetin attenuate contraction in airway smooth muscle. Sci Rep 2018; 8:3114. [PMID: 29449621 PMCID: PMC5814568 DOI: 10.1038/s41598-018-20409-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
Because of the serious side effects of the currently used bronchodilators, new compounds with similar functions must be developed. We screened several herbs and found that Polygonum aviculare L. contains ingredients that inhibit the precontraction of mouse and human airway smooth muscle (ASM). High K+-induced precontraction in ASM was completely inhibited by nifedipine, a selective blocker of L-type voltage-dependent Ca2+ channels (LVDCCs). However, nifedipine only partially reduced the precontraction induced by acetylcholine chloride (ACH). Additionally, the ACH-induced precontraction was partly reduced by pyrazole-3 (Pyr3), a selective blocker of TRPC3 and stromal interaction molecule (STIM)/Orai channels. These channel-mediated currents were inhibited by the compounds present in P. aviculare extracts, suggesting that this inhibition was mediated by LVDCCs, TRPC3 and/or STIM/Orai channels. Moreover, these channel-mediated currents were inhibited by quercetin, which is present in P. aviculare extracts. Furthermore, quercetin inhibited ACH-induced precontraction in ASM. Overall, our data indicate that the ethyl acetate fraction of P. aviculare and quercetin can inhibit Ca2+-permeant LVDCCs, TRPC3 and STIM/Orai channels, which inhibits the precontraction of ASM. These findings suggest that P. aviculare could be used to develop new bronchodilators to treat obstructive lung diseases such as asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Xi Luo
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Hao Xu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Qing-Yang Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Qian Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Yu-Shan She
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Dun-An Zang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Yong-Bo Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Ping Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Meng-Fei Yu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Weiwei Chen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Li-Qun Ma
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Xiangning Fu
- Department of Thoracic, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, Hubei, China
| | - Xiaowei Nie
- Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Chenyou Shen
- Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Chunbin Zou
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine., Pittsburgh, PA, 15213, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine & School of Engineering, University of Alabama Birmingham, Birmingham, AL, 35294, USA
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Engineering, South-Central University for Nationalities, Wuhan, 430074, China
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Shen Hu
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - Jingyu Chen
- Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Qing-Hua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
39
|
Stern L, Giese N, Hackert T, Strobel O, Schirmacher P, Felix K, Gaida MM. Overcoming chemoresistance in pancreatic cancer cells: role of the bitter taste receptor T2R10. J Cancer 2018; 9:711-725. [PMID: 29556329 PMCID: PMC5858493 DOI: 10.7150/jca.21803] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/26/2017] [Indexed: 12/14/2022] Open
Abstract
Bitter taste receptors (T2Rs) are G-protein coupled transmembrane proteins initially identified in the gustatory system as sensors for the taste of bitter. Recent evidence on expression of these receptors outside gustatory tissues suggested alternative functions, and there is growing interest of their potential role in cancer biology. In this study, we report for the first time, expression and functionality of the bitter receptor family member T2R10 in both human pancreatic ductal adenocarcinoma (PDAC) tissue and PDAC derived cell lines. Caffeine, a known ligand for T2R10, rendered the tumor cells more susceptible to two standard chemotherapeutics, Gemcitabine and 5-Fluoruracil. Knocking down T2R10 in the cell line BxPC-3 reduced the caffeine-induced effect. As possible underlying mechanism, we found that caffeine via triggering T2R10 inhibited Akt phosphorylation and subsequently downregulated expression of ABCG2, the so-called multi-drug resistance protein that participates in rendering cells resistant to a variety of chemotherapeutics. In conclusion, T2R10 is expressed in pancreatic cancer and it downmodulates the chemoresistance of the tumor cells.
Collapse
Affiliation(s)
- Louisa Stern
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalia Giese
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus Felix
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
40
|
Zhai K, Yang Z, Zhu X, Nyirimigabo E, Mi Y, Wang Y, Liu Q, Man L, Wu S, Jin J, Ji G. Activation of bitter taste receptors (tas2rs) relaxes detrusor smooth muscle and suppresses overactive bladder symptoms. Oncotarget 2018; 7:21156-67. [PMID: 27056888 PMCID: PMC5008275 DOI: 10.18632/oncotarget.8549] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 12/18/2022] Open
Abstract
Bitter taste receptors (TAS2Rs) are traditionally thought to be expressed exclusively on the taste buds of the tongue. However, accumulating evidence has indicated that this receptor family performs non-gustatory functions outside the mouth in addition to taste. Here, we examined the role of TAS2Rs in human and mouse detrusor smooth muscle (DSM). We showed that mRNA for various TAS2R subtypes was expressed in both human and mouse detrusor smooth muscle (DSM) at distinct levels. Chloroquine (CLQ), an agonist for TAS2Rs, concentration-dependently relaxed carbachol- and KCl-induced contractions of human DSM strips. Moreover, 100 μM of CLQ significantly inhibited spontaneous and electrical field stimulation (EFS)-induced contractions of human DSM strips. After a slight contraction, CLQ (1 mM) entirely relaxed carbachol-induced contraction of mouse DSM strips. Furthermore, denatonium and quinine concentration-dependently decreased carbachol-induced contractions of mouse DSM strips. Finally, we demonstrated that CLQ treatment significantly suppressed the overactive bladder (OAB) symptoms of mice with partial bladder outlet obstruction (PBOO). In conclusion, we for the first time provide evidence of the existence of TAS2Rs in the urinary DSM and demonstrate that TAS2Rs may represent a potential target for OAB. These findings open a new approach to develop drugs for OAB in the future.
Collapse
Affiliation(s)
- Kui Zhai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhiguang Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaofei Zhu
- Department of Urology, Beijing Jishuitan Hospital, Beijing, China
| | - Eric Nyirimigabo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yue Mi
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Yan Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Qinghua Liu
- Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Libo Man
- Department of Urology, Beijing Jishuitan Hospital, Beijing, China
| | - Shiliang Wu
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Jie Jin
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Liu S, Lu S, Xu R, Atzberger A, Günther S, Wettschureck N, Offermanns S. Members of Bitter Taste Receptor Cluster Tas2r143/Tas2r135/Tas2r126 Are Expressed in the Epithelium of Murine Airways and Other Non-gustatory Tissues. Front Physiol 2017; 8:849. [PMID: 29163195 PMCID: PMC5670347 DOI: 10.3389/fphys.2017.00849] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/11/2017] [Indexed: 11/13/2022] Open
Abstract
The mouse bitter taste receptors Tas2r143, Tas2r135, and Tas2r126 are encoded by genes that cluster on chromosome 6 and have been suggested to be expressed under common regulatory elements. Previous studies indicated that the Tas2r143/Tas2r135/Tas2r126 cluster is expressed in the heart, but other organs had not been systematically analyzed. In order to investigate the expression of this bitter taste receptor gene cluster in non-gustatory tissues, we generated a BAC (bacterial artificial chromosome) based transgenic mouse line, expressing CreERT2 under the control of the Tas2r143 promoter. After crossing this line with a mouse line expressing EGFP after Cre-mediated recombination, we were able to validate the Tas2r143-CreERT2 transgenic mouse line and monitor the expression of Tas2r143. EGFP-positive cells, indicating expression of members of the cluster, were found in about 47% of taste buds, and could also be found in several other organs. A population of EGFP-positive cells was identified in thymic epithelial cells, in the lamina propria of the intestine and in vascular smooth muscle cells of cardiac blood vessels. EGFP-positive cells were also identified in the epithelium of organs readily exposed to pathogens including lower airways, the gastrointestinal tract, urethra, vagina, and cervix. With respect to the function of cells expressing this bitter taste receptor cluster, RNA-seq analysis in EGFP-positive cells isolated from the epithelium of trachea and stomach showed expression of genes related to innate immunity. These data further support the concept that bitter taste receptors serve functions outside the gustatory system.
Collapse
Affiliation(s)
- Shuya Liu
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Shun Lu
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rui Xu
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ann Atzberger
- Flow Cytometry Service Facility, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
42
|
Wu K, Zhang Q, Wu X, Lu W, Tang H, Liang Z, Gu Y, Song S, Ayon RJ, Wang Z, McDermott KM, Balistrieri A, Wang C, Black SM, Garcia JGN, Makino A, Yuan JXJ, Wang J. Chloroquine is a potent pulmonary vasodilator that attenuates hypoxia-induced pulmonary hypertension. Br J Pharmacol 2017; 174:4155-4172. [PMID: 28849593 DOI: 10.1111/bph.13990] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Sustained pulmonary vasoconstriction and excessive pulmonary vascular remodelling are two major causes of elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension. The purpose of this study was to investigate whether chloroquine induced relaxation in the pulmonary artery (PA) and attenuates hypoxia-induced pulmonary hypertension (HPH). EXPERIMENTAL APPROACH Isometric tension was measured in rat PA rings pre-constricted with phenylephrine or high K+ solution. PA pressure was measured in mouse isolated, perfused and ventilated lungs. Fura-2 fluorescence microscopy was used to measure cytosolic free Ca2+ concentration levels in PA smooth muscle cells (PASMCs). Patch-clamp experiments were performed to assess the activity of voltage-dependent Ca2+ channels (VDCCs) in PASMC. Rats exposed to hypoxia (10% O2 ) for 3 weeks were used as the model of HPH or Sugen5416/hypoxia (SuHx) for in vivo experiments. KEY RESULTS Chloroquine attenuated agonist-induced and high K+ -induced contraction in isolated rat PA. Pretreatment with l-NAME or indomethacin and functional removal of endothelium failed to inhibit chloroquine-induced PA relaxation. In PASMC, extracellular application of chloroquine attenuated store-operated Ca2+ entry and ATP-induced Ca2+ entry. Furthermore, chloroquine also inhibited whole-cell Ba2+ currents through VDCC in PASMC. In vivo experiments demonstrated that chloroquine treatment ameliorated the HPH and SuHx models. CONCLUSIONS AND IMPLICATIONS Chloroquine is a potent pulmonary vasodilator that may directly or indirectly block VDCC, store-operated Ca2+ channels and receptor-operated Ca2+ channels in PASMC. The therapeutic potential of chloroquine in pulmonary hypertension is probably due to the combination of its vasodilator, anti-proliferative and anti-autophagic effects.
Collapse
Affiliation(s)
- Kang Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Qian Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Xiongting Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Zhihao Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yali Gu
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Shanshan Song
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ramon J Ayon
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ziyi Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Kimberly M McDermott
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Angela Balistrieri
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Christina Wang
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Joe G N Garcia
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ayako Makino
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
43
|
Zhao QY, Peng YB, Luo XJ, Luo X, Xu H, Wei MY, Jiang QJ, Li WE, Ma LQ, Xu JC, Liu XC, Zang DA, She YS, Zhu H, Shen J, Zhao P, Xue L, Yu MF, Chen W, Zhang P, Fu X, Chen J, Nie X, Shen C, Chen S, Chen S, Chen J, Hu S, Zou C, Qin G, Fang Y, Ding J, Ji G, Zheng YM, Song T, Wang YX, Liu QH. Distinct Effects of Ca 2+ Sparks on Cerebral Artery and Airway Smooth Muscle Cell Tone in Mice and Humans. Int J Biol Sci 2017; 13:1242-1253. [PMID: 29104491 PMCID: PMC5666523 DOI: 10.7150/ijbs.21475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/10/2017] [Indexed: 11/21/2022] Open
Abstract
The effects of Ca2+ sparks on cerebral artery smooth muscle cells (CASMCs) and airway smooth muscle cells (ASMCs) tone, as well as the underlying mechanisms, are not clear. In this investigation, we elucidated the underlying mechanisms of the distinct effects of Ca2+ sparks on cerebral artery smooth muscle cells (CASMCs) and airway smooth muscle cells (ASMCs) tone. In CASMCs, owing to the functional loss of Ca2+-activated Cl- (Clca) channels, Ca2+ sparks activated large-conductance Ca2+-activated K+ channels (BKs), resulting in a decreases in tone against a spontaneous depolarization-caused high tone in the resting state. In ASMCs, Ca2+ sparks induced relaxation through BKs and contraction via Clca channels. However, the integrated result was contraction because Ca2+ sparks activated BKs prior to Clca channels and Clca channels-induced depolarization was larger than BKs-caused hyperpolarization. However, the effects of Ca2+ sparks on both cell types were determined by L-type voltage-dependent Ca2+ channels (LVDCCs). In addition, compared with ASMCs, CASMCs had great and higher amplitude Ca2+ sparks, a higher density of BKs, and higher Ca2+ and voltage sensitivity of BKs. These differences enhanced the ability of Ca2+ sparks to decrease CASMC and to increase ASMC tone. The higher Ca2+ and voltage sensitivity of BKs in CASMCs than ASMCs were determined by the β1 subunits. Moreover, Ca2+ sparks showed the similar effects on human CASMC and ASMC tone. In conclusions, Ca2+ sparks decrease CASMC tone and increase ASMC tone, mediated by BKs and Clca channels, respectively, and finally determined by LVDCCs.
Collapse
Affiliation(s)
- Qing-Yang Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yong-Bo Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiao-Jing Luo
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xi Luo
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Hao Xu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ming-Yu Wei
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Qiu-Ju Jiang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Wen-Er Li
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Li-Qun Ma
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jin-Chao Xu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiao-Cao Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Dun-An Zang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yu-San She
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - He Zhu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ping Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Meng-Fei Yu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Weiwei Chen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ping Zhang
- Department of Cerebral Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Xiangning Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Jingyu Chen
- Wuxi &Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Xiaowei Nie
- Wuxi &Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Chenyou Shen
- Wuxi &Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Jingcao Chen
- Department of Cerebral Surgery, Zhongnan Hospital, Wuhan University Medical College, Wuhan, 430071, Hubei, China
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, Hubei, China
| | - Chunbin Zou
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine & School of Engineering, University of Alabama Birmingham, AL, 35294, USA
| | - Ying Fang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiuping Ding
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Tengyao Song
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Qing-Hua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
44
|
Zheng K, Lu P, Delpapa E, Bellve K, Deng R, Condon JC, Fogarty K, Lifshitz LM, Simas TAM, Shi F, ZhuGe R. Bitter taste receptors as targets for tocolytics in preterm labor therapy. FASEB J 2017; 31:4037-4052. [PMID: 28559440 PMCID: PMC5572693 DOI: 10.1096/fj.201601323rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/08/2017] [Indexed: 12/17/2022]
Abstract
Preterm birth (PTB) is the leading cause of neonatal mortality and morbidity, with few prevention and treatment options. Uterine contraction is a central feature of PTB, so gaining new insights into the mechanisms of this contraction and consequently identifying novel targets for tocolytics are essential for more successful management of PTB. Here we report that myometrial cells from human and mouse express bitter taste receptors (TAS2Rs) and their canonical signaling components (i.e., G-protein gustducin and phospholipase C β2). Bitter tastants can completely relax myometrium precontracted by different uterotonics. In isolated single mouse myometrial cells, a phenotypical bitter tastant (chloroquine, ChQ) reverses the rise in intracellular Ca2+ concentration ([Ca2+]i) and cell shortening induced by uterotonics, and this reversal effect is inhibited by pertussis toxin and by genetic deletion of α-gustducin. In human myometrial cells, knockdown of TAS2R14 but not TAS2R10 inhibits ChQ's reversal effect on an oxytocin-induced rise in [Ca2+]i Finally, ChQ prevents mouse PTBs induced by bacterial endotoxin LPS or progesterone receptor antagonist mifepristone more often than current commonly used tocolytics, and this prevention is largely lost in α-gustducin-knockout mice. Collectively, our results reveal that activation of the canonical TAS2R signaling system in myometrial cells produces profound relaxation of myometrium precontracted by a broad spectrum of contractile agonists, and that targeting TAS2Rs is an attractive approach to developing effective tocolytics for PTB management.-Zheng, K., Lu, P., Delpapa, E., Bellve, K., Deng, R., Condon, J. C., Fogarty, K., Lifshitz, L. M., Simas, T. A. M., Shi, F., ZhuGe, R. Bitter taste receptors as targets for tocolytics in preterm labor therapy.
Collapse
Affiliation(s)
- Kaizhi Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ellen Delpapa
- Department of Obstetrics and Gynecology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Karl Bellve
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ruitang Deng
- College of Pharmacy, University of Rhode Island, Kingstown, Rhode Island, USA
| | - Jennifer C Condon
- Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Kevin Fogarty
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Tiffany A Moore Simas
- Department of Obstetrics and Gynecology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China;
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA;
| |
Collapse
|
45
|
Mikami M, Zhang Y, Danielsson J, Joell T, Yong HM, Townsend E, Khurana S, An SS, Emala CW. Impaired Relaxation of Airway Smooth Muscle in Mice Lacking the Actin-Binding Protein Gelsolin. Am J Respir Cell Mol Biol 2017; 56:628-636. [PMID: 28118027 DOI: 10.1165/rcmb.2016-0292oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Diverse classes of ligands have recently been discovered that relax airway smooth muscle (ASM) despite a transient increase in intracellular calcium concentrations ([Ca2+]i). However, the cellular mechanisms are not well understood. Gelsolin is a calcium-activated actin-severing and -capping protein found in many cell types, including ASM cells. Gelsolin also binds to phosphatidylinositol 4,5-bisphosphate, making this substrate less available for phospholipase Cβ-mediated hydrolysis to inositol triphosphate and diacylglycerol. We hypothesized that gelsolin plays a critical role in ASM relaxation and mechanistically accounts for relaxation by ligands that transiently increase [Ca2+]i. Isolated tracheal rings from gelsolin knockout (KO) mice showed impaired relaxation to both a β-agonist and chloroquine, a bitter taste receptor agonist, which relaxes ASM, despite inducing transiently increased [Ca2+]i. A single inhalation of methacholine increased lung resistance to a similar extent in wild-type and gelsolin KO mice, but the subsequent spontaneous relaxation was less in gelsolin KO mice. In ASM cells derived from gelsolin KO mice, serotonin-induced Gq-coupled activation increased both [Ca2+]i and inositol triphosphate synthesis to a greater extent compared to cells from wild-type mice, possibly due to the absence of gelsolin binding to phosphatidylinositol 4,5-bisphosphate. Single-cell analysis showed higher filamentous:globular actin ratio at baseline and slower cytoskeletal remodeling dynamics in gelsolin KO cells. Gelsolin KO ASM cells also showed an attenuated decrease in cell stiffness to chloroquine and flufenamic acid. These findings suggest that gelsolin plays a critical role in ASM relaxation and that activation of gelsolin may contribute to relaxation induced by ligands that relax ASM despite a transient increase in [Ca2+]i.
Collapse
Affiliation(s)
- Maya Mikami
- 1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Yi Zhang
- 1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jennifer Danielsson
- 1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Tiarra Joell
- 2 Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Hwan Mee Yong
- 2 Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Elizabeth Townsend
- 1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Seema Khurana
- 3 Department of Biology and Biochemistry, University of Houston, Baylor College of Medicine, Houston, Texas; and
| | - Steven S An
- 2 Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,4 Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Charles W Emala
- 1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
46
|
Bitter Taste Receptor Agonists Mitigate Features of Allergic Asthma in Mice. Sci Rep 2017; 7:46166. [PMID: 28397820 PMCID: PMC5387415 DOI: 10.1038/srep46166] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/09/2017] [Indexed: 01/25/2023] Open
Abstract
Asthma is characterized by airway inflammation, mucus secretion, remodeling and hyperresponsiveness (AHR). Recent research has established the bronchodilatory effect of bitter taste receptor (TAS2R) agonists in various models. Comprehensive pre-clinical studies aimed at establishing effectiveness of TAS2R agonists in disease models are lacking. Here we aimed to determine the effect of TAS2R agonists on features of asthma. Further, we elucidated a mechanism by which TAS2R agonists mitigate features of asthma. Asthma was induced in mice using intranasal house dust mite or aerosol ova-albumin challenge, and chloroquine or quinine were tested in both prophylactic and treatment models. Allergen challenge resulted in airway inflammation as evidenced by increased immune cells infiltration and release of cytokines and chemokines in the lungs, which were significantly attenuated in TAS2R agonists treated mice. TAS2R agonists attenuated features of airway remodeling including smooth muscle mass, extracellular matrix deposition and pro-fibrotic signaling, and also prevented mucus accumulation and development of AHR in mice. Mechanistic studies using human neutrophils demonstrated that inhibition of immune cell chemotaxis is a key mechanism by which TAS2R agonists blocked allergic airway inflammation and exerted anti-asthma effects. Our comprehensive studies establish the effectiveness of TAS2R agonists in mitigating multiple features of allergic asthma.
Collapse
|
47
|
Keeler AM, Liu D, Zieger M, Xiong L, Salemi J, Bellvé K, Byrne BJ, Fuller DD, ZhuGe R, ElMallah MK. Airway smooth muscle dysfunction in Pompe ( Gaa-/- ) mice. Am J Physiol Lung Cell Mol Physiol 2017; 312:L873-L881. [PMID: 28336814 DOI: 10.1152/ajplung.00568.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 01/01/2023] Open
Abstract
Pompe disease is an autosomal recessive disorder caused by a deficiency of acid α-glucosidase (GAA), an enzyme responsible for hydrolyzing lysosomal glycogen. Deficiency of GAA leads to systemic glycogen accumulation in the lysosomes of skeletal muscle, motor neurons, and smooth muscle. Skeletal muscle and motor neuron pathology are known to contribute to respiratory insufficiency in Pompe disease, but the role of airway pathology has not been evaluated. Here we propose that GAA enzyme deficiency disrupts the function of the trachea and bronchi and this lower airway pathology contributes to respiratory insufficiency in Pompe disease. Using an established mouse model of Pompe disease, the Gaa-/- mouse, we compared histology, pulmonary mechanics, airway smooth muscle (ASM) function, and calcium signaling between Gaa-/- and age-matched wild-type (WT) mice. Lysosomal glycogen accumulation was observed in the smooth muscle of both the bronchi and the trachea in Gaa-/- but not WT mice. Furthermore, Gaa-/- mice had hyporesponsive airway resistance and bronchial ring contraction to the bronchoconstrictive agents methacholine (MCh) and potassium chloride (KCl) and to a bronchodilator (albuterol). Finally, calcium signaling during bronchiolar smooth muscle contraction was impaired in Gaa-/- mice indicating impaired extracellular calcium influx. We conclude that GAA enzyme deficiency leads to glycogen accumulation in the trachea and bronchi and impairs the ability of lower ASM to regulate calcium and respond appropriately to bronchodilator or constrictors. Accordingly, ASM dysfunction may contribute to respiratory impairments in Pompe disease.
Collapse
Affiliation(s)
- Allison M Keeler
- Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Donghai Liu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Marina Zieger
- Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Lang Xiong
- Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jeffrey Salemi
- Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Karl Bellvé
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida; and
| | - David D Fuller
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Mai K ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts; .,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
48
|
An SS, Liggett SB. Taste and smell GPCRs in the lung: Evidence for a previously unrecognized widespread chemosensory system. Cell Signal 2017; 41:82-88. [PMID: 28167233 DOI: 10.1016/j.cellsig.2017.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
Taste and smell receptor expression has been traditionally limited to the tongue and nose. We have identified bitter taste receptors (TAS2Rs) and olfactory receptors (ORs) on human airway smooth muscle (HASM) cells. TAS2Rs signal to PLCβ evoking an increase in [Ca2+]i causing membrane hyperpolarization and marked HASM relaxation ascertained by single cell, ex vivo, and in vivo methods. The presence of TAS2Rs in the lung was unexpected, as was the bronchodilatory function which has been shown to be due to signaling within specific microdomains of the cell. Unlike β2-adrenergic receptor-mediated bronchodilation, TAS2R function is not impaired in asthma and shows little tachyphylaxis. HASM ORs do not bronchodilate, but rather modulate cytoskeletal remodeling and hyperplasia, two cardinal features of asthma. We have shown that short chain fatty acids, byproducts of fermentation of polysaccharides by the gut microbiome, activate HASM ORs. This establishes a non-immune gut-lung mechanism that ties observations on gut microbial communities to asthma phenotypes. Subsequent studies by multiple investigators have revealed expression and specialized functions of TAS2Rs and ORs in multiple cell-types and organs throughout the body. Collectively, the data point towards a previously unrecognized chemosensory system which recognizes endogenous and exogenous agonists. These receptors and their ligands play roles in normal homeostatic functions, predisposition or adaptation to disease, and represent drug targets for novel therapeutics.
Collapse
Affiliation(s)
- Steven S An
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe Street, Baltimore, MD 21205, United States.
| | - Stephen B Liggett
- Department of Internal Medicine, Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 2, Tampa, FL 33612, United States; Department of Pharmacology and Physiology, Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 2, Tampa, FL 33612, United States.
| |
Collapse
|
49
|
Gu QD, Joe DS, Gilbert CA. Activation of bitter taste receptors in pulmonary nociceptors sensitizes TRPV1 channels through the PLC and PKC signaling pathway. Am J Physiol Lung Cell Mol Physiol 2017; 312:L326-L333. [PMID: 28062485 DOI: 10.1152/ajplung.00468.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 11/22/2022] Open
Abstract
Bitter taste receptors (T2Rs), a G protein-coupled receptor family capable of detecting numerous bitter-tasting compounds, have recently been shown to be expressed and play diverse roles in many extraoral tissues. Here we report the functional expression of T2Rs in rat pulmonary sensory neurons. In anesthetized spontaneously breathing rats, intratracheal instillation of T2R agonist chloroquine (10 mM, 0.1 ml) significantly augmented chemoreflexes evoked by right-atrial injection of capsaicin, a specific activator for transient receptor potential vanilloid receptor 1 (TRPV1), whereas intravenous infusion of chloroquine failed to significantly affect capsaicin-evoked reflexes. In patch-clamp recordings with isolated rat vagal pulmonary sensory neurons, pretreatment with chloroquine (1-1,000 µM, 90 s) concentration dependently potentiated capsaicin-induced TRPV1-mediated inward currents. Preincubating with diphenitol and denatonium (1 mM, 90 s), two other T2R activators, also enhanced capsaicin currents in these neurons but to a lesser extent. The sensitizing effect of chloroquine was effectively prevented by the phospholipase C inhibitor U73122 (1 µM) or by the protein kinase C inhibitor chelerythrine (10 µM). In summary, our study showed that activation of T2Rs augments capsaicin-evoked TRPV1 responses in rat pulmonary nociceptors through the phospholipase C and protein kinase C signaling pathway.
Collapse
Affiliation(s)
- Qihai David Gu
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia
| | - Deanna S Joe
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia
| | - Carolyn A Gilbert
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia
| |
Collapse
|
50
|
Lu P, Zhang CH, Lifshitz LM, ZhuGe R. Extraoral bitter taste receptors in health and disease. J Gen Physiol 2017; 149:181-197. [PMID: 28053191 PMCID: PMC5299619 DOI: 10.1085/jgp.201611637] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/06/2016] [Accepted: 12/19/2016] [Indexed: 12/24/2022] Open
Abstract
Bitter taste receptors (TAS2Rs or T2Rs) belong to the superfamily of seven-transmembrane G protein-coupled receptors, which are the targets of >50% of drugs currently on the market. Canonically, T2Rs are located in taste buds of the tongue, where they initiate bitter taste perception. However, accumulating evidence indicates that T2Rs are widely expressed throughout the body and mediate diverse nontasting roles through various specialized mechanisms. It has also become apparent that T2Rs and their polymorphisms are associated with human disorders. In this review, we summarize the physiological and pathophysiological roles that extraoral T2Rs play in processes as diverse as innate immunity and reproduction, and the major challenges in this emerging field.
Collapse
Affiliation(s)
- Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| | - Cheng-Hai Zhang
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lawrence M Lifshitz
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 .,Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|