1
|
Strickland K, Jones ME, Storfer A, Hamede RK, Hohenlohe PA, Margres MJ, McCallum HI, Comte S, Lachish S, Kruuk LEB. Adaptive potential in the face of a transmissible cancer in Tasmanian devils. Mol Ecol 2024; 33:e17531. [PMID: 39340219 PMCID: PMC11521764 DOI: 10.1111/mec.17531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/28/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Emerging infectious diseases (EIDs) not only cause catastrophic declines in wildlife populations but also generate selective pressures that may result in rapid evolutionary responses. One such EID is devil facial tumour disease (DFTD) in the Tasmanian devil. DFTD is almost always fatal and has reduced the average lifespan of individuals by around 2 years, likely causing strong selection for traits that reduce susceptibility to the disease, but population decline has also left Tasmanian devils vulnerable to inbreeding depression. We analysed 22 years of data from an ongoing study of a population of Tasmanian devils on Freycinet Peninsula, Tasmania, to (1) identify whether DFTD may be causing selection on body size, by estimating phenotypic and genetic correlations between DFTD and size traits, (2) estimate the additive genetic variance of susceptibility to DFTD, and (3) investigate whether size traits or susceptibility to DFTD were under inbreeding depression. We found a positive phenotypic relationship between head width and susceptibility to DFTD, but this was not underpinned by a genetic correlation. Conversely, we found a negative phenotypic relationship between body weight and susceptibility to DFTD, and there was evidence for a negative genetic correlation between susceptibility to DFTD and body weight. There was additive genetic variance in susceptibility to DFTD, head width and body weight, but there was no evidence for inbreeding depression in any of these traits. These results suggest that Tasmanian devils have the potential to respond adaptively to DFTD, although the realised evolutionary response will critically further depend on the evolution of DFTD itself.
Collapse
Affiliation(s)
- Kasha Strickland
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, UK
| | - Menna E. Jones
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington, USA 99164-4236
| | - Rodrigo K Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Paul A Hohenlohe
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844
| | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Hamish I McCallum
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Sebastien Comte
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, 1447 Forest Rd, Orange NSW 2800, Australia
| | - Shelly Lachish
- Public Health Intelligence Branch, Queensland Public Health and Scientific Services Division, Queensland Health, 15 Butterfield Street, Herston, QLD 4006
| | - Loeske E B Kruuk
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, UK
| |
Collapse
|
2
|
Dean AD, Childs DZ, Corripio‐Miyar Y, Evans M, Hayward A, Kenyon F, McNally L, McNeilly TN, Pakeman RJ, Sweeny AR, Nussey DH, Pedersen AB, Fenton A. Host resources and parasite traits interact to determine the optimal combination of host parasite-mitigation strategies. Ecol Evol 2024; 14:e11310. [PMID: 38903143 PMCID: PMC11187858 DOI: 10.1002/ece3.11310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 06/22/2024] Open
Abstract
Organisms have evolved diverse strategies to manage parasite infections. Broadly, hosts may avoid infection by altering behaviour, resist infection by targeting parasites or tolerate infection by repairing associated damage. The effectiveness of a strategy depends on interactions between, for example, resource availability, parasite traits (virulence, life-history) and the host itself (nutritional status, immunopathology). To understand how these factors shape host parasite-mitigation strategies, we developed a mathematical model of within-host, parasite-immune dynamics in the context of helminth infections. The model incorporated host nutrition and resource allocation to different mechanisms of immune response: larval parasite prevention; adult parasite clearance; damage repair (tolerance). We also considered a non-immune strategy: avoidance via anorexia, reducing intake of infective stages. Resources not allocated to immune processes promoted host condition, whereas harm due to parasites and immunopathology diminished it. Maximising condition (a proxy for fitness), we determined optimal host investment for each parasite-mitigation strategy, singly and combined, across different environmental resource levels and parasite trait values. Which strategy was optimal varied with scenario. Tolerance generally performed well, especially with high resources. Success of the different resistance strategies (larval prevention or adult clearance) tracked relative virulence of larval and adult parasites: slowly maturing, highly damaging larvae favoured prevention; rapidly maturing, less harmful larvae favoured clearance. Anorexia was viable only in the short term, due to reduced host nutrition. Combined strategies always outperformed any lone strategy: these were dominated by tolerance, with some investment in resistance. Choice of parasite mitigation strategy has profound consequences for hosts, impacting their condition, survival and reproductive success. We show that the efficacy of different strategies is highly dependent on timescale, parasite traits and resource availability. Models that integrate such factors can inform the collection and interpretation of empirical data, to understand how those drivers interact to shape host immune responses in natural systems.
Collapse
Affiliation(s)
- Andrew D. Dean
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | | | | | - Mike Evans
- Department for Disease ControlMoredun Research InstitutePenicuikUK
- The University of Edinburgh Royal (Dick) School of Veterinary StudiesRoslinUK
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Adam Hayward
- Department for Disease ControlMoredun Research InstitutePenicuikUK
| | - Fiona Kenyon
- Department for Disease ControlMoredun Research InstitutePenicuikUK
| | - Luke McNally
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Tom N. McNeilly
- Department for Disease ControlMoredun Research InstitutePenicuikUK
| | | | - Amy R. Sweeny
- School of BiosciencesThe University of SheffieldSheffieldUK
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Daniel H. Nussey
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Amy B. Pedersen
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Andy Fenton
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
3
|
Ravindran S, Underwood SL, Dorrens J, Seeker LA, Watt K, Wilbourn RV, Sparks AM, Sinclair R, Chen Z, Pilkington JG, McNeilly TN, Harrington L, Pemberton JM, Nussey DH, Froy H. No correlative evidence of costs of infection or immunity on leucocyte telomere length in a wild population of Soay sheep. Proc Biol Sci 2024; 291:20232946. [PMID: 38565156 PMCID: PMC10987235 DOI: 10.1098/rspb.2023.2946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Telomere length (TL) is a biomarker hypothesized to capture evolutionarily and ecologically important physiological costs of reproduction, infection and immunity. Few studies have estimated the relationships among infection status, immunity, TL and fitness in natural systems. The hypothesis that short telomeres predict reduced survival because they reflect costly consequences of infection and immune investment remains largely untested. Using longitudinal data from a free-living Soay sheep population, we tested whether leucocyte TL was predicted by infection with nematode parasites and antibody levels against those parasites. Helminth parasite burdens were positively associated with leucocyte TL in both lambs and adults, which is not consistent with TL reflecting infection costs. We found no association between TL and helminth-specific IgG levels in either young or old individuals which suggests TL does not reflect costs of an activated immune response or immunosenescence. Furthermore, we found no support for TL acting as a mediator of trade-offs between infection, immunity and subsequent survival in the wild. Our results suggest that while variation in TL could reflect short-term variation in resource investment or environmental conditions, it does not capture costs of infection and immunity, nor does it behave like a marker of an individual's helminth-specific antibody immune response.
Collapse
Affiliation(s)
- Sanjana Ravindran
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sarah L. Underwood
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jennifer Dorrens
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Luise A. Seeker
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Kathryn Watt
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Rachael V. Wilbourn
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Alexandra M. Sparks
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Rona Sinclair
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Zhulin Chen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jill G. Pilkington
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Tom N. McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | - Lea Harrington
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada H3C 3J7
| | - Josephine M. Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Daniel H. Nussey
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Hannah Froy
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
4
|
Soler JJ, Møller AP. Defensive tolerance to parasitism is correlated with sexual selection in swallows. Oecologia 2023; 203:267-276. [PMID: 37462738 PMCID: PMC10684419 DOI: 10.1007/s00442-023-05419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/07/2023] [Indexed: 11/18/2023]
Abstract
Parasite-mediated sexual selection has been the topic of extensive research and enthusiastic debate for more than three decades. Here, we suggest that secondary sexual characters may not only signal parasite resistance but also defensive tolerance. We exemplify this possibility by analysing information on two sexually selected traits, annual reproductive success, and ectoparasitism in a barn swallow Hirundo rustica population followed for more than 30 years. For each individual, we estimated the slope of the association between reproductive success and parasitism as an index of tolerance and subsequently explored the association with the expression of the sexually selected traits. In accordance with expectations of parasites playing a role in sexual selection, tail length was negatively related to load of chewing lice and nest size was positively related to tolerance to chewing lice. We discuss the importance of considering defensive tolerance for understanding the role of parasite-mediated sexual selection.
Collapse
Affiliation(s)
- Juan José Soler
- Depto. Ecología Funcional Y Evolutiva, Estación Experimental de Zonas Áridas, Sacramento S/N, La Cañada de San Urbano, 04120, Almería, Spain.
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, Orsay, France
| |
Collapse
|
5
|
Lima CM, Tomazella VL, Evangelista AF, Campelo JE, Junior SC. Gamma-Gompertz mixture model with cure fraction to analyze data on Anglo-Nubian goats with positive EPG. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Lopez BS. Can Infectious Disease Control Be Achieved without Antibiotics by Exploiting Mechanisms of Disease Tolerance? Immunohorizons 2022; 6:730-740. [DOI: 10.4049/immunohorizons.2200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/04/2022] [Indexed: 01/04/2023] Open
Abstract
Abstract
Antimicrobial use in animal agriculture may be contributing to the emerging public health crisis of antimicrobial resistance. The sustained prevalence of infectious diseases driving antimicrobial use industry-wide suggests that traditional methods of bolstering disease resistance are, for some diseases, ineffective. A paradigm shift in our approach to infectious disease control is needed to reduce antimicrobial use and sustain animal and human health and the global economy. Targeting the defensive mechanisms that promote the health of an infected host without impacting pathogen fitness, termed “disease tolerance,” is a novel disease control approach ripe for discovery. This article presents examples of disease tolerance dictating clinical outcomes for several infectious diseases in humans, reveals evidence suggesting a similarly critical role of disease tolerance in the progression of infectious diseases plaguing animal agriculture, and thus substantiates the assertion that exploiting disease tolerance mechanisms can positively impact animal and human health.
Collapse
Affiliation(s)
- Brina S. Lopez
- Department of Farm Animal Medicine, Midwestern University College of Veterinary Medicine, Glendale, AZ
| |
Collapse
|
7
|
Douhard F, Doeschl‐Wilson AB, Corbishley A, Hayward AD, Marcon D, Weisbecker J, Aguerre S, Bordes L, Jacquiet P, McNeilly TN, Sallé G, Moreno‐Romieux C. The cost of host genetic resistance on body condition: Evidence from divergently selected sheep. Evol Appl 2022; 15:1374-1389. [PMID: 36187187 PMCID: PMC9488686 DOI: 10.1111/eva.13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 11/26/2022] Open
Abstract
Trade-offs between host resistance to parasites and host growth or reproduction can occur due to allocation of limited available resources between competing demands. To predict potential trade-offs arising from genetic selection for host resistance, a better understanding of the associated nutritional costs is required. Here, we studied resistance costs by using sheep from lines divergently selected on their resistance to a common blood-feeding gastro-intestinal parasite (Haemonchus contortus). First, we assessed the effects of selection for high or low host resistance on condition traits (body weight, back fat, and muscle thickness) and infection traits (parasite fecal egg excretion and loss in blood haematocrit) at various life stages, in particular during the periparturient period when resource allocation to immunity may limit host resistance. Second, we analysed the condition-infection relationship to detect a possible trade-off, in particular during the periparturient period. We experimentally infected young females in four stages over their first 2 years of life, including twice around parturition (at 1 year and at 2 years of age). Linear mixed-model analyses revealed a large and consistent between-line difference in infection traits during growth and outside of the periparturient period, whereas this difference was strongly attenuated during the periparturient period. Despite their different responses to infection, lines had similar body condition traits. Using covariance decomposition, we then found that the phenotypic relationship between infection and condition was dominated by direct infection costs arising from parasite development within the host. Accounting for these within-individual effects, a cost of resistance on body weight was detected among ewes during their first reproduction. Although this cost and the reproductive constraint on resistance are unlikely to represent a major concern for animal breeding in nutrient-rich environments, this study provides important new insights regarding the nutritional costs of parasite resistance at different lifestages and how these may affect response to selection.
Collapse
Affiliation(s)
- Frédéric Douhard
- GenPhySEUniversité de Toulouse, INRAE, ENVTCastanet‐TolosanFrance
| | - Andrea B. Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | - Alexander Corbishley
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | | | | | | | - Sophie Aguerre
- GenPhySEUniversité de Toulouse, INRAE, ENVTCastanet‐TolosanFrance
| | - Léa Bordes
- UMR INRAE/ENVT 1225 IHAP, UMT Santé des Petits RuminantsEcole Nationale Vétérinaire de ToulouseToulouse cedex 03France
| | - Philippe Jacquiet
- UMR INRAE/ENVT 1225 IHAP, UMT Santé des Petits RuminantsEcole Nationale Vétérinaire de ToulouseToulouse cedex 03France
| | | | | | | |
Collapse
|
8
|
Shanebeck KM, Besson AA, Lagrue C, Green SJ. The energetic costs of sub-lethal helminth parasites in mammals: a meta-analysis. Biol Rev Camb Philos Soc 2022; 97:1886-1907. [PMID: 35678252 DOI: 10.1111/brv.12867] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/07/2023]
Abstract
Parasites, by definition, have a negative effect on their host. However, in wild mammal health and conservation research, sub-lethal infections are commonly assumed to have negligible health effects unless parasites are present in overwhelming numbers. Here, we propose a definition for host health in mammals that includes sub-lethal effects of parasites on the host's capacity to adapt to the environment and maintain homeostasis. We synthesized the growing number of studies on helminth parasites in mammals to assess evidence for the relative magnitude of sub-lethal effects of infection across mammal taxa based on this expanded definition. Specifically, we develop and apply a framework for organizing disparate metrics of parasite effects on host health and body condition according to their impact on an animal's energetic condition, defined as the energetic burden of pathogens on host physiological and behavioural functions that relate directly to fitness. Applying this framework within a global meta-analysis of helminth parasites in wild, laboratory and domestic mammal hosts produced 142 peer-reviewed studies documenting 599 infection-condition effects. Analysing these data within a multiple working hypotheses framework allowed us to evaluate the relative weighted contribution of methodological (study design, sampling protocol, parasite quantification methods) and biological (phylogenetic relationships and host/parasite life history) moderators to variation in the magnitude of health effects. We found consistently strong negative effects of infection on host energetic condition across taxonomic groups, with unusually low heterogeneity in effect sizes when compared with other ecological meta-analyses. Observed effect size was significantly lower within cross-sectional studies (i.e. observational studies that investigated a sub-set of a population at a single point in time), the most prevalent methodology. Furthermore, opportunistic sampling led to a weaker negative effect compared to proactive sampling. In the model of host taxonomic group, the effect of infection on energetic condition in carnivores was not significant. However, when sampling method was included, it explained substantial inter-study variance; proactive sampling showing a strongly significant negative effect while opportunistic sampling detected only a weak, non-significant effect. This may partly underlie previous assumptions that sub-lethal parasites do not have significant effects on host health. We recommend future studies adopt energetic condition as the framework for assessing parasite effects on wildlife health and provide guidelines for the selection of research protocols, health proxies, and relating infection to fitness.
Collapse
Affiliation(s)
- Kyle M Shanebeck
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada
| | - Anne A Besson
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand
| | - Clement Lagrue
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada.,Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand.,Department of Conservation, 265 Princes Street, Dunedin, 9016, New Zealand
| | - Stephanie J Green
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Weaver AR, Wright DL, Notter DR, Zajac AM, Bowdridge SA, Greiner SP. Evaluation of Terminal Sire Breeds for Hair Sheep Production Systems: Forage Environment. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Affiliation(s)
- Amy R. Sweeny
- Institute of Evolutionary Biology University of Edinburgh Edinburgh Scotland
| | - Gregory F. Albery
- Department of Biology Georgetown University Washington DC USA
- Wissenschaftskolleg zu Berlin Berlin Germany
| |
Collapse
|
11
|
Balard A, Heitlinger E. Shifting focus from resistance to disease tolerance: A review on hybrid house mice. Ecol Evol 2022; 12:e8889. [PMID: 35571751 PMCID: PMC9077717 DOI: 10.1002/ece3.8889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/10/2022] Open
Abstract
Parasites have been proposed to modulate the fitness of hybridizing hosts in part based on observations in the European house mouse hybrid zone (HMHZ), a tension zone in which hybrids show reduced fitness. We here review evidence (1) for parasite load differences in hybrid versus parental mice and (2) for health and fitness effects of parasites promoting or preventing introgression and hybridization. The question of relative resistance or susceptibility of hybrids to parasites in the HMHZ has long been controversial. Recent field studies found hybrids to be more resistant than mice from parental subspecies against infections with pinworms and protozoans (Eimeria spp.). We argue that the field studies underlying the contradictory impression of hybrid susceptibility have limitations in sample size, statistical analysis and scope, focusing only on macroparasites. We suggest that weighted evidence from field studies indicate hybrid resistance. Health is a fitness component through which resistance can modulate overall fitness. Resistance, however, should not be extrapolated directly to a fitness effect, as the relationship between resistance and health can be modulated by tolerance. In our own recent work, we found that the relationship between health and resistance (tolerance) differs between infections with the related species E. falciformis and E. ferrisi. Health and tolerance need to be assessed directly and the choice of parasite has made this difficult in previous experimental studies of house mice. We discuss how experimental Eimeria spp. infections in hybrid house mice can address resistance, health and tolerance in conjunction.
Collapse
Affiliation(s)
- Alice Balard
- Department of Molecular ParasitologyInstitute for BiologyHumboldt University Berlin (HU)BerlinGermany
- Research Group Ecology and Evolution of Molecular Parasite‐Host InteractionsLeibniz‐Institut for Zoo and Wildlife Research (IZW) im Forschungsverbund Berlin e.V.BerlinGermany
| | - Emanuel Heitlinger
- Department of Molecular ParasitologyInstitute for BiologyHumboldt University Berlin (HU)BerlinGermany
- Research Group Ecology and Evolution of Molecular Parasite‐Host InteractionsLeibniz‐Institut for Zoo and Wildlife Research (IZW) im Forschungsverbund Berlin e.V.BerlinGermany
| |
Collapse
|
12
|
Charlier J, Bartley DJ, Sotiraki S, Martinez-Valladares M, Claerebout E, von Samson-Himmelstjerna G, Thamsborg SM, Hoste H, Morgan ER, Rinaldi L. Anthelmintic resistance in ruminants: challenges and solutions. ADVANCES IN PARASITOLOGY 2022; 115:171-227. [PMID: 35249662 DOI: 10.1016/bs.apar.2021.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anthelmintic resistance (AR) is a growing concern for effective parasite control in farmed ruminants globally. Combatting AR will require intensified and integrated research efforts in the development of innovative diagnostic tests to detect helminth infections and AR, sustainable anthelmintic treatment strategies and the development of complementary control approaches such as vaccination and plant-based control. It will also require a better understanding of socio-economic drivers of anthelmintic treatment decisions, in order to support a behavioural shift and develop targeted communication strategies that promote the uptake of evidence-based sustainable solutions. Here, we review the state-of-the-art in these different fields of research activity related to AR in helminths of livestock ruminants in Europe and beyond. We conclude that in the advent of new challenges and solutions emerging from continuing spread of AR and intensified research efforts, respectively, there is a strong need for transnational multi-actor initiatives. These should involve all key stakeholders to develop indicators of infection and sustainable control, set targets and promote good practices to achieve them.
Collapse
Affiliation(s)
| | - D J Bartley
- Disease Control, Moredun Research Institute, Penicuik, United Kingdom
| | - S Sotiraki
- Veterinary Research Institute, Hellenic Agricultural Organisation ELGO-DIMITRA, Thessaloniki, Greece
| | - M Martinez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, León, Spain
| | - E Claerebout
- Ghent University, Faculty of Veterinary Medicine, Laboratory of Parasitology, Merelbeke, Belgium
| | - G von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - S M Thamsborg
- Veterinary Parasitology, University of Copenhagen, Frederiksberg C, Denmark
| | - H Hoste
- INRAE, UMR 1225 IHAP INRAE/ENVT, Toulouse University, Toulouse, France
| | - E R Morgan
- Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - L Rinaldi
- University of Naples Federico II, Unit of Parasitology and Parasitic Diseases, Department of Veterinary Medicine and Animal Production, CREMOPAR, Napoli, Italy.
| |
Collapse
|
13
|
Huang W, Dicks KL, Ballingall KT, Johnston SE, Sparks AM, Watt K, Pilkington JG, Pemberton JM. Associations between MHC class II variation and phenotypic traits in a free-living sheep population. Mol Ecol 2021; 31:902-915. [PMID: 34748666 DOI: 10.1111/mec.16265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
Pathogen-mediated selection (PMS) is thought to maintain the high level of allelic diversity observed in the major histocompatibility complex (MHC) class II genes. A comprehensive way to demonstrate contemporary selection is to examine associations between MHC variation and individual fitness. As individual fitness is hard to measure, many studies examine associations between MHC variation and phenotypic traits, including direct or indirect measures of adaptive immunity thought to contribute to fitness. Here, we tested associations between MHC class II variation and five phenotypic traits measured in free-living sheep captured in August: weight, strongyle faecal egg count, and plasma IgA, IgE and IgG immunoglobulin titres against the gastrointestinal nematode parasite Teladorsagia circumcincta. We found no association between MHC class II variation and weight or strongyle faecal egg count. We did, however, find associations between MHC class II variation and immunoglobulin levels which varied with isotype, age and sex. Our results suggest associations between MHC and phenotypic traits are more likely to be found for traits more closely associated with pathogen defence than integrative traits such as bodyweight and highlight the association between MHC variation and antibodies in wild populations.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Kara L Dicks
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Susan E Johnston
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Alexandra M Sparks
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,School of Biology, University of Leeds, Leeds, UK
| | - Kathryn Watt
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jill G Pilkington
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Seal S, Dharmarajan G, Khan I. Evolution of pathogen tolerance and emerging infections: A missing experimental paradigm. eLife 2021; 10:e68874. [PMID: 34544548 PMCID: PMC8455132 DOI: 10.7554/elife.68874] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Researchers worldwide are repeatedly warning us against future zoonotic diseases resulting from humankind's insurgence into natural ecosystems. The same zoonotic pathogens that cause severe infections in a human host frequently fail to produce any disease outcome in their natural hosts. What precise features of the immune system enable natural reservoirs to carry these pathogens so efficiently? To understand these effects, we highlight the importance of tracing the evolutionary basis of pathogen tolerance in reservoir hosts, while drawing implications from their diverse physiological and life-history traits, and ecological contexts of host-pathogen interactions. Long-term co-evolution might allow reservoir hosts to modulate immunity and evolve tolerance to zoonotic pathogens, increasing their circulation and infectious period. Such processes can also create a genetically diverse pathogen pool by allowing more mutations and genetic exchanges between circulating strains, thereby harboring rare alive-on-arrival variants with extended infectivity to new hosts (i.e., spillover). Finally, we end by underscoring the indispensability of a large multidisciplinary empirical framework to explore the proposed link between evolved tolerance, pathogen prevalence, and spillover in the wild.
Collapse
Affiliation(s)
| | - Guha Dharmarajan
- Savannah River Ecology Laboratory, University of GeorgiaAikenUnited States
| | | |
Collapse
|
15
|
Selinger C, Alizon S. Reconstructing contact network structure and cross-immunity patterns from multiple infection histories. PLoS Comput Biol 2021; 17:e1009375. [PMID: 34525092 PMCID: PMC8475980 DOI: 10.1371/journal.pcbi.1009375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/27/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022] Open
Abstract
Interactions within a population shape the spread of infectious diseases but contact patterns between individuals are difficult to access. We hypothesised that key properties of these patterns can be inferred from multiple infection data in longitudinal follow-ups. We developed a simulator for epidemics with multiple infections on networks and analysed the resulting individual infection time series by introducing similarity metrics between hosts based on their multiple infection histories. We find that, depending on infection multiplicity and network sampling, multiple infection summary statistics can recover network properties such as degree distribution. Furthermore, we show that by mining simulation outputs for multiple infection patterns, one can detect immunological interference between pathogens (i.e. the fact that past infections in a host condition future probability of infection). The combination of individual-based simulations and analysis of multiple infection histories opens promising perspectives to infer and validate transmission networks and immunological interference for infectious diseases from longitudinal cohort data.
Collapse
Affiliation(s)
| | - Samuel Alizon
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
16
|
Montes N, Vijayan V, Pagán I. Host population structure for tolerance determines the evolution of plant-virus interactions. THE NEW PHYTOLOGIST 2021; 231:1570-1585. [PMID: 33997993 PMCID: PMC8362011 DOI: 10.1111/nph.17466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Heterogeneity for plant defences determines both the capacity of host populations to buffer the effect of infection and the pathogen´s fitness. However, little information is known on how host population structure for tolerance, a major plant defence, impacts the evolution of plant-pathogen interactions. By performing 10 serial passages of Turnip mosaic virus (TuMV) in Arabidopsis thaliana populations with varying proportion of tolerant genotypes simulating different structures for this trait, we analysed how host heterogeneity for this defence shapes the evolution of both virus multiplication, the effect of infection on plant fecundity and mortality, and plant tolerance and resistance. Results indicated that a higher proportion of tolerant genotypes in the host population promotes virus multiplication and reduces the effect of infection on plant mortality, but not on plant fecundity. These changes resulted in more effective plant tolerance to virus infection. Conversely, a lower proportion of tolerant genotypes reduced virus multiplication, boosting plant resistance. Our work for the first time provides evidence of the main role of host population structure for tolerance on pathogen evolution and on the subsequent feedback loops on plant defences.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología VegetalDepartamento Ciencias Farmacéuticas y de la SaludFacultad de FarmaciaUniversidad San Pablo‐CEU UniversitiesBoadilla del Monte (Madrid)28668Spain
- Servicio de ReumatologíaHospital Universitario de la PrincesaInstituto de Investigación Sanitaria (IIS‐IP)Madrid28008Spain
| | - Viji Vijayan
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA and ETS Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de MadridMadrid28223Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA and ETS Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de MadridMadrid28223Spain
| |
Collapse
|
17
|
Tadiri CP, Fussmann GF, Scott ME. Parasite spread in experimental metapopulations: resistance, tolerance and host competence. OIKOS 2021. [DOI: 10.1111/oik.07837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Marilyn E. Scott
- Inst. of Parasitology, McGill Univ. Ste. Anne‐de‐Bellevue QC Canada
| |
Collapse
|
18
|
Lauringson M, Nousiainen I, Kahar S, Burimski O, Gross R, Kaart T, Vasemägi A. Climate change-driven disease in sympatric hosts: Temporal dynamics of parasite burden and proliferative kidney disease in wild brown trout and Atlantic salmon. JOURNAL OF FISH DISEASES 2021; 44:689-699. [PMID: 33428789 DOI: 10.1111/jfd.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Global climate change is altering the abundance and spread of various parasites, which has important consequences not only for host-parasite interactions but also for the relationships between different host species. Here, we focus on the myxozoan endoparasite Tetracapsuloides bryosalmonae that causes temperature-dependent proliferative kidney disease (PKD) in salmonids. We characterized the temporal changes in the parasite load and the severity of PKD signs (renal hyperplasia, haematocrit) in two sympatric populations of wild brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). We found that both the parasite load and disease signs vary considerably between individuals, species, rivers and sampling periods. We showed that Atlantic salmon was able to slow down the initial parasite proliferation rate and subsequently tolerate high parasite burden without obvious disease signs. In contrast, the initial parasite proliferation rate was much higher in brown trout, which was followed by the development of severe PKD signs. Thus, the speed of parasite proliferation, rather than the absolute number of the parasites in the host kidney, may play an important role in interspecific variation in PKD susceptibility. To conclude, this study illustrates the usefulness of temporal perspective for understanding host defence mechanisms and climate change-mediated impacts in the wild.
Collapse
Affiliation(s)
- Magnus Lauringson
- Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Ilkka Nousiainen
- Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Siim Kahar
- Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Oksana Burimski
- Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Riho Gross
- Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Tanel Kaart
- Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Anti Vasemägi
- Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| |
Collapse
|
19
|
Huang W, Pilkington JG, Pemberton JM. Patterns of MHC-dependent sexual selection in a free-living population of sheep. Mol Ecol 2021; 30:6733-6742. [PMID: 33960549 DOI: 10.1111/mec.15938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/18/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
The MHC is one of the most polymorphic gene clusters in vertebrates and play an essential role in adaptive immunity. Apart from pathogen-mediated selection, sexual selection can also contribute to the maintenance of MHC diversity. MHC-dependent sexual selection could occur via several mechanisms but at present there is no consensus as to which of these mechanisms are involved and their importance. Previous studies have often suffered from limited genetic and behavioural data and small sample size, and were rarely able to examine all the mechanisms together, determine whether signatures of MHC-based non-random mating are independent of genomic effects or differentiate whether MHC-dependent sexual selection takes place at the pre- or post-copulatory stage. In this study, we use Monte Carlo simulation to investigate evidence for non-random MHC-dependent mating patterns by all three mechanisms in a free-living population of Soay sheep. Using 1710 sheep diplotyped at the MHC class IIa region and genome-wide SNPs, together with field observations of consorts, we found sexual selection against a particular haplotype in males at the pre-copulatory stage and sexual selection against female MHC heterozygosity during the rut. We also found MHC-dependent disassortative mating at the post-copulatory stage, along with strong evidence of inbreeding avoidance at both stages. However, results from generalized linear mixed models suggest that the pattern of MHC-dependent disassortative mating could be a by-product of inbreeding avoidance. Our results therefore suggest that while multiple apparent mechanisms of non-random mating with respect to the MHC may occur, some of them have alternative explanations.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Evolutionary Biology,School of Biological Science, University of Edinburgh, Edinburgh, UK
| | - Jill G Pilkington
- Institute of Evolutionary Biology,School of Biological Science, University of Edinburgh, Edinburgh, UK
| | - Josephine M Pemberton
- Institute of Evolutionary Biology,School of Biological Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
20
|
Gates DE, Staley M, Tardy L, Giraudeau M, Hill GE, McGraw KJ, Bonneaud C. Levels of pathogen virulence and host resistance both shape the antibody response to an emerging bacterial disease. Sci Rep 2021; 11:8209. [PMID: 33859241 PMCID: PMC8050079 DOI: 10.1038/s41598-021-87464-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/24/2021] [Indexed: 11/09/2022] Open
Abstract
Quantifying variation in the ability to fight infection among free-living hosts is challenging and often constrained to one or a few measures of immune activity. While such measures are typically taken to reflect host resistance, they can also be shaped by pathogen effects, for example, if more virulent strains trigger more robust immune responses. Here, we test the extent to which pathogen-specific antibody levels, a commonly used measure of immunocompetence, reflect variation in host resistance versus pathogen virulence, and whether these antibodies effectively clear infection. House finches (Haemorhous mexicanus) from resistant and susceptible populations were inoculated with > 50 isolates of their novel Mycoplasma gallisepticum pathogen collected over a 20-year period during which virulence increased. Serum antibody levels were higher in finches from resistant populations and increased with year of pathogen sampling. Higher antibody levels, however, did not subsequently give rise to greater reductions in pathogen load. Our results show that antibody responses can be shaped by levels of host resistance and pathogen virulence, and do not necessarily signal immune clearance ability. While the generality of this novel finding remains unclear, particularly outside of mycoplasmas, it cautions against using antibody levels as implicit proxies for immunocompetence and/or host resistance.
Collapse
Affiliation(s)
- Daisy E Gates
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Molly Staley
- Department Biological Science, Auburn University, Auburn, Alabama, 36849-5414, USA.,Biology Department, Loyola University Chicago, Chicago, IL, 60660-1537, USA
| | - Luc Tardy
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Mathieu Giraudeau
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.,School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, USA.,Centre for Ecological and Evolutionary Research On Cancer, UMR CNRS/IRD/UM 5290 MIVEGEC, 34394, Montpellier, France
| | - Geoffrey E Hill
- Department Biological Science, Auburn University, Auburn, Alabama, 36849-5414, USA
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, USA
| | - Camille Bonneaud
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| |
Collapse
|
21
|
Marjamäki PH, Dugdale HL, Delahay R, McDonald RA, Wilson AJ. Genetic, social and maternal contributions to Mycobacterium bovis infection status in European badgers (Meles meles). J Evol Biol 2021; 34:695-709. [PMID: 33617698 DOI: 10.1111/jeb.13775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/30/2022]
Abstract
Within host populations, individuals can vary in their susceptibility to infections and in the severity and progression of disease once infected. Though mediated through differences in behaviour, resistance or tolerance, variation in disease outcomes ultimately stems from genetic and environmental (including social) factors. Despite obvious implications for the evolutionary, ecological and epidemiological dynamics of disease traits, the relative importance of these factors has rarely been quantified in naturally infected wild animal hosts. Here, we use a long-term capture-mark-recapture study of group-living European badgers (Meles meles) to characterize genetic and environmental sources of variation in host infection status by Mycobacterium bovis, the causative agent of bovine tuberculosis (bTB). We find that genetic factors contribute to M. bovis infection status, whether measured over a lifetime or across repeated captures. In the latter case, the heritability (h2 ) of infection status is close to zero in cubs and yearlings but increases in adulthood. Overall, environmental influences arising from a combination of social group membership (defined in time and space) and maternal effects appear to be more important than genetic factors. Thus, while genes do contribute to among-individual variation, they play a comparatively minor role, meaning that rapid evolution of host defences under parasite-mediated selection is unlikely (especially if selection is on young animals where h2 is lowest). Conversely, our results lend further support to the view that social and early-life environments are important drivers of the dynamics of bTB infection in badger populations specifically, and of disease traits in wild hosts more generally.
Collapse
Affiliation(s)
- Paula H Marjamäki
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Hannah L Dugdale
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh, The Netherlands
| | - Richard Delahay
- National Wildlife Management Centre, Animal and Plant Health Agency, Gloucestershire, UK
| | - Robbie A McDonald
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| |
Collapse
|
22
|
Mair I, McNeilly TN, Corripio-Miyar Y, Forman R, Else KJ. Embracing nature's complexity: Immunoparasitology in the wild. Semin Immunol 2021; 53:101525. [PMID: 34785137 PMCID: PMC8713030 DOI: 10.1016/j.smim.2021.101525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022]
Abstract
A wealth of research is dedicated to understanding how resistance against parasites is conferred and how parasite-driven pathology is regulated. This research is in part driven by the hope to better treatments for parasitic diseases of humans and livestock, and in part by immunologists who use parasitic infections as biomedical tools to evoke physiological immune responses. Much of the current mechanistic knowledge has been discovered in laboratory studies using model organisms, especially the laboratory mouse. However, wildlife are also hosts to a range of parasites. Through the study of host-parasite interactions in these non-laboratory systems we can gain a deeper understanding of parasite immunology in a more natural, complex environment. With a focus on helminth parasites, we here explore the insights gained into parasite-induced immune responses through (for immunologists) non-conventional experimental systems, and how current core findings from laboratory studies are reflected in these more natural conditions. The quality of the immune response is undoubtedly a central player in susceptibility versus resistance, as many laboratory studies have shown. Yet, in the wild, parasite infections tend to be chronic diseases. Whilst reading our review, we encourage the reader to consider the following questions which may (only) be answered by studying naturally occurring parasites in the wild: a) what type of immune responses are mounted against parasites in different hosts in the wild, and how do they vary within an individual over time, between individuals of the same species and between species? b) can we use wild or semi-wild study systems to understand the evolutionary drivers for tolerance versus resistance towards a parasite? c) what determines the ability of the host to cope with an infection and is there a link with the type of immune response mounted? d) can we modulate environmental factors to manipulate a wild animal's immune response to parasitic infections, with translation potential for humans, wildlife, and livestock? and e) in context of this special issue, what lessons for Type 2 immunity can we glean from studying animals in their natural environments? Further, we aim to integrate some of the knowledge gained in semi-wild and wild settings with knowledge gained from traditional laboratory-based research, and to raise awareness for the opportunities (and challenges) that come with integrating a multitude of naturally-occurring variables into immunoparasitological research.
Collapse
Affiliation(s)
- Iris Mair
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Oxford Road Manchester, M13 9PT, UK.
| | - Tom N McNeilly
- Disease Control Department, Moredun Research Institute, Midlothian, EH26 0PZ, Scotland, UK
| | - Yolanda Corripio-Miyar
- Disease Control Department, Moredun Research Institute, Midlothian, EH26 0PZ, Scotland, UK
| | - Ruth Forman
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Oxford Road Manchester, M13 9PT, UK
| | - Kathryn J Else
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Oxford Road Manchester, M13 9PT, UK.
| |
Collapse
|
23
|
Sorci G, Léchenault-Bergerot C, Faivre B. Age reduces resistance and tolerance in malaria-infected mice. INFECTION GENETICS AND EVOLUTION 2020; 88:104698. [PMID: 33370596 DOI: 10.1016/j.meegid.2020.104698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/30/2022]
Abstract
Once infected, hosts can rely on two strategies to cope with parasites: fight them (resist the infection) or minimize the damage they induce (tolerate the infection). While there is evidence that aging reduces resistance, how tolerance varies as hosts become old has been barely studied. Here, we used a rodent malaria parasite (Plasmodium yoelii) to investigate whether 2- and 12-month old house mice differ in their capacity to resist and tolerate the infection. We found that 12-month old mice harbored higher parasitemia, showing that age reduces resistance to malaria. Infection-induced deterioration of host health was assessed using red blood cell and body mass loss. Using both traits, the rate of decline in host health, as parasitemia increased, was more pronounced in 12- than in 2-month old mice, showing that age is also associated with impaired tolerance to malaria. Overall, resistance and tolerance positively covaried; however, this was only due to the age effect, since, within age classes, the two traits were not correlated. These results show that senescing individuals might be both more susceptible to infectious diseases and less able to cope with the damage that infection induces.
Collapse
Affiliation(s)
- Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France.
| | | | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
24
|
Hayward AD, Skuce PJ, McNeilly TN. Tolerance of liver fluke infection varies between breeds and producers in beef cattle. Animal 2020; 15:100126. [PMID: 33712215 DOI: 10.1016/j.animal.2020.100126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Liver flukes (Fasciola spp.) are important helminth parasites of livestock globally and cause substantial reductions in health and productivity of beef cattle. Attempts to control fluke have been thwarted by the difficulty of vaccine design, the evolution of flukicide resistance and the need to control the intermediate snail host. Mechanisms to reduce the impact of parasites on animal performance have typically focused on promoting host resistance - defined as the ability of the host to kill and remove the parasite from its system - and such strategies include improving protein nutrition or selective breeding for resistance. Organisms, however, have another broad mechanism for mitigating the impact of parasites: they can show tolerance, defined as the ability to maintain health or performance under increasing parasite burden. Tolerance has been studied in the plant literature for over a century, but there are very few empirical studies of parasite tolerance in livestock. In this study, we used data collected from >90 000 beef cattle to estimate the impact of the severity of liver fluke infection on performance and variation in tolerance of fluke. Severity of liver fluke infection was estimated using liver "fibrosis score" on a scale of 0-3 and performance estimated as (1) age at slaughter and (2) daily dead weight gain. Animals with higher fibrosis scores were slaughtered around 2 weeks later than animals with no fluke and gained around 10 g less weight per day. There was also considerable variation in these effects of fibrosis score, such that animals from different producers and breeds varied in their tolerance of fluke infection. While breeds did not vary in the association between fibrosis and age at slaughter, there was considerable variation among producers: high fibrosis score delayed slaughter by up to 50 days in some producers, but not at all in others. Meanwhile, there was support for variation in the slope of daily dead weight gain on fibrosis score among both breeds and producers, with some unaffected by high fluke scores and some breeds and producers experiencing a 20 g/day lower weight gain under high fluke scores. Our results point to the potential for both environmental and genetic variation in tolerance of liver fluke in cattle, paving the way for quantitative genetic and nutritional research into the feasibility of promoting tolerance as a disease mitigation strategy.
Collapse
Affiliation(s)
- A D Hayward
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK..
| | - P J Skuce
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - T N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| |
Collapse
|
25
|
Araujo JIM, da Silva Santos NP, de Oliveira MB, Sena LS, Biagiotti D, de Araujo Rego Neto A, Sarmento JLR. Non-hierarchical cluster analysis for determination of resistance to worm infection in meat sheep. Trop Anim Health Prod 2020; 53:16. [PMID: 33216227 DOI: 10.1007/s11250-020-02484-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 11/11/2020] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine the resistance to worm infection in Santa Inês sheep by combining different sets of gastrointestinal parasite resistance indicator traits, using the k-means algorithm. Records from 221 animals reared in the Mid-North sub-region of Brazil were used. The following phenotypes were used: hematocrit (HCT); white blood cell count; red blood cell count (RBC); hemoglobin (HGB); platelets; mean corpuscular hemoglobin; mean corpuscular volume; mean corpuscular hemoglobin concentration; fecal egg count (FEC); coloration of the ocular mucosa (FAMACHA score); body condition score (BCS); withers height; and rump height. Two files with phenotypic information of animals were edited: complete, including all traits, and reduced, in which only FAMACHA score, HCT, FEC, and BCS were used. For determination of worm resistance, three groups were formed using the k-means non-hierarchical clustering by combining the traits of the complete and reduced analyses. The animals of the group in which individuals had the lowest values for FEC and FAMACHA score, as well as the highest values for HCT, RBC, HGB, and BCS were classified as resistant. In the group with opposite values for the aforementioned traits, the animals were classified as sensitive. The animals of the group with values between the other two groups were classified as moderately resistant. The results obtained in complete and reduced analyses were equivalent. Thus, it is possible to identify animals of the Santa Inês sheep breed according to their status of resistance to worm infection based on a reduced trait set.
Collapse
Affiliation(s)
- Johnny Iglesias Mendes Araujo
- Graduate Program in Animal Science, State University of Southwest of Bahia, Campus of Itapetinga, Itapetinga, Bahia, Brazil.
| | - Natanael Pereira da Silva Santos
- Department of Agronomy, Federal University of Piauí, Campus Professora Cinobelina Elvas, BR 135, Km 3, Bom Jesus, Piauí, Teresina, Brazil
| | - Max Brandão de Oliveira
- Department of Statistics , Federal University of Piauí , Campus Universitário Ministro Petrônio Portella, Teresina, Piauí, Brazil
| | - Luciano Silva Sena
- Department of Animal Science, Agrarian Sciences Center, Federal University of Piauí, Campus Universitário Ministro Petrônio Portella, Teresina, Piauí, Brazil
| | - Daniel Biagiotti
- Technical College of Bom Jesus, Federal University of Piauí, Campus Professora Cinobelina Elvas, BR 135, Km 3, Piauí, Bom Jesus, Brazil
| | - Aurino de Araujo Rego Neto
- Department of Animal Science, Agrarian Sciences Center, Federal University of Piauí, Campus Universitário Ministro Petrônio Portella, Teresina, Piauí, Brazil
| | - José Lindenberg Rocha Sarmento
- Department of Animal Science, Agrarian Sciences Center, Federal University of Piauí, Campus Universitário Ministro Petrônio Portella, Teresina, Piauí, Brazil
| |
Collapse
|
26
|
Parasite intensity drives fetal development and sex allocation in a wild ungulate. Sci Rep 2020; 10:15626. [PMID: 32973197 PMCID: PMC7518422 DOI: 10.1038/s41598-020-72376-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/17/2020] [Indexed: 11/20/2022] Open
Abstract
An understanding of the mechanisms influencing prenatal characteristics is fundamental to comprehend the role of ecological and evolutionary processes behind survival and reproductive success in animals. Although the negative influence of parasites on host fitness is undisputable, we know very little about how parasitic infection in reproductive females might influence prenatal factors such as fetal development and sex allocation. Using an archival collection of Dall’s sheep (Ovis dalli dalli), a capital breeder that depends on its body reserves to overcome the arctic winter, we investigated the direct and indirect impacts of the parasite community on fetal development and sex allocation. Using partial least squares modelling, we observed a negative effect of parasite community on fetal development, driven primarily by the nematode Marshallagia marshalli. Principal component analysis demonstrated that mothers with low parasite burden and in good body condition were more likely to have female versus male fetuses. This association was primarily driven by the indirect effect of M. marshalli on ewe body condition. Refining our knowledge of the direct and indirect impact that parasite communities can have on reproduction in mammals is critical for understanding the effects of infectious diseases on wildlife populations. This can be particularly relevant for species living in ecosystems sensitive to the effects of global climate change.
Collapse
|
27
|
Schneider-Crease I, Beehner JC, Bergman TJ, Gomery MA, Koklic L, Lu A, Snyder-Mackler N. Ecology eclipses phylogeny as a major driver of nematode parasite community structure in a graminivorous primate. Funct Ecol 2020; 34:1898-1906. [PMID: 33071424 DOI: 10.1111/1365-2435.13603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the relative strength of ecology and phylogeny in shaping parasite communities can inform parasite control and wildlife conservation initiatives while contributing to the study of host species evolution.We tested the relative strengths of phylogeny and ecology in driving parasite community structure in a host whose ecology diverges significantly from that of its closest phylogenetic relatives.We characterized the gastrointestinal (GI) parasite community of wild geladas (Theropithecus gelada), primates that are closely related to baboons but specialized to graminovory in the Ethiopian Highlands.Geladas exhibited very constrained GI parasite communities: only two genera (Oesophagostomum and Trichostrongylus) were identified across 303 samples. This is far below the diversity reported for baboons (Papio spp.) and at the low end of the range of domestic grazers (e.g., Bos taurus, Ovis aries) inhabiting the same region and ecological niche.Using deep amplicon sequencing, we identified 15 amplicon sequence variants (ASVs) within the two genera, seven of which matched to Oesophagostomum sp., seven to Trichostrongylus sp., and one to T. vitrinus.Population was an important predictor of ASV richness. Geladas in the most ecologically disturbed area of the national park exhibited ~4x higher ASV richness than geladas at a less disturbed location within the park.In this system, ecology was a stronger predictor of parasite community structure than phylogeny, with geladas sharing more elements of their parasite communities with other grazers in the same area than with closely related sister taxa.
Collapse
Affiliation(s)
- India Schneider-Crease
- Department of Psychology, University of Washington, Seattle, Washington, 98195.,Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794.,Simien Mountains Gelada Research Project, Sankaber, Ethiopia.,Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, 85281
| | - Jacinta C Beehner
- Simien Mountains Gelada Research Project, Sankaber, Ethiopia.,Department of Anthropology, University of Michigan, Ann Arbor, Michigan, 48109.,Department of Psychology, University of Michigan, Ann Arbor, Michigan, 48109
| | - Thore J Bergman
- Simien Mountains Gelada Research Project, Sankaber, Ethiopia.,Department of Psychology, University of Michigan, Ann Arbor, Michigan, 48109.,Department of Ecology and Evolution, University of Michigan, Ann Arbor, Michigan, 48109
| | - Megan A Gomery
- Simien Mountains Gelada Research Project, Sankaber, Ethiopia
| | - Lia Koklic
- Department of Psychology, University of Washington, Seattle, Washington, 98195
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794.,Simien Mountains Gelada Research Project, Sankaber, Ethiopia
| | - Noah Snyder-Mackler
- Department of Psychology, University of Washington, Seattle, Washington, 98195.,Simien Mountains Gelada Research Project, Sankaber, Ethiopia.,Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, 85281.,Center for Studies in Demography and Ecology, University of Washington, Seattle, Washington, 98195.,Washington National Primate Research Center, University of Washington, Seattle, Washington, 98195
| |
Collapse
|
28
|
Mikaberidze A, McDonald BA. A tradeoff between tolerance and resistance to a major fungal pathogen in elite wheat cultivars. THE NEW PHYTOLOGIST 2020; 226:879-890. [PMID: 31917858 DOI: 10.1111/nph.16418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Tolerance and resistance represent two strategies that hosts evolved to protect themselves from pathogens. Tolerance alleviates the reduction in host fitness due to infection without reducing a pathogen's growth, whereas resistance reduces pathogen growth. We investigated the tolerance of wheat to the major fungal pathogen Zymoseptoria tritici in 335 elite wheat cultivars. We used a novel digital phenotyping approach that included 11 152 infected leaves and counted 2069 048 pathogen fruiting bodies. We discovered a new component of tolerance that is based on the relationship between the green area remaining on a leaf and the number of pathogen fruiting bodies. We found a negative correlation between tolerance and resistance among intolerant cultivars, presenting the first compelling evidence for a tradeoff between tolerance and resistance to plant pathogens. Surprisingly, the tradeoff arises due to limits in the host resources available to the pathogen and not due to metabolic constraints, contrary to what ecological theory suggests. The mechanism underlying this tradeoff may be relevant for many plant diseases in which the amount of host resources available to the pathogen can limit the pathogen population. Our analysis indicates that European wheat breeders may have selected for tolerance instead of resistance to an important pathogen.
Collapse
Affiliation(s)
- Alexey Mikaberidze
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, RG6 6AR, UK
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, LFW, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
29
|
van Leeuwen A, Budischak SA, Graham AL, Cressler CE. Parasite resource manipulation drives bimodal variation in infection duration. Proc Biol Sci 2020; 286:20190456. [PMID: 31064304 DOI: 10.1098/rspb.2019.0456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Over a billion people on earth are infected with helminth parasites and show remarkable variation in parasite burden and chronicity. These parasite distributions are captured well by classic statistics, such as the negative binomial distribution. But the within-host processes underlying this variation are not well understood. In this study, we explain variation in macroparasite infection outcomes on the basis of resource flows within hosts. Resource flows realize the interactions between parasites and host immunity and metabolism. When host metabolism is modulated by parasites, we find a positive feedback of parasites on their own resources. While this positive feedback results in parasites improving their resource availability at high burdens, giving rise to chronic infections, it also results in a threshold biomass required for parasites to establish in the host, giving rise to acute infections when biomass fails to clear the threshold. Our finding of chronic and acute outcomes in bistability contrasts with classic theory, yet is congruent with the variation in helminth burdens observed in human and wildlife populations.
Collapse
Affiliation(s)
- Anieke van Leeuwen
- 1 Royal Netherlands Institute for Sea Research, Department of Coastal Systems, and Utrecht University , PO Box 59, 1790 AB Den Burg, Texel , The Netherlands.,2 Department of Ecology & Evolutionary Biology, Princeton University , Princeton, NJ , USA
| | - Sarah A Budischak
- 2 Department of Ecology & Evolutionary Biology, Princeton University , Princeton, NJ , USA.,3 W.M. Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges , Claremont, CA , USA
| | - Andrea L Graham
- 2 Department of Ecology & Evolutionary Biology, Princeton University , Princeton, NJ , USA
| | - Clayton E Cressler
- 4 Department of Biological Sciences, University of Nebraska , Lincoln, NE , USA
| |
Collapse
|
30
|
Wollein Waldetoft K, Råberg L, Lood R. Proliferation and benevolence-A framework for dissecting the mechanisms of microbial virulence and health promotion. Evol Appl 2020; 13:879-888. [PMID: 32431740 PMCID: PMC7232753 DOI: 10.1111/eva.12952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 01/14/2020] [Accepted: 03/06/2020] [Indexed: 12/29/2022] Open
Abstract
Key topics in the study of host–microbe interactions—such as the prevention of drug resistance and the exploitation of beneficial effects of bacteria—would benefit from concerted efforts with both mechanistic and evolutionary approaches. But due to differences in intellectual traditions, insights gained in one field rarely benefit the other. Here, we develop a conceptual and analytical framework for the integrated study of host–microbe interactions. This framework partitions the health effects of microbes and the effector molecules they produce into components with different evolutionary implications. It thereby facilitates the prediction of evolutionary responses to inhibition and exploitation of specific molecular mechanisms.
Collapse
Affiliation(s)
| | - Lars Råberg
- Department of Biology Lund University Lund Sweden
| | - Rolf Lood
- Division of Infection Medicine Department of Clinical Sciences Lund University Lund Sweden
| |
Collapse
|
31
|
Froy H, Sparks AM, Watt K, Sinclair R, Bach F, Pilkington JG, Pemberton JM, McNeilly TN, Nussey DH. Senescence in immunity against helminth parasites predicts adult mortality in a wild mammal. Science 2020; 365:1296-1298. [PMID: 31604239 DOI: 10.1126/science.aaw5822] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022]
Abstract
Our understanding of the deterioration in immune function in old age-immunosenescence-derives principally from studies of modern human populations and laboratory animals. The generality and significance of this process for systems experiencing complex, natural infections and environmental challenges are unknown. Here, we show that late-life declines in an important immune marker of resistance to helminth parasites in wild Soay sheep predict overwinter mortality. We found senescence in circulating antibody levels against a highly prevalent nematode worm, which was associated with reduced adult survival probability, independent of changes in body weight. These findings establish a role for immunosenescence in the ecology and evolution of natural populations.
Collapse
Affiliation(s)
- H Froy
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK. .,Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - A M Sparks
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.,School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - K Watt
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - R Sinclair
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - F Bach
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - J G Pilkington
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - J M Pemberton
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - T N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - D H Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
32
|
Rodrigues FN, Sarmento JLR, Leal TM, Araújo AMD, Figueiredo Filho LAS. Genetic parameters for worm resistance in Santa Inês sheep using the Bayesian animal model. Anim Biosci 2020; 34:185-191. [PMID: 32054165 PMCID: PMC7876714 DOI: 10.5713/ajas.19.0634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/21/2019] [Indexed: 11/27/2022] Open
Abstract
Objective The objective of this study was to estimate the genetic parameters for worm resistance (WR) and associated characteristics, using the linear-threshold animal model via Bayesian inference in single- and multiple-trait analyses. Methods Data were collected from a herd of Santa Inês breed sheep. All information was collected with animals submitted to natural contamination conditions. All data (number of eggs per gram of feces [FEC], Famacha score [FS], body condition score [BCS], and hematocrit [HCT]) were collected on the same day. The animals were weighed individually on the day after collection (after 12-h fasting). The WR trait was defined by the multivariate cluster analysis, using the FEC, HCT, BCS, and FS of material collected from naturally infected sheep of the Santa Inês breed. The variance components and genetic parameters for the WR, FEC, HCT, BCS, and FS traits were estimated using the Bayesian inference under the linear and threshold animal model. Results A low magnitude was obtained for repeatability of worm-related traits. The mean values estimated for heritability were of low-to-high (0.05 to 0.88) magnitude. The FEC, HCT, BCS, FS, and body weight traits showed higher heritability (although low magnitude) in the multiple-trait model due to increased information about traits. All WR characters showed a significant genetic correlation, and heritability estimates ranged from low (0.44; single-trait model) to high (0.88; multiple-trait model). Conclusion Therefore, we suggest that FS be included as a criterion of ovine genetic selection for endoparasite resistance using the trait defined by multivariate cluster analysis, as it will provide greater genetic gains when compared to any single trait. In addition, its measurement is easy and inexpensive, exhibiting greater heritability and repeatability and a high genetic correlation with the trait of resistance to worms.
Collapse
Affiliation(s)
- Francelino Neiva Rodrigues
- Federal Institute for Education Science and Technology of Piauí (IFPI), 64.750-000, Paulistana, PI, Brazil
| | | | - Tânia Maria Leal
- Brazilian Agricultural Research Corporation (Embrapa Meio Norte), 64.006-220, Teresina, PI, Brazil
| | - Adriana Mello de Araújo
- Brazilian Agricultural Research Corporation (Embrapa Meio Norte), 64.006-220, Teresina, PI, Brazil
| | | |
Collapse
|
33
|
Ferris C, Best A. The effect of temporal fluctuations on the evolution of host tolerance to parasitism. Theor Popul Biol 2019; 130:182-190. [PMID: 31415775 DOI: 10.1016/j.tpb.2019.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/29/2019] [Accepted: 07/29/2019] [Indexed: 11/19/2022]
Abstract
There are many mechanisms that hosts can evolve to defend against parasites, two of which are resistance and tolerance. These defences often have different evolutionary behaviours, and it is important to consider how each individual mechanism may respond to changes in environment. In particular, host defence through tolerance is predicted to be unlikely to lead to variation, despite many observations of diversity in both animal and plant systems. Hence understanding the drivers of diversity in host defence and parasite virulence is vital for predicting future evolutionary changes in infectious disease dynamics. It has been suggested that heterogeneous environments might generally promote diversity, but the effect of temporal fluctuations has received little attention theoretically or empirically, and there has been no examination of how temporal fluctuations affects the evolution of host tolerance. In this study, we use a mathematical model to investigate the evolution of host tolerance in a temporally fluctuating environment. We show that investment in tolerance increases in more variable environments, giving qualitatively different evolutionary behaviours when compared to resistance. Once seasonality is introduced evolutionary branching though tolerance can occur and create diversity within the population, although potentially only temporarily. This branching behaviour arises due to the emergence of a negative feedback with the maximum infected density on a cycle, which is strongest when the infected population is large. This work reinforces the qualitative differences between tolerance and resistance evolution, but also provides theoretical evidence for the theory that heterogeneous environments promote host-parasite diversity, hence constant environment assumptions may omit important evolutionary outcomes.
Collapse
Affiliation(s)
- Charlotte Ferris
- School of Mathematics and Statistics, University of Sheffield, Sheffield, S3 7RH, UK.
| | - Alex Best
- School of Mathematics and Statistics, University of Sheffield, Sheffield, S3 7RH, UK
| |
Collapse
|
34
|
Ferreira SCM, Hofer H, Madeira de Carvalho L, East ML. Parasite infections in a social carnivore: Evidence of their fitness consequences and factors modulating infection load. Ecol Evol 2019; 9:8783-8799. [PMID: 31410280 PMCID: PMC6686355 DOI: 10.1002/ece3.5431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/19/2019] [Accepted: 06/08/2019] [Indexed: 01/03/2023] Open
Abstract
There are substantial individual differences in parasite composition and infection load in wildlife populations. Few studies have investigated the factors shaping this heterogeneity in large wild mammals or the impact of parasite infections on Darwinian fitness, particularly in juveniles. A host's parasite composition and infection load can be shaped by factors that determine contact with infective parasite stages and those that determine the host's resistance to infection, such as abiotic and social environmental factors, and age. Host-parasite interactions and synergies between coinfecting parasites may also be important. We test predictions derived from these different processes to investigate factors shaping infection loads (fecal egg/oocyte load) of two energetically costly gastrointestinal parasites: the hookworm Ancylostoma and the intracellular Cystoisospora, in juvenile spotted hyenas (Crocuta crocuta) in the Serengeti National Park, in Tanzania. We also assess whether parasite infections curtail survival to adulthood and longevity. Ancylostoma and Cystoisospora infection loads declined as the number of adult clan members increased, a result consistent with an encounter-reduction effect whereby adults reduced encounters between juveniles and infective larvae, but were not affected by the number of juveniles in a clan. Infection loads decreased with age, possibly because active immune responses to infection improved with age. Differences in parasite load between clans possibly indicate variation in abiotic environmental factors between clan den sites. The survival of juveniles (<365 days old) to adulthood decreased with Ancylostoma load, increased with age, and was modulated by maternal social status. High-ranking individuals with low Ancylostoma loads had a higher survivorship during the first 4 years of life than high-ranking individuals with high Ancylostoma loads. These findings suggest that high infection loads with energetically costly parasites such as hookworms during early life can have negative fitness consequences.
Collapse
Affiliation(s)
| | - Heribert Hofer
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Department of Veterinary MedicineFreie Universität BerlinBerlinGermany
- Department of Biology, Chemistry and PharmacyFreie Universität BerlinBerlinGermany
| | - Luis Madeira de Carvalho
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculdade de Medicina VeterinariaUniversidade de LisboaLisbonPortugal
| | - Marion L. East
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| |
Collapse
|
35
|
Hicks O, Green JA, Daunt F, Cunningham EJA, Newell M, Butler A, Burthe SJ. Sublethal effects of natural parasitism act through maternal, but not paternal, reproductive success in a wild population. Ecology 2019; 100:e02772. [PMID: 31165474 PMCID: PMC6851849 DOI: 10.1002/ecy.2772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/18/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
Abstract
Parasites are a major component of all animal populations. Males and females often differ in their levels of parasite prevalence, potentially leading to sex differences in the impact of parasitism on fitness, with important implications for the evolution of parasite and host traits including resistance, tolerance, and virulence. However, quantitative measures of the impact of parasitism under free‐living conditions are extremely rare, as they require detailed host demographic data with measures of parasite burden over time. Here, we use endoscopy for direct quantification of natural‐parasite burdens and relate these to reproductive success over 7 yr in a wild population of seabirds. Contrary to predictions, only female burdens were associated with negative impacts of parasitism on breeding success, despite males having significantly higher burdens. Female reproductive success declined by 30% across the range of natural parasite burdens. These effects persisted when accounting for interannual population differences in breeding success. Our results provide quantitative estimates of profound sub‐lethal effects of parasitism on the population. Importantly, they highlight how parasites act unpredictably to shape ecological and evolutionary processes in different components of the same population, with implications for demography and selection on host and parasite traits.
Collapse
Affiliation(s)
- Olivia Hicks
- School of Environmental Sciences, University of Liverpool, Nicholson Building, Liverpool, L69 3BX, United Kingdom
| | - Jonathan A Green
- School of Environmental Sciences, University of Liverpool, Nicholson Building, Liverpool, L69 3BX, United Kingdom
| | - Francis Daunt
- Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, United Kingdom
| | - Emma J A Cunningham
- School of Biology, Institute of Evolutionary Biology, Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories King's Buildings, West Mains Road, Edinburgh, EH9 3JT, United Kingdom
| | - Mark Newell
- Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, United Kingdom
| | - Adam Butler
- Biomathematics and Statistics Scotland, James Clerk Maxwell Building, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Sarah J Burthe
- Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, United Kingdom
| |
Collapse
|
36
|
Alizon S, Murall CL, Saulnier E, Sofonea MT. Detecting within-host interactions from genotype combination prevalence data. Epidemics 2019; 29:100349. [PMID: 31257014 PMCID: PMC6899502 DOI: 10.1016/j.epidem.2019.100349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 11/24/2022] Open
Abstract
Parasite genetic diversity can provide information on disease transmission dynamics but most mathematical and statistical frameworks ignore the exact combinations of genotypes in infections. We introduce and validate a new method that combines explicit epidemiological modelling of coinfections and regression-Approximate Bayesian Computing (ABC) to detect within-host interactions. Using a susceptible-infected-susceptible (SIS) model, we show that, if sufficiently strong, within-host parasite interactions can be detected from epidemiological data. We also show that, in this simple setting, this detection is robust even in the face of some level of host heterogeneity in behaviour. These simulations results offer promising applications to analyse large datasets of multiple infection prevalence data, such as those collected for genital infections by Human Papillomaviruses (HPVs).
Collapse
Affiliation(s)
- Samuel Alizon
- MIVEGEC, CNRS, IRD, Université de Montpellier, France.
| | | | - Emma Saulnier
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
| | | |
Collapse
|
37
|
Arnold PA, Kruuk LEB, Nicotra AB. How to analyse plant phenotypic plasticity in response to a changing climate. THE NEW PHYTOLOGIST 2019; 222:1235-1241. [PMID: 30632169 DOI: 10.1111/nph.15656] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/10/2018] [Indexed: 05/02/2023]
Abstract
Contents Summary 1235 I. Introduction 1235 II. The many shapes of phenotypic plasticity 1236 III. Random regression mixed model framework 1237 IV. Conclusions 1240 Acknowledgements 1240 References 1240 SUMMARY: Plant biology is experiencing a renewed interest in the mechanistic underpinnings and evolution of phenotypic plasticity that calls for a re-evaluation of how we analyse phenotypic responses to a rapidly changing climate. We suggest that dissecting plant plasticity in response to increasing temperature needs an approach that can represent plasticity over multiple environments, and considers both population-level responses and the variation between genotypes in their response. Here, we outline how a random regression mixed model framework can be applied to plastic traits that show linear or nonlinear responses to temperature. Random regressions provide a powerful and efficient means of characterising plasticity and its variation. Although they have been used widely in other fields, they have only recently been implemented in plant evolutionary ecology. We outline their structure and provide an example tutorial of their implementation.
Collapse
Affiliation(s)
- Pieter A Arnold
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Loeske E B Kruuk
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Adrienne B Nicotra
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
38
|
Bush SE, Clayton DH. Anti-parasite behaviour of birds. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0196. [PMID: 29866911 DOI: 10.1098/rstb.2017.0196] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2018] [Indexed: 11/12/2022] Open
Abstract
Birds have many kinds of internal and external parasites, including viruses, bacteria and fungi, as well as protozoa, helminths and arthropods. Because parasites have negative effects on host fitness, selection favours the evolution of anti-parasite defences, many of which involve behaviour. We provide a brief review of anti-parasite behaviours in birds, divided into five major categories: (i) body maintenance, (ii) nest maintenance, (iii) avoidance of parasitized prey, (iv) migration and (v) tolerance. We evaluate the adaptive significance of the different behaviours and note cases in which additional research is particularly needed. We briefly consider the interaction of different behaviours, such as sunning and preening, and how behavioural defences may interact with other forms of defence, such as immune responses. We conclude by suggesting some general questions that need to be addressed concerning the nature of anti-parasite behaviour in birds.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'.
Collapse
Affiliation(s)
- Sarah E Bush
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Dale H Clayton
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
39
|
Arnold PA, Nicotra AB, Kruuk LEB. Sparse evidence for selection on phenotypic plasticity in response to temperature. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180185. [PMID: 30966967 PMCID: PMC6365867 DOI: 10.1098/rstb.2018.0185] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2018] [Indexed: 01/08/2023] Open
Abstract
Phenotypic plasticity is frequently assumed to be an adaptive mechanism by which organisms cope with rapid changes in their environment, such as shifts in temperature regimes owing to climate change. However, despite this adaptive assumption, the nature of selection on plasticity within populations is still poorly documented. Here, we performed a systematic review and meta-analysis of estimates of selection on thermal plasticity. Although there is a large literature on thermal plasticity, we found very few studies that estimated coefficients of selection on measures of plasticity. Those that did do not provide strong support for selection on plasticity, with the majority of estimates of directional selection on plasticity being weak and non-significant, and no evidence for selection on plasticity overall. Although further estimates are clearly needed before general conclusions can be drawn, at present there is not clear empirical support for any assumption that plasticity in response to temperature is under selection. We present a multivariate mixed model approach for robust estimation of selection on plasticity and demonstrate how it can be implemented. Finally, we highlight the need to consider the environments, traits and conditions under which plasticity is (or is not) likely to be under selection, if we are to understand phenotypic responses to rapid environmental change. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Pieter A. Arnold
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, 2601Australia
| | | | | |
Collapse
|
40
|
Stutz WE, Calhoun DM, Johnson PTJ. Resistance and tolerance: A hierarchical framework to compare individual versus family-level host contributions in an experimental amphibian-trematode system. Exp Parasitol 2019; 199:80-91. [PMID: 30862495 DOI: 10.1016/j.exppara.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/22/2019] [Accepted: 03/06/2019] [Indexed: 11/18/2022]
Abstract
Hosts have two general strategies for mitigating the fitness costs of parasite exposure and infection: resistance and tolerance. The resistance-tolerance framework has been well developed in plant systems, but only recently has it been applied to animal-parasite interactions. However, difficulties associated with estimating fitness, controlling parasite exposure, and quantifying parasite burden have limited application of this framework to animal systems. Here, we used an experimental approach to quantify the relative influence of variation among host individuals and genetic families in determining resistance and tolerance within an amphibian-trematode system. Importantly, we used multiple, alternative metrics to assess each strategy, and employed a Bayesian analytical framework to compare among responses while incorporating uncertainty. Relative to unexposed hosts, exposure to the pathogenic trematode (Ribeiroia ondatrae) reduced the survival and growth of California newts (Taricha torosa) (survival: 93% vs. 74%; growth: 0.29 vs. -0.5 vs mm day -1). Similarly, parasite infection success (the inverse of resistance) ranged from 8% to 100%. Yet despite this broad variation in host resistance and tolerance among individual newts, we found no evidence for transmissable, among-family variation in any of the resistance or tolerance metrics. This suggests that opportunities for evolution of these traits is limited, likely requiring significant increases in mutation, gene flow, or environmental heterogeneity. Our study provides a quantitative framework for evaluating the importance of alternative metrics of resistance and tolerance across multiple time points in the study of host-parasite interactions in animal systems.
Collapse
Affiliation(s)
- William E Stutz
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Dana M Calhoun
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA.
| | - Pieter T J Johnson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
41
|
Burgan SC, Gervasi SS, Johnson LR, Martin LB. How Individual Variation in Host Tolerance Affects Competence to Transmit Parasites. Physiol Biochem Zool 2019; 92:49-57. [PMID: 30481116 DOI: 10.1086/701169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tolerance, or the maintenance of host health or fitness at a given parasite burden, has often been studied in evolutionary and medical contexts, particularly with respect to effects on the evolution of parasite virulence and individual patient outcomes. These bodies of work have provided insight about tolerance for evolutionary phenomena (e.g., virulence) and individual health (e.g., recovering from an infection). However, due to the specific motivations of that work, few studies have considered the ecological ramifications of variation in tolerance, namely, how variation in forms of tolerance could mediate parasite movement through populations and even community-level disease dynamics. Tolerance is most commonly regarded as the relationship between host fitness and parasite burden. However, few if any studies have actually quantified host fitness, instead utilizing proxies of fitness as the response variables to be regressed against parasite burden. Here, we address how attention to the effects of parasite burden on traits that are relevant to host competence (i.e., the ability to amplify parasites to levels transmissible to other hosts/vectors) will enhance our understanding of disease dynamics in nature. We also provide several forms of guidance for how to overcome the challenges of quantifying tolerance in wild organisms.
Collapse
|
42
|
Ramakers JJC, Gienapp P, Visser ME. Phenological mismatch drives selection on elevation, but not on slope, of breeding time plasticity in a wild songbird. Evolution 2019; 73:175-187. [PMID: 30556587 PMCID: PMC6519030 DOI: 10.1111/evo.13660] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022]
Abstract
Phenotypic plasticity is an important mechanism for populations to respond to fluctuating environments, yet may be insufficient to adapt to a directionally changing environment. To study whether plasticity can evolve under current climate change, we quantified selection and genetic variation in both the elevation (RNE ) and slope (RNS ) of the breeding time reaction norm in a long-term (1973-2016) study population of great tits (Parus major). The optimal RNE (the caterpillar biomass peak date regressed against the temperature used as cue by great tits) changed over time, whereas the optimal RNS did not. Concordantly, we found strong directional selection on RNE , but not RNS , of egg-laying date in the second third of the study period; this selection subsequently waned, potentially due to increased between-year variability in optimal laying dates. We found individual and additive genetic variation in RNE but, contrary to previous studies on our population, not in RNS . The predicted and observed evolutionary change in RNE was, however, marginal, due to low heritability and the sex limitation of laying date. We conclude that adaptation to climate change can only occur via micro-evolution of RNE, but this will necessarily be slow and potentially hampered by increased variability in phenotypic optima.
Collapse
Affiliation(s)
- Jip J. C. Ramakers
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)6700AB WageningenThe Netherlands
| | - Phillip Gienapp
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)6700AB WageningenThe Netherlands
| | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)6700AB WageningenThe Netherlands
| |
Collapse
|
43
|
Rohfritsch A, Galan M, Gautier M, Gharbi K, Olsson G, Gschloessl B, Zeimes C, VanWambeke S, Vitalis R, Charbonnel N. Preliminary insights into the genetics of bank vole tolerance to Puumala hantavirus in Sweden. Ecol Evol 2018; 8:11273-11292. [PMID: 30519443 PMCID: PMC6262921 DOI: 10.1002/ece3.4603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
Natural reservoirs of zoonotic pathogens generally seem to be capable of tolerating infections. Tolerance and its underlying mechanisms remain difficult to assess using experiments or wildlife surveys. High-throughput sequencing technologies give the opportunity to investigate the genetic bases of tolerance, and the variability of its mechanisms in natural populations. In particular, population genomics may provide preliminary insights into the genes shaping tolerance and potentially influencing epidemiological dynamics. Here, we addressed these questions in the bank vole Myodes glareolus, the specific asymptomatic reservoir host of Puumala hantavirus (PUUV), which causes nephropathia epidemica (NE) in humans. Despite the continuous spatial distribution of M. glareolus in Sweden, NE is endemic to the northern part of the country. Northern bank vole populations in Sweden might exhibit tolerance strategies as a result of coadaptation with PUUV. This may favor the circulation and maintenance of PUUV and lead to high spatial risk of NE in northern Sweden. We performed a genome-scan study to detect signatures of selection potentially correlated with spatial variations in tolerance to PUUV. We analyzed six bank vole populations from Sweden, sampled from northern NE-endemic to southern NE-free areas. We combined candidate gene analyses (Tlr4, Tlr7, and Mx2 genes) and high-throughput sequencing of restriction site-associated DNA (RAD) markers. Outlier loci showed high levels of genetic differentiation and significant associations with environmental data including variations in the regional number of NE human cases. Among the 108 outliers that matched to mouse protein-coding genes, 14 corresponded to immune-related genes. The main biological pathways found to be significantly enriched corresponded to immune processes and responses to hantavirus, including the regulation of cytokine productions, TLR cascades, and IL-7, VEGF, and JAK-STAT signaling. In the future, genome-scan replicates and functional experimentations should enable to assess the role of these biological pathways in M. glareolus tolerance to PUUV.
Collapse
Affiliation(s)
- Audrey Rohfritsch
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Maxime Galan
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Mathieu Gautier
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Karim Gharbi
- Norwich Research ParkEarlham InstituteNorwich, NorfolkUK
| | - Gert Olsson
- Department of Wildlife, Fish, and Environmental StudiesSLUUmeåSweden
| | - Bernhard Gschloessl
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Caroline Zeimes
- Georges Lemaître Centre for Earth and Climate Research, Earth and Life InstituteUniversité Catholique de Louvain (UCL)Louvain‐la‐NeuveBelgium
| | - Sophie VanWambeke
- Georges Lemaître Centre for Earth and Climate Research, Earth and Life InstituteUniversité Catholique de Louvain (UCL)Louvain‐la‐NeuveBelgium
| | - Renaud Vitalis
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Nathalie Charbonnel
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| |
Collapse
|
44
|
Trade-off between tolerance and resistance to infections: an experimental approach with malaria parasites in a passerine bird. Oecologia 2018; 188:1001-1010. [PMID: 30377770 DOI: 10.1007/s00442-018-4290-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 10/22/2018] [Indexed: 10/28/2022]
Abstract
Avian malaria parasites are known to have negative effects on their hosts, including consequences for reproductive success and survival. However, the outcome of disease may vary greatly among individuals, due to their particular genetic background, their past history of exposure to infections, or the way they respond to infections at the physiological level. We experimentally reduced parasitemia in naturally infected birds to examine individual-level variation in physiological parameters involved in anti-parasite defense, focusing specifically on disease resistance and tolerance. As a measure of disease resistance, we used circulating levels of IgY, and as a measure of disease tolerance, we estimated haptoglobin concentrations. Our results show individual consistency in the physiological parameters studied during the experiment, that was statistically significant for body condition, and marginally significant for IgY levels, and a trade-off between physiological mechanisms involved in resistance and tolerance that seem to be mediated by parasitemia. The medication experiment with primaquine was successful in reducing parasite intensity, but was not sufficient to clear the infection, and there was a generalized improvement in body condition in all birds maintained in captivity during the experiment. We suggest that the observed changes in the association between resistance and tolerance estimates may be due to the decrease in parasitemia attained through medication, to the improved nutritional status observed during the experiment or to the combined effect of both. Our study adds to the understanding of how wild animals cope with the diseases they are exposed to in their natural environment, and ultimately the consequences of parasitism at the individual level.
Collapse
|
45
|
Lough G, Hess A, Hess M, Rashidi H, Matika O, Lunney JK, Rowland RRR, Kyriazakis I, Mulder HA, Dekkers JCM, Doeschl-Wilson A. Harnessing longitudinal information to identify genetic variation in tolerance of pigs to Porcine Reproductive and Respiratory Syndrome virus infection. Genet Sel Evol 2018; 50:50. [PMID: 30355341 PMCID: PMC6201485 DOI: 10.1186/s12711-018-0420-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High resistance (the ability of the host to reduce pathogen load) and tolerance (the ability to maintain high performance at a given pathogen load) are two desirable host traits for producing animals that are resilient to infections. For Porcine Reproductive and Respiratory Syndrome (PRRS), one of the most devastating swine diseases worldwide, studies have identified substantial genetic variation in resistance of pigs, but evidence for genetic variation in tolerance has so far been inconclusive. Resistance and tolerance are usually considered as static traits. In this study, we used longitudinal viremia measurements of PRRS virus infected pigs to define discrete stages of infection based on viremia profile characteristics. These were used to investigate host genetic effects on viral load (VL) and growth at different stages of infection, to quantify genetic variation in tolerance at these stages and throughout the entire 42-day observation period, and to assess whether the single nucleotide polymorphism (SNP) WUR10000125 (WUR) with known large effects on resistance confers significant differences in tolerance. RESULTS Genetic correlations between resistance and growth changed considerably over time. Individuals that expressed high genetic resistance early in infection tended to grow slower during that time-period, but were more likely to experience lower VL and recovery in growth by the later stage. The WUR genotype was most strongly associated with VL at early- to mid-stages of infection, and with growth at mid- to late-stages of infection. Both, single-stage and repeated measurements random regression models identified significant genetic variation in tolerance. The WUR SNP was significantly associated only with the overall tolerance slope fitted through all stages of infection, with the genetically more resistant AB pigs for the WUR SNP being also more tolerant to PRRS. CONCLUSIONS The results suggest that genetic selection for improved tolerance of pigs to PRRS is possible in principle, but may be feasible only with genomic selection, requiring intense recording schemes that involve repeated measurements to reliably estimate genetic effects. In the absence of such records, consideration of the WUR genotype in current selection schemes appears to be a promising strategy to improve simultaneously resistance and tolerance of growing pigs to PRRS.
Collapse
Affiliation(s)
- Graham Lough
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Andrew Hess
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Melanie Hess
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Hamed Rashidi
- Animal Breeding and Genomics, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Oswald Matika
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC, ARS, USDA, Beltsville, MD, 20705, USA
| | - Raymond R R Rowland
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Ilias Kyriazakis
- School of Agriculture Food and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Han A Mulder
- Animal Breeding and Genomics, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Andrea Doeschl-Wilson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, Midlothian, UK.
| |
Collapse
|
46
|
Yap GS, Gause WC. Helminth Infections Induce Tissue Tolerance Mitigating Immunopathology but Enhancing Microbial Pathogen Susceptibility. Front Immunol 2018; 9:2135. [PMID: 30386324 PMCID: PMC6198046 DOI: 10.3389/fimmu.2018.02135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 01/17/2023] Open
Abstract
Helminths are ubiquitous and have chronically infected vertebrates throughout their evolution. As such helminths have likely exerted considerable selection pressure on our immune systems. The large size of multicellular helminths and their limited replicative capacity in the host necessarily elicits different host protective mechanisms than the immune response evoked by microbial pathogens such as bacteria, viruses and intracellular parasites. The cellular damage resulting from helminth migration through tissues is a major trigger of the type 2 and regulatory immune responses, which activates wound repair mechanisms that increases tissue tolerance to injury and resistance mechanisms that enhance resistance to further colonization with larval stages. While these wound healing and anti-inflammatory responses may be beneficial to the helminth infected host, they may also compromise the host's ability to mount protective immune responses to microbial pathogens. In this review we will first describe helminth-induced tolerance mechanisms that develop in specific organs including the lung and the intestine, and how adaptive immunity may contribute to these responses through differential activation of T cells in the secondary lymphoid organs. We will then integrate studies that have examined how the immune response is modulated in these specific tissues during coinfection of helminths with viruses, protozoa, and bacteria.
Collapse
Affiliation(s)
- George S Yap
- Department of Medicine, Center for Immunity and Inflammation, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - William C Gause
- Department of Medicine, Center for Immunity and Inflammation, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
47
|
Han CS, Tuni C, Ulcik J, Dingemanse NJ. Increased developmental density decreases the magnitude of indirect genetic effects expressed during agonistic interactions in an insect. Evolution 2018; 72:2435-2448. [PMID: 30221347 DOI: 10.1111/evo.13600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/07/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
Abstract
The expression of aggression depends not only on the direct genetic effects (DGEs) of an individual's genes on its own behavior, but also on indirect genetic effects (IGEs) caused by heritable phenotypes expressed by social partners. IGEs can affect the amount of heritable variance on which selection can act. Despite the important roles of IGEs in the evolutionary process, it remains largely unknown whether the strength of IGEs varies across life stages or competitive regimes. Based on manipulations of nymphal densities and > 3000 pair-wise aggression tests across multiple life stages, we experimentally demonstrate that IGEs on aggression are stronger in field crickets (Gryllus bimaculatus) that develop at lower densities than in those that develop at higher densities, and that these effects persist with age. The existence of density-dependent IGEs implies that social interactions strongly determine the plastic expression of aggression when competition for resources is relaxed. A more competitive (higher density) rearing environment may fail to provide crickets with sufficient resources to develop social cognition required for strong IGEs. The contribution of IGEs to evolutionary responses was greater at lower densities. Our study thereby demonstrates the importance of considering IGEs in density-dependent ecological and evolutionary processes.
Collapse
Affiliation(s)
- Chang S Han
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany.,Current Address: School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Cristina Tuni
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Jakob Ulcik
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
48
|
King IL, Li Y. Host-Parasite Interactions Promote Disease Tolerance to Intestinal Helminth Infection. Front Immunol 2018; 9:2128. [PMID: 30298071 PMCID: PMC6160735 DOI: 10.3389/fimmu.2018.02128] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022] Open
Abstract
Parasitic helminths are among the most pervasive pathogens of the animal kingdom. To complete their life cycle, these intestinal worms migrate through host tissues causing significant damage in their wake. As a result, infection can lead to malnutrition, anemia and increased susceptibility to co-infection. Despite repeated deworming treatment, individuals living in endemic regions remain highly susceptible to re-infection by helminths, but rarely succumb to excessive tissue damage. The chronicity of infection and inability to resist numerous species of parasitic helminths that have co-evolved with their hosts over millenia suggests that mammals have developed mechanisms to tolerate this infectious disease. Distinct from resistance where the goal is to destroy and eliminate the pathogen, disease tolerance is an active process whereby immune and structural cells restrict tissue damage to maintain host fitness without directly affecting pathogen burden. Although disease tolerance is evolutionary conserved and has been well-described in plant systems, only recently has this mode of host defense, in its strictest sense, begun to be explored in mammals. In this review, we will examine the inter- and intracellular networks that support disease tolerance during enteric stages of parasitic helminth infection and why this alternative host defense strategy may have evolved to endure the presence of non-replicating pathogens and maintain the essential functions of the intestine.
Collapse
Affiliation(s)
- Irah L King
- McGill University Health Centre, Montreal, QC, Canada.,Meakins-Christie Laboratories, Montreal, QC, Canada
| | - Yue Li
- McGill University Health Centre, Montreal, QC, Canada.,Meakins-Christie Laboratories, Montreal, QC, Canada
| |
Collapse
|
49
|
|
50
|
Decker LE, de Roode JC, Hunter MD. Elevated atmospheric concentrations of carbon dioxide reduce monarch tolerance and increase parasite virulence by altering the medicinal properties of milkweeds. Ecol Lett 2018; 21:1353-1363. [PMID: 30134036 DOI: 10.1111/ele.13101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/28/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022]
Abstract
Hosts combat their parasites using mechanisms of resistance and tolerance, which together determine parasite virulence. Environmental factors, including diet, mediate the impact of parasites on hosts, with diet providing nutritional and medicinal properties. Here, we present the first evidence that ongoing environmental change decreases host tolerance and increases parasite virulence through a loss of dietary medicinal quality. Monarch butterflies use dietary toxins (cardenolides) to reduce the deleterious impacts of a protozoan parasite. We fed monarch larvae foliage from four milkweed species grown under either elevated or ambient CO2 , and measured changes in resistance, tolerance, and virulence. The most high-cardenolide milkweed species lost its medicinal properties under elevated CO2 ; monarch tolerance to infection decreased, and parasite virulence increased. Declines in medicinal quality were associated with declines in foliar concentrations of lipophilic cardenolides. Our results emphasize that global environmental change may influence parasite-host interactions through changes in the medicinal properties of plants.
Collapse
Affiliation(s)
- Leslie E Decker
- Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| | - Jacobus C de Roode
- Biology Department, Rollins 1113 O. Wayne Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Mark D Hunter
- Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|