1
|
Cai H, Des Marais DL. Revisiting regulatory coherence: accounting for temporal bias in plant gene co-expression analyses. THE NEW PHYTOLOGIST 2023; 238:16-24. [PMID: 36617750 DOI: 10.1111/nph.18720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Haoran Cai
- Department of Civil and Environmental Engineering, MIT, 15 Vassar St., Cambridge, MA, 02139, USA
| | - David L Des Marais
- Department of Civil and Environmental Engineering, MIT, 15 Vassar St., Cambridge, MA, 02139, USA
| |
Collapse
|
2
|
Fu J, Zhu W, Wang L, Luo M, Jiang B, Dong Z. Dynamic Expression and Gene Regulation of MicroRNAs During Bighead Carp (Hypophthalmichthys nobilis) Early Development. Front Genet 2022; 12:821403. [PMID: 35126475 PMCID: PMC8809360 DOI: 10.3389/fgene.2021.821403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
The early development of fish is regulated through dynamic and complex mechanisms involving the regulation of various genes. Many genes are subjected to post-transcriptional regulation by microRNAs (miRNAs). In the Chinese aquaculture industry, the native species bighead carp (Hypophthalmichthys nobilis) is important. However, the genetic regulation related to the early development of bighead carp is unknown. Here, we generated developmental profiles by miRNA sequencing to study the dynamic regulation of miRNAs during bighead carp early development. This study identified 1 046 miRNAs, comprising 312 known miRNAs and 734 uncharacterized miRNAs. Changes in miRNA expression were identified in the six early development stages. An obviously increased expression trend was detected during the development process, with the main burst of activity occurring after the earliest stage (early blastula, DS1). Investigations revealed that several miRNAs were dominantly expressed during the development process, especially in the later stages (e.g., miR-10b-5p, miR-21, miR-92a-3p, miR-206-3p, and miR-430a-3p), suggesting that these miRNAs exerted important functions during embryonic development. The differentially expressed miRNAs (DEMs) and time-serial analysis (profiles) of DEMs were analyzed. A total of 372 miRNAs were identified as DEMs (fold-change >2, and false discovery rate <0.05), and three expression profiles of the DEMs were detected to have co-expression patterns (r > 0.7, and p < 0.05). The broad negative regulation of target genes by miRNAs was speculated, and many development-related biological processes and pathways were enriched for the targets of the DEMs, which might be associated with maternal genome degradation and embryogenesis processes. In conclusion, we revealed the repertoire of miRNAs that are active during early development of bighead carp. These findings will increase our understanding of the regulatory mechanisms of early development of fish.
Collapse
Affiliation(s)
- Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Bingjie Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Zaijie Dong, ,
| |
Collapse
|
3
|
Hanumantha Rao K, Roy K, Paul S, Ghosh S. N-acetylglucosamine transporter, Ngt1, undergoes sugar-responsive endosomal trafficking in Candida albicans. Mol Microbiol 2021; 117:429-449. [PMID: 34877729 DOI: 10.1111/mmi.14857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
N-acetylglucosamine (GlcNAc), an important amino sugar at the infection sites of the fungal pathogen Candida albicans, triggers multiple cellular processes. GlcNAc import at the cell surface is mediated by GlcNAc transporter, Ngt1 which seems to play a critical role during GlcNAc signaling. We have investigated the Ngt1 dynamics that provide a platform for further studies aimed at understanding the mechanistic insights of regulating process(es) in C. albicans. The expression of this transporter is prolific and highly sensitive to even very low levels (˂2 µM) of GlcNAc. Under these conditions, Ngt1 undergoes phosphorylation-associated ubiquitylation as a code for internalization. This ubiquitylation process involves the triggering proteins like protein kinase Snf1, arrestin-related trafficking adaptors (ART) protein Rod1, and yeast ubiquitin ligase Rsp5. Interestingly, analysis of ∆snf1 and ∆rsp5 mutants revealed that while Rsp5 is promoting the endosomal trafficking of Ngt1-GFPɤ, Snf1 hinders the process. Furthermore, colocalization experiments of Ngt1 with Vps17 (an endosomal marker), Sec7 (a trans-Golgi marker), and a vacuolar marker revealed the fate of Ngt1 during sugar-responsive endosomal trafficking. ∆ras1 and ∆ubi4 mutants showed decreased ubiquitylation and delayed endocytosis of Ngt1. According to our knowledge, this is the first report which illustrates the mechanistic insights that are responsible for endosomal trafficking of a GlcNAc transporter in an eukaryotic organism.
Collapse
Affiliation(s)
- Kongara Hanumantha Rao
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India.,Central Instrumentation Facility, Division of Research and Development, Lovely Professional University, Phagwara, India
| | - Kasturi Roy
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, India
| | - Soumita Paul
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, India
| | - Swagata Ghosh
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, India
| |
Collapse
|
4
|
Mani S, Tlusty T. A comprehensive survey of developmental programs reveals a dearth of tree-like lineage graphs and ubiquitous regeneration. BMC Biol 2021; 19:111. [PMID: 34020630 PMCID: PMC8140435 DOI: 10.1186/s12915-021-01013-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background Multicellular organisms are characterized by a wide diversity of forms and complexity despite a restricted set of key molecules and mechanisms at the base of organismal development. Development combines three basic processes—asymmetric cell division, signaling, and gene regulation—in a multitude of ways to create this overwhelming diversity of multicellular life forms. Here, we use a generative model to test the limits to which such processes can be combined to generate multiple differentiation paths during development, and attempt to chart the diversity of multicellular organisms generated. Results We sample millions of biologically feasible developmental schemes, allowing us to comment on the statistical properties of cell differentiation trajectories they produce. We characterize model-generated “organisms” using the graph topology of their cell type lineage maps. Remarkably, tree-type lineage differentiation maps are the rarest in our data. Additionally, a majority of the “organisms” generated by our model appear to be endowed with the ability to regenerate using pluripotent cells. Conclusions Our results indicate that, in contrast to common views, cell type lineage graphs are unlikely to be tree-like. Instead, they are more likely to be directed acyclic graphs, with multiple lineages converging on the same terminal cell type. Furthermore, the high incidence of pluripotent cells in model-generated organisms stands in line with the long-standing hypothesis that whole body regeneration is an epiphenomenon of development. We discuss experimentally testable predictions of our model and some ways to adapt the generative framework to test additional hypotheses about general features of development. Supplementary Information The online version contains supplementary material available at (10.1186/s12915-021-01013-4).
Collapse
Affiliation(s)
- Somya Mani
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, South Korea.
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, South Korea. .,Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
5
|
Floc'hlay S, Wong ES, Zhao B, Viales RR, Thomas-Chollier M, Thieffry D, Garfield DA, Furlong EEM. Cis-acting variation is common across regulatory layers but is often buffered during embryonic development. Genome Res 2021; 31:211-224. [PMID: 33310749 PMCID: PMC7849415 DOI: 10.1101/gr.266338.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Precise patterns of gene expression are driven by interactions between transcription factors, regulatory DNA sequences, and chromatin. How DNA mutations affecting any one of these regulatory "layers" are buffered or propagated to gene expression remains unclear. To address this, we quantified allele-specific changes in chromatin accessibility, histone modifications, and gene expression in F1 embryos generated from eight Drosophila crosses at three embryonic stages, yielding a comprehensive data set of 240 samples spanning multiple regulatory layers. Genetic variation (allelic imbalance) impacts gene expression more frequently than chromatin features, with metabolic and environmental response genes being most often affected. Allelic imbalance in cis-regulatory elements (enhancers) is common and highly heritable, yet its functional impact does not generally propagate to gene expression. When it does, genetic variation impacts RNA levels through two alternative mechanisms involving either H3K4me3 or chromatin accessibility and H3K27ac. Changes in RNA are more predictive of variation in H3K4me3 than vice versa, suggesting a role for H3K4me3 downstream from transcription. The impact of a substantial proportion of genetic variation is consistent across embryonic stages, with 50% of allelic imbalanced features at one stage being also imbalanced at subsequent developmental stages. Crucially, buffering, as well as the magnitude and evolutionary impact of genetic variants, is influenced by regulatory complexity (i.e., number of enhancers regulating a gene), with transcription factors being most robust to cis-acting, but most influenced by trans-acting, variation.
Collapse
Affiliation(s)
- Swann Floc'hlay
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Emily S Wong
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Bingqing Zhao
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Rebecca R Viales
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Morgane Thomas-Chollier
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Denis Thieffry
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - David A Garfield
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| |
Collapse
|
6
|
Masullo T, Biondo G, Natale MD, Tagliavia M, Bennici CD, Musco M, Ragusa MA, Costa S, Cuttitta A, Nicosia A. Gene Expression Changes after Parental Exposure to Metals in the Sea Urchin Affect Timing of Genetic Programme of Embryo Development. BIOLOGY 2021; 10:biology10020103. [PMID: 33535713 PMCID: PMC7912929 DOI: 10.3390/biology10020103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
It is widely accepted that phenotypic traits can be modulated at the epigenetic level so that some conditions can affect the progeny of exposed individuals. To assess if the exposure of adult animals could result in effects on the offspring, the Mediterranean sea urchin and its well-characterized gene regulatory networks (GRNs) was chosen as a model. Adult animals were exposed to known concentrations of zinc and cadmium (both individually and in combination) for 10 days, and the resulting embryos were followed during the development. The oxidative stress occurring in parental gonads, embryo phenotypes and mortality, and the expression level of a set of selected genes, including members of the skeletogenic and endodermal GRNs, were evaluated. Increased oxidative stress at F0, high rates of developmental aberration with impaired gastrulation, in association to deregulation of genes involved in skeletogenesis (dri, hex, sm50, p16, p19, msp130), endodermal specification (foxa, hox11/13b, wnt8) and epigenetic regulation (kat2A, hdac1, ehmt2, phf8 and UBE2a) occurred either at 24 or 48 hpf. Results strongly indicate that exposure to environmental pollutants can affect not only directly challenged animals but also their progeny (at least F1), influencing optimal timing of genetic programme of embryo development, resulting in an overall impairment of developmental success.
Collapse
Affiliation(s)
- Tiziana Masullo
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Girolama Biondo
- Institute for Anthropic Impacts and Sustainability in Marine Environment-National Research Council (IAS-CNR), Detached Unit of Capo Granitola, Via del mare 3, 91021 Campobello di Mazara, Italy;
| | - Marilena Di Natale
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
- Department of Earth and Marine Science (DiSTeM), University of Palermo, Via Archirafi 20, 90123 Palermo, Italy
| | - Marcello Tagliavia
- Institute for Biomedical Research and Innovation-National Research Council-(IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Carmelo Daniele Bennici
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Marianna Musco
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy; (M.A.R.); (S.C.)
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy; (M.A.R.); (S.C.)
| | - Angela Cuttitta
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
- Correspondence: (A.C.); (A.N.)
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council-(IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
- Correspondence: (A.C.); (A.N.)
| |
Collapse
|
7
|
Gualtieri CT. Genomic Variation, Evolvability, and the Paradox of Mental Illness. Front Psychiatry 2021; 11:593233. [PMID: 33551865 PMCID: PMC7859268 DOI: 10.3389/fpsyt.2020.593233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
Twentieth-century genetics was hard put to explain the irregular behavior of neuropsychiatric disorders. Autism and schizophrenia defy a principle of natural selection; they are highly heritable but associated with low reproductive success. Nevertheless, they persist. The genetic origins of such conditions are confounded by the problem of variable expression, that is, when a given genetic aberration can lead to any one of several distinct disorders. Also, autism and schizophrenia occur on a spectrum of severity, from mild and subclinical cases to the overt and disabling. Such irregularities reflect the problem of missing heritability; although hundreds of genes may be associated with autism or schizophrenia, together they account for only a small proportion of cases. Techniques for higher resolution, genomewide analysis have begun to illuminate the irregular and unpredictable behavior of the human genome. Thus, the origins of neuropsychiatric disorders in particular and complex disease in general have been illuminated. The human genome is characterized by a high degree of structural and behavioral variability: DNA content variation, epistasis, stochasticity in gene expression, and epigenetic changes. These elements have grown more complex as evolution scaled the phylogenetic tree. They are especially pertinent to brain development and function. Genomic variability is a window on the origins of complex disease, neuropsychiatric disorders, and neurodevelopmental disorders in particular. Genomic variability, as it happens, is also the fuel of evolvability. The genomic events that presided over the evolution of the primate and hominid lineages are over-represented in patients with autism and schizophrenia, as well as intellectual disability and epilepsy. That the special qualities of the human genome that drove evolution might, in some way, contribute to neuropsychiatric disorders is a matter of no little interest.
Collapse
|
8
|
Abstract
New species arise as the genomes of populations diverge. The developmental 'alarm clock' of speciation sounds off when sufficient divergence in genetic control of development leads hybrid individuals to infertility or inviability, the world awoken to the dawn of new species with intrinsic post-zygotic reproductive isolation. Some developmental stages will be more prone to hybrid dysfunction due to how molecular evolution interacts with the ontogenetic timing of gene expression. Considering the ontogeny of hybrid incompatibilities provides a profitable connection between 'evo-devo' and speciation genetics to better link macroevolutionary pattern, microevolutionary process, and molecular mechanisms. Here, we explore speciation alongside development, emphasizing their mutual dependence on genetic network features, fitness landscapes, and developmental system drift. We assess models for how ontogenetic timing of reproductive isolation can be predictable. Experiments and theory within this synthetic perspective can help identify new rules of speciation as well as rules in the molecular evolution of development.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of TorontoTorontoCanada
| | - Joanna D Bundus
- Department of Integrative Biology, University of Wisconsin – MadisonMadisonUnited States
| |
Collapse
|
9
|
Hogan JD, Keenan JL, Luo L, Ibn-Salem J, Lamba A, Schatzberg D, Piacentino ML, Zuch DT, Core AB, Blumberg C, Timmermann B, Grau JH, Speranza E, Andrade-Navarro MA, Irie N, Poustka AJ, Bradham CA. The developmental transcriptome for Lytechinus variegatus exhibits temporally punctuated gene expression changes. Dev Biol 2019; 460:139-154. [PMID: 31816285 DOI: 10.1016/j.ydbio.2019.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
Embryonic development is arguably the most complex process an organism undergoes during its lifetime, and understanding this complexity is best approached with a systems-level perspective. The sea urchin has become a highly valuable model organism for understanding developmental specification, morphogenesis, and evolution. As a non-chordate deuterostome, the sea urchin occupies an important evolutionary niche between protostomes and vertebrates. Lytechinus variegatus (Lv) is an Atlantic species that has been well studied, and which has provided important insights into signal transduction, patterning, and morphogenetic changes during embryonic and larval development. The Pacific species, Strongylocentrotus purpuratus (Sp), is another well-studied sea urchin, particularly for gene regulatory networks (GRNs) and cis-regulatory analyses. A well-annotated genome and transcriptome for Sp are available, but similar resources have not been developed for Lv. Here, we provide an analysis of the Lv transcriptome at 11 timepoints during embryonic and larval development. Temporal analysis suggests that the gene regulatory networks that underlie specification are well-conserved among sea urchin species. We show that the major transitions in variation of embryonic transcription divide the developmental time series into four distinct, temporally sequential phases. Our work shows that sea urchin development occurs via sequential intervals of relatively stable gene expression states that are punctuated by abrupt transitions.
Collapse
Affiliation(s)
- John D Hogan
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | | | - Lingqi Luo
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | - Jonas Ibn-Salem
- Evolution and Development Group, Max-Planck Institute for Molecular Genetics, Berlin, Germany; Faculty of Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Arjun Lamba
- Biology Department, Boston University, Boston, MA, USA
| | | | - Michael L Piacentino
- Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA
| | - Daniel T Zuch
- Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA
| | - Amanda B Core
- Biology Department, Boston University, Boston, MA, USA
| | | | - Bernd Timmermann
- Sequencing Core Facility, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - José Horacio Grau
- Dahlem Centre for Genome Research and Medical Systems Biology, Environmental and Phylogenomics Group, Berlin, Germany; Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Emily Speranza
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | | | - Naoki Irie
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Albert J Poustka
- Evolution and Development Group, Max-Planck Institute for Molecular Genetics, Berlin, Germany; Dahlem Centre for Genome Research and Medical Systems Biology, Environmental and Phylogenomics Group, Berlin, Germany
| | - Cynthia A Bradham
- Program in Bioinformatics, Boston University, Boston, MA, USA; Biology Department, Boston University, Boston, MA, USA; Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
10
|
Garte S, Albert A. Genotype Components as Predictors of Phenotype in Model Gene Regulatory Networks. Acta Biotheor 2019; 67:299-320. [PMID: 31286303 DOI: 10.1007/s10441-019-09350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
Abstract
Models of gene regulatory networks (GRN) have proven useful for understanding many aspects of the highly complex behavior of biological control networks. Randomly generated non-Boolean networks were used in experimental simulations to generate data on dynamic phenotypes as a function of several genotypic parameters. We found that predictive relationships between some phenotypes and quantitative genotypic parameters such as number of network genes, interaction density, and initial condition could be derived depending on the strength of the topological (positional) genotype on specific phenotypes. We quantitated the strength of the topological genotype effect (TGE) on a number of phenotypes in multi-gene networks. For phenotypes with a low influence of topological genotype, derived and empirical relationships using quantitative genotype parameters were accurate in phenotypic outcomes. We found a number of dynamic network properties, including oscillation behaviors, that were largely dependent on genotype topology, and for which no such general quantitative relationships were determinable. It remains to be determined if these results are applicable to biological gene regulatory networks.
Collapse
|
11
|
Wu Z, Jung HS. How the diversity of the faces arises. J Oral Biosci 2019; 61:195-200. [PMID: 31751682 DOI: 10.1016/j.job.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND The evolution of the face is crucial for each species to adapt to different diets, environments, and in some species, to promote social interaction. The diversity in the shapes of the face results from divergence in the process of facial development that begins during early embryonic development. HIGHLIGHTS Here we review the recent advancements in the understanding of the genetic, epigenetic, molecular, and cellular basis of facial diversity. We also review the robustness of facial development and how it relates to the evolution of the face. Finally, we discuss the current challenges in achieving a deeper understanding of facial diversity. CONCLUSION We have gained much knowledge with respect to cis-regulatory elements, gene expression, cellular behavior, and the physical forces in facial development in the past two decades. Significant interdisciplinary work is needed to integrate these varied pieces of information into a complete picture of how the diversity of faces arises.
Collapse
Affiliation(s)
- Zhaoming Wu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
12
|
Barr K, Reinitz J, Radulescu O. An in silico analysis of robust but fragile gene regulation links enhancer length to robustness. PLoS Comput Biol 2019; 15:e1007497. [PMID: 31730659 PMCID: PMC6881076 DOI: 10.1371/journal.pcbi.1007497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/27/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022] Open
Abstract
Organisms must ensure that expression of genes is directed to the appropriate tissues at the correct times, while simultaneously ensuring that these gene regulatory systems are robust to perturbation. This idea is captured by a mathematical concept called r-robustness, which says that a system is robust to a perturbation in up to r - 1 randomly chosen parameters. r-robustness implies that the biological system has a small number of sensitive parameters and that this number can be used as a robustness measure. In this work we use this idea to investigate the robustness of gene regulation using a sequence level model of the Drosophila melanogaster gene even-skipped. We consider robustness with respect to mutations of the enhancer sequence and with respect to changes of the transcription factor concentrations. We find that gene regulation is r-robust with respect to mutations in the enhancer sequence and identify a number of sensitive nucleotides. In both natural and in silico predicted enhancers, the number of nucleotides that are sensitive to mutation correlates negatively with the length of the sequence, meaning that longer sequences are more robust. The exact degree of robustness obtained is dependent not only on DNA sequence, but also on the local concentration of regulatory factors. We find that gene regulation can be remarkably sensitive to changes in transcription factor concentrations at the boundaries of expression features, while it is robust to perturbation elsewhere.
Collapse
Affiliation(s)
- Kenneth Barr
- Department of Genetic Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - John Reinitz
- Departments of Statistics, Ecology & Evolution, Molecular Genetics & Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Ovidiu Radulescu
- LPHI UMR CNRS 5235, University of Montpellier, Montpellier, France
| |
Collapse
|
13
|
Sánchez-Aragón M, Cantisán-Gómez J, Luque CM, Brás-Pereira C, Lopes CS, Lemos MC, Casares F. A Toggle-Switch and a Feed-Forward Loop Engage in the Control of the Drosophila Retinal Determination Gene Network. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
14
|
Discovery and characterization of variance QTLs in human induced pluripotent stem cells. PLoS Genet 2019; 15:e1008045. [PMID: 31002671 PMCID: PMC6474585 DOI: 10.1371/journal.pgen.1008045] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/22/2019] [Indexed: 12/17/2022] Open
Abstract
Quantification of gene expression levels at the single cell level has revealed that gene expression can vary substantially even across a population of homogeneous cells. However, it is currently unclear what genomic features control variation in gene expression levels, and whether common genetic variants may impact gene expression variation. Here, we take a genome-wide approach to identify expression variance quantitative trait loci (vQTLs). To this end, we generated single cell RNA-seq (scRNA-seq) data from induced pluripotent stem cells (iPSCs) derived from 53 Yoruba individuals. We collected data for a median of 95 cells per individual and a total of 5,447 single cells, and identified 235 mean expression QTLs (eQTLs) at 10% FDR, of which 79% replicate in bulk RNA-seq data from the same individuals. We further identified 5 vQTLs at 10% FDR, but demonstrate that these can also be explained as effects on mean expression. Our study suggests that dispersion QTLs (dQTLs) which could alter the variance of expression independently of the mean can have larger fold changes, but explain less phenotypic variance than eQTLs. We estimate 4,015 individuals as a lower bound to achieve 80% power to detect the strongest dQTLs in iPSCs. These results will guide the design of future studies on understanding the genetic control of gene expression variance. Common genetic variation can alter the level of average gene expression in human tissues, and through changes in gene expression have downstream consequences on cell function, human development, and human disease. However, human tissues are composed of many cells, each with its own level of gene expression. With advances in single cell sequencing technologies, we can now go beyond simply measuring the average level of gene expression in a tissue sample and directly measure cell-to-cell variance in gene expression. We hypothesized that genetic variation could also alter gene expression variance, potentially revealing new insights into human development and disease. To test this hypothesis, we used single cell RNA sequencing to directly measure gene expression variance in multiple individuals, and then associated the gene expression variance with genetic variation in those same individuals. Our results suggest that effects on gene expression variance are smaller than effects on mean expression, relative to how much the phenotypes vary between individuals, and will require much larger studies than previously thought to detect.
Collapse
|
15
|
Ali S, Signor SA, Kozlov K, Nuzhdin SV. Novel approach to quantitative spatial gene expression uncovers genetic stochasticity in the developing Drosophila eye. Evol Dev 2019; 21:157-171. [PMID: 30756455 DOI: 10.1111/ede.12283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Robustness in development allows for the accumulation of genetically based variation in expression. However, this variation is usually examined in response to large perturbations, and examination of this variation has been limited to being spatial, or quantitative, but because of technical restrictions not both. Here we bridge these gaps by investigating replicated quantitative spatial gene expression using rigorous statistical models, in different genotypes, sexes, and species (Drosophila melanogaster and D. simulans). Using this type of quantitative approach with molecular developmental data allows for comparison among conditions, such as different genetic backgrounds. We apply this approach to the morphogenetic furrow, a wave of differentiation that patterns the developing eye disc. Within the morphogenetic furrow, we focus on four genes, hairy, atonal, hedgehog, and Delta. Hybridization chain reaction quantitatively measures spatial gene expression, co-staining for all four genes simultaneously. We find considerable variation in the spatial expression pattern of these genes in the eye between species, genotypes, and sexes. We also find that there has been evolution of the regulatory relationship between these genes, and that their spatial interrelationships have evolved between species. This variation has no phenotypic effect, and could be buffered by network thresholds or compensation from other genes. Both of these mechanisms could potentially be contributing to long term developmental systems drift.
Collapse
Affiliation(s)
- Sammi Ali
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Sarah A Signor
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Konstantin Kozlov
- Department of Applied Mathematics, St. Petersburg State Polytechnic University, St. Petersburg, Russia
| | - Sergey V Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, California.,Department of Applied Mathematics, St. Petersburg State Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
16
|
Volgin AD, Yakovlev OA, Demin KA, de Abreu MS, Alekseeva PA, Friend AJ, Lakstygal AM, Amstislavskaya TG, Bao W, Song C, Kalueff AV. Zebrafish models for personalized psychiatry: Insights from individual, strain and sex differences, and modeling gene x environment interactions. J Neurosci Res 2018; 97:402-413. [PMID: 30320468 DOI: 10.1002/jnr.24337] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/16/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022]
Abstract
Currently becoming widely recognized, personalized psychiatry focuses on unique physiological and genetic profiles of patients to best tailor their therapy. However, the role of individual differences, as well as genetic and environmental factors, in human psychiatric disorders remains poorly understood. Animal experimental models are a valuable tool to improve our understanding of disease pathophysiology and its molecular mechanisms. Due to high reproduction capability, fully sequenced genome, easy gene editing, and high genetic and physiological homology with humans, zebrafish (Danio rerio) are emerging as a novel powerful model in biomedicine. Mounting evidence supports zebrafish as a useful model organism in CNS research. Robustly expressed in these fish, individual, strain, and sex differences shape their CNS responses to genetic, environmental, and pharmacological manipulations. Here, we discuss zebrafish as a promising complementary translational tool to further advance patient-centered personalized psychiatry.
Collapse
Affiliation(s)
- Andrey D Volgin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Military Medical Academy, St Petersburg, Russia
| | - Oleg A Yakovlev
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Military Medical Academy, St Petersburg, Russia
| | - Konstantin A Demin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Polina A Alekseeva
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, Louisiana
| | - Anton M Lakstygal
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tamara G Amstislavskaya
- Laboratory of Translational Biopsychiatry, Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Wandong Bao
- School of Pharmacy, Southwest University, Chongqing, China
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China.,Ural Federal University, Ekaterinburg, Russia.,ZENEREI Research Center, Slidell, Louisiana.,Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Granov Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
17
|
Shashikant T, Khor JM, Ettensohn CA. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms. Genesis 2018; 56:e23253. [PMID: 30264451 PMCID: PMC6294693 DOI: 10.1002/dvg.23253] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 09/23/2018] [Indexed: 01/19/2023]
Abstract
The skeletogenic gene regulatory network (GRN) of sea urchins and other echinoderms is one of the most intensively studied transcriptional networks in any developing organism. As such, it serves as a preeminent model of GRN architecture and evolution. This review summarizes our current understanding of this developmental network. We describe in detail the most comprehensive model of the skeletogenic GRN, one developed for the euechinoid sea urchin Strongylocentrotus purpuratus, including its initial deployment by maternal inputs, its elaboration and stabilization through regulatory gene interactions, and its control of downstream effector genes that directly drive skeletal morphogenesis. We highlight recent comparative studies that have leveraged the euechinoid GRN model to examine the evolution of skeletogenic programs in diverse echinoderms, studies that have revealed both conserved and divergent features of skeletogenesis within the phylum. Last, we summarize the major insights that have emerged from analysis of the structure and evolution of the echinoderm skeletogenic GRN and identify key, unresolved questions as a guide for future work.
Collapse
Affiliation(s)
- Tanvi Shashikant
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
McGirr JA, Martin CH. Parallel evolution of gene expression between trophic specialists despite divergent genotypes and morphologies. Evol Lett 2018; 2:62-75. [PMID: 30283665 PMCID: PMC6089502 DOI: 10.1002/evl3.41] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Parallel evolution of gene expression commonly underlies convergent niche specialization, but parallel changes in expression could also underlie divergent specialization. We investigated divergence in gene expression and whole-genome genetic variation across three sympatric Cyprinodon pupfishes endemic to San Salvador Island, Bahamas. This recent radiation consists of a generalist and two derived specialists adapted to novel niches: a scale-eating and a snail-eating pupfish. We sampled total mRNA from all three species at two early developmental stages and compared gene expression with whole-genome genetic differentiation among all three species in 42 resequenced genomes. Eighty percent of genes that were differentially expressed between snail-eaters and generalists were up or down regulated in the same direction between scale-eaters and generalists; however, there were no fixed variants shared between species underlying these parallel changes in expression. Genes showing parallel evolution of expression were enriched for effects on metabolic processes, whereas genes showing divergent expression were enriched for effects on cranial skeleton development and pigment biosynthesis, reflecting the most divergent phenotypes observed between specialist species. Our findings reveal that even divergent niche specialists may exhibit convergent adaptation to higher trophic levels through shared genetic pathways. This counterintuitive result suggests that parallel evolution in gene expression can accompany divergent ecological speciation during adaptive radiation.
Collapse
Affiliation(s)
- Joseph A. McGirr
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27514
| | - Christopher H. Martin
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27514
| |
Collapse
|
19
|
Rittschof CC, Hughes KA. Advancing behavioural genomics by considering timescale. Nat Commun 2018; 9:489. [PMID: 29434301 PMCID: PMC5809431 DOI: 10.1038/s41467-018-02971-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
Animal behavioural traits often covary with gene expression, pointing towards a genomic constraint on organismal responses to environmental cues. This pattern highlights a gap in our understanding of the time course of environmentally responsive gene expression, and moreover, how these dynamics are regulated. Advances in behavioural genomics explore how gene expression dynamics are correlated with behavioural traits that range from stable to highly labile. We consider the idea that certain genomic regulatory mechanisms may predict the timescale of an environmental effect on behaviour. This temporally minded approach could inform both organismal and evolutionary questions ranging from the remediation of early life social trauma to understanding the evolution of trait plasticity.
Collapse
Affiliation(s)
- Clare C Rittschof
- Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA.
| | - Kimberly A Hughes
- Department of Biological Sciences, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
20
|
Guðbrandsson J, Franzdóttir SR, Kristjánsson BK, Ahi EP, Maier VH, Kapralova KH, Snorrason SS, Jónsson ZO, Pálsson A. Differential gene expression during early development in recently evolved and sympatric Arctic charr morphs. PeerJ 2018; 6:e4345. [PMID: 29441236 PMCID: PMC5807978 DOI: 10.7717/peerj.4345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/19/2018] [Indexed: 02/06/2023] Open
Abstract
Phenotypic differences between closely related taxa or populations can arise through genetic variation or be environmentally induced, leading to altered transcription of genes during development. Comparative developmental studies of closely related species or variable populations within species can help to elucidate the molecular mechanisms related to evolutionary divergence and speciation. Studies of Arctic charr (Salvelinus alpinus) and related salmonids have revealed considerable phenotypic variation among populations and in Arctic charr many cases of extensive variation within lakes (resource polymorphism) have been recorded. One example is the four Arctic charr morphs in the ∼10,000 year old Lake Thingvallavatn, which differ in numerous morphological and life history traits. We set out to investigate the molecular and developmental roots of this polymorphism by studying gene expression in embryos of three of the morphs reared in a common garden set-up. We performed RNA-sequencing, de-novo transcriptome assembly and compared gene expression among morphs during an important timeframe in early development, i.e., preceding the formation of key trophic structures. Expectedly, developmental time was the predominant explanatory variable. As the data were affected by some form of RNA-degradation even though all samples passed quality control testing, an estimate of 3'-bias was the second most common explanatory variable. Importantly, morph, both as an independent variable and as interaction with developmental time, affected the expression of numerous transcripts. Transcripts with morph effect, separated the three morphs at the expression level, with the two benthic morphs being more similar. However, Gene Ontology analyses did not reveal clear functional enrichment of transcripts between groups. Verification via qPCR confirmed differential expression of several genes between the morphs, including regulatory genes such as AT-Rich Interaction Domain 4A (arid4a) and translin (tsn). The data are consistent with a scenario where genetic divergence has contributed to differential expression of multiple genes and systems during early development of these sympatric Arctic charr morphs.
Collapse
Affiliation(s)
- Jóhannes Guðbrandsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Freshwater Division, Marine and Freshwater Research Institute, Reykjavík, Iceland
| | - Sigríður Rut Franzdóttir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| | | | - Ehsan Pashay Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Karl-Franzens-Universität, Graz, Austria
| | - Valerie Helene Maier
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| | | | | | - Zophonías Oddur Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| | - Arnar Pálsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
21
|
Control of primary metabolism by a virulence regulatory network promotes robustness in a plant pathogen. Nat Commun 2018; 9:418. [PMID: 29379078 PMCID: PMC5788922 DOI: 10.1038/s41467-017-02660-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/17/2017] [Indexed: 11/09/2022] Open
Abstract
Robustness is a key system-level property of living organisms to maintain their functions while tolerating perturbations. We investigate here how a regulatory network controlling multiple virulence factors impacts phenotypic robustness of a bacterial plant pathogen. We reconstruct a cell-scale model of Ralstonia solanacearum connecting a genome-scale metabolic network, a virulence macromolecule network, and a virulence regulatory network, which includes 63 regulatory components. We develop in silico methods to quantify phenotypic robustness under a broad set of conditions in high-throughput simulation analyses. This approach reveals that the virulence regulatory network exerts a control of the primary metabolism to promote robustness upon infection. The virulence regulatory network plugs into the primary metabolism mainly through the control of genes likely acquired via horizontal gene transfer, which results in a functional overlay with ancestral genes. These results support the view that robustness may be a selected trait that promotes pathogenic fitness upon infection.
Collapse
|
22
|
Mäkinen H, Sävilammi T, Papakostas S, Leder E, Vøllestad LA, Primmer CR. Modularity Facilitates Flexible Tuning of Plastic and Evolutionary Gene Expression Responses during Early Divergence. Genome Biol Evol 2018; 10:77-93. [PMID: 29293993 PMCID: PMC5758911 DOI: 10.1093/gbe/evx278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2017] [Indexed: 12/14/2022] Open
Abstract
Gene expression changes have been recognized as important drivers of adaptation to changing environmental conditions. Little is known about the relative roles of plastic and evolutionary responses in complex gene expression networks during the early stages of divergence. Large gene expression data sets coupled with in silico methods for identifying coexpressed modules now enable systems genetics approaches also in nonmodel species for better understanding of gene expression responses during early divergence. Here, we combined gene coexpression analyses with population genetics to separate plastic and population (evolutionary) effects in expression networks using small salmonid populations as a model system. We show that plastic and population effects were highly variable among the six identified modules and that the plastic effects explained larger proportion of the total eigengene expression than population effects. A more detailed analysis of the population effects using a QST - FST comparison across 16,622 annotated transcripts revealed that gene expression followed neutral expectations within modules and at the global level. Furthermore, two modules showed enrichment for genes coding for early developmental traits that have been previously identified as important phenotypic traits in thermal responses in the same model system indicating that coexpression analysis can capture expression patterns underlying ecologically important traits. We suggest that module-specific responses may facilitate the flexible tuning of expression levels to local thermal conditions. Overall, our study indicates that plasticity and neutral evolution are the main drivers of gene expression variance in the early stages of thermal adaptation in this system.
Collapse
Affiliation(s)
| | | | | | - Erica Leder
- Department of Biology, University of Turku, Finland
- Natural History Museum, University of Oslo, Norway
| | - Leif A Vøllestad
- Center for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Craig R Primmer
- Department of Biosciences, University of Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
23
|
Martino C, Costa C, Roccheri MC, Koop D, Scudiero R, Byrne M. Gadolinium perturbs expression of skeletogenic genes, calcium uptake and larval development in phylogenetically distant sea urchin species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:57-66. [PMID: 29156215 DOI: 10.1016/j.aquatox.2017.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Chelates of Gadolinium (Gd), a lanthanide metal, are employed as contrast agents for magnetic resonance imaging and are released into the aquatic environment where they are an emerging contaminant. We studied the effects of environmentally relevant Gd concentrations on the development of two phylogenetically and geographically distant sea urchin species: the Mediterranean Paracentrotus lividus and the Australian Heliocidaris tuberculata. We found a general delay of embryo development at 24h post-fertilization, and a strong inhibition of skeleton growth at 48h. Total Gd and Ca content in the larvae showed a time- and concentration-dependent increase in Gd, in parallel with a reduction in Ca. To investigate the impact of Gd on the expression of genes involved in the regulation of skeletogenesis, we performed comparative RT-PCR analysis and found a misregulation of several genes involved in the skeletogenic and left-right axis specification gene regulatory networks. Species-specific differences in the biomineralization response were evident, likely due to differences in the skeletal framework of the larvae and the amount of biomineral produced. Our results highlight the hazard of Gd for marine organisms.
Collapse
Affiliation(s)
- Chiara Martino
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146, Palermo, Italy.
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Maria Carmela Roccheri
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy
| | - Demian Koop
- Department of Anatomy and Histology, F13, University of Sydney, NSW, Australia
| | - Rosaria Scudiero
- Dipartimento di Biologia, Università di Napoli Federico II, via Mezzocannone 8, 80134, Napoli, Italy
| | - Maria Byrne
- Department of Anatomy and Histology, F13, University of Sydney, NSW, Australia
| |
Collapse
|
24
|
Erdogdu U, Polat F, Alhajj R. Employing decomposable partially observable Markov decision processes to control gene regulatory networks. Artif Intell Med 2017; 83:14-34. [DOI: 10.1016/j.artmed.2017.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/28/2017] [Accepted: 06/14/2017] [Indexed: 11/30/2022]
|
25
|
Cavalieri V, Spinelli G. Environmental epigenetics in zebrafish. Epigenetics Chromatin 2017; 10:46. [PMID: 28982377 PMCID: PMC5629768 DOI: 10.1186/s13072-017-0154-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023] Open
Abstract
It is widely accepted that the epigenome can act as the link between environmental cues, both external and internal, to the organism and phenotype by converting the environmental stimuli to phenotypic responses through changes in gene transcription outcomes. Environmental stress endured by individual organisms can also enforce epigenetic variations in offspring that had never experienced it directly, which is termed transgenerational inheritance. To date, research in the environmental epigenetics discipline has used a wide range of both model and non-model organisms to elucidate the various epigenetic mechanisms underlying the adaptive response to environmental stimuli. In this review, we discuss the advantages of the zebrafish model for studying how environmental toxicant exposures affect the regulation of epigenetic processes, especially DNA methylation, which is the best-studied epigenetic mechanism. We include several very recent studies describing the state-of-the-art knowledge on this topic in zebrafish, together with key concepts in the function of DNA methylation during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Laboratory of Molecular Biology and Functional Genomics, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Edificio 16, 90128, Palermo, Italy. .,Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze Edificio 18, 90128, Palermo, Italy.
| | - Giovanni Spinelli
- Laboratory of Molecular Biology and Functional Genomics, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Edificio 16, 90128, Palermo, Italy.
| |
Collapse
|
26
|
Khoueiry P, Girardot C, Ciglar L, Peng PC, Gustafson EH, Sinha S, Furlong EE. Uncoupling evolutionary changes in DNA sequence, transcription factor occupancy and enhancer activity. eLife 2017; 6. [PMID: 28792889 PMCID: PMC5550276 DOI: 10.7554/elife.28440] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
Sequence variation within enhancers plays a major role in both evolution and disease, yet its functional impact on transcription factor (TF) occupancy and enhancer activity remains poorly understood. Here, we assayed the binding of five essential TFs over multiple stages of embryogenesis in two distant Drosophila species (with 1.4 substitutions per neutral site), identifying thousands of orthologous enhancers with conserved or diverged combinatorial occupancy. We used these binding signatures to dissect two properties of developmental enhancers: (1) potential TF cooperativity, using signatures of co-associations and co-divergence in TF occupancy. This revealed conserved combinatorial binding despite sequence divergence, suggesting protein-protein interactions sustain conserved collective occupancy. (2) Enhancer in-vivo activity, revealing orthologous enhancers with conserved activity despite divergence in TF occupancy. Taken together, we identify enhancers with diverged motifs yet conserved occupancy and others with diverged occupancy yet conserved activity, emphasising the need to functionally measure the effect of divergence on enhancer activity.
Collapse
Affiliation(s)
- Pierre Khoueiry
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Lucia Ciglar
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Pei-Chen Peng
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Champaign, United States
| | - E Hilary Gustafson
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Saurabh Sinha
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.,Carl R. Woese Institute of Genomic Biology, University of Illinois, Champaign, United States
| | - Eileen Em Furlong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|
27
|
Malik A, Gildor T, Sher N, Layous M, Ben-Tabou de-Leon S. Parallel embryonic transcriptional programs evolve under distinct constraints and may enable morphological conservation amidst adaptation. Dev Biol 2017; 430:202-213. [PMID: 28780048 DOI: 10.1016/j.ydbio.2017.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/13/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022]
Abstract
Embryonic development evolves by balancing stringent morphological constraints with genetic and environmental variation. The design principle that allows developmental transcriptional programs to conserve embryonic morphology while adapting to environmental changes is still not fully understood. To address this fundamental challenge, we compare developmental transcriptomes of two sea urchin species, Paracentrotus lividus and Strongylocentrotus purpuratus, that shared a common ancestor about 40 million years ago and are geographically distant yet show similar morphology. We find that both developmental and housekeeping genes show highly dynamic and strongly conserved temporal expression patterns. The expression of other gene sets, including homeostasis and response genes, show divergent expression which could result from either evolutionary drift or adaptation to local environmental conditions. The interspecies correlations of developmental gene expressions are highest between morphologically similar developmental time points whereas the interspecies correlations of housekeeping gene expression are high between all the late zygotic time points. Relatedly, the position of the phylotypic stage varies between these two groups of genes: developmental gene expression shows highest conservation at mid-developmental stage, in agreement with the hourglass model while the conservation of housekeeping genes keeps increasing with developmental time. When all genes are combined, the relationship between conservation of gene expression and morphological similarity is partially masked by housekeeping genes and genes with diverged expression. Our study illustrates various transcriptional programs that coexist in the developing embryo and evolve under different constraints. Apparently, morphological constraints underlie the conservation of developmental gene expression while embryonic fitness requires the conservation of housekeeping gene expression and the species-specific adjustments of homeostasis gene expression. The distinct evolutionary forces acting on these transcriptional programs enable the conservation of similar body plans while allowing adaption.
Collapse
Affiliation(s)
- Assaf Malik
- Bionformatics Core Unit, University of Haifa, Haifa 31905, Israel
| | - Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| | - Noa Sher
- Bionformatics Core Unit, University of Haifa, Haifa 31905, Israel
| | - Majed Layous
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| |
Collapse
|
28
|
Runcie DE, Dorey N, Garfield DA, Stumpp M, Dupont S, Wray GA. Genomic Characterization of the Evolutionary Potential of the Sea Urchin Strongylocentrotus droebachiensis Facing Ocean Acidification. Genome Biol Evol 2017; 8:3672-3684. [PMID: 28082601 PMCID: PMC5521728 DOI: 10.1093/gbe/evw272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2016] [Indexed: 12/19/2022] Open
Abstract
Ocean acidification (OA) is increasing due to anthropogenic CO2 emissions and poses a threat to marine species and communities worldwide. To better project the effects of acidification on organisms’ health and persistence, an understanding is needed of the 1) mechanisms underlying developmental and physiological tolerance and 2) potential populations have for rapid evolutionary adaptation. This is especially challenging in nonmodel species where targeted assays of metabolism and stress physiology may not be available or economical for large-scale assessments of genetic constraints. We used mRNA sequencing and a quantitative genetics breeding design to study mechanisms underlying genetic variability and tolerance to decreased seawater pH (-0.4 pH units) in larvae of the sea urchin Strongylocentrotus droebachiensis. We used a gene ontology-based approach to integrate expression profiles into indirect measures of cellular and biochemical traits underlying variation in larval performance (i.e., growth rates). Molecular responses to OA were complex, involving changes to several functions such as growth rates, cell division, metabolism, and immune activities. Surprisingly, the magnitude of pH effects on molecular traits tended to be small relative to variation attributable to segregating functional genetic variation in this species. We discuss how the application of transcriptomics and quantitative genetics approaches across diverse species can enrich our understanding of the biological impacts of climate change.
Collapse
Affiliation(s)
- Daniel E Runcie
- Department of Biology, Duke University, Durham, NC, USA.,Department of Plant Sciences, University of California, Davis, USA
| | - Narimane Dorey
- Department of Biological and Environmental Sciences, University of Gothenburg, Fiskebäckskil, Sweden
| | - David A Garfield
- Department of Biology, Duke University, Durham, NC, USA.,Integrative Research Institute for the Life Sciences, Humboldt University, Berlin, Germany
| | - Meike Stumpp
- Department of Biological and Environmental Sciences, University of Gothenburg, Fiskebäckskil, Sweden.,Helmholtz Centre for Ocean Sciences (GEOMAR), Kiel, Germany
| | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Gothenburg, Fiskebäckskil, Sweden
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| |
Collapse
|
29
|
Cavalieri V, Geraci F, Spinelli G. Diversification of spatiotemporal expression and copy number variation of the echinoid hbox12/pmar1/micro1 multigene family. PLoS One 2017; 12:e0174404. [PMID: 28350855 PMCID: PMC5370098 DOI: 10.1371/journal.pone.0174404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/08/2017] [Indexed: 11/26/2022] Open
Abstract
Changes occurring during evolution in the cis-regulatory landscapes of individual members of multigene families might impart diversification in their spatiotemporal expression and function. The archetypal member of the echinoid hbox12/pmar1/micro1 family is hbox12-a, a homeobox-containing gene expressed exclusively by dorsal blastomeres, where it governs the dorsal/ventral gene regulatory network during embryogenesis of the sea urchin Paracentrotus lividus. Here we describe the inventory of the hbox12/pmar1/micro1 genes in P. lividus, highlighting that gene copy number variation occurs across individual sea urchins of the same species. We show that the various hbox12/pmar1/micro1 genes group into three subfamilies according to their spatiotemporal expression, which ranges from broad transcription throughout development to transient expression in either the animal hemisphere or micromeres of the early embryo. Interestingly, the promoter regions of those genes showing comparable expression patterns are highly similar, while differing from those of the other subfamilies. Strikingly, phylogenetic analysis suggests that the hbox12/pmar1/micro1 genes are species-specific, exhibiting extensive divergence in their noncoding, but not in their coding, sequences across three distinct sea urchin species. In spite of this, two micromere-specific genes of P. lividus possess a TCF/LEF-binding motif in a similar position, and their transcription relies on Wnt/β-catenin signaling, similar to the pmar1 and micro1 genes, which in other sea urchin species are involved in micromere specification. Altogether, our findings suggest that the hbox12/pmar1/micro1 gene family evolved rather rapidly, generating paralogs whose cis-regulatory sequences diverged following multiple rounds of duplication from a common ancestor.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Edificio 16, Palermo, Italy
- Advanced Technologies Network Center (ATeN), University of Palermo, Viale delle Scienze Edificio 18, Palermo, Italy
- * E-mail: (VC); (GS)
| | - Fabiana Geraci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Edificio 16, Palermo, Italy
| | - Giovanni Spinelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Edificio 16, Palermo, Italy
- * E-mail: (VC); (GS)
| |
Collapse
|
30
|
Gaitán-Espitia JD, Hofmann GE. Gene expression profiling during the embryo-to-larva transition in the giant red sea urchin Mesocentrotus franciscanus. Ecol Evol 2017; 7:2798-2811. [PMID: 28428870 PMCID: PMC5395446 DOI: 10.1002/ece3.2850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 01/24/2023] Open
Abstract
In echinoderms, major morphological transitions during early development are attributed to different genetic interactions and changes in global expression patterns that shape the regulatory program for the specification of embryonic territories. In order more thoroughly to understand these biological and molecular processes, we examined the transcriptome structure and expression profiles during the embryo‐to‐larva transition of a keystone species, the giant red sea urchin Mesocentrotus franciscanus. Using a de novo assembly approach, we obtained 176,885 transcripts from which 60,439 (34%) had significant alignments to known proteins. From these transcripts, ~80% were functionally annotated allowing the identification of ~2,600 functional, structural, and regulatory genes involved in developmental process. Analysis of expression profiles between gastrula and pluteus stages of M. franciscanus revealed 791 differentially expressed genes with 251 GO overrepresented terms. For gastrula, up‐regulated GO terms were mainly linked to cell differentiation and signal transduction involved in cell cycle checkpoints. In the pluteus stage, major GO terms were associated with phosphoprotein phosphatase activity, muscle contraction, and olfactory behavior, among others. Our evolutionary comparative analysis revealed that several of these genes and functional pathways are highly conserved among echinoids, holothuroids, and ophiuroids.
Collapse
Affiliation(s)
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology University of California Santa Barbara CA USA
| |
Collapse
|
31
|
Cary GA, Hinman VF. Echinoderm development and evolution in the post-genomic era. Dev Biol 2017; 427:203-211. [PMID: 28185788 DOI: 10.1016/j.ydbio.2017.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 01/01/2023]
Abstract
The highly recognizable animals within the phylum Echinodermata encompass an enormous disparity of adult and larval body plans. The extensive knowledge of sea urchin development has culminated in the description of the exquisitely detailed gene regulatory network (GRN) that governs the specification of various embryonic territories. This information provides a unique opportunity for comparative studies in other echinoderm taxa to understand the evolution and developmental mechanisms underlying body plan change. This review focuses on recent work that has utilized new genomic resources and systems-level experiments to address questions of evolutionary developmental biology. In particular, we synthesize the results of several recent studies from various echinoderm classes that have explored the development and evolution of the larval skeleton, which is a major feature that distinguishes the two predominant larval subtypes within the Phylum. We specifically examine the ways in which GRNs can evolve, either through cis regulatory and/or protein-level changes in transcription factors. We also examine recent work comparing evolution across shorter time scales that occur within and between species of sea urchin, and highlight the kinds of questions that can be addressed by these comparisons. The advent of new genomic and transcriptomic datasets in additional species from all classes of echinoderm will continue to empower the use of these taxa for evolutionary developmental studies.
Collapse
Affiliation(s)
- Gregory A Cary
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, United States
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, United States.
| |
Collapse
|
32
|
Foo SA, Byrne M. Acclimatization and Adaptive Capacity of Marine Species in a Changing Ocean. ADVANCES IN MARINE BIOLOGY 2016; 74:69-116. [PMID: 27573050 DOI: 10.1016/bs.amb.2016.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To persist in an ocean changing in temperature, pH and other stressors related to climate change, many marine species will likely need to acclimatize or adapt to avoid extinction. If marine populations possess adequate genetic variation in tolerance to climate change stressors, species might be able to adapt to environmental change. Marine climate change research is moving away from single life stage studies where individuals are directly placed into projected scenarios ('future shock' approach), to focus on the adaptive potential of populations in an ocean that will gradually change over coming decades. This review summarizes studies that consider the adaptive potential of marine invertebrates to climate change stressors and the methods that have been applied to this research, including quantitative genetics, laboratory selection studies and trans- and multigenerational experiments. Phenotypic plasticity is likely to contribute to population persistence providing time for genetic adaptation to occur. Transgenerational and epigenetic effects indicate that the environmental and physiological history of the parents can affect offspring performance. There is a need for long-term, multigenerational experiments to determine the influence of phenotypic plasticity, genetic variation and transgenerational effects on species' capacity to persist in a changing ocean. However, multigenerational studies are only practicable for short generation species. Consideration of multiple morphological and physiological traits, including changes in molecular processes (eg, DNA methylation) and long-term studies that facilitate acclimatization will be essential in making informed predictions of how the seascape and marine communities will be altered by climate change.
Collapse
Affiliation(s)
- S A Foo
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
| | - M Byrne
- Schools of Medical and Biological Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
33
|
Fischer EK, Ghalambor CK, Hoke KL. Can a Network Approach Resolve How Adaptive vs Nonadaptive Plasticity Impacts Evolutionary Trajectories? Integr Comp Biol 2016; 56:877-888. [DOI: 10.1093/icb/icw087] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
34
|
Gonzalez PN, Pavlicev M, Mitteroecker P, Pardo-Manuel de Villena F, Spritz RA, Marcucio RS, Hallgrímsson B. Genetic structure of phenotypic robustness in the collaborative cross mouse diallel panel. J Evol Biol 2016; 29:1737-51. [PMID: 27234063 DOI: 10.1111/jeb.12906] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 05/11/2016] [Accepted: 05/22/2016] [Indexed: 12/19/2022]
Abstract
Developmental stability and canalization describe the ability of developmental systems to minimize phenotypic variation in the face of stochastic micro-environmental effects, genetic variation and environmental influences. Canalization is the ability to minimize the effects of genetic or environmental effects, whereas developmental stability is the ability to minimize the effects of micro-environmental effects within individuals. Despite much attention, the mechanisms that underlie these two components of phenotypic robustness remain unknown. We investigated the genetic structure of phenotypic robustness in the collaborative cross (CC) mouse reference population. We analysed the magnitude of fluctuating asymmetry (FA) and among-individual variation of cranial shape in reciprocal crosses among the eight parental strains, using geometric morphometrics and a diallel analysis based on a Bayesian approach. Significant differences among genotypes were found for both measures, although they were poorly correlated at the level of individuals. An overall positive effect of inbreeding was found for both components of variation. The strain CAST/EiJ exerted a positive additive effect on FA and, to a lesser extent, among-individual variance. Sex- and other strain-specific effects were not significant. Neither FA nor among-individual variation was associated with phenotypic extremeness. Our results support the existence of genetic variation for both developmental stability and canalization. This finding is important because robustness is a key feature of developmental systems. Our finding that robustness is not related to phenotypic extremeness is consistent with theoretical work that suggests that its relationship to stabilizing selection is not straightforward.
Collapse
Affiliation(s)
- P N Gonzalez
- Instituto de Genética Veterinaria, CCT-CONICET, La Plata, Argentina
| | - M Pavlicev
- Department of Pediatrics, Cincinnati Children's Hospital Medical Centre, Cincinnati, OH, USA
| | - P Mitteroecker
- Department of Theoretical Biology, University of Vienna, Wien, Austria
| | | | - R A Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - R S Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, San Francisco General Hospital, University of California San Francisco, San Francisco, CA, USA
| | - B Hallgrímsson
- Department of Cell Biology and Anatomy, McCaig Institute for Bone and Joint Health, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
35
|
Laarits T, Bordalo P, Lemos B. Genes under weaker stabilizing selection increase network evolvability and rapid regulatory adaptation to an environmental shift. J Evol Biol 2016; 29:1602-16. [DOI: 10.1111/jeb.12897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/03/2016] [Accepted: 05/13/2016] [Indexed: 11/28/2022]
Affiliation(s)
| | - P. Bordalo
- Department of Systems Biology; Harvard Medical School; Boston MA USA
| | - B. Lemos
- Program in Molecular and Integrative Physiological Sciences; Department of Environmental Health; Harvard T. H. Chan School of Public Health; Boston MA USA
| |
Collapse
|
36
|
Xu Q, Zhu C, Fan Y, Song Z, Xing S, Liu W, Yan J, Sang T. Population transcriptomics uncovers the regulation of gene expression variation in adaptation to changing environment. Sci Rep 2016; 6:25536. [PMID: 27150248 PMCID: PMC4858677 DOI: 10.1038/srep25536] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/19/2016] [Indexed: 11/23/2022] Open
Abstract
Expression variation plays an important role in plant adaptation, but little is known about the factors impacting the expression variation when population adapts to changing environment. We used RNA-seq data from 80 individuals in 14 Miscanthus lutarioriparius populations, which were transplanted into a harsh environment from native habitat, to investigate the expression level, expression diversity and genetic diversity for genes expressed in both environments. The expression level of genes with lower expression level or without SNP tended to be more changeable in new environment, which suggested highly expressed genes experienced stronger purifying selection than those at lower level. Low proportion of genes with population effect confirmed the weak population structure and frequent gene flow in these populations. Meanwhile, the number of genes with environment effect was the most frequent compared with that with population effect. Our results showed that environment and genetic diversity were the main factors determining gene expression variation in population. This study could facilitate understanding the mechanisms of global gene expression variation when plant population adapts to changing environment.
Collapse
Affiliation(s)
- Qin Xu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Caiyun Zhu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Fan
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihong Song
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilai Xing
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Juan Yan
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Tao Sang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
37
|
Steinacher A, Bates DG, Akman OE, Soyer OS. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels. PLoS One 2016; 11:e0153295. [PMID: 27082741 PMCID: PMC4833316 DOI: 10.1371/journal.pone.0153295] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 03/28/2016] [Indexed: 12/31/2022] Open
Abstract
Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for the ubiquity of nonlinear dynamics in gene expression networks, and generate useful guidelines for the design of synthetic gene circuits.
Collapse
Affiliation(s)
| | - Declan G. Bates
- School of Engineering, University of Warwick, Warwick, United Kingdom
| | - Ozgur E. Akman
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, United Kingdom
- * E-mail: (OEA); (OSS)
| | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, Warwick, United Kingdom
- * E-mail: (OEA); (OSS)
| |
Collapse
|
38
|
Israel JW, Martik ML, Byrne M, Raff EC, Raff RA, McClay DR, Wray GA. Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris. PLoS Biol 2016; 14:e1002391. [PMID: 26943850 PMCID: PMC4778923 DOI: 10.1371/journal.pbio.1002391] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/26/2016] [Indexed: 01/08/2023] Open
Abstract
The ecologically significant shift in developmental strategy from planktotrophic (feeding) to lecithotrophic (nonfeeding) development in the sea urchin genus Heliocidaris is one of the most comprehensively studied life history transitions in any animal. Although the evolution of lecithotrophy involved substantial changes to larval development and morphology, it is not known to what extent changes in gene expression underlie the developmental differences between species, nor do we understand how these changes evolved within the context of the well-defined gene regulatory network (GRN) underlying sea urchin development. To address these questions, we used RNA-seq to measure expression dynamics across development in three species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph H. tuberculata, and an outgroup planktotroph Lytechinus variegatus. Using well-established statistical methods, we developed a novel framework for identifying, quantifying, and polarizing evolutionary changes in gene expression profiles across the transcriptome and within the GRN. We found that major changes in gene expression profiles were more numerous during the evolution of lecithotrophy than during the persistence of planktotrophy, and that genes with derived expression profiles in the lecithotroph displayed specific characteristics as a group that are consistent with the dramatically altered developmental program in this species. Compared to the transcriptome, changes in gene expression profiles within the GRN were even more pronounced in the lecithotroph. We found evidence for conservation and likely divergence of particular GRN regulatory interactions in the lecithotroph, as well as significant changes in the expression of genes with known roles in larval skeletogenesis. We further use coexpression analysis to identify genes of unknown function that may contribute to both conserved and derived developmental traits between species. Collectively, our results indicate that distinct evolutionary processes operate on gene expression during periods of life history conservation and periods of life history divergence, and that this contrast is even more pronounced within the GRN than across the transcriptome as a whole.
Collapse
Affiliation(s)
- Jennifer W. Israel
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Megan L. Martik
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Maria Byrne
- Schools of Medical and Biological Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Elizabeth C. Raff
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Rudolf A. Raff
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - David R. McClay
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Gregory A. Wray
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
39
|
Ben-Tabou de-Leon S. Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks. Front Genet 2016; 7:16. [PMID: 26913048 PMCID: PMC4753288 DOI: 10.3389/fgene.2016.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
Developmental gene regulatory networks robustly control the timely activation of regulatory and differentiation genes. The structure of these networks underlies their capacity to buffer intrinsic and extrinsic noise and maintain embryonic morphology. Here I illustrate how the use of specific architectures by the sea urchin developmental regulatory networks enables the robust control of cell fate decisions. The Wnt-βcatenin signaling pathway patterns the primary embryonic axis while the BMP signaling pathway patterns the secondary embryonic axis in the sea urchin embryo and across bilateria. Interestingly, in the sea urchin in both cases, the signaling pathway that defines the axis controls directly the expression of a set of downstream regulatory genes. I propose that this direct activation of a set of regulatory genes enables a uniform regulatory response and a clear cut cell fate decision in the endoderm and in the dorsal ectoderm. The specification of the mesodermal pigment cell lineage is activated by Delta signaling that initiates a triple positive feedback loop that locks down the pigment specification state. I propose that the use of compound positive feedback circuitry provides the endodermal cells enough time to turn off mesodermal genes and ensures correct mesoderm vs. endoderm fate decision. Thus, I argue that understanding the control properties of repeatedly used regulatory architectures illuminates their role in embryogenesis and provides possible explanations to their resistance to evolutionary change.
Collapse
|
40
|
Koga H, Fujitani H, Morino Y, Miyamoto N, Tsuchimoto J, Shibata TF, Nozawa M, Shigenobu S, Ogura A, Tachibana K, Kiyomoto M, Amemiya S, Wada H. Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton. PLoS One 2016; 11:e0149067. [PMID: 26866800 PMCID: PMC4750990 DOI: 10.1371/journal.pone.0149067] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/27/2016] [Indexed: 11/19/2022] Open
Abstract
Over the course of evolution, the acquisition of novel structures has ultimately led to wide variation in morphology among extant multicellular organisms. Thus, the origins of genetic systems for new morphological structures are a subject of great interest in evolutionary biology. The larval skeleton is a novel structure acquired in some echinoderm lineages via the activation of the adult skeletogenic machinery. Previously, VEGF signaling was suggested to have played an important role in the acquisition of the larval skeleton. In the present study, we compared expression patterns of Alx genes among echinoderm classes to further explore the factors involved in the acquisition of a larval skeleton. We found that the alx1 gene, originally described as crucial for sea urchin skeletogenesis, may have also played an essential role in the evolution of the larval skeleton. Unlike those echinoderms that have a larval skeleton, we found that alx1 of starfish was barely expressed in early larvae that have no skeleton. When alx1 overexpression was induced via injection of alx1 mRNA into starfish eggs, the expression patterns of certain genes, including those possibly involved in skeletogenesis, were altered. This suggested that a portion of the skeletogenic program was induced solely by alx1. However, we observed no obvious external phenotype or skeleton. We concluded that alx1 was necessary but not sufficient for the acquisition of the larval skeleton, which, in fact, requires several genetic events. Based on these results, we discuss how the larval expression of alx1 contributed to the acquisition of the larval skeleton in the putative ancestral lineage of echinoderms.
Collapse
Affiliation(s)
- Hiroyuki Koga
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Haruka Fujitani
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshiaki Morino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Norio Miyamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Jun Tsuchimoto
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | | | - Masafumi Nozawa
- Center for Information Biology, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Mishima, Japan
| | - Shuji Shigenobu
- National Institute for Basic Biology, Okazaki, Japan
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Atsushi Ogura
- Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Kazunori Tachibana
- Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama, Japan
| | - Masato Kiyomoto
- Marine and Coastal Research Center, Ochanomizu University, Tateyama, Japan
| | - Shonan Amemiya
- Marine and Coastal Research Center, Ochanomizu University, Tateyama, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Research and Education Center of Natural Sciences, Keio University, Yokohama, Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
41
|
Dylus DV, Czarkwiani A, Stångberg J, Ortega-Martinez O, Dupont S, Oliveri P. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks. EvoDevo 2016; 7:2. [PMID: 26759711 PMCID: PMC4709884 DOI: 10.1186/s13227-015-0039-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 11/20/2022] Open
Abstract
Background The evolutionary mechanisms involved in shaping complex gene regulatory networks (GRN) that encode for morphologically similar structures in distantly related animals remain elusive. In this context, echinoderm larval skeletons found in brittle stars and sea urchins provide an ideal system. Here, we characterize for the first time the development of the larval skeleton in the ophiuroid Amphiura filiformis and compare it systematically with its counterpart in sea urchin. Results We show that ophiuroids and euechinoids, that split at least 480 Million years ago (Mya), have remarkable similarities in tempo and mode of skeletal development. Despite morphological and ontological similarities, our high-resolution study of the dynamics of genetic regulatory states in A. filiformis highlights numerous differences in the architecture of their underlying GRNs. Importantly, the A.filiformispplx, the closest gene to the sea urchin double negative gate (DNG) repressor pmar1, fails to drive the skeletogenic program in sea urchin, showing important evolutionary differences in protein function. hesC, the second repressor of the DNG, is co-expressed with most of the genes that are repressed in sea urchin, indicating the absence of direct repression of tbr, ets1/2, and delta in A. filiformis. Furthermore, the absence of expression in later stages of brittle star skeleton development of key regulatory genes, such as foxb and dri, shows significantly different regulatory states. Conclusion Our data fill up an important gap in the picture of larval mesoderm in echinoderms and allows us to explore the evolutionary implications relative to the recently established phylogeny of echinoderm classes. In light of recent studies on other echinoderms, our data highlight a high evolutionary plasticity of the same nodes throughout evolution of echinoderm skeletogenesis. Finally, gene duplication, protein function diversification, and cis-regulatory element evolution all contributed to shape the regulatory program for larval skeletogenesis in different branches of echinoderms. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0039-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Viktor Dylus
- Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK ; CoMPLEX/SysBio, UCL, Gower Street, London, WC1E 6BT UK ; Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Anna Czarkwiani
- Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK
| | - Josefine Stångberg
- Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK ; Research Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Olga Ortega-Martinez
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Sciences, University of Gothenburg, Kristineberg 566, 451 78 Fiskebäckskil, Sweden
| | - Sam Dupont
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Sciences, University of Gothenburg, Kristineberg 566, 451 78 Fiskebäckskil, Sweden
| | - Paola Oliveri
- Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
42
|
Barah P, B N MN, Jayavelu ND, Sowdhamini R, Shameer K, Bones AM. Transcriptional regulatory networks in Arabidopsis thaliana during single and combined stresses. Nucleic Acids Res 2015; 44:3147-64. [PMID: 26681689 PMCID: PMC4838348 DOI: 10.1093/nar/gkv1463] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 11/28/2015] [Indexed: 11/25/2022] Open
Abstract
Differentially evolved responses to various stress conditions in plants are controlled by complex regulatory circuits of transcriptional activators, and repressors, such as transcription factors (TFs). To understand the general and condition-specific activities of the TFs and their regulatory relationships with the target genes (TGs), we have used a homogeneous stress gene expression dataset generated on ten natural ecotypes of the model plant Arabidopsis thaliana, during five single and six combined stress conditions. Knowledge-based profiles of binding sites for 25 stress-responsive TF families (187 TFs) were generated and tested for their enrichment in the regulatory regions of the associated TGs. Condition-dependent regulatory sub-networks have shed light on the differential utilization of the underlying network topology, by stress-specific regulators and multifunctional regulators. The multifunctional regulators maintain the core stress response processes while the transient regulators confer the specificity to certain conditions. Clustering patterns of transcription factor binding sites (TFBS) have reflected the combinatorial nature of transcriptional regulation, and suggested the putative role of the homotypic clusters of TFBS towards maintaining transcriptional robustness against cis-regulatory mutations to facilitate the preservation of stress response processes. The Gene Ontology enrichment analysis of the TGs reflected sequential regulation of stress response mechanisms in plants.
Collapse
Affiliation(s)
- Pankaj Barah
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Mahantesha Naika B N
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bangalore 560 065, India
| | - Naresh Doni Jayavelu
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bangalore 560 065, India
| | - Khader Shameer
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bangalore 560 065, India
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| |
Collapse
|
43
|
Quantitative developmental transcriptomes of the Mediterranean sea urchin Paracentrotus lividus. Mar Genomics 2015; 25:89-94. [PMID: 26671332 DOI: 10.1016/j.margen.2015.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 01/28/2023]
Abstract
Embryonic development progresses through the timely activation of thousands of differentially activated genes. Quantitative developmental transcriptomes provide the means to relate global patterns of differentially expressed genes to the emerging body plans they generate. The sea urchin is one of the classic model systems for embryogenesis and the models of its developmental gene regulatory networks are of the most comprehensive of their kind. Thus, the sea urchin embryo is an excellent system for studies of its global developmental transcriptional profiles. Here we produced quantitative developmental transcriptomes of the sea urchin Paracentrotus lividus (P. lividus) at seven developmental stages from the fertilized egg to prism stage. We generated de-novo reference transcriptome and identified 29,817 genes that are expressed at this time period. We annotated and quantified gene expression at the different developmental stages and confirmed the reliability of the expression profiles by QPCR measurement of a subset of genes. The progression of embryo development is reflected in the observed global expression patterns and in our principle component analysis. Our study illuminates the rich patterns of gene expression that participate in sea urchin embryogenesis and provide an essential resource for further studies of the dynamic expression of P. lividus genes.
Collapse
|
44
|
Payne JL, Wagner A. Mechanisms of mutational robustness in transcriptional regulation. Front Genet 2015; 6:322. [PMID: 26579194 PMCID: PMC4621482 DOI: 10.3389/fgene.2015.00322] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/10/2015] [Indexed: 12/17/2022] Open
Abstract
Robustness is the invariance of a phenotype in the face of environmental or genetic change. The phenotypes produced by transcriptional regulatory circuits are gene expression patterns that are to some extent robust to mutations. Here we review several causes of this robustness. They include robustness of individual transcription factor binding sites, homotypic clusters of such sites, redundant enhancers, transcription factors, redundant transcription factors, and the wiring of transcriptional regulatory circuits. Such robustness can either be an adaptation by itself, a byproduct of other adaptations, or the result of biophysical principles and non-adaptive forces of genome evolution. The potential consequences of such robustness include complex regulatory network topologies that arise through neutral evolution, as well as cryptic variation, i.e., genotypic divergence without phenotypic divergence. On the longest evolutionary timescales, the robustness of transcriptional regulation has helped shape life as we know it, by facilitating evolutionary innovations that helped organisms such as flowering plants and vertebrates diversify.
Collapse
Affiliation(s)
- Joshua L Payne
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich Zurich, Switzerland ; Swiss Institute of Bioinformatics Lausanne, Switzerland
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich Zurich, Switzerland ; Swiss Institute of Bioinformatics Lausanne, Switzerland ; The Santa Fe Institute Santa Fe, NM, USA
| |
Collapse
|
45
|
Sears KE, Maier JA, Rivas-Astroza M, Poe R, Zhong S, Kosog K, Marcot JD, Behringer RR, Cretekos CJ, Rasweiler JJ, Rapti Z. The Relationship between Gene Network Structure and Expression Variation among Individuals and Species. PLoS Genet 2015; 11:e1005398. [PMID: 26317994 PMCID: PMC4552942 DOI: 10.1371/journal.pgen.1005398] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/27/2015] [Indexed: 01/01/2023] Open
Abstract
Variation among individuals is a prerequisite of evolution by natural selection. As such, identifying the origins of variation is a fundamental goal of biology. We investigated the link between gene interactions and variation in gene expression among individuals and species using the mammalian limb as a model system. We first built interaction networks for key genes regulating early (outgrowth; E9.5-11) and late (expansion and elongation; E11-13) limb development in mouse. This resulted in an Early (ESN) and Late (LSN) Stage Network. Computational perturbations of these networks suggest that the ESN is more robust. We then quantified levels of the same key genes among mouse individuals and found that they vary less at earlier limb stages and that variation in gene expression is heritable. Finally, we quantified variation in gene expression levels among four mammals with divergent limbs (bat, opossum, mouse and pig) and found that levels vary less among species at earlier limb stages. We also found that variation in gene expression levels among individuals and species are correlated for earlier and later limb development. In conclusion, results are consistent with the robustness of the ESN buffering among-individual variation in gene expression levels early in mammalian limb development, and constraining the evolution of early limb development among mammalian species.
Collapse
Affiliation(s)
- Karen E. Sears
- School of Integrative Biology, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Jennifer A. Maier
- School of Integrative Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Marcelo Rivas-Astroza
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Rachel Poe
- Department of Mathematics, University of Illinois, Urbana, Illinois, United States of America
| | - Sheng Zhong
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Kari Kosog
- School of Integrative Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Jonathan D. Marcot
- School of Integrative Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Richard R. Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Chris J. Cretekos
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States of America
| | - John J. Rasweiler
- Department of Obstetrics and Gynecology, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| | - Zoi Rapti
- Department of Mathematics, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
46
|
Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics. PLoS Genet 2015; 11:e1005435. [PMID: 26230518 PMCID: PMC4521883 DOI: 10.1371/journal.pgen.1005435] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/08/2015] [Indexed: 12/25/2022] Open
Abstract
Accurate temporal control of gene expression is essential for normal development and must be robust to natural genetic and environmental variation. Studying gene expression variation within and between related species can delineate the level of expression variability that development can tolerate. Here we exploit the comprehensive model of sea urchin gene regulatory networks and generate high-density expression profiles of key regulatory genes of the Mediterranean sea urchin, Paracentrotus lividus (Pl). The high resolution of our studies reveals highly reproducible gene initiation times that have lower variation than those of maximal mRNA levels between different individuals of the same species. This observation supports a threshold behavior of gene activation that is less sensitive to input concentrations. We then compare Mediterranean sea urchin gene expression profiles to those of its Pacific Ocean relative, Strongylocentrotus purpuratus (Sp). These species shared a common ancestor about 40 million years ago and show highly similar embryonic morphologies. Our comparative analyses of five regulatory circuits operating in different embryonic territories reveal a high conservation of the temporal order of gene activation but also some cases of divergence. A linear ratio of 1.3-fold between gene initiation times in Pl and Sp is partially explained by scaling of the developmental rates with temperature. Scaling the developmental rates according to the estimated Sp-Pl ratio and normalizing the expression levels reveals a striking conservation of relative dynamics of gene expression between the species. Overall, our findings demonstrate the ability of biological developmental systems to tightly control the timing of gene activation and relative dynamics and overcome expression noise induced by genetic variation and growth conditions.
Collapse
|
47
|
Ragland GJ, Almskaar K, Vertacnik KL, Gough HM, Feder JL, Hahn DA, Schwarz D. Differences in performance and transcriptome-wide gene expression associated withRhagoletis(Diptera: Tephritidae) larvae feeding in alternate host fruit environments. Mol Ecol 2015; 24:2759-76. [DOI: 10.1111/mec.13191] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Gregory J. Ragland
- Department of Entomology; Kansas State University; 123 W. Waters Hall Manhattan KS 66502 USA
- Environmental Change Initiative; University of Notre Dame; 1400 E. Angela Blvd. South Bend IN 46617 USA
- Department of Biological Sciences; University of Notre Dame; 100 Galvin Life Sciences Center; Notre Dame IN 46556 USA
| | - Kristin Almskaar
- Department of Biology; Western Washington University; 510 High Street MS 9160 Bellingham WA 98225 USA
| | - Kim L. Vertacnik
- Department of Biology; Western Washington University; 510 High Street MS 9160 Bellingham WA 98225 USA
| | - Harlan M. Gough
- Department of Biology; Western Washington University; 510 High Street MS 9160 Bellingham WA 98225 USA
| | - Jeffrey L. Feder
- Environmental Change Initiative; University of Notre Dame; 1400 E. Angela Blvd. South Bend IN 46617 USA
- Department of Biological Sciences; University of Notre Dame; 100 Galvin Life Sciences Center; Notre Dame IN 46556 USA
| | - Daniel A. Hahn
- Department of Entomology and Nematology; University of Florida; 1881 Natural Area Drive; Gainesville FL 32611 USA
| | - Dietmar Schwarz
- Department of Biology; Western Washington University; 510 High Street MS 9160 Bellingham WA 98225 USA
| |
Collapse
|
48
|
Thomas SM, Kagan C, Pavlovic BJ, Burnett J, Patterson K, Pritchard JK, Gilad Y. Reprogramming LCLs to iPSCs Results in Recovery of Donor-Specific Gene Expression Signature. PLoS Genet 2015; 11:e1005216. [PMID: 25950834 PMCID: PMC4423863 DOI: 10.1371/journal.pgen.1005216] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/13/2015] [Indexed: 11/18/2022] Open
Abstract
Renewable in vitro cell cultures, such as lymphoblastoid cell lines (LCLs), have facilitated studies that contributed to our understanding of genetic influence on human traits. However, the degree to which cell lines faithfully maintain differences in donor-specific phenotypes is still debated. We have previously reported that standard cell line maintenance practice results in a loss of donor-specific gene expression signatures in LCLs. An alternative to the LCL model is the induced pluripotent stem cell (iPSC) system, which carries the potential to model tissue-specific physiology through the use of differentiation protocols. Still, existing LCL banks represent an important source of starting material for iPSC generation, and it is possible that the disruptions in gene regulation associated with long-term LCL maintenance could persist through the reprogramming process. To address this concern, we studied the effect of reprogramming mature LCL cultures from six unrelated donors to iPSCs on the ensuing gene expression patterns within and between individuals. We show that the reprogramming process results in a recovery of donor-specific gene regulatory signatures, increasing the number of genes with a detectable donor effect by an order of magnitude. The proportion of variation in gene expression statistically attributed to donor increases from 6.9% in LCLs to 24.5% in iPSCs (P < 10-15). Since environmental contributions are unlikely to be a source of individual variation in our system of highly passaged cultured cell lines, our observations suggest that the effect of genotype on gene regulation is more pronounced in iPSCs than in LCLs. Our findings indicate that iPSCs can be a powerful model system for studies of phenotypic variation across individuals in general, and the genetic association with variation in gene regulation in particular. We further conclude that LCLs are an appropriate starting material for iPSC generation.
Collapse
Affiliation(s)
- Samantha M. Thomas
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Courtney Kagan
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Bryan J. Pavlovic
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Jonathan Burnett
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Kristen Patterson
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Jonathan K. Pritchard
- Departments of Genetics and Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Yoav Gilad
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
49
|
Specht CD, Howarth DG. Adaptation in flower form: a comparative evodevo approach. THE NEW PHYTOLOGIST 2015; 206:74-90. [PMID: 25470511 DOI: 10.1111/nph.13198] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/15/2014] [Indexed: 05/10/2023]
Abstract
Evolutionary developmental biology (evodevo) attempts to explain how the process of organismal development evolves, utilizing a comparative approach to investigate changes in developmental pathways and processes that occur during the evolution of a given lineage. Evolutionary genetics uses a population approach to understand how organismal changes in form or function are linked to underlying genetics, focusing on changes in gene and genotype frequencies within populations and the fixation of genotypic variation into traits that define species or evoke speciation events. Microevolutionary processes, including mutation, genetic drift, natural selection and gene flow, can provide the foundation for macroevolutionary patterns observed as morphological evolution and adaptation. The temporal element linking microevolutionary processes to macroevolutionary patterns is development: an organism's genotype is converted to phenotype by ontogenetic processes. Because selection acts upon the phenotype, the connection between evolutionary genetics and developmental evolution becomes essential to understanding adaptive evolution in organismal form and function. Here, we discuss how developmental genetic studies focused on key developmental processes could be linked within a comparative framework to study the developmental genetics of adaptive evolution, providing examples from research on two key processes of plant evodevo - floral symmetry and organ fusion - and their role in the adaptation of floral form.
Collapse
Affiliation(s)
- Chelsea D Specht
- Departments of Plant and Microbial Biology, Integrative Biology, and the University and Jepson Herbaria, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Dianella G Howarth
- Department of Biological Sciences, St John's University, 8000 Utopia Pkwy, Jamaica, NY, 11439, USA
| |
Collapse
|
50
|
Evolution of Marine Organisms under Climate Change at Different Levels of Biological Organisation. WATER 2014. [DOI: 10.3390/w6113545] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|