1
|
Assendorp N, Fossati M, Libé-Philippot B, Christopoulou E, Depp M, Rapone R, Dingli F, Loew D, Vanderhaeghen P, Charrier C. CTNND2 moderates the pace of synaptic maturation and links human evolution to synaptic neoteny. Cell Rep 2024; 43:114797. [PMID: 39352808 DOI: 10.1016/j.celrep.2024.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/01/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Human-specific genes are potential drivers of brain evolution. Among them, SRGAP2C has contributed to the emergence of features characterizing human cortical synapses, including their extended period of maturation. SRGAP2C inhibits its ancestral copy, the postsynaptic protein SRGAP2A, but the synaptic molecular pathways differentially regulated in humans by SRGAP2 proteins remain largely unknown. Here, we identify CTNND2, a protein implicated in severe intellectual disability (ID) in Cri-du-Chat syndrome, as a major partner of SRGAP2. We demonstrate that CTNND2 slows synaptic maturation and promotes neuronal integrity. During postnatal development, CTNND2 moderates neuronal excitation and excitability. In adults, it supports synapse maintenance. While CTNND2 deficiency is deleterious and results in synaptic loss of SYNGAP1, another major ID-associated protein, the human-specific protein SRGAP2C, enhances CTNND2 synaptic accumulation in human neurons. Our findings suggest that CTNND2 regulation by SRGAP2C contributes to synaptic neoteny in humans and link human-specific and ID genes at the synapse.
Collapse
Affiliation(s)
- Nora Assendorp
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Matteo Fossati
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Eirini Christopoulou
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Marine Depp
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Roberta Rapone
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, CurieCore Tech Mass Spectrometry Proteomics, 75005 Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, CurieCore Tech Mass Spectrometry Proteomics, 75005 Paris, France
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Cécile Charrier
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
2
|
Karageorgiou C, Gokcumen O, Dennis MY. Deciphering the role of structural variation in human evolution: a functional perspective. Curr Opin Genet Dev 2024; 88:102240. [PMID: 39121701 PMCID: PMC11485010 DOI: 10.1016/j.gde.2024.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Advances in sequencing technologies have enabled the comparison of high-quality genomes of diverse primate species, revealing vast amounts of divergence due to structural variation. Given their large size, structural variants (SVs) can simultaneously alter the function and regulation of multiple genes. Studies estimate that collectively more than 3.5% of the genome is divergent in humans versus other great apes, impacting thousands of genes. Functional genomics and gene-editing tools in various model systems recently emerged as an exciting frontier - investigating the wide-ranging impacts of SVs on molecular, cellular, and systems-level phenotypes. This review examines existing research and identifies future directions to broaden our understanding of the functional roles of SVs on phenotypic innovations and diversity impacting uniquely human features, ranging from cognition to metabolic adaptations.
Collapse
Affiliation(s)
- Charikleia Karageorgiou
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY 14260, USA. https://twitter.com/@evobioclio
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY 14260, USA
| | - Megan Y Dennis
- Department of Biochemistry & Molecular Medicine, Genome Center, and MIND Institute, University of California, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Wierda K, Nyitrai H, Lejeune A, Vlaeminck I, Leysen E, Theys T, de Wit J, Vanderhaeghen P, Libé-Philippot B. Protocol to process fresh human cerebral cortex biopsies for patch-clamp recording and immunostaining. STAR Protoc 2024; 5:103313. [PMID: 39292560 PMCID: PMC11424940 DOI: 10.1016/j.xpro.2024.103313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/23/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024] Open
Abstract
Cerebral cortex biopsies enable the investigation of native developing and mature human brain tissue. Here, we present a protocol to process human cortical biopsies from the surgical theater to the laboratory. We describe steps for the preparation of viable acute slices for patch-clamp recording using dedicated chemical solutions for transport and sectioning. We then explain procedures for tissue fixation and post hoc immunostaining to correlate physiological properties to morphological features and protein detection. For complete details on the use and execution of this protocol, please refer to Libé-Philippot et al.1.
Collapse
Affiliation(s)
- Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.
| | - Hajnalka Nyitrai
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Amélie Lejeune
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Ine Vlaeminck
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Elke Leysen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Tom Theys
- KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; Research Group Experimental Neurosurgery and Neuroanatomy, KUL, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| | - Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
4
|
Christopoulou E, Charrier C. Molecular mechanisms of the specialization of human synapses in the neocortex. Curr Opin Genet Dev 2024; 89:102258. [PMID: 39255688 DOI: 10.1016/j.gde.2024.102258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/12/2024]
Abstract
Synapses of the neocortex specialized during human evolution to develop over extended timescales, process vast amounts of information and increase connectivity, which is thought to underlie our advanced social and cognitive abilities. These features reflect species-specific regulations of neuron and synapse cell biology. However, despite growing understanding of the human genome and the brain transcriptome at the single-cell level, linking human-specific genetic changes to the specialization of human synapses has remained experimentally challenging. In this review, we describe recent progress in characterizing divergent morphofunctional and developmental properties of human synapses, and we discuss new insights into the underlying molecular mechanisms. We also highlight intersections between evolutionary innovations and disorder-related dysfunctions at the synapse.
Collapse
Affiliation(s)
- Eirini Christopoulou
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Cécile Charrier
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
5
|
Lee SY, Kozalakis K, Baftizadeh F, Campagnola L, Jarsky T, Koch C, Anastassiou CA. Cell-class-specific electric field entrainment of neural activity. Neuron 2024; 112:2614-2630.e5. [PMID: 38838670 PMCID: PMC11309920 DOI: 10.1016/j.neuron.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/14/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Electric fields affect the activity of neurons and brain circuits, yet how this happens at the cellular level remains enigmatic. Lack of understanding of how to stimulate the brain to promote or suppress specific activity significantly limits basic research and clinical applications. Here, we study how electric fields impact subthreshold and spiking properties of major cortical neuronal classes. We find that neurons in the rodent and human cortex exhibit strong, cell-class-dependent entrainment that depends on stimulation frequency. Excitatory pyramidal neurons, with their slower spike rate, entrain to both slow and fast electric fields, while inhibitory classes like Pvalb and Sst (with their fast spiking) predominantly phase-lock to fast fields. We show that this spike-field entrainment is the result of two effects: non-specific membrane polarization occurring across classes and class-specific excitability properties. Importantly, these properties are present across cortical areas and species. These findings allow for the design of selective and class-specific neuromodulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Costas A Anastassiou
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
6
|
Szegedi V, Tiszlavicz Á, Furdan S, Douida A, Bakos E, Barzo P, Tamas G, Szucs A, Lamsa K. Aging-associated weakening of the action potential in fast-spiking interneurons in the human neocortex. J Biotechnol 2024; 389:1-12. [PMID: 38697361 DOI: 10.1016/j.jbiotec.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Aging is associated with the slowdown of neuronal processing and cognitive performance in the brain; however, the exact cellular mechanisms behind this deterioration in humans are poorly elucidated. Recordings in human acute brain slices prepared from tissue resected during brain surgery enable the investigation of neuronal changes with age. Although neocortical fast-spiking cells are widely implicated in neuronal network activities underlying cognitive processes, they are vulnerable to neurodegeneration. Herein, we analyzed the electrical properties of 147 fast-spiking interneurons in neocortex samples resected in brain surgery from 106 patients aged 11-84 years. By studying the electrophysiological features of action potentials and passive membrane properties, we report that action potential overshoot significantly decreases and spike half-width increases with age. Moreover, the action potential maximum-rise speed (but not the repolarization speed or the afterhyperpolarization amplitude) significantly changed with age, suggesting a particular weakening of the sodium channel current generated in the soma. Cell passive membrane properties measured as the input resistance, membrane time constant, and cell capacitance remained unaffected by senescence. Thus, we conclude that the action potential in fast-spiking interneurons shows a significant weakening in the human neocortex with age. This may contribute to the deterioration of cortical functions by aging.
Collapse
Affiliation(s)
- Viktor Szegedi
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary; Department of Physiology, Anatomy and Neuroscience, University of Szeged, Hungary
| | - Ádám Tiszlavicz
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary
| | - Szabina Furdan
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary
| | - Abdennour Douida
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary
| | - Emoke Bakos
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary; Department of Physiology, Anatomy and Neuroscience, University of Szeged, Hungary
| | - Pal Barzo
- Department of Neurosurgery, University of Szeged, Hungary
| | - Gabor Tamas
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Hungary
| | - Attila Szucs
- Neuronal Cell Biology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Karri Lamsa
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary; Department of Physiology, Anatomy and Neuroscience, University of Szeged, Hungary.
| |
Collapse
|
7
|
Mahon S. Variation and convergence in the morpho-functional properties of the mammalian neocortex. Front Syst Neurosci 2024; 18:1413780. [PMID: 38966330 PMCID: PMC11222651 DOI: 10.3389/fnsys.2024.1413780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Man's natural inclination to classify and hierarchize the living world has prompted neurophysiologists to explore possible differences in brain organisation between mammals, with the aim of understanding the diversity of their behavioural repertoires. But what really distinguishes the human brain from that of a platypus, an opossum or a rodent? In this review, we compare the structural and electrical properties of neocortical neurons in the main mammalian radiations and examine their impact on the functioning of the networks they form. We discuss variations in overall brain size, number of neurons, length of their dendritic trees and density of spines, acknowledging their increase in humans as in most large-brained species. Our comparative analysis also highlights a remarkable consistency, particularly pronounced in marsupial and placental mammals, in the cell typology, intrinsic and synaptic electrical properties of pyramidal neuron subtypes, and in their organisation into functional circuits. These shared cellular and network characteristics contribute to the emergence of strikingly similar large-scale physiological and pathological brain dynamics across a wide range of species. These findings support the existence of a core set of neural principles and processes conserved throughout mammalian evolution, from which a number of species-specific adaptations appear, likely allowing distinct functional needs to be met in a variety of environmental contexts.
Collapse
Affiliation(s)
- Séverine Mahon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
8
|
Bullmann T, Kaas T, Ritzau-Jost A, Wöhner A, Kirmann T, Rizalar FS, Holzer M, Nerlich J, Puchkov D, Geis C, Eilers J, Kittel RJ, Arendt T, Haucke V, Hallermann S. Human iPSC-Derived Neurons with Reliable Synapses and Large Presynaptic Action Potentials. J Neurosci 2024; 44:e0971232024. [PMID: 38724283 PMCID: PMC11170674 DOI: 10.1523/jneurosci.0971-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/14/2024] Open
Abstract
Understanding the function of the human brain requires determining basic properties of synaptic transmission in human neurons. One of the most fundamental parameters controlling neurotransmitter release is the presynaptic action potential, but its amplitude and duration remain controversial. Presynaptic action potentials have so far been measured with high temporal resolution only in a limited number of vertebrate but not in human neurons. To uncover properties of human presynaptic action potentials, we exploited recently developed tools to generate human glutamatergic neurons by transient expression of Neurogenin 2 (Ngn2) in pluripotent stem cells. During maturation for 3 to 9 weeks of culturing in different established media, the proportion of cells with multiple axon initial segments decreased, while the amount of axonal tau protein and neuronal excitability increased. Super-resolution microscopy revealed the alignment of the pre- and postsynaptic proteins, Bassoon and Homer. Synaptic transmission was surprisingly reliable at frequencies of 20, 50, and 100 Hz. The synchronicity of synaptic transmission during high-frequency transmission increased during 9 weeks of neuronal maturation. To analyze the mechanisms of synchronous high-frequency glutamate release, we developed direct presynaptic patch-clamp recordings from human neurons. The presynaptic action potentials had large overshoots to ∼25 mV and short durations of ∼0.5 ms. Our findings show that Ngn2-induced neurons represent an elegant model system allowing for functional, structural, and molecular analyses of glutamatergic synaptic transmission with high spatiotemporal resolution in human neurons. Furthermore, our data predict that glutamatergic transmission is mediated by large and rapid presynaptic action potentials in the human brain.
Collapse
Affiliation(s)
- Torsten Bullmann
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Thomas Kaas
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Andreas Ritzau-Jost
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Anne Wöhner
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Toni Kirmann
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Filiz Sila Rizalar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | - Max Holzer
- Paul-Flechsig-Institute for Brain Research, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Jana Nerlich
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Robert J Kittel
- Institute of Biology, Department of Animal Physiology, Leipzig University, Leipzig 04103, Germany
| | - Thomas Arendt
- Paul-Flechsig-Institute for Brain Research, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Stefan Hallermann
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
9
|
Steyn C, Mishi R, Fillmore S, Verhoog MB, More J, Rohlwink UK, Melvill R, Butler J, Enslin JMN, Jacobs M, Sauka-Spengler T, Greco M, Quiñones S, Dulla CG, Raimondo JV, Figaji A, Hockman D. Cell type-specific gene expression dynamics during human brain maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.29.560114. [PMID: 37808657 PMCID: PMC10557738 DOI: 10.1101/2023.09.29.560114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The human brain undergoes protracted post-natal maturation, guided by dynamic changes in gene expression. Most studies exploring these processes have used bulk tissue analyses, which mask cell type-specific gene expression dynamics. Here, using single nucleus (sn)RNA-seq on temporal lobe tissue, including samples of African ancestry, we build a joint paediatric and adult atlas of 75 cell subtypes, which we verify with spatial transcriptomics. We explore the differences between paediatric and adult cell types, revealing the genes and pathways that change during brain maturation. Our results highlight excitatory neuron subtypes, including the LTK and FREM subtypes, that show elevated expression of genes associated with cognition and synaptic plasticity in paediatric tissue. The new resources we present here improve our understanding of the brain during its development and contribute to global efforts to build an inclusive brain cell map.
Collapse
Affiliation(s)
- Christina Steyn
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ruvimbo Mishi
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Stephanie Fillmore
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Matthijs B Verhoog
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jessica More
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ursula K Rohlwink
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Roger Melvill
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - James Butler
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Johannes M N Enslin
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Muazzam Jacobs
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Immunology, Department of Pathology University of Cape Town
- National Health Laboratory Service, South Africa
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Maria Greco
- Single Cell Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sadi Quiñones
- Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Graduate School of Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | - Chris G Dulla
- Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Joseph V Raimondo
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Anthony Figaji
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Zhang C, Revah O, Wolf F, Neef A. Dynamic Gain Decomposition Reveals Functional Effects of Dendrites, Ion Channels, and Input Statistics in Population Coding. J Neurosci 2024; 44:e0799232023. [PMID: 38286625 PMCID: PMC10977021 DOI: 10.1523/jneurosci.0799-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/31/2024] Open
Abstract
Modern, high-density neuronal recordings reveal at ever higher precision how information is represented by neural populations. Still, we lack the tools to understand these processes bottom-up, emerging from the biophysical properties of neurons, synapses, and network structure. The concept of the dynamic gain function, a spectrally resolved approximation of a population's coding capability, has the potential to link cell-level properties to network-level performance. However, the concept is not only useful but also very complex because the dynamic gain's shape is co-determined by axonal and somato-dendritic parameters and the population's operating regime. Previously, this complexity precluded an understanding of any individual parameter's impact. Here, we decomposed the dynamic gain function into three components corresponding to separate signal transformations. This allowed attribution of network-level encoding features to specific cell-level parameters. Applying the method to data from real neurons and biophysically plausible models, we found: (1) The encoding bandwidth of real neurons, approximately 400 Hz, is constrained by the voltage dependence of axonal currents during early action potential initiation. (2) State-of-the-art models only achieve encoding bandwidths around 100 Hz and are limited mainly by subthreshold processes instead. (3) Large dendrites and low-threshold potassium currents modulate the bandwidth by shaping the subthreshold stimulus-to-voltage transformation. Our decomposition provides physiological interpretations when the dynamic gain curve changes, for instance during spectrinopathies and neurodegeneration. By pinpointing shortcomings of current models, it also guides inference of neuron models best suited for large-scale network simulations.
Collapse
Affiliation(s)
- Chenfei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Shanghai 200433, People's Republic of China
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, 37073 Göttingen, Germany
- Bernstein Center for Computational Neuroscience, 37073 Göttingen, Germany
| | - Omer Revah
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, 7610001 Rehovot, Israel
| | - Fred Wolf
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, 37073 Göttingen, Germany
- Bernstein Center for Computational Neuroscience, 37073 Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, 37077 Göttingen, Germany
- Max Planck Institute of Multidisciplinary Sciences, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, 37075 Göttingen, Germany
| | - Andreas Neef
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, 37073 Göttingen, Germany
- Bernstein Center for Computational Neuroscience, 37073 Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, 37077 Göttingen, Germany
- Max Planck Institute of Multidisciplinary Sciences, 37077 Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
11
|
Beninger J, Rossbroich J, Tóth K, Naud R. Functional subtypes of synaptic dynamics in mouse and human. Cell Rep 2024; 43:113785. [PMID: 38363673 DOI: 10.1016/j.celrep.2024.113785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/08/2023] [Accepted: 01/27/2024] [Indexed: 02/18/2024] Open
Abstract
Synapses preferentially respond to particular temporal patterns of activity with a large degree of heterogeneity that is informally or tacitly separated into classes. Yet, the precise number and properties of such classes are unclear. Do they exist on a continuum and, if so, when is it appropriate to divide that continuum into functional regions? In a large dataset of glutamatergic cortical connections, we perform model-based characterization to infer the number and characteristics of functionally distinct subtypes of synaptic dynamics. In rodent data, we find five clusters that partially converge with transgenic-associated subtypes. Strikingly, the application of the same clustering method in human data infers a highly similar number of clusters, supportive of stable clustering. This nuanced dictionary of functional subtypes shapes the heterogeneity of cortical synaptic dynamics and provides a lens into the basic motifs of information transmission in the brain.
Collapse
Affiliation(s)
- John Beninger
- Center for Neural Dynamics and Artificial Intelligence, University of Ottawa, Ottawa, ON K1H 8M5, Canada; uOttawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julian Rossbroich
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Science, University of Basel, Basel, Switzerland
| | - Katalin Tóth
- Center for Neural Dynamics and Artificial Intelligence, University of Ottawa, Ottawa, ON K1H 8M5, Canada; uOttawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Richard Naud
- Center for Neural Dynamics and Artificial Intelligence, University of Ottawa, Ottawa, ON K1H 8M5, Canada; uOttawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Physics, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
12
|
Libé-Philippot B, Lejeune A, Wierda K, Louros N, Erkol E, Vlaeminck I, Beckers S, Gaspariunaite V, Bilheu A, Konstantoulea K, Nyitrai H, De Vleeschouwer M, Vennekens KM, Vidal N, Bird TW, Soto DC, Jaspers T, Dewilde M, Dennis MY, Rousseau F, Comoletti D, Schymkowitz J, Theys T, de Wit J, Vanderhaeghen P. LRRC37B is a human modifier of voltage-gated sodium channels and axon excitability in cortical neurons. Cell 2023; 186:5766-5783.e25. [PMID: 38134874 PMCID: PMC10754148 DOI: 10.1016/j.cell.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/28/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
The enhanced cognitive abilities characterizing the human species result from specialized features of neurons and circuits. Here, we report that the hominid-specific gene LRRC37B encodes a receptor expressed in human cortical pyramidal neurons (CPNs) and selectively localized to the axon initial segment (AIS), the subcellular compartment triggering action potentials. Ectopic expression of LRRC37B in mouse CPNs in vivo leads to reduced intrinsic excitability, a distinctive feature of some classes of human CPNs. Molecularly, LRRC37B binds to the secreted ligand FGF13A and to the voltage-gated sodium channel (Nav) β-subunit SCN1B. LRRC37B concentrates inhibitory effects of FGF13A on Nav channel function, thereby reducing excitability, specifically at the AIS level. Electrophysiological recordings in adult human cortical slices reveal lower neuronal excitability in human CPNs expressing LRRC37B. LRRC37B thus acts as a species-specific modifier of human neuron excitability, linking human genome and cell evolution, with important implications for human brain function and diseases.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Amélie Lejeune
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Nikolaos Louros
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Emir Erkol
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Ine Vlaeminck
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Sofie Beckers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Vaiva Gaspariunaite
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Angéline Bilheu
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium
| | - Katerina Konstantoulea
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Hajnalka Nyitrai
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Matthias De Vleeschouwer
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Kristel M Vennekens
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Niels Vidal
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Thomas W Bird
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Daniela C Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Tom Jaspers
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Maarten Dewilde
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Megan Y Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Tom Theys
- KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; Research Group Experimental Neurosurgery and Neuroanatomy, KUL, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium.
| |
Collapse
|
13
|
Fitch WT. Cellular computation and cognition. Front Comput Neurosci 2023; 17:1107876. [PMID: 38077750 PMCID: PMC10702520 DOI: 10.3389/fncom.2023.1107876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 10/09/2023] [Indexed: 05/28/2024] Open
Abstract
Contemporary neural network models often overlook a central biological fact about neural processing: that single neurons are themselves complex, semi-autonomous computing systems. Both the information processing and information storage abilities of actual biological neurons vastly exceed the simple weighted sum of synaptic inputs computed by the "units" in standard neural network models. Neurons are eukaryotic cells that store information not only in synapses, but also in their dendritic structure and connectivity, as well as genetic "marking" in the epigenome of each individual cell. Each neuron computes a complex nonlinear function of its inputs, roughly equivalent in processing capacity to an entire 1990s-era neural network model. Furthermore, individual cells provide the biological interface between gene expression, ongoing neural processing, and stored long-term memory traces. Neurons in all organisms have these properties, which are thus relevant to all of neuroscience and cognitive biology. Single-cell computation may also play a particular role in explaining some unusual features of human cognition. The recognition of the centrality of cellular computation to "natural computation" in brains, and of the constraints it imposes upon brain evolution, thus has important implications for the evolution of cognition, and how we study it.
Collapse
Affiliation(s)
- W. Tecumseh Fitch
- Faculty of Life Sciences and Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Zaongo SD, Harypursat V, Rashid F, Dahourou DL, Ouedraogo AS, Chen Y. Influence of HIV infection on cognition and overall intelligence in HIV-infected individuals: advances and perspectives. Front Behav Neurosci 2023; 17:1261784. [PMID: 37953826 PMCID: PMC10637382 DOI: 10.3389/fnbeh.2023.1261784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
It is now well understood that HIV-positive individuals, even those under effective ART, tend to develop a spectrum of cognitive, motor, and/or mood conditions which are contemporarily referred to as HIV-associated neurocognitive disorder (HAND), and which is directly related to HIV-1 infection and HIV-1 replication in the central nervous system (CNS). As HAND is known to induce difficulties associated with attention, concentration, and memory, it is thus legitimate and pertinent to speculate upon the possibility that HIV infection may well influence human cognition and intelligence. We therefore propose herein to review the concept of intelligence, the concept of cells of intelligence, the influence of HIV on these particular cells, and the evidence pointing to differences in observed intelligence quotient (IQ) scores between HIV-positive and HIV-negative individuals. Additionally, cumulative research evidence continues to draw attention to the influence of the gut on human intelligence. Up to now, although it is known that HIV infection profoundly alters both the composition and diversity of the gut microbiota and the structural integrity of the gut, the influence of the gut on intelligence in the context of HIV infection remains poorly described. As such, we also provide herein a review of the different ways in which HIV may influence human intelligence via the gut-brain axis. Finally, we provide a discourse on perspectives related to HIV and human intelligence which may assist in generating more robust evidence with respect to this issue in future studies. Our aim is to provide insightful knowledge for the identification of novel areas of investigation, in order to reveal and explain some of the enigmas related to HIV infection.
Collapse
Affiliation(s)
- Silvere D. Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Désiré Lucien Dahourou
- Département Biomédical/Santé Publique, Institut de Recherche en Sciences de la Santé/CNRST, Ouagadougou, Burkina Faso
| | - Abdoul-Salam Ouedraogo
- Centre Muraz, Bobo-Dioulasso, Burkina Faso
- Department of Bacteriology and Virology, Souro Sanou University Hospital, Bobo-Dioulasso, Burkina Faso
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
15
|
Wilbers R, Galakhova AA, Driessens SL, Heistek TS, Metodieva VD, Hagemann J, Heyer DB, Mertens EJ, Deng S, Idema S, de Witt Hamer PC, Noske DP, van Schie P, Kommers I, Luan G, Li T, Shu Y, de Kock CP, Mansvelder HD, Goriounova NA. Structural and functional specializations of human fast-spiking neurons support fast cortical signaling. SCIENCE ADVANCES 2023; 9:eadf0708. [PMID: 37824618 PMCID: PMC10569701 DOI: 10.1126/sciadv.adf0708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/17/2023] [Indexed: 10/14/2023]
Abstract
Fast-spiking interneurons (FSINs) provide fast inhibition that synchronizes neuronal activity and is critical for cognitive function. Fast synchronization frequencies are evolutionary conserved in the expanded human neocortex despite larger neuron-to-neuron distances that challenge fast input-output transfer functions of FSINs. Here, we test in human neurons from neurosurgery tissue, which mechanistic specializations of human FSINs explain their fast-signaling properties in human cortex. With morphological reconstructions, multipatch recordings, and biophysical modeling, we find that despite threefold longer dendritic path, human FSINs maintain fast inhibition between connected pyramidal neurons through several mechanisms: stronger synapse strength of excitatory inputs, larger dendrite diameter with reduced complexity, faster AP initiation, and faster and larger inhibitory output, while Na+ current activation/inactivation properties are similar. These adaptations underlie short input-output delays in fast inhibition of human pyramidal neurons through FSINs, explaining how cortical synchronization frequencies are conserved despite expanded and sparse network topology of human cortex.
Collapse
Affiliation(s)
- René Wilbers
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Anna A. Galakhova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Stan L.W. Driessens
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Tim S. Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Verjinia D. Metodieva
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Jim Hagemann
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Djai B. Heyer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Eline J. Mertens
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Suixin Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Wai Street, Beijing 100875, China
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 201508, China
| | - Sander Idema
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, de Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Philip C. de Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, de Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - David P. Noske
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, de Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Paul van Schie
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, de Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Ivar Kommers
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, de Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Guoming Luan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong 50, Beijing 100093, China
| | - Tianfu Li
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong 50, Beijing 100093, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Wai Street, Beijing 100875, China
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 201508, China
| | - Christiaan P.J. de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Natalia A. Goriounova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
16
|
Wilbers R, Metodieva VD, Duverdin S, Heyer DB, Galakhova AA, Mertens EJ, Versluis TD, Baayen JC, Idema S, Noske DP, Verburg N, Willemse RB, de Witt Hamer PC, Kole MH, de Kock CP, Mansvelder HD, Goriounova NA. Human voltage-gated Na + and K + channel properties underlie sustained fast AP signaling. SCIENCE ADVANCES 2023; 9:eade3300. [PMID: 37824607 PMCID: PMC10569700 DOI: 10.1126/sciadv.ade3300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/09/2023] [Indexed: 10/14/2023]
Abstract
Human cortical pyramidal neurons are large, have extensive dendritic trees, and yet have unexpectedly fast input-output properties: Rapid subthreshold synaptic membrane potential changes are reliably encoded in timing of action potentials (APs). Here, we tested whether biophysical properties of voltage-gated sodium (Na+) and potassium (K+) currents in human pyramidal neurons can explain their fast input-output properties. Human Na+ and K+ currents exhibited more depolarized voltage dependence, slower inactivation, and faster recovery from inactivation compared with their mouse counterparts. Computational modeling showed that despite lower Na+ channel densities in human neurons, the biophysical properties of Na+ channels resulted in higher channel availability and contributed to fast AP kinetics stability. Last, human Na+ channel properties also resulted in a larger dynamic range for encoding of subthreshold membrane potential changes. Thus, biophysical adaptations of voltage-gated Na+ and K+ channels enable fast input-output properties of large human pyramidal neurons.
Collapse
Affiliation(s)
- René Wilbers
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Verjinia D. Metodieva
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Sarah Duverdin
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Djai B. Heyer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Anna A. Galakhova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Eline J. Mertens
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Tamara D. Versluis
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Johannes C. Baayen
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands
| | - David P. Noske
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands
| | - Niels Verburg
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands
| | - Ronald B. Willemse
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands
| | - Philip C. de Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands
| | - Maarten H. P. Kole
- Department of Axonal Signaling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, Netherlands
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, Netherlands
| | - Christiaan P. J. de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Natalia A. Goriounova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| |
Collapse
|
17
|
Chameh HM, Falby M, Movahed M, Arbabi K, Rich S, Zhang L, Lefebvre J, Tripathy SJ, De Pittà M, Valiante TA. Distinctive biophysical features of human cell-types: insights from studies of neurosurgically resected brain tissue. Front Synaptic Neurosci 2023; 15:1250834. [PMID: 37860223 PMCID: PMC10584155 DOI: 10.3389/fnsyn.2023.1250834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 10/21/2023] Open
Abstract
Electrophysiological characterization of live human tissue from epilepsy patients has been performed for many decades. Although initially these studies sought to understand the biophysical and synaptic changes associated with human epilepsy, recently, it has become the mainstay for exploring the distinctive biophysical and synaptic features of human cell-types. Both epochs of these human cellular electrophysiological explorations have faced criticism. Early studies revealed that cortical pyramidal neurons obtained from individuals with epilepsy appeared to function "normally" in comparison to neurons from non-epilepsy controls or neurons from other species and thus there was little to gain from the study of human neurons from epilepsy patients. On the other hand, contemporary studies are often questioned for the "normalcy" of the recorded neurons since they are derived from epilepsy patients. In this review, we discuss our current understanding of the distinct biophysical features of human cortical neurons and glia obtained from tissue removed from patients with epilepsy and tumors. We then explore the concept of within cell-type diversity and its loss (i.e., "neural homogenization"). We introduce neural homogenization to help reconcile the epileptogenicity of seemingly "normal" human cortical cells and circuits. We propose that there should be continued efforts to study cortical tissue from epilepsy patients in the quest to understand what makes human cell-types "human".
Collapse
Affiliation(s)
- Homeira Moradi Chameh
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Madeleine Falby
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Mandana Movahed
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Keon Arbabi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Scott Rich
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Liang Zhang
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Jérémie Lefebvre
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Mathematics, University of Toronto, Toronto, ON, Canada
| | - Shreejoy J. Tripathy
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Maurizio De Pittà
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Basque Center for Applied Mathematics, Bilbao, Spain
- Faculty of Medicine, University of the Basque Country, Leioa, Spain
| | - Taufik A. Valiante
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
- Max Planck-University of Toronto Center for Neural Science and Technology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
de Kock CPJ, Feldmeyer D. Shared and divergent principles of synaptic transmission between cortical excitatory neurons in rodent and human brain. Front Synaptic Neurosci 2023; 15:1274383. [PMID: 37731775 PMCID: PMC10508294 DOI: 10.3389/fnsyn.2023.1274383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Information transfer between principal neurons in neocortex occurs through (glutamatergic) synaptic transmission. In this focussed review, we provide a detailed overview on the strength of synaptic neurotransmission between pairs of excitatory neurons in human and laboratory animals with a specific focus on data obtained using patch clamp electrophysiology. We reach two major conclusions: (1) the synaptic strength, measured as unitary excitatory postsynaptic potential (or uEPSP), is remarkably consistent across species, cortical regions, layers and/or cell-types (median 0.5 mV, interquartile range 0.4-1.0 mV) with most variability associated with the cell-type specific connection studied (min 0.1-max 1.4 mV), (2) synaptic function cannot be generalized across human and rodent, which we exemplify by discussing the differences in anatomical and functional properties of pyramidal-to-pyramidal connections within human and rodent cortical layers 2 and 3. With only a handful of studies available on synaptic transmission in human, it is obvious that much remains unknown to date. Uncovering the shared and divergent principles of synaptic transmission across species however, will almost certainly be a pivotal step toward understanding human cognitive ability and brain function in health and disease.
Collapse
Affiliation(s)
- Christiaan P. J. de Kock
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dirk Feldmeyer
- Research Center Juelich, Institute of Neuroscience and Medicine, Jülich, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen, Germany
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany
| |
Collapse
|
19
|
Driessens SLW, Galakhova AA, Heyer DB, Pieterse IJ, Wilbers R, Mertens EJ, Waleboer F, Heistek TS, Coenen L, Meijer JR, Idema S, de Witt Hamer PC, Noske DP, de Kock CPJ, Lee BR, Smith K, Ting JT, Lein ES, Mansvelder HD, Goriounova NA. Genes associated with cognitive ability and HAR show overlapping expression patterns in human cortical neuron types. Nat Commun 2023; 14:4188. [PMID: 37443107 PMCID: PMC10345092 DOI: 10.1038/s41467-023-39946-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
GWAS have identified numerous genes associated with human cognition but their cell type expression profiles in the human brain are unknown. These genes overlap with human accelerated regions (HARs) implicated in human brain evolution and might act on the same biological processes. Here, we investigated whether these gene sets are expressed in adult human cortical neurons, and how their expression relates to neuronal function and structure. We find that these gene sets are preferentially expressed in L3 pyramidal neurons in middle temporal gyrus (MTG). Furthermore, neurons with higher expression had larger total dendritic length (TDL) and faster action potential (AP) kinetics, properties previously linked to intelligence. We identify a subset of genes associated with TDL or AP kinetics with predominantly synaptic functions and high abundance of HARs.
Collapse
Affiliation(s)
- Stan L W Driessens
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Anna A Galakhova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Djai B Heyer
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Isabel J Pieterse
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - René Wilbers
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Eline J Mertens
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Femke Waleboer
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Tim S Heistek
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Loet Coenen
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Julia R Meijer
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Philip C de Witt Hamer
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - David P Noske
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Christiaan P J de Kock
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Brian R Lee
- Allen Institute for Brain Science, 615 Westlake Ave N, Seattle, WA, 98109, USA
| | - Kimberly Smith
- Allen Institute for Brain Science, 615 Westlake Ave N, Seattle, WA, 98109, USA
| | - Jonathan T Ting
- Allen Institute for Brain Science, 615 Westlake Ave N, Seattle, WA, 98109, USA
| | - Ed S Lein
- Allen Institute for Brain Science, 615 Westlake Ave N, Seattle, WA, 98109, USA
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Natalia A Goriounova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands.
| |
Collapse
|
20
|
Kim MH, Radaelli C, Thomsen ER, Monet D, Chartrand T, Jorstad NL, Mahoney JT, Taormina MJ, Long B, Baker K, Bakken TE, Campagnola L, Casper T, Clark M, Dee N, D'Orazi F, Gamlin C, Kalmbach BE, Kebede S, Lee BR, Ng L, Trinh J, Cobbs C, Gwinn RP, Keene CD, Ko AL, Ojemann JG, Silbergeld DL, Sorensen SA, Berg J, Smith KA, Nicovich PR, Jarsky T, Zeng H, Ting JT, Levi BP, Lein E. Target cell-specific synaptic dynamics of excitatory to inhibitory neuron connections in supragranular layers of human neocortex. eLife 2023; 12:e81863. [PMID: 37249212 PMCID: PMC10332811 DOI: 10.7554/elife.81863] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/29/2023] [Indexed: 05/31/2023] Open
Abstract
Rodent studies have demonstrated that synaptic dynamics from excitatory to inhibitory neuron types are often dependent on the target cell type. However, these target cell-specific properties have not been well investigated in human cortex, where there are major technical challenges in reliably obtaining healthy tissue, conducting multiple patch-clamp recordings on inhibitory cell types, and identifying those cell types. Here, we take advantage of newly developed methods for human neurosurgical tissue analysis with multiple patch-clamp recordings, post-hoc fluorescent in situ hybridization (FISH), machine learning-based cell type classification and prospective GABAergic AAV-based labeling to investigate synaptic properties between pyramidal neurons and PVALB- vs. SST-positive interneurons. We find that there are robust molecular differences in synapse-associated genes between these neuron types, and that individual presynaptic pyramidal neurons evoke postsynaptic responses with heterogeneous synaptic dynamics in different postsynaptic cell types. Using molecular identification with FISH and classifiers based on transcriptomically identified PVALB neurons analyzed by Patch-seq, we find that PVALB neurons typically show depressing synaptic characteristics, whereas other interneuron types including SST-positive neurons show facilitating characteristics. Together, these data support the existence of target cell-specific synaptic properties in human cortex that are similar to rodent, thereby indicating evolutionary conservation of local circuit connectivity motifs from excitatory to inhibitory neurons and their synaptic dynamics.
Collapse
Affiliation(s)
- Mean-Hwan Kim
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | - Deja Monet
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | | | | | - Brian Long
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | | | - Tamara Casper
- Allen Institute for Brain ScienceSeattleUnited States
| | - Michael Clark
- Allen Institute for Brain ScienceSeattleUnited States
| | - Nick Dee
- Allen Institute for Brain ScienceSeattleUnited States
| | | | - Clare Gamlin
- Allen Institute for Brain ScienceSeattleUnited States
| | - Brian E Kalmbach
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Physiology & Biophysics, School of Medicine, University of WashingtonSeattleUnited States
| | - Sara Kebede
- Allen Institute for Brain ScienceSeattleUnited States
| | - Brian R Lee
- Allen Institute for Brain ScienceSeattleUnited States
| | - Lindsay Ng
- Allen Institute for Brain ScienceSeattleUnited States
| | - Jessica Trinh
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | - C Dirk Keene
- Department of Laboratory Medicine & Pathology, School of Medicine, University of WashingtonSeattleUnited States
| | - Andrew L Ko
- Department of Neurological Surgery, School of Medicine, University of WashingtonSeattleUnited States
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, School of Medicine, University of WashingtonSeattleUnited States
| | - Daniel L Silbergeld
- Department of Neurological Surgery, School of Medicine, University of WashingtonSeattleUnited States
| | | | - Jim Berg
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | - Tim Jarsky
- Allen Institute for Brain ScienceSeattleUnited States
| | - Hongkui Zeng
- Allen Institute for Brain ScienceSeattleUnited States
| | - Jonathan T Ting
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Physiology & Biophysics, School of Medicine, University of WashingtonSeattleUnited States
| | - Boaz P Levi
- Allen Institute for Brain ScienceSeattleUnited States
| | - Ed Lein
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Laboratory Medicine & Pathology, School of Medicine, University of WashingtonSeattleUnited States
- Department of Neurological Surgery, School of Medicine, University of WashingtonSeattleUnited States
| |
Collapse
|
21
|
Vardalaki D, Pham TLD, Frosch MP, Cosgrove GR, Richardson M, Cash SS, Harnett MT. Patch2MAP combines patch-clamp electrophysiology with super-resolution structural and protein imaging in identified single neurons without genetic modification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533452. [PMID: 36993722 PMCID: PMC10055279 DOI: 10.1101/2023.03.20.533452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Recent developments in super-resolution microscopy have revolutionized the study of cell biology. However, dense tissues require exogenous protein expression for single cell morphological contrast. In the nervous system, many cell types and species of interest - particularly human - are not amenable to genetic modification and/or exhibit intricate anatomical specializations which make cellular delineation challenging. Here, we present a method for full morphological labeling of individual neurons from any species or cell type for subsequent cell-resolved protein analysis without genetic modification. Our method, which combines patch-clamp electrophysiology with epitope-preserving magnified analysis of proteome (eMAP), further allows for correlation of physiological properties with subcellular protein expression. We applied Patch2MAP to individual spiny synapses in human cortical pyramidal neurons and demonstrated that electrophysiological AMPA-to-NMDA receptor ratios correspond tightly to respective protein expression levels. Patch2MAP thus permits combined subcellular functional, anatomical, and proteomic analyses of any cell, opening new avenues for direct molecular investigation of the human brain in health and disease.
Collapse
|
22
|
Hunt S, Leibner Y, Mertens EJ, Barros-Zulaica N, Kanari L, Heistek TS, Karnani MM, Aardse R, Wilbers R, Heyer DB, Goriounova NA, Verhoog MB, Testa-Silva G, Obermayer J, Versluis T, Benavides-Piccione R, de Witt-Hamer P, Idema S, Noske DP, Baayen JC, Lein ES, DeFelipe J, Markram H, Mansvelder HD, Schürmann F, Segev I, de Kock CPJ. Strong and reliable synaptic communication between pyramidal neurons in adult human cerebral cortex. Cereb Cortex 2023; 33:2857-2878. [PMID: 35802476 PMCID: PMC10016070 DOI: 10.1093/cercor/bhac246] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/25/2022] Open
Abstract
Synaptic transmission constitutes the primary mode of communication between neurons. It is extensively studied in rodent but not human neocortex. We characterized synaptic transmission between pyramidal neurons in layers 2 and 3 using neurosurgically resected human middle temporal gyrus (MTG, Brodmann area 21), which is part of the distributed language circuitry. We find that local connectivity is comparable with mouse layer 2/3 connections in the anatomical homologue (temporal association area), but synaptic connections in human are 3-fold stronger and more reliable (0% vs 25% failure rates, respectively). We developed a theoretical approach to quantify properties of spinous synapses showing that synaptic conductance and voltage change in human dendritic spines are 3-4-folds larger compared with mouse, leading to significant NMDA receptor activation in human unitary connections. This model prediction was validated experimentally by showing that NMDA receptor activation increases the amplitude and prolongs decay of unitary excitatory postsynaptic potentials in human but not in mouse connections. Since NMDA-dependent recurrent excitation facilitates persistent activity (supporting working memory), our data uncovers cortical microcircuit properties in human that may contribute to language processing in MTG.
Collapse
Affiliation(s)
| | | | - Eline J Mertens
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Natalí Barros-Zulaica
- Blue Brain Project, Ecole polytechnique fédérale de Lausanne, Campus Biotech, Geneva 1202, Switzerland
| | - Lida Kanari
- Blue Brain Project, Ecole polytechnique fédérale de Lausanne, Campus Biotech, Geneva 1202, Switzerland
| | - Tim S Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Mahesh M Karnani
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Romy Aardse
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - René Wilbers
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Djai B Heyer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Natalia A Goriounova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | | | | | - Joshua Obermayer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Tamara Versluis
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Ruth Benavides-Piccione
- Laboratorio Cajal de Circuitos Corticales, Universidad Politécnica de Madrid and Instituto Cajal (CSIC), Pozuelo de Alarcón, Madrid 28223, Spain
| | - Philip de Witt-Hamer
- Neurosurgery Department, Amsterdam Universitair Medische Centra, location VUmc, 1081 HV Amsterdam, the Netherlands
| | - Sander Idema
- Neurosurgery Department, Amsterdam Universitair Medische Centra, location VUmc, 1081 HV Amsterdam, the Netherlands
| | - David P Noske
- Neurosurgery Department, Amsterdam Universitair Medische Centra, location VUmc, 1081 HV Amsterdam, the Netherlands
| | - Johannes C Baayen
- Neurosurgery Department, Amsterdam Universitair Medische Centra, location VUmc, 1081 HV Amsterdam, the Netherlands
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Universidad Politécnica de Madrid and Instituto Cajal (CSIC), Pozuelo de Alarcón, Madrid 28223, Spain
| | - Henry Markram
- Blue Brain Project, Ecole polytechnique fédérale de Lausanne, Campus Biotech, Geneva 1202, Switzerland
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Felix Schürmann
- Blue Brain Project, Ecole polytechnique fédérale de Lausanne, Campus Biotech, Geneva 1202, Switzerland
| | - Idan Segev
- Department of Neurobiology and Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 9190501 Jerusalem, Israel
| | | |
Collapse
|
23
|
Vanderhaeghen P, Polleux F. Developmental mechanisms underlying the evolution of human cortical circuits. Nat Rev Neurosci 2023; 24:213-232. [PMID: 36792753 PMCID: PMC10064077 DOI: 10.1038/s41583-023-00675-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/17/2023]
Abstract
The brain of modern humans has evolved remarkable computational abilities that enable higher cognitive functions. These capacities are tightly linked to an increase in the size and connectivity of the cerebral cortex, which is thought to have resulted from evolutionary changes in the mechanisms of cortical development. Convergent progress in evolutionary genomics, developmental biology and neuroscience has recently enabled the identification of genomic changes that act as human-specific modifiers of cortical development. These modifiers influence most aspects of corticogenesis, from the timing and complexity of cortical neurogenesis to synaptogenesis and the assembly of cortical circuits. Mutations of human-specific genetic modifiers of corticogenesis have started to be linked to neurodevelopmental disorders, providing evidence for their physiological relevance and suggesting potential relationships between the evolution of the human brain and its sensitivity to specific diseases.
Collapse
Affiliation(s)
- Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
24
|
Szegedi V, Bakos E, Furdan S, Kovács BH, Varga D, Erdélyi M, Barzó P, Szücs A, Tamás G, Lamsa K. HCN channels at the cell soma ensure the rapid electrical reactivity of fast-spiking interneurons in human neocortex. PLoS Biol 2023; 21:e3002001. [PMID: 36745683 PMCID: PMC9934405 DOI: 10.1371/journal.pbio.3002001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 02/16/2023] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence indicates that there are substantial species differences in the properties of mammalian neurons, yet theories on circuit activity and information processing in the human brain are based heavily on results obtained from rodents and other experimental animals. This knowledge gap may be particularly important for understanding the neocortex, the brain area responsible for the most complex neuronal operations and showing the greatest evolutionary divergence. Here, we examined differences in the electrophysiological properties of human and mouse fast-spiking GABAergic basket cells, among the most abundant inhibitory interneurons in cortex. Analyses of membrane potential responses to current input, pharmacologically isolated somatic leak currents, isolated soma outside-out patch recordings, and immunohistochemical staining revealed that human neocortical basket cells abundantly express hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel isoforms HCN1 and HCN2 at the cell soma membrane, whereas these channels are sparse at the rodent basket cell soma membrane. Antagonist experiments showed that HCN channels in human neurons contribute to the resting membrane potential and cell excitability at the cell soma, accelerate somatic membrane potential kinetics, and shorten the lag between excitatory postsynaptic potentials and action potential generation. These effects are important because the soma of human fast-spiking neurons without HCN channels exhibit low persistent ion leak and slow membrane potential kinetics, compared with mouse fast-spiking neurons. HCN channels speed up human cell membrane potential kinetics and help attain an input-output rate close to that of rodent cells. Computational modeling demonstrated that HCN channel activity at the human fast-spiking cell soma membrane is sufficient to accelerate the input-output function as observed in cell recordings. Thus, human and mouse fast-spiking neurons exhibit functionally significant differences in ion channel composition at the cell soma membrane to set the speed and fidelity of their input-output function. These HCN channels ensure fast electrical reactivity of fast-spiking cells in human neocortex.
Collapse
Affiliation(s)
- Viktor Szegedi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human neuron physiology and therapy, Szeged, Hungary
| | - Emőke Bakos
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human neuron physiology and therapy, Szeged, Hungary
| | - Szabina Furdan
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human neuron physiology and therapy, Szeged, Hungary
| | - Bálint H. Kovács
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Dániel Varga
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Pál Barzó
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | - Attila Szücs
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human neuron physiology and therapy, Szeged, Hungary
- Neuronal Cell Biology Research Group, Eötvös Loránd University, Budapest, Budapest, Hungary
| | - Gábor Tamás
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Karri Lamsa
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human neuron physiology and therapy, Szeged, Hungary
- * E-mail: ,
| |
Collapse
|
25
|
Renner J, Rasia-Filho AA. Morphological Features of Human Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:367-496. [PMID: 37962801 DOI: 10.1007/978-3-031-36159-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spine features in human neurons follow the up-to-date knowledge presented in the previous chapters of this book. Human dendrites are notable for their heterogeneity in branching patterns and spatial distribution. These data relate to circuits and specialized functions. Spines enhance neuronal connectivity, modulate and integrate synaptic inputs, and provide additional plastic functions to microcircuits and large-scale networks. Spines present a continuum of shapes and sizes, whose number and distribution along the dendritic length are diverse in neurons and different areas. Indeed, human neurons vary from aspiny or "relatively aspiny" cells to neurons covered with a high density of intermingled pleomorphic spines on very long dendrites. In this chapter, we discuss the phylogenetic and ontogenetic development of human spines and describe the heterogeneous features of human spiny neurons along the spinal cord, brainstem, cerebellum, thalamus, basal ganglia, amygdala, hippocampal regions, and neocortical areas. Three-dimensional reconstructions of Golgi-impregnated dendritic spines and data from fluorescence microscopy are reviewed with ultrastructural findings to address the complex possibilities for synaptic processing and integration in humans. Pathological changes are also presented, for example, in Alzheimer's disease and schizophrenia. Basic morphological data can be linked to current techniques, and perspectives in this research field include the characterization of spines in human neurons with specific transcriptome features, molecular classification of cellular diversity, and electrophysiological identification of coexisting subpopulations of cells. These data would enlighten how cellular attributes determine neuron type-specific connectivity and brain wiring for our diverse aptitudes and behavior.
Collapse
Affiliation(s)
- Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
26
|
DeFelipe J, DeFelipe-Oroquieta J, Furcila D, Muñoz-Alegre M, Maestú F, Sola RG, Blázquez-Llorca L, Armañanzas R, Kastanaskaute A, Alonso-Nanclares L, Rockland KS, Arellano JI. Neuroanatomical and psychological considerations in temporal lobe epilepsy. Front Neuroanat 2022; 16:995286. [PMID: 36590377 PMCID: PMC9794593 DOI: 10.3389/fnana.2022.995286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/11/2022] [Indexed: 01/03/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy and is associated with a variety of structural and psychological alterations. Recently, there has been renewed interest in using brain tissue resected during epilepsy surgery, in particular 'non-epileptic' brain samples with normal histology that can be found alongside epileptic tissue in the same epileptic patients - with the aim being to study the normal human brain organization using a variety of methods. An important limitation is that different medical characteristics of the patients may modify the brain tissue. Thus, to better determine how 'normal' the resected tissue is, it is fundamental to know certain clinical, anatomical and psychological characteristics of the patients. Unfortunately, this information is frequently not fully available for the patient from which the resected tissue has been obtained - or is not fully appreciated by the neuroscientists analyzing the brain samples, who are not necessarily experts in epilepsy. In order to present the full picture of TLE in a way that would be accessible to multiple communities (e.g., basic researchers in neuroscience, neurologists, neurosurgeons and psychologists), we have reviewed 34 TLE patients, who were selected due to the availability of detailed clinical, anatomical, and psychological information for each of the patients. Our aim was to convey the full complexity of the disorder, its putative anatomical substrates, and the wide range of individual variability, with a view toward: (1) emphasizing the importance of considering critical patient information when using brain samples for basic research and (2) gaining a better understanding of normal and abnormal brain functioning. In agreement with a large number of previous reports, this study (1) reinforces the notion of substantial individual variability among epileptic patients, and (2) highlights the common but overlooked psychopathological alterations that occur even in patients who become "seizure-free" after surgery. The first point is based on pre- and post-surgical comparisons of patients with hippocampal sclerosis and patients with normal-looking hippocampus in neuropsychological evaluations. The second emerges from our extensive battery of personality and projective tests, in a two-way comparison of these two types of patients with regard to pre- and post-surgical performance.
Collapse
Affiliation(s)
- Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain,*Correspondence: Javier DeFelipe,
| | - Jesús DeFelipe-Oroquieta
- Gerencia Asistencial de Atención Primaria, Servicio Madrileño de Salud, Madrid, Spain,Facultad de Educación, Universidad Camilo José Cela, Madrid, Spain
| | - Diana Furcila
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Mar Muñoz-Alegre
- Facultad de Educación y Psicología, Universidad Francisco de Vitoria, Madrid, Spain
| | - Fernando Maestú
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain,Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
| | - Rafael G. Sola
- Cátedra UAM de “Innovación en Neurocirugía”, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lidia Blázquez-Llorca
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Sección Departamental de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rubén Armañanzas
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, Pamplona, Spain,Tecnun School of Engineering, Universidad de Navarra, Donostia-San Sebastian, Spain
| | - Asta Kastanaskaute
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Kathleen S. Rockland
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Jon I. Arellano
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
27
|
Yeo XY, Lim YT, Chae WR, Park C, Park H, Jung S. Alterations of presynaptic proteins in autism spectrum disorder. Front Mol Neurosci 2022; 15:1062878. [DOI: 10.3389/fnmol.2022.1062878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
The expanded use of hypothesis-free gene analysis methods in autism research has significantly increased the number of genetic risk factors associated with the pathogenesis of autism. A further examination of the implicated genes directly revealed the involvement in processes pertinent to neuronal differentiation, development, and function, with a predominant contribution from the regulators of synaptic function. Despite the importance of presynaptic function in synaptic transmission, the regulation of neuronal network activity, and the final behavioral output, there is a relative lack of understanding of the presynaptic contribution to the pathology of autism. Here, we will review the close association among autism-related mutations, autism spectrum disorders (ASD) phenotypes, and the altered presynaptic protein functions through a systematic examination of the presynaptic risk genes relating to the critical stages of synaptogenesis and neurotransmission.
Collapse
|
28
|
Galakhova AA, Hunt S, Wilbers R, Heyer DB, de Kock CPJ, Mansvelder HD, Goriounova NA. Evolution of cortical neurons supporting human cognition. Trends Cogn Sci 2022; 26:909-922. [PMID: 36117080 PMCID: PMC9561064 DOI: 10.1016/j.tics.2022.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023]
Abstract
Human cognitive abilities are generally thought to arise from cortical expansion over the course of human brain evolution. In addition to increased neuron numbers, this cortical expansion might be driven by adaptations in the properties of single neurons and their local circuits. We review recent findings on the distinct structural, functional, and transcriptomic features of human cortical neurons and their organization in cortical microstructure. We focus on the supragranular cortical layers, which showed the most prominent expansion during human brain evolution, and the properties of their principal cells: pyramidal neurons. We argue that the evolutionary adaptations in neuronal features that accompany the expansion of the human cortex partially underlie interindividual variability in human cognitive abilities.
Collapse
Affiliation(s)
- A A Galakhova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - S Hunt
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - R Wilbers
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - D B Heyer
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - C P J de Kock
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - H D Mansvelder
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - N A Goriounova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands.
| |
Collapse
|
29
|
Cunningham MO. Cross Talk proposal: Human-derived brain tissue is a better epilepsy model than animal-based approaches. J Physiol 2022; 600:4569-4574. [PMID: 36131625 DOI: 10.1113/jp282185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/06/2022] [Indexed: 01/16/2023] Open
Affiliation(s)
- Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland.,FutureNeuro, the SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland
| |
Collapse
|
30
|
Chakraborty S, Parayil R, Mishra S, Nongthomba U, Clement JP. Epilepsy Characteristics in Neurodevelopmental Disorders: Research from Patient Cohorts and Animal Models Focusing on Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms231810807. [PMID: 36142719 PMCID: PMC9501968 DOI: 10.3390/ijms231810807] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy, a heterogeneous group of brain-related diseases, has continued to significantly burden society and families. Epilepsy comorbid with neurodevelopmental disorders (NDDs) is believed to occur due to multifaceted pathophysiological mechanisms involving disruptions in the excitation and inhibition (E/I) balance impeding widespread functional neuronal circuitry. Although the field has received much attention from the scientific community recently, the research has not yet translated into actionable therapeutics to completely cure epilepsy, particularly those comorbid with NDDs. In this review, we sought to elucidate the basic causes underlying epilepsy as well as those contributing to the association of epilepsy with NDDs. Comprehensive emphasis is put on some key neurodevelopmental genes implicated in epilepsy, such as MeCP2, SYNGAP1, FMR1, SHANK1-3 and TSC1, along with a few others, and the main electrophysiological and behavioral deficits are highlighted. For these genes, the progress made in developing appropriate and valid rodent models to accelerate basic research is also detailed. Further, we discuss the recent development in the therapeutic management of epilepsy and provide a briefing on the challenges and caveats in identifying and testing species-specific epilepsy models.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Rrejusha Parayil
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Shefali Mishra
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - Upendra Nongthomba
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
- Correspondence: ; Tel.: +91-08-2208-2613
| |
Collapse
|
31
|
Loss of neuronal heterogeneity in epileptogenic human tissue impairs network resilience to sudden changes in synchrony. Cell Rep 2022; 39:110863. [PMID: 35613586 DOI: 10.1016/j.celrep.2022.110863] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/16/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022] Open
Abstract
A myriad of pathological changes associated with epilepsy can be recast as decreases in cell and circuit heterogeneity. We thus propose recontextualizing epileptogenesis as a process where reduction in cellular heterogeneity, in part, renders neural circuits less resilient to seizure. By comparing patch clamp recordings from human layer 5 (L5) cortical pyramidal neurons from epileptogenic and non-epileptogenic tissue, we demonstrate significantly decreased biophysical heterogeneity in seizure-generating areas. Implemented computationally, this renders model neural circuits prone to sudden transitions into synchronous states with increased firing activity, paralleling ictogenesis. This computational work also explains the surprising finding of significantly decreased excitability in the population-activation functions of neurons from epileptogenic tissue. Finally, mathematical analyses reveal a bifurcation structure arising only with low heterogeneity and associated with seizure-like dynamics. Taken together, this work provides experimental, computational, and mathematical support for the theory that ictogenic dynamics accompany a reduction in biophysical heterogeneity.
Collapse
|
32
|
Linaro D, Levy MJ, Hunt DL. Cell type-specific mechanisms of information transfer in data-driven biophysical models of hippocampal CA3 principal neurons. PLoS Comput Biol 2022; 18:e1010071. [PMID: 35452457 PMCID: PMC9089861 DOI: 10.1371/journal.pcbi.1010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/10/2022] [Accepted: 03/31/2022] [Indexed: 11/19/2022] Open
Abstract
The transformation of synaptic input into action potential output is a fundamental single-cell computation resulting from the complex interaction of distinct cellular morphology and the unique expression profile of ion channels that define the cellular phenotype. Experimental studies aimed at uncovering the mechanisms of the transfer function have led to important insights, yet are limited in scope by technical feasibility, making biophysical simulations an attractive complementary approach to push the boundaries in our understanding of cellular computation. Here we take a data-driven approach by utilizing high-resolution morphological reconstructions and patch-clamp electrophysiology data together with a multi-objective optimization algorithm to build two populations of biophysically detailed models of murine hippocampal CA3 pyramidal neurons based on the two principal cell types that comprise this region. We evaluated the performance of these models and find that our approach quantitatively matches the cell type-specific firing phenotypes and recapitulate the intrinsic population-level variability in the data. Moreover, we confirm that the conductance values found by the optimization algorithm are consistent with differentially expressed ion channel genes in single-cell transcriptomic data for the two cell types. We then use these models to investigate the cell type-specific biophysical properties involved in the generation of complex-spiking output driven by synaptic input through an information-theoretic treatment of their respective transfer functions. Our simulations identify a host of cell type-specific biophysical mechanisms that define the morpho-functional phenotype to shape the cellular transfer function and place these findings in the context of a role for bursting in CA3 recurrent network synchronization dynamics. The hippocampus is comprised of numerous types of neurons, which constitute the cellular substrate for its rich repertoire of network dynamics. Among these are sharp waves, sequential activations of ensembles of neurons that have been shown to be crucially involved in learning and memory. In the CA3 area of the hippocampus, two types of excitatory cells, thorny and a-thorny neurons, are preferentially active during distinct phases of a sharp wave, suggesting a differential role for these cell types in phenomena such as memory consolidation. Using a strictly data-driven approach, we built biophysically realistic models of both thorny and a-thorny cells and used them to investigate the integrative differences between these two cell types. We found that both neuron classes have the capability of integrating incoming synaptic inputs in a supralinear fashion, although only a-thorny cells respond with bursts of action potentials to spatially and temporally clustered synaptic inputs. Additionally, by using a computational approach based on information theory, we show that, owing to this propensity for bursting, a-thorny cells can encode more information in their spiking output than their thorny counterpart. These results shed new light on the computational capabilities of two types of excitatory neurons and suggest that thorny and a-thorny cells may play distinct roles in the generation of hippocampal network synchronization.
Collapse
Affiliation(s)
- Daniele Linaro
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milan, Italy
- * E-mail: (DL); (DLH)
| | - Matthew J. Levy
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United State of America
| | - David L. Hunt
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United State of America
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United State of America
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, United State of America
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United State of America
- * E-mail: (DL); (DLH)
| |
Collapse
|
33
|
Campagnola L, Seeman SC, Chartrand T, Kim L, Hoggarth A, Gamlin C, Ito S, Trinh J, Davoudian P, Radaelli C, Kim MH, Hage T, Braun T, Alfiler L, Andrade J, Bohn P, Dalley R, Henry A, Kebede S, Mukora A, Sandman D, Williams G, Larsen R, Teeter C, Daigle TL, Berry K, Dotson N, Enstrom R, Gorham M, Hupp M, Lee SD, Ngo K, Nicovich PR, Potekhina L, Ransford S, Gary A, Goldy J, McMillen D, Pham T, Tieu M, Siverts L, Walker M, Farrell C, Schroedter M, Slaughterbeck C, Cobb C, Ellenbogen R, Gwinn RP, Keene CD, Ko AL, Ojemann JG, Silbergeld DL, Carey D, Casper T, Crichton K, Clark M, Dee N, Ellingwood L, Gloe J, Kroll M, Sulc J, Tung H, Wadhwani K, Brouner K, Egdorf T, Maxwell M, McGraw M, Pom CA, Ruiz A, Bomben J, Feng D, Hejazinia N, Shi S, Szafer A, Wakeman W, Phillips J, Bernard A, Esposito L, D’Orazi FD, Sunkin S, Smith K, Tasic B, Arkhipov A, Sorensen S, Lein E, Koch C, Murphy G, Zeng H, Jarsky T. Local connectivity and synaptic dynamics in mouse and human neocortex. Science 2022; 375:eabj5861. [PMID: 35271334 PMCID: PMC9970277 DOI: 10.1126/science.abj5861] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present a unique, extensive, and open synaptic physiology analysis platform and dataset. Through its application, we reveal principles that relate cell type to synaptic properties and intralaminar circuit organization in the mouse and human cortex. The dynamics of excitatory synapses align with the postsynaptic cell subclass, whereas inhibitory synapse dynamics partly align with presynaptic cell subclass but with considerable overlap. Synaptic properties are heterogeneous in most subclass-to-subclass connections. The two main axes of heterogeneity are strength and variability. Cell subclasses divide along the variability axis, whereas the strength axis accounts for substantial heterogeneity within the subclass. In the human cortex, excitatory-to-excitatory synaptic dynamics are distinct from those in the mouse cortex and vary with depth across layers 2 and 3.
Collapse
Affiliation(s)
| | | | | | - Lisa Kim
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Clare Gamlin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Shinya Ito
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Travis Hage
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Phillip Bohn
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Alex Henry
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Sara Kebede
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Alice Mukora
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Kyla Berry
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nadia Dotson
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Madie Hupp
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Kiet Ngo
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Charles Cobb
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Richard Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Ryder P Gwinn
- Epilepsy Surgery and Functional Neurosurgery, Swedish Neuroscience Institute, Seattle, WA, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Andrew L Ko
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA,Regional Epilepsy Center at Harborview Medical Center, Seattle, WA, USA
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA,Regional Epilepsy Center at Harborview Medical Center, Seattle, WA, USA
| | - Daniel L Silbergeld
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Tom Egdorf
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Medea McGraw
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - David Feng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Shu Shi
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Aaron Szafer
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Susan Sunkin
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Gabe Murphy
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tim Jarsky
- Allen Institute for Brain Science, Seattle, WA, USA,Corresponding author:
| |
Collapse
|
34
|
Sarkar AK, Nakamura S, Nakai K, Sato T, Shiga T, Abe Y, Hoashi Y, Inoue T, Akamatsu W, Baba K. Increased excitability of human iPSC-derived neurons in HTR2A variant-related sleep bruxism. Stem Cell Res 2022; 59:102658. [PMID: 34999422 DOI: 10.1016/j.scr.2022.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/05/2021] [Accepted: 01/02/2022] [Indexed: 10/19/2022] Open
Abstract
Sleep bruxism (SB) is a sleep-related movement disorder characterized by grinding and clenching of the teeth during sleep. We previously found a significant association between SB and a single nucleotide polymorphism (SNP), rs6313, in the neuronal serotonin 2A receptor gene (HTR2A), and established human induced pluripotent stem cell (iPSC)-derived neurons from SB patients with a genetic variant. To elucidate the electrophysiological characteristics of SB iPSC-derived neural cells bearing an SB-related genetic variant, we generated ventral hindbrain neurons from SB patients and unaffected controls, and explored the intrinsic membrane properties of these neurons using the patch-clamp technique. We found that the electrophysiological properties of iPSC-derived neurons mature in a time-dependent manner in long-term control cultures. SB neurons exhibited higher action potential firing frequency, higher gain, and shorter action potential half duration. This is the first in vitro modeling of SB using patient-specific iPSCs. The revealed electrophysiological characteristics may serve as a benchmark for further investigation of pathogenic mechanisms underlying SB. Moreover, our results on long-term cultures provide a strategy to define the functional maturity of human neurons in vitro, which can be implemented for stem cell research of neurogenesis, and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Avijite Kumer Sarkar
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan.
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Kento Nakai
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan.
| | - Taro Sato
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan.
| | - Takahiro Shiga
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Yuka Abe
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan.
| | - Yurie Hoashi
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan.
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Kazuyoshi Baba
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan.
| |
Collapse
|
35
|
Schmidt ERE, Polleux F. Genetic Mechanisms Underlying the Evolution of Connectivity in the Human Cortex. Front Neural Circuits 2022; 15:787164. [PMID: 35069126 PMCID: PMC8777274 DOI: 10.3389/fncir.2021.787164] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
One of the most salient features defining modern humans is our remarkable cognitive capacity, which is unrivaled by any other species. Although we still lack a complete understanding of how the human brain gives rise to these unique abilities, the past several decades have witnessed significant progress in uncovering some of the genetic, cellular, and molecular mechanisms shaping the development and function of the human brain. These features include an expansion of brain size and in particular cortical expansion, distinct physiological properties of human neurons, and modified synaptic development. Together they specify the human brain as a large primate brain with a unique underlying neuronal circuit architecture. Here, we review some of the known human-specific features of neuronal connectivity, and we outline how novel insights into the human genome led to the identification of human-specific genetic modifiers that played a role in the evolution of human brain development and function. Novel experimental paradigms are starting to provide a framework for understanding how the emergence of these human-specific genomic innovations shaped the structure and function of neuronal circuits in the human brain.
Collapse
Affiliation(s)
- Ewoud R. E. Schmidt
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- *Correspondence: Ewoud R. E. Schmidt
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Kavli Institute for Brain Science, Columbia University, New York, NY, United States
- Franck Polleux
| |
Collapse
|
36
|
Ultrafast population coding and axo-somatic compartmentalization. PLoS Comput Biol 2022; 18:e1009775. [PMID: 35041645 PMCID: PMC8797191 DOI: 10.1371/journal.pcbi.1009775] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/28/2022] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
Populations of cortical neurons respond to common input within a millisecond. Morphological features and active ion channel properties were suggested to contribute to this astonishing processing speed. Here we report an exhaustive study of ultrafast population coding for varying axon initial segment (AIS) location, soma size, and axonal current properties. In particular, we studied their impact on two experimentally observed features 1) precise action potential timing, manifested in a wide-bandwidth dynamic gain, and 2) high-frequency boost under slowly fluctuating correlated input. While the density of axonal channels and their distance from the soma had a very small impact on bandwidth, it could be moderately improved by increasing soma size. When the voltage sensitivity of axonal currents was increased we observed ultrafast coding and high-frequency boost. We conclude that these computationally relevant features are strongly dependent on axonal ion channels’ voltage sensitivity, but not their number or exact location. We point out that ion channel properties, unlike dendrite size, can undergo rapid physiological modification, suggesting that the temporal accuracy of neuronal population encoding could be dynamically regulated. Our results are in line with recent experimental findings in AIS pathologies and establish a framework to study structure-function relations in AIS molecular design. In large nervous systems, a signal often diverges to hundreds or thousands of neurons. This population’s spike rate can track changes in this common input for frequencies up to several hundred Hertz. This ultrafast population response is experimentally well established and critically impacts cortical information processing. Its underlying biophysical determinants, however, are not understood. Experiments suggest that the ion channels at the axon initial segment strongly contribute to the ultrafast response, but recent theoretical studies emphasize the importance of neuron morphology and the resulting resistive coupling between axon and somato-dendritic compartments. We provide an exhaustive analysis of the population response of a simplified multi-compartment model. We vary the axo-somatic interaction and also active axonal properties and compare models at equivalent working points, avoiding bias. This approach provides a guideline for future experimental and theoretical studies. In this framework, the population response is closely associated with the AP generation speed at the AP initiation site, which is mostly determined by axonal ion channel voltage sensitivity. The resistive axo-somatic coupling has an additional modulatory influence. These insights are expected to hold for encoding mechanisms of more sophisticated models, suggesting that physiological changes to axonal ion channels could modulate the population response rapidly.
Collapse
|
37
|
Resurgent Na + currents promote ultrafast spiking in projection neurons that drive fine motor control. Nat Commun 2021; 12:6762. [PMID: 34799550 PMCID: PMC8604930 DOI: 10.1038/s41467-021-26521-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
The underlying mechanisms that promote precise spiking in upper motor neurons controlling fine motor skills are not well understood. Here we report that projection neurons in the adult zebra finch song nucleus RA display robust high-frequency firing, ultra-narrow spike waveforms, superfast Na+ current inactivation kinetics, and large resurgent Na+ currents (INaR). These properties of songbird pallial motor neurons closely resemble those of specialized large pyramidal neurons in mammalian primary motor cortex. They emerge during the early phases of song development in males, but not females, coinciding with a complete switch of Na+ channel subunit expression from Navβ3 to Navβ4. Dynamic clamping and dialysis of Navβ4's C-terminal peptide into juvenile RA neurons provide evidence that Navβ4, and its associated INaR, promote neuronal excitability. We thus propose that INaR modulates the excitability of upper motor neurons that are required for the execution of fine motor skills.
Collapse
|
38
|
Klostranec JM, Vucevic D, Bhatia KD, Kortman HGJ, Krings T, Murphy KP, terBrugge KG, Mikulis DJ. Current Concepts in Intracranial Interstitial Fluid Transport and the Glymphatic System: Part I-Anatomy and Physiology. Radiology 2021; 301:502-514. [PMID: 34665028 DOI: 10.1148/radiol.2021202043] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Normal physiologic function of organs requires a circulation of interstitial fluid to deliver nutrients and clear cellular waste products. Lymphatic vessels serve as collectors of this fluid in most organs; however, these vessels are absent in the central nervous system. How the central nervous system maintains tight control of extracellular conditions has been a fundamental question in neuroscience until recent discovery of the glial-lymphatic, or glymphatic, system was made this past decade. Networks of paravascular channels surrounding pial and parenchymal arteries and veins were found that extend into the walls of capillaries to allow fluid transport and exchange between the interstitial and cerebrospinal fluid spaces. The currently understood anatomy and physiology of the glymphatic system is reviewed, with the paravascular space presented as an intrinsic component of healthy pial and parenchymal cerebral blood vessels. Glymphatic system behavior in animal models of health and disease, and its enhanced function during sleep, are discussed. The evolving understanding of glymphatic system characteristics is then used to provide a current interpretation of its physiology that can be helpful for radiologists when interpreting neuroimaging investigations.
Collapse
Affiliation(s)
- Jesse M Klostranec
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Diana Vucevic
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Kartik D Bhatia
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Hans G J Kortman
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Timo Krings
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Kieran P Murphy
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Karel G terBrugge
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - David J Mikulis
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| |
Collapse
|
39
|
Zhang Q, Zeng Y, Zhang T, Yang T. Comparison Between Human and Rodent Neurons for Persistent Activity Performance: A Biologically Plausible Computational Investigation. Front Syst Neurosci 2021; 15:628839. [PMID: 34566587 PMCID: PMC8459009 DOI: 10.3389/fnsys.2021.628839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Elucidating the multi-scale detailed differences between the human brain and other brains will help shed light on what makes us unique as a species. Computational models help link biochemical and anatomical properties to cognitive functions and predict key properties of the cortex. Here, we present a detailed human neocortex network, with all human neuron parameters derived from the newest Allen Brain human brain cell database. Compared with that of rodents, the human neural network maintains more complete and accurate information under the same graphic input. Unique membrane properties in human neocortical neurons enhance the human brain's capacity for signal processing.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zeng
- Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences (CAS), Shanghai, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, China
| | - Tielin Zhang
- Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, China
| | - Taoyi Yang
- Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
40
|
Douw L, Nissen IA, Fitzsimmons SMDD, Santos FAN, Hillebrand A, van Straaten ECW, Stam CJ, De Witt Hamer PC, Baayen JC, Klein M, Reijneveld JC, Heyer DB, Verhoog MB, Wilbers R, Hunt S, Mansvelder HD, Geurts JJG, de Kock CPJ, Goriounova NA. Cellular Substrates of Functional Network Integration and Memory in Temporal Lobe Epilepsy. Cereb Cortex 2021; 32:2424-2436. [PMID: 34564728 PMCID: PMC9157285 DOI: 10.1093/cercor/bhab349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/12/2022] Open
Abstract
Temporal lobe epilepsy (TLE) patients are at risk of memory deficits, which have been linked to functional network disturbances, particularly of integration of the default mode network (DMN). However, the cellular substrates of functional network integration are unknown. We leverage a unique cross-scale dataset of drug-resistant TLE patients (n = 31), who underwent pseudo resting-state functional magnetic resonance imaging (fMRI), resting-state magnetoencephalography (MEG) and/or neuropsychological testing before neurosurgery. fMRI and MEG underwent atlas-based connectivity analyses. Functional network centrality of the lateral middle temporal gyrus, part of the DMN, was used as a measure of local network integration. Subsequently, non-pathological cortical tissue from this region was used for single cell morphological and electrophysiological patch-clamp analysis, assessing integration in terms of total dendritic length and action potential rise speed. As could be hypothesized, greater network centrality related to better memory performance. Moreover, greater network centrality correlated with more integrative properties at the cellular level across patients. We conclude that individual differences in cognitively relevant functional network integration of a DMN region are mirrored by differences in cellular integrative properties of this region in TLE patients. These findings connect previously separate scales of investigation, increasing translational insight into focal pathology and large-scale network disturbances in TLE.
Collapse
Affiliation(s)
- Linda Douw
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands.,Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 02129 MA, Charlestown, USA
| | - Ida A Nissen
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Sophie M D D Fitzsimmons
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Fernando A N Santos
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Elisabeth C W van Straaten
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Philip C De Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center Amsterdam Brain Tumor Center Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center Amsterdam Brain Tumor Center Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - Martin Klein
- Department of Medical Psychology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center Amsterdam Brain Tumor Center Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - Jaap C Reijneveld
- Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center Amsterdam Brain Tumor Center Amsterdam, 1081 HV, Amsterdam, the Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede 2103 SW, Heemstede, the Netherlands
| | - Djai B Heyer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Matthijs B Verhoog
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands.,Department of Human Biology, Division of Cell Biology, Neuroscience Institute, University of Cape Town, 7935, Cape Town, South Africa
| | - René Wilbers
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Sarah Hunt
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Christiaan P J de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Natalia A Goriounova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
41
|
Heyer DB, Wilbers R, Galakhova AA, Hartsema E, Braak S, Hunt S, Verhoog MB, Muijtjens ML, Mertens EJ, Idema S, Baayen JC, de Witt Hamer P, Klein M, McGraw M, Lein ES, de Kock CPJ, Mansvelder HD, Goriounova NA. Verbal and General IQ Associate with Supragranular Layer Thickness and Cell Properties of the Left Temporal Cortex. Cereb Cortex 2021; 32:2343-2357. [PMID: 34550325 PMCID: PMC9157308 DOI: 10.1093/cercor/bhab330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/27/2022] Open
Abstract
The left temporal lobe is an integral part of the language system and its cortical structure and function associate with general intelligence. However, whether cortical laminar architecture and cellular properties of this brain area relate to verbal intelligence is unknown. Here, we addressed this using histological analysis and cellular recordings of neurosurgically resected temporal cortex in combination with presurgical IQ scores. We find that subjects with higher general and verbal IQ scores have thicker left (but not right) temporal cortex (Brodmann area 21, BA21). The increased thickness is due to the selective increase in layers 2 and 3 thickness, accompanied by lower neuron densities, and larger dendrites and cell body size of pyramidal neurons in these layers. Furthermore, these neurons sustain faster action potential kinetics, which improves information processing. Our results indicate that verbal mental ability associates with selective adaptations of supragranular layers and their cellular micro-architecture and function in left, but not right temporal cortex.
Collapse
Affiliation(s)
- D B Heyer
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - R Wilbers
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - A A Galakhova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - E Hartsema
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - S Braak
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - S Hunt
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - M B Verhoog
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands.,Department of Human Biology, Neuroscience Institute, University of Cape Town, Cape Town 7925, South Africa
| | - M L Muijtjens
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - E J Mertens
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - S Idema
- Department of Neurosurgery, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - J C Baayen
- Department of Neurosurgery, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - P de Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - M Klein
- Department of Medical Psychology, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam 1081HZ, The Netherlands
| | - M McGraw
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - E S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - C P J de Kock
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - H D Mansvelder
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - N A Goriounova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| |
Collapse
|
42
|
Schmuhl-Giesen S, Rollenhagen A, Walkenfort B, Yakoubi R, Sätzler K, Miller D, von Lehe M, Hasenberg M, Lübke JHR. Sublamina-Specific Dynamics and Ultrastructural Heterogeneity of Layer 6 Excitatory Synaptic Boutons in the Adult Human Temporal Lobe Neocortex. Cereb Cortex 2021; 32:1840-1865. [PMID: 34530440 PMCID: PMC9070345 DOI: 10.1093/cercor/bhab315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Synapses “govern” the computational properties of any given network in the brain. However, their detailed quantitative morphology is still rather unknown, particularly in humans. Quantitative 3D-models of synaptic boutons (SBs) in layer (L)6a and L6b of the temporal lobe neocortex (TLN) were generated from biopsy samples after epilepsy surgery using fine-scale transmission electron microscopy, 3D-volume reconstructions and electron microscopic tomography. Beside the overall geometry of SBs, the size of active zones (AZs) and that of the three pools of synaptic vesicles (SVs) were quantified. SBs in L6 of the TLN were middle-sized (~5 μm2), the majority contained only a single but comparatively large AZ (~0.20 μm2). SBs had a total pool of ~1100 SVs with comparatively large readily releasable (RRP, ~10 SVs L6a), (RRP, ~15 SVs L6b), recycling (RP, ~150 SVs), and resting (~900 SVs) pools. All pools showed a remarkably large variability suggesting a strong modulation of short-term synaptic plasticity. In conclusion, L6 SBs are highly reliable in synaptic transmission within the L6 network in the TLN and may act as “amplifiers,” “integrators” but also as “discriminators” for columnar specific, long-range extracortical and cortico-thalamic signals from the sensory periphery.
Collapse
Affiliation(s)
| | - Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, 52425, Jülich, Germany
| | - Bernd Walkenfort
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty of the University of Duisburg-Essen, 45147, Essen, Germany
| | - Rachida Yakoubi
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, 52425, Jülich, Germany
| | - Kurt Sätzler
- School of Biomedical Sciences, University of Ulster, Londonderry, BT52 1SA, UK
| | - Dorothea Miller
- University Hospital/Knappschaftskrankenhaus Bochum, 44892, Bochum, Germany
| | - Marec von Lehe
- Department of Neurosurgery, Brandenburg Medical School, Ruppiner Clinics, 16816, Neuruppin, Germany
| | - Mike Hasenberg
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty of the University of Duisburg-Essen, 45147, Essen, Germany
| | - Joachim H R Lübke
- Address correspondence to Joachim Lübke, Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, 52425 Jülich, Germany.
| |
Collapse
|
43
|
Pokorny C, Ison MJ, Rao A, Legenstein R, Papadimitriou C, Maass W. STDP Forms Associations between Memory Traces in Networks of Spiking Neurons. Cereb Cortex 2021; 30:952-968. [PMID: 31403679 PMCID: PMC7132978 DOI: 10.1093/cercor/bhz140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/25/2019] [Accepted: 05/09/2019] [Indexed: 11/17/2022] Open
Abstract
Memory traces and associations between them are fundamental for cognitive brain function. Neuron recordings suggest that distributed assemblies of neurons in the brain serve as memory traces for spatial information, real-world items, and concepts. However, there is conflicting evidence regarding neural codes for associated memory traces. Some studies suggest the emergence of overlaps between assemblies during an association, while others suggest that the assemblies themselves remain largely unchanged and new assemblies emerge as neural codes for associated memory items. Here we study the emergence of neural codes for associated memory items in a generic computational model of recurrent networks of spiking neurons with a data-constrained rule for spike-timing-dependent plasticity. The model depends critically on 2 parameters, which control the excitability of neurons and the scale of initial synaptic weights. By modifying these 2 parameters, the model can reproduce both experimental data from the human brain on the fast formation of associations through emergent overlaps between assemblies, and rodent data where new neurons are recruited to encode the associated memories. Hence, our findings suggest that the brain can use both of these 2 neural codes for associations, and dynamically switch between them during consolidation.
Collapse
Affiliation(s)
- Christoph Pokorny
- Institute for Theoretical Computer Science, Graz University of Technology, 8010 Graz, Austria
| | - Matias J Ison
- School of Psychology, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Arjun Rao
- Institute for Theoretical Computer Science, Graz University of Technology, 8010 Graz, Austria
| | - Robert Legenstein
- Institute for Theoretical Computer Science, Graz University of Technology, 8010 Graz, Austria
| | - Christos Papadimitriou
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720-1770, USA
| | - Wolfgang Maass
- Institute for Theoretical Computer Science, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
44
|
Beliaeva V, Savvateev I, Zerbi V, Polania R. Toward integrative approaches to study the causal role of neural oscillations via transcranial electrical stimulation. Nat Commun 2021; 12:2243. [PMID: 33854049 PMCID: PMC8047004 DOI: 10.1038/s41467-021-22468-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/15/2021] [Indexed: 11/12/2022] Open
Abstract
Diverse transcranial electrical stimulation (tES) techniques have recently been developed to elucidate the role of neural oscillations, but critically, it remains questionable whether neural entrainment genuinely occurs and is causally related to the resulting behavior. Here, we provide a perspective on an emerging integrative research program across systems, species, theoretical and experimental frameworks to elucidate the potential of tES to induce neural entrainment. We argue that such an integrative agenda is a requirement to establish tES as a tool to test the causal role of neural oscillations and highlight critical issues that should be considered when adopting a translational approach.
Collapse
Affiliation(s)
- Valeriia Beliaeva
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, Switzerland, Zurich, Switzerland.
| | - Iurii Savvateev
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Switzerland, Zurich, Switzerland
| | - Valerio Zerbi
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Switzerland, Zurich, Switzerland
| | - Rafael Polania
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, Switzerland, Zurich, Switzerland.
| |
Collapse
|
45
|
Koutsoumpa A, Papatheodoropoulos C. Frequency-dependent layer-specific differences in short-term synaptic plasticity in the dorsal and ventral CA1 hippocampal field. Synapse 2021; 75:e22199. [PMID: 33687106 DOI: 10.1002/syn.22199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022]
Abstract
Information from the entorhinal cortex arrives to the hippocampal CA1 microcircuit directly through the temporoammonic path (TA) that terminates in the stratum lacunosum-moleculare (SLM), and indirectly through Schaffer collateral pathway (SC) that terminates in the stratum radiatum (SR). By virtue of this input convergence, CA1 circuitry may act to compare and integrate incoming cortical information. Although a remarkable dorsal-ventral difference in short-term plasticity (STP) has been recently described at SC-CA1 synapses, the corresponding properties at TA-CA1 synapses have not been examined. Here, we report that stimulation of TA in the dorsal hippocampus produces significant facilitation of all conditioned responses evoked by 1-30 Hz, peaking at 20-30 Hz, and significant depression of steady-state responses to 50-100 Hz. Dorsal SC-CA1 synapses display a similar pattern of responses, yet, facilitation peaked at 10 Hz and depression (at 75-100 Hz) is weaker. Strikingly, stimulation of TA in the ventral hippocampus produces facilitation of steady-state responses to 1-30 Hz and highly contrasts with the depression of SC-CA1 synapses. Steady-state responses to 40-100 Hz in the ventral hippocampus depress in both layers similarly. High-frequency TA input (40-100 Hz) to the dorsal hippocampus depresses more in proximal than in distal SLM, while low-frequency (1-3 Hz) TA input to the ventral hippocampus facilitates more in distal than in proximal SLM. The present evidence suggests that direct and indirect entorhinal cortical inputs across the septotemporal extent of hippocampal CA1 field display frequency selectivity both in the radial and transverse axes, and that a rapid information processing may take place through direct ventral hippocampal CA1-EC circuit interactions independently of trisynaptic circuit.
Collapse
Affiliation(s)
- Andriana Koutsoumpa
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | | |
Collapse
|
46
|
Mihaljević B, Larrañaga P, Bielza C. Comparing the Electrophysiology and Morphology of Human and Mouse Layer 2/3 Pyramidal Neurons With Bayesian Networks. Front Neuroinform 2021; 15:580873. [PMID: 33679362 PMCID: PMC7930221 DOI: 10.3389/fninf.2021.580873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Pyramidal neurons are the most common neurons in the cerebral cortex. Understanding how they differ between species is a key challenge in neuroscience. We compared human temporal cortex and mouse visual cortex pyramidal neurons from the Allen Cell Types Database in terms of their electrophysiology and dendritic morphology. We found that, among other differences, human pyramidal neurons had a higher action potential threshold voltage, a lower input resistance, and larger dendritic arbors. We learned Gaussian Bayesian networks from the data in order to identify correlations and conditional independencies between the variables and compare them between the species. We found strong correlations between electrophysiological and morphological variables in both species. In human cells, electrophysiological variables were correlated even with morphological variables that are not directly related to dendritic arbor size or diameter, such as mean bifurcation angle and mean branch tortuosity. Cortical depth was correlated with both electrophysiological and morphological variables in both species, and its effect on electrophysiology could not be explained in terms of the morphological variables. For some variables, the effect of cortical depth was opposite in the two species. Overall, the correlations among the variables differed strikingly between human and mouse neurons. Besides identifying correlations and conditional independencies, the learned Bayesian networks might be useful for probabilistic reasoning regarding the morphology and electrophysiology of pyramidal neurons.
Collapse
Affiliation(s)
- Bojan Mihaljević
- Computational Intelligence Group, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Boadilla del Monte, Spain
| | | | | |
Collapse
|
47
|
Rich S, Moradi Chameh H, Sekulic V, Valiante TA, Skinner FK. Modeling Reveals Human-Rodent Differences in H-Current Kinetics Influencing Resonance in Cortical Layer 5 Neurons. Cereb Cortex 2021; 31:845-872. [PMID: 33068000 PMCID: PMC7906797 DOI: 10.1093/cercor/bhaa261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
While our understanding of human neurons is often inferred from rodent data, inter-species differences between neurons can be captured by building cellular models specifically from human data. This includes understanding differences at the level of ion channels and their implications for human brain function. Thus, we here present a full spiking, biophysically detailed multi-compartment model of a human layer 5 (L5) cortical pyramidal cell. Model development was primarily based on morphological and electrophysiological data from the same human L5 neuron, avoiding confounds of experimental variability. Focus was placed on describing the behavior of the hyperpolarization-activated cation (h-) channel, given increasing interest in this channel due to its role in pacemaking and differentiating cell types. We ensured that the model exhibited post-inhibitory rebound spiking considering its relationship with the h-current, along with other general spiking characteristics. The model was validated against data not used in its development, which highlighted distinctly slower kinetics of the human h-current relative to the rodent setting. We linked the lack of subthreshold resonance observed in human L5 neurons to these human-specific h-current kinetics. This work shows that it is possible and necessary to build human-specific biophysical neuron models in order to understand human brain dynamics.
Collapse
Affiliation(s)
- Scott Rich
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Homeira Moradi Chameh
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Vladislav Sekulic
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Taufik A Valiante
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
- Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Frances K Skinner
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
48
|
Li KW, Gonzalez-Lozano MA, Koopmans F, Smit AB. Recent Developments in Data Independent Acquisition (DIA) Mass Spectrometry: Application of Quantitative Analysis of the Brain Proteome. Front Mol Neurosci 2020; 13:564446. [PMID: 33424549 PMCID: PMC7793698 DOI: 10.3389/fnmol.2020.564446] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Mass spectrometry is the driving force behind current brain proteome analysis. In a typical proteomics approach, a protein isolate is digested into tryptic peptides and then analyzed by liquid chromatography–mass spectrometry. The recent advancements in data independent acquisition (DIA) mass spectrometry provide higher sensitivity and protein coverage than the classic data dependent acquisition. DIA cycles through a pre-defined set of peptide precursor isolation windows stepping through 400–1,200 m/z across the whole liquid chromatography gradient. All peptides within an isolation window are fragmented simultaneously and detected by tandem mass spectrometry. Peptides are identified by matching the ion peaks in a mass spectrum to a spectral library that contains information of the peptide fragment ions' pattern and its chromatography elution time. Currently, there are several reports on DIA in brain research, in particular the quantitative analysis of cellular and synaptic proteomes to reveal the spatial and/or temporal changes of proteins that underlie neuronal plasticity and disease mechanisms. Protocols in DIA are continuously improving in both acquisition and data analysis. The depth of analysis is currently approaching proteome-wide coverage, while maintaining high reproducibility in a stable and standardisable MS environment. DIA can be positioned as the method of choice for routine proteome analysis in basic brain research and clinical applications.
Collapse
Affiliation(s)
- Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Miguel A Gonzalez-Lozano
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Frank Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
49
|
George R, Chiappalone M, Giugliano M, Levi T, Vassanelli S, Partzsch J, Mayr C. Plasticity and Adaptation in Neuromorphic Biohybrid Systems. iScience 2020; 23:101589. [PMID: 33083749 PMCID: PMC7554028 DOI: 10.1016/j.isci.2020.101589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neuromorphic systems take inspiration from the principles of biological information processing to form hardware platforms that enable the large-scale implementation of neural networks. The recent years have seen both advances in the theoretical aspects of spiking neural networks for their use in classification and control tasks and a progress in electrophysiological methods that is pushing the frontiers of intelligent neural interfacing and signal processing technologies. At the forefront of these new technologies, artificial and biological neural networks are tightly coupled, offering a novel "biohybrid" experimental framework for engineers and neurophysiologists. Indeed, biohybrid systems can constitute a new class of neuroprostheses opening important perspectives in the treatment of neurological disorders. Moreover, the use of biologically plausible learning rules allows forming an overall fault-tolerant system of co-developing subsystems. To identify opportunities and challenges in neuromorphic biohybrid systems, we discuss the field from the perspectives of neurobiology, computational neuroscience, and neuromorphic engineering.
Collapse
Affiliation(s)
- Richard George
- Department of Electrical Engineering and Information Technology, Technical University of Dresden, Dresden, Germany
| | | | - Michele Giugliano
- Neuroscience Area, International School of Advanced Studies, Trieste, Italy
| | - Timothée Levi
- Laboratoire de l’Intégration du Matéeriau au Systéme, University of Bordeaux, Bordeaux, France
- LIMMS/CNRS, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Stefano Vassanelli
- Department of Biomedical Sciences and Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Johannes Partzsch
- Department of Electrical Engineering and Information Technology, Technical University of Dresden, Dresden, Germany
| | - Christian Mayr
- Department of Electrical Engineering and Information Technology, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
50
|
Yakoubi R, Rollenhagen A, von Lehe M, Shao Y, Sätzler K, Lübke JHR. Quantitative Three-Dimensional Reconstructions of Excitatory Synaptic Boutons in Layer 5 of the Adult Human Temporal Lobe Neocortex: A Fine-Scale Electron Microscopic Analysis. Cereb Cortex 2020; 29:2797-2814. [PMID: 29931200 DOI: 10.1093/cercor/bhy146] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 11/14/2022] Open
Abstract
Studies of synapses are available for different brain regions of several animal species including non-human primates, but comparatively little is known about their quantitative morphology in humans. Here, synaptic boutons in Layer 5 (L5) of the human temporal lobe (TL) neocortex were investigated in biopsy tissue, using fine-scale electron microscopy, and quantitative three-dimensional reconstructions. The size and organization of the presynaptic active zones (PreAZs), postsynaptic densities (PSDs), and that of the 3 distinct pools of synaptic vesicles (SVs) were particularly analyzed. L5 synaptic boutons were medium-sized (~6 μm2) with a single but relatively large PreAZ (~0.3 μm2). They contained a total of ~1500 SVs/bouton, ~20 constituting the putative readily releasable pool (RRP), ~180 the recycling pool (RP), and the remainder, the resting pool. The PreAZs, PSDs, and vesicle pools are ~3-fold larger than those of CNS synapses in other species. Astrocytic processes reached the synaptic cleft and may regulate the glutamate concentration. Profound differences exist between synapses in human TL neocortex and those described in various species, particularly in the size and geometry of PreAZs and PSDs, the large RRP/RP, and the astrocytic ensheathment suggesting high synaptic efficacy, strength, and modulation of synaptic transmission at human synapses.
Collapse
Affiliation(s)
- Rachida Yakoubi
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo-Brandt Str., Jülich, Germany
| | - Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo-Brandt Str., Jülich, Germany
| | - Marec von Lehe
- University Hospital/Knappschaftskrankenhaus Bochum, In der Schornau 23-25, Bochum, Germany.,Department of Neurosurgery, Ruppiner Kliniken, Medizinische Hochschule Brandenburg, Fehrbelliner Str. 38, Neuruppin, Germany
| | - Yachao Shao
- Simulation Lab Neuroscience, Research Centre Jülich GmbH, Leo-Brandt Str., Jülich, Germany.,College of Computer, National University of Defense Technology, Changsha, China
| | - Kurt Sätzler
- School of Biomedical Sciences, University of Ulster, Cromore Rd., BT52 1SA, Londonderry, UK
| | - Joachim H R Lübke
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo-Brandt Str., Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty/RWTH University Hospital Aachen, Pauwelsstr. 30, Aachen, Germany.,JARA Translational Brain Medicine, Germany
| |
Collapse
|