1
|
Sauers LA, Bassingthwaite T, Sierra-Rivera B, Hampton KJ, Duffield KR, Gore H, Ramirez JL, Sadd BM. Membership robustness but structural change of the native gut microbiota of bumble bees upon systemic immune induction. Microbiol Spectr 2024; 12:e0086124. [PMID: 39373496 PMCID: PMC11536996 DOI: 10.1128/spectrum.00861-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/26/2024] [Indexed: 10/08/2024] Open
Abstract
Understanding factors influencing the composition and maintenance of beneficial host-associated microbial communities is central to understanding their ecological, evolutionary, and health consequences for hosts. Host immunity is often implicated as a regulator of these microbiota, but immunity may also play a disruptive role, with responses to infection perturbing beneficial communities. Such effects may be more prominent from innate immune responses, with more rapid-acting and often non-specific components, compared to adaptive responses. We investigated how upregulation of antibacterial immunity in the bumble bee Bombus impatiens affects its core gut microbiota, testing the hypothesis that immunity-induced perturbation impacts the microbiota structure. Freshly emerged adult bees were fed a microbiota inoculum before receiving a non-pathogenic immune stimulation injection. We quantified microbial communities using 16S rRNA amplicon sequencing and targeted quantitative PCR. Coarse community membership shows apparent robustness, but we find that immune stimulation alters the abundance of two core community members, Gilliamella and Snodgrassella. Moreover, a positive association in communities between these bacteria is perturbed following a Gram-negative challenge. The observed changes in the gut microbial community are suggestive of immune response-induced dysbiosis, linking ecological interactions across levels between hosts, their pathogens, and their beneficial gut microbiota. The potential for collateral perturbation of the natural gut microbiota following an innate immune response may contribute to immune costs, shaping the evolutionary optimization of immune investment depending on the ecological context. IMPORTANCE Our work demonstrates how innate immunity may influence the host-associated microbiota. While previous work has demonstrated the role of adaptive immunity in regulating the microbiota, we show that stimulation of an innate immune response in bumble bees may disrupt the native gut microbial community by shifting individual abundances of some members and pairwise associations. This work builds upon previous work in bumble bees demonstrating factors determining microbe colonization of hosts and microbiota membership, implicating immune response-induced changes as a factor shaping these important gut communities. While some microbiota members appear unaffected, changes in others and the community overall suggests that collateral perturbation of the native gut microbiota upon an innate immune response may serve as an additional selective pressure that shapes the evolution of host innate immunity.
Collapse
Affiliation(s)
- Logan A. Sauers
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Toby Bassingthwaite
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Bryan Sierra-Rivera
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Kylie J. Hampton
- Crop BioProtection Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Kristin R. Duffield
- Crop BioProtection Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Haley Gore
- Crop BioProtection Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - José L. Ramirez
- Crop BioProtection Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Ben M. Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| |
Collapse
|
2
|
Zumkhawala-Cook A, Gallagher P, Raymann K. Diet affects reproductive development and microbiota composition in honey bees. Anim Microbiome 2024; 6:64. [PMID: 39501371 PMCID: PMC11539837 DOI: 10.1186/s42523-024-00350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Gut microbes are important to the health and fitness of many animals. Many factors have been shown to affect gut microbial communities including diet, lifestyle, and age. Most animals have very complex physiologies, lifestyles, and microbiomes, making it virtually impossible to disentangle what factors have the largest impact on microbiota composition. Honeybees are an excellent model to study host-microbe interactions due to their relatively simple gut microbiota, experimental tractability, and eusociality. Worker honey bees have distinct gut microbiota from their queen mothers despite being close genetic relatives and living in the same environment. Queens and workers differ in numerous ways including development, physiology, pheromone production, diet, and behavior. In the prolonged absence of a queen or Queen Mandibular Pheromones (QMP), some but not all workers will develop ovaries and become "queen-like". Using this inducible developmental change, we aimed to determine if diet and/or reproductive development impacts the gut microbiota of honey bee workers. RESULTS Microbiota-depleted newly emerged workers were inoculated with a mixture of queen and worker gut homogenates and reared under four conditions varying in diet and pheromone exposure. Three weeks post-emergence, workers were evaluated for ovary development and their gut microbiota communities were characterized. The proportion of workers with developed ovaries was increased in the absence of QMP but also when fed a queen diet (royal jelly). Overall, we found that diet, rather than reproductive development or pheromone exposure, led to more "queen-like" microbiota in workers. However, we revealed that diet alone cannot explain the microbiota composition of workers. CONCLUSION The hypothesis that reproductive development explains microbiota differences between queens and workers was rejected. We found evidence that diet is one of the main drivers of differences between the gut microbial community compositions of queens and workers but cannot fully explain the distinct microbiota of queens. Thus, we predict that behavioral and other physiological differences dictate microbiota composition in workers and queens. Our findings not only contribute to our understanding of the factors affecting the honey bee microbiota, which is important for bee health, but also illustrate the versatility and benefits of utilizing honeybees as a model system to study host-microbe interactions.
Collapse
Affiliation(s)
- Anjali Zumkhawala-Cook
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
- Department of Biochemistry and Molecular Biology, Kenyon College, Gambier, Ohio, USA
| | - Patrick Gallagher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Kasie Raymann
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
3
|
Motta EVS, Lariviere PJ, Jones KR, Song Y, Moran NA. Type VI secretion systems promote intraspecific competition and host interactions in a bee gut symbiont. Proc Natl Acad Sci U S A 2024; 121:e2414882121. [PMID: 39441627 PMCID: PMC11536156 DOI: 10.1073/pnas.2414882121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
The Type VI Secretion System (T6SS) is a sophisticated mechanism utilized by gram-negative bacteria to deliver toxic effector proteins into target cells, influencing microbial community dynamics and host interactions. In this study, we investigated the role of T6SSs in Snodgrassella alvi wkB2, a core bacterial symbiont of the honey bee gut microbiota. We generated single- and double-knockout mutants targeting essential genes (tssD and tssE) in both T6SS-1 and T6SS-2 and assessed their colonization and competition capabilities in vivo. Our results indicate that T6SSs are nonessential for colonization of the bee gut, although T6SS-2 mutant strains exhibited significantly lower colonization levels compared to the wild-type (WT) strain. Further, a defined community experiment showed that S. alvi wkB2 T6SSs do not significantly impact interspecific competition among core gut bacteria. However, cocolonization experiments with closely related S. alvi strains demonstrated that T6SS-1 plays a role in mediating intraspecific competition. Transcriptomic analysis of bee guts monocolonized by WT or T6SS mutants revealed differential expression of host immunity-related genes relative to microbiota-deprived bees, such as upregulation of the antimicrobial peptide apidaecin in the presence of WT S. alvi and the antimicrobial peptide defensin in the presence of T6SS-2 mutant S. alvi, suggesting that T6SSs contribute to shaping host immune responses. These findings provide insight into the ecological roles of T6SSs in the honey bee gut microbiota, emphasizing their importance in maintaining competitive dynamics and influencing host-bacterial interactions.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Entomology, Texas A&M University, College Station, TX77843
| | - Patrick J. Lariviere
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Molecular Biosciences, The University of Texas at Austin, TX78712
| | - Korin R. Jones
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Yulin Song
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| |
Collapse
|
4
|
Campos DL, Canales CSC, Demarqui FM, Fernandes GFS, dos Santos CG, Prates JLB, da Silva IGM, Barros-Cordeiro KB, Báo SN, de Andrade LN, Abichabki N, Zacharias LV, de Campos MMA, dos Santos JL, Pavan FR. Screening of novel narrow-spectrum benzofuroxan derivatives for the treatment of multidrug-resistant tuberculosis through in silico, in vitro, and in vivo approaches. Front Microbiol 2024; 15:1487829. [PMID: 39464394 PMCID: PMC11502347 DOI: 10.3389/fmicb.2024.1487829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
Tuberculosis remains a serious global health threat, exacerbated by the rise of resistant strains. This study investigates the potential of two benzofuroxan (Bfx) derivatives, 5n and 5b, as targeted treatments for MDR-TB using in silico, in vitro, and in vivo methodologies. In vitro analyses showed that Bfx compounds have significant activity against Mtb H37Rv, with Bfx 5n standing out with a MIC90 of 0.09 ± 0.04 μM. Additionally, their efficacy against MDR and pre-XDR strains was superior compared to commercial drugs. These Bfx compounds have a narrow spectrum for mycobacteria, which helps avoid dysbiosis of the gut microbiota, and they also exhibit high selectivity and low toxicity. Synergism studies indicate that Bfx derivatives could be combined with rifampicin to enhance treatment efficacy and reduce its duration. Scanning electron microscopy revealed severe damage to the morphology of Mtb following treatment with Bfx 5n, showing significant distortions in the bacillary structures. Whole-genome sequencing of the 5n-resistant isolate suggests resistance mechanisms mediated by the Rv1855c gene, supported by in silico studies. In vivo studies showed that the 5n compound reduced the pulmonary load by 3.0 log10 CFU/mL, demonstrating superiority over rifampicin, which achieved a reduction of 1.23 log10 CFU/mL. In conclusion, Bfx derivatives, especially 5n, effectively address resistant infections caused by Mtb, suggesting they could be a solid foundation for future therapeutic developments against MDR-TB.
Collapse
Affiliation(s)
- Débora Leite Campos
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Christian Shleider Carnero Canales
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
- School of Pharmacy, Biochemistry and Biotechnology, Santa Maria Catholic University, Arequipa, Peru
| | - Fernanda Manaia Demarqui
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Guilherme F. S. Fernandes
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
- School of Pharmacy, University College London, London, United Kingdom
| | - Camila Gonçalves dos Santos
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - João Lucas B. Prates
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Ingrid Gracielle Martins da Silva
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Karine Brenda Barros-Cordeiro
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Leonardo Neves de Andrade
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Nathália Abichabki
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Luísa Vieira Zacharias
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Marli Matiko Anraku de Campos
- Mycobacteriology Laboratory, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jean Leandro dos Santos
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| |
Collapse
|
5
|
Hurychová J, Dostál J, Kunc M, Šreibr S, Dostálková S, Petřivalský M, Hyršl P, Titěra D, Danihlík J, Dobeš P. Modeling seasonal immune dynamics of honey bee (Apis mellifera L.) response to injection of heat-killed Serratia marcescens. PLoS One 2024; 19:e0311415. [PMID: 39365765 PMCID: PMC11452037 DOI: 10.1371/journal.pone.0311415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The honey bee, Apis mellifera L., is one of the main pollinators worldwide. In a temperate climate, seasonality affects the life span, behavior, physiology, and immunity of honey bees. In consequence, it impacts their interaction with pathogens and parasites. In this study, we used Bayesian statistics and modeling to examine the immune response dynamics of summer and winter honey bee workers after injection with the heat-killed bacteria Serratia marcescens, an opportunistic honey bee pathogen. We investigated the humoral and cellular immune response at the transcriptional and functional levels using qPCR of selected immune genes, antimicrobial activity assay, and flow cytometric analysis of hemocyte concentration. Our data demonstrate increased antimicrobial activity at transcriptional and functional levels in summer and winter workers after injection, with a stronger immune response in winter bees. On the other hand, an increase in hemocyte concentration was observed only in the summer bee population. Our results indicate that the summer population mounts a cellular response when challenged with heat-killed S. marcescens, while winter honey bees predominantly rely on humoral immune reactions. We created a model describing the honey bee immune response dynamics to bacteria-derived components by applying Bayesian statistics to our data. This model can be employed in further research and facilitate the investigating of the honey bee immune system and its response to pathogens.
Collapse
Affiliation(s)
- Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jakub Dostál
- Department of Mathematical Analysis and Application of Mathematics, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sara Šreibr
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Silvie Dostálková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Dalibor Titěra
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Science Prague, Prague, Czech Republic
| | - Jiří Danihlík
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
El Khoury S, Gauthier J, Mercier PL, Moïse S, Giovenazzo P, Derome N. Honeybee gut bacterial strain improved survival and gut microbiota homeostasis in Apis mellifera exposed in vivo to clothianidin. Microbiol Spectr 2024; 12:e0057824. [PMID: 39189755 PMCID: PMC11448422 DOI: 10.1128/spectrum.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/04/2024] [Indexed: 08/28/2024] Open
Abstract
Pesticides are causing honeybee mortality worldwide. Research carried out on honeybees indicates that application of pesticides has a significant impact on the core gut community, which ultimately leads to an increase in the growth of harmful pathogens. Disturbances caused by pesticides also affect the way bacterial members interact, which results in gut microbial dysbiosis. Administration of beneficial microbes has been previously demonstrated to be effective in treating or preventing disease in honeybees. The objective of this study was to measure under in vivo conditions the ability of two bacterial strains (the Enterobacter sp. and Pantoea sp.) isolated from honeybee gut to improve survival and mitigate gut microbiota dysbiosis in honeybees exposed to a sublethal clothianidin dose (0.1 ppb). Both gut bacterial strains were selected for their ability to degrade clothianidin in vitro regardless of their host-microbe interaction characteristics (e.g., beneficial, neutral, or harmful). To this end, we conducted cage trials on 4- to 6-day-old newly emerging honeybees. During microbial administration, we jointly monitored the taxonomic distribution and activity level of bacterial symbionts quantifying 16S rRNA transcripts. First, curative administration of the Pantoea sp. strain significantly improved the survival of clothianidin-exposed honeybees compared to sugar control bees (i.e., supplemented with sugar [1:1]). Second, curative administration of the Enterobacter sp. strain significantly mitigated the clothianidin-induced dysbiosis observed in the midgut structural network, but without improving survival. IMPORTANCE The present work suggests that administration of bacterial strains isolated from honeybee gut may promote recovery of gut microbiota homeostasis after prolonged clothianidin exposure, while improving survival. This study highlights that gut bacterial strains hold promise for developing efficient microbial formulations to mitigate environmental pesticide exposure in honeybee colonies.
Collapse
Affiliation(s)
- Sarah El Khoury
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| | - Jeff Gauthier
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| | - Pierre Luc Mercier
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| | - Stéphane Moïse
- INRS, Institut National de la Recherche Scientifique, Québec, Canada
| | | | - Nicolas Derome
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| |
Collapse
|
7
|
Lariviere PJ, Ashraf AHMZ, Navarro-Escalante L, Leonard SP, Miller LG, Moran NA, Barrick JE. One-step genome engineering in bee gut bacterial symbionts. mBio 2024; 15:e0139224. [PMID: 39105596 PMCID: PMC11389375 DOI: 10.1128/mbio.01392-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024] Open
Abstract
Mechanistic understanding of interactions in many host-microbe systems, including the honey bee microbiome, is limited by a lack of easy-to-use genome engineering approaches. To this end, we demonstrate a one-step genome engineering approach for making gene deletions and insertions in the chromosomes of honey bee gut bacterial symbionts. Electroporation of linear or non-replicating plasmid DNA containing an antibiotic resistance cassette flanked by regions with homology to a symbiont genome reliably results in chromosomal integration. This lightweight approach does not require expressing any exogenous recombination machinery. The high concentrations of large DNAs with long homology regions needed to make the process efficient can be readily produced using modern DNA synthesis and assembly methods. We use this approach to knock out genes, including genes involved in biofilm formation, and insert fluorescent protein genes into the chromosome of the betaproteobacterial bee gut symbiont Snodgrassella alvi. We are also able to engineer the genomes of multiple strains of S. alvi and another species, Snodgrassella communis, which is found in the bumble bee gut microbiome. Finally, we use the same method to engineer the chromosome of another bee symbiont, Bartonella apis, which is an alphaproteobacterium. As expected, gene knockout in S. alvi using this approach is recA-dependent, suggesting that this straightforward procedure can be applied to other microbes that lack convenient genome engineering methods. IMPORTANCE Honey bees are ecologically and economically important crop pollinators with bacterial gut symbionts that influence their health. Microbiome-based strategies for studying or improving bee health have utilized wild-type or plasmid-engineered bacteria. We demonstrate that a straightforward, single-step method can be used to insert cassettes and replace genes in the chromosomes of multiple bee gut bacteria. This method can be used for investigating the mechanisms of host-microbe interactions in the bee gut community and stably engineering symbionts that benefit pollinator health.
Collapse
Affiliation(s)
- Patrick J Lariviere
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - A H M Zuberi Ashraf
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | | | - Sean P Leonard
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Laurel G Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Nancy A Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
8
|
Liu Y, Jia S, Wu Y, Zhou N, Xie Y, Wei R, Huang Z, Chen Y, Hu F, Zheng H. Tetracycline-induced gut community dysbiosis and Israeli Acute Paralysis Virus infection synergistically negatively affect honeybees. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116706. [PMID: 38996647 DOI: 10.1016/j.ecoenv.2024.116706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Antibiotics are frequently employed to control bacterial diseases in honeybees, but their broad-spectrum action can disrupt the delicate balance of the gut microbiome, leading to dysbiosis. This imbalance in the gut microbiota of honeybees adversely affects their physiological health and weakens their resistance to pathogens, including viruses that significantly threaten honeybee health. In this study, we investigated whether tetracycline-induced gut microbiome dysbiosis promotes the replication of Israeli acute paralysis virus (IAPV), a key virus associated with colony losses and whether IAPV infection exacerbates gut microbiome dysbiosis. Our results demonstrated that tetracycline-induced gut microbiome dysbiosis increases the susceptibility of honeybees to IAPV infection. The viral titer in worker bees with antibiotic-induced gut microbiome dysbiosis prior to IAPV inoculation was significantly higher than in those merely inoculated with IAPV. Furthermore, we observed a synergistic effect between tetracycline and IAPV on the disruption of the honeybee gut microbiome balance. The progression of IAPV replication could, in turn, exacerbate antibiotic-induced gut microbiome dysbiosis in honeybees. Our research provides novel insights into the role of the gut microbiota in host-virus interactions, emphasizing the complex interplay between antibiotic use, gut microbiome health, and viral susceptibility in honeybees. We highlight the crucial role of a balanced gut microbiota in honey bees for their immune response against pathogens and emphasize the importance of careful, safe antibiotic use in beekeeping to protect these beneficial microbes.
Collapse
Affiliation(s)
- Yao Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuo Jia
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nihong Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanling Xie
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruike Wei
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhichu Huang
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China
| | - Yanping Chen
- Bee Research Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Sbardellati DL, Vannette RL. Targeted viromes and total metagenomes capture distinct components of bee gut phage communities. MICROBIOME 2024; 12:155. [PMID: 39175056 PMCID: PMC11342477 DOI: 10.1186/s40168-024-01875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Despite being among the most abundant biological entities on earth, bacteriophage (phage) remain an understudied component of host-associated systems. One limitation to studying host-associated phage is the lack of consensus on methods for sampling phage communities. Here, we compare paired total metagenomes and viral size fraction metagenomes (viromes) as methods for investigating the dsDNA viral communities associated with the GI tract of two bee species: the European honey bee Apis mellifera and the eastern bumble bee Bombus impatiens. RESULTS We find that viromes successfully enriched for phage, thereby increasing phage recovery, but only in honey bees. In contrast, for bumble bees, total metagenomes recovered greater phage diversity. Across both bee species, viromes better sampled low occupancy phage, while total metagenomes were biased towards sampling temperate phage. Additionally, many of the phage captured by total metagenomes were absent altogether from viromes. Comparing between bees, we show that phage communities in commercially reared bumble bees are significantly reduced in diversity compared to honey bees, likely reflecting differences in bacterial titer and diversity. In a broader context, these results highlight the complementary nature of total metagenomes and targeted viromes, especially when applied to host-associated environments. CONCLUSIONS Overall, we suggest that studies interested in assessing total communities of host-associated phage should consider using both approaches. However, given the constraints of virome sampling, total metagenomes may serve to sample phage communities with the understanding that they will preferentially sample dominant and temperate phage. Video Abstract.
Collapse
Affiliation(s)
| | - Rachel Lee Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| |
Collapse
|
10
|
Motta EVS, de Jong TK, Gage A, Edwards JA, Moran NA. Glyphosate effects on growth and biofilm formation in bee gut symbionts and diverse associated bacteria. Appl Environ Microbiol 2024; 90:e0051524. [PMID: 39012136 PMCID: PMC11337805 DOI: 10.1128/aem.00515-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Biofilm formation is a common adaptation enabling bacteria to thrive in various environments and withstand external pressures. In the context of host-microbe interactions, biofilms play vital roles in establishing microbiomes associated with animals and plants and are used by opportunistic microbes to facilitate survival within hosts. Investigating biofilm dynamics, composition, and responses to environmental stressors is crucial for understanding microbial community assembly and biofilm regulation in health and disease. In this study, we explore in vivo colonization and in vitro biofilm formation abilities of core members of the honey bee (Apis mellifera) gut microbiota. Additionally, we assess the impact of glyphosate, a widely used herbicide with antimicrobial properties, and a glyphosate-based herbicide formulation on growth and biofilm formation in bee gut symbionts as well as in other biofilm-forming bacteria associated with diverse animals and plants. Our results demonstrate that several strains of core bee gut bacterial species can colonize the bee gut, which probably depends on their ability to form biofilms. Furthermore, glyphosate exposure elicits variable effects on bacterial growth and biofilm formation. In some instances, the effects correlate with the bacteria's ability to encode a susceptible or tolerant version of the enzyme inhibited by glyphosate in the shikimate pathway. However, in other instances, no such correlation is observed. Testing the herbicide formulation further complicates comparisons, as results often diverge from glyphosate exposure alone, suggesting that co-formulants influence bacterial growth and biofilm formation. These findings highlight the nuanced impacts of environmental stressors on microbial biofilms, with both ecological and host health-related implications. IMPORTANCE Biofilms are essential for microbial communities to establish and thrive in diverse environments. In the honey bee gut, the core microbiota member Snodgrassella alvi forms biofilms, potentially aiding the establishment of other members and promoting interactions with the host. In this study, we show that specific strains of other core members, including Bifidobacterium, Bombilactobacillus, Gilliamella, and Lactobacillus, also form biofilms in vitro. We then examine the impact of glyphosate, a widely used herbicide that can disrupt the bee microbiota, on bacterial growth and biofilm formation. Our findings demonstrate the diverse effects of glyphosate on biofilm formation, ranging from inhibition to enhancement, reflecting observations in other beneficial or pathogenic bacteria associated with animals and plants. Thus, glyphosate exposure may influence bacterial growth and biofilm formation, potentially shaping microbial establishment on host surfaces and impacting health outcomes.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Tyler K. de Jong
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Alejandra Gage
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Joseph A. Edwards
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
11
|
Liu F, Ye F, Yang Y, Kang Z, Liu Y, Chen W, Wang S, Kou H, Kang L, Sun J. Gut bacteria are essential for development of an invasive bark beetle by regulating glucose transport. Proc Natl Acad Sci U S A 2024; 121:e2410889121. [PMID: 39110737 PMCID: PMC11331112 DOI: 10.1073/pnas.2410889121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Insects and their gut bacteria form a tight and beneficial relationship, especially in utilization of host nutrients. The red turpentine beetle (RTB), a destructive and invasive pine pest, employs mutualistic microbes to facilitate its invasion success. However, the molecular mechanism underlying the utilization of nutrients remains unknown. In this study, we found that gut bacteria are crucial for the utilization of D-glucose, a main carbon source for RTB development. Downstream assays revealed that gut bacteria-induced gut hypoxia and the secretion of riboflavin are responsible for RTB development by regulating D-glucose transport via the activation of a hypoxia-induced transcription factor 1 (Hif-1α). Further functional investigations confirmed that Hif-1α mediates glucose transport by direct upregulation of two glucose transporters (ST10 and ST27), thereby promoting RTB development. Our findings reveal how gut bacteria regulate the development of RTB, and promote our understanding of the mutualistic relationship of animals and their gut bacteria.
Collapse
Affiliation(s)
- Fanghua Liu
- College of Life Sciences/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding071002, China
| | - Fangyuan Ye
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, Chaoyang District100101, China
| | - Yunwen Yang
- College of Life Sciences/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding071002, China
| | - Zhiwei Kang
- College of Life Sciences/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding071002, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, Haidian District100193, China
| | - Wei Chen
- College of Life Sciences/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding071002, China
| | - Saige Wang
- College of Life Sciences/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding071002, China
| | - Hongru Kou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, Chaoyang District100101, China
| | - Le Kang
- College of Life Sciences/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, Chaoyang District100101, China
| | - Jianghua Sun
- College of Life Sciences/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, Chaoyang District100101, China
| |
Collapse
|
12
|
Hopkins HA, Lopezguerra C, Lau MJ, Raymann K. Making a Pathogen? Evaluating the Impact of Protist Predation on the Evolution of Virulence in Serratia marcescens. Genome Biol Evol 2024; 16:evae149. [PMID: 38961701 PMCID: PMC11332436 DOI: 10.1093/gbe/evae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024] Open
Abstract
Opportunistic pathogens are environmental microbes that are generally harmless and only occasionally cause disease. Unlike obligate pathogens, the growth and survival of opportunistic pathogens do not rely on host infection or transmission. Their versatile lifestyles make it challenging to decipher how and why virulence has evolved in opportunistic pathogens. The coincidental evolution hypothesis postulates that virulence results from exaptation or pleiotropy, i.e. traits evolved for adaptation to living in one environment that have a different function in another. In particular, adaptation to avoid or survive protist predation has been suggested to contribute to the evolution of bacterial virulence (the training ground hypothesis). Here, we used experimental evolution to determine how the selective pressure imposed by a protist predator impacts the virulence and fitness of a ubiquitous environmental opportunistic bacterial pathogen that has acquired multidrug resistance: Serratia marcescens. To this aim, we evolved S. marcescens in the presence or absence of generalist protist predator, Tetrahymena thermophila. After 60 d of evolution, we evaluated genotypic and phenotypic changes by comparing evolved S. marcescens with the ancestral strain. Whole-genome shotgun sequencing of the entire evolved populations and individual isolates revealed numerous cases of parallel evolution, many more than statistically expected by chance, in genes associated with virulence. Our phenotypic assays suggested that evolution in the presence of a predator maintained virulence, whereas evolution in the absence of a predator resulted in attenuated virulence. We also found a significant correlation between virulence, biofilm formation, growth, and grazing resistance. Overall, our results provide evidence that bacterial virulence and virulence-related traits are maintained by selective pressures imposed by protist predation.
Collapse
Affiliation(s)
- Heather A Hopkins
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Christian Lopezguerra
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Meng-Jia Lau
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Kasie Raymann
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| |
Collapse
|
13
|
Saccà ML, Resci I, Cilia G. Phenotypic and genotypic antimicrobial resistance patterns in honey bee (Apis mellifera L.) bacterial symbionts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34598-8. [PMID: 39098972 DOI: 10.1007/s11356-024-34598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Antimicrobial resistance (AMR) is a major global public health problem. Nevertheless, the knowledge of the factors driving the spread of resistance among environmental microorganisms is limited, and few studies have been performed worldwide. Honey bees (Apis mellifera L.) have long been considered bioindicators of environmental pollution and more recently also of AMR. In this study, 53 bacterial strains isolated from the body surface of honey bees at three ontogenetic stages, collected from ten different geographic locations, were tested for their phenotypic and genotypic resistance to eight classes of the most widely used antimicrobials in human and veterinary medicine. Results showed that 83% of the strains were resistant to at least one antimicrobial and 62% were multidrug-resistant bacteria, with a prevalence of resistance to nalidixic acid, cefotaxime, and aztreonam. A high percentage of isolates harbouring at least one antimicrobial gene was also observed (85%). The gene encoding resistance to colistin mcr-1 was the most abundant, followed by those for tetracycline tetM and tetC. Geographical features influenced the distribution of these traits more than bacterial species or bee stage, supporting the use of honey bee colonies and their associated bacteria as indicators to monitor environmental resistance. This approach can improve the scientific understanding of this global threat by increasing data collection capacity.
Collapse
Affiliation(s)
- Maria Ludovica Saccà
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Economics, Via Di Corticella 133, 40128, Bologna, Italy.
| | - Ilaria Resci
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Economics, Via Di Corticella 133, 40128, Bologna, Italy
| |
Collapse
|
14
|
Luo S, Zhang X, Zhou X. Temporospatial dynamics and host specificity of honeybee gut bacteria. Cell Rep 2024; 43:114408. [PMID: 38935504 DOI: 10.1016/j.celrep.2024.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
Honeybees are important pollinators worldwide, with their gut microbiota playing a crucial role in maintaining their health. The gut bacteria of honeybees consist of primarily five core lineages that are spread through social interactions. Previous studies have provided a basic understanding of the composition and function of the honeybee gut microbiota, with recent advancements focusing on analyzing diversity at the strain level and changes in bacterial functional genes. Research on honeybee gut microbiota across different regions globally has provided insights into microbial ecology. Additionally, recent findings have shed light on the mechanisms of host specificity of honeybee gut bacteria. This review explores the temporospatial dynamics in honeybee gut microbiota, discussing the reasons and mechanisms behind these fluctuations. This synopsis provides insights into host-microbe interactions and is invaluable for honeybee health.
Collapse
Affiliation(s)
- Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Kumari A, Choudhary JS, Thakur AK, Banra S, Oraon PK, Kumari K, Sahu SK, Albeshr MF. Substantially altered bacterial diversity associated with developmental stages of litchi stink bug, Tessaratoma javanica (Thunberg) (Hemiptera: Tessaratomidae). Heliyon 2024; 10:e32384. [PMID: 38961890 PMCID: PMC11219338 DOI: 10.1016/j.heliyon.2024.e32384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
The mutualistic symbiotic relationship between insects and bacteria greatly influences the growth and development of host insects. Tessaratoma javanica (Thunberg) (Hemiptera: Tessaratomidae), also referred to as the litchi stink bug, has recently been established as an important insect pest of Litchi chinensis Sonn. and causes substantial yield loss in India. To design effective and environmentally safe management strategies, an understanding of the diversity and functions of microbiota harbored across the development stages is very important. The assessment of the diversity of development-associated bacteria in T. javanica and their predicted functions was conducted using 16S rRNA gene sequences obtained by the Illumina MiSeq technology. The result showed that taxonomic analysis of associated bacteria in different developmental stages includes a total of 46 phyla, encompassing 139 classes, 271 orders, 474 families, and 893 genera of bacteria. All developmental stages of T. javanica shared a total of 42.82 percent of operational taxonomic units (OTUs), with a 97 % similarity threshold. Alpha diversity indices showed maximum species richness in the egg and adult stages. The phyla Proteobacteria followed by Firmicutes, Bacteriodetes, and Actinobacteria, exhibited the highest levels of abundance across all the developmental stages of T. javanica. Microbiota were most different between the egg and the 4th nymphal stage (χ2 = 711.67) and least different between the 2nd and 4th nymphal instars (χ2 = 44.45). The predicted functions of the microbiota associated with T. javanica are mainly involved in amino acid metabolism, cell motility, cellular processes and signaling, glycan biosynthesis and metabolism, lipid metabolism, and membrane transport. The present study documentation and information on symbiotic bacteria across T. javanica life stages will prompt the development of novel biological management strategies.
Collapse
Affiliation(s)
- Anita Kumari
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Jaipal Singh Choudhary
- ICAR Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, Jharkhand, 834010, India
| | - Anand Kumar Thakur
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Sushmita Banra
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Priti Kumari Oraon
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Kanika Kumari
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Subhash Kumar Sahu
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Mohammed Fahad Albeshr
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
16
|
Carlini DB, Winslow SK, Cloppenborg-Schmidt K, Baines JF. Quantitative microbiome profiling of honey bee (Apis mellifera) guts is predictive of winter colony loss in northern Virginia (USA). Sci Rep 2024; 14:11021. [PMID: 38744972 PMCID: PMC11094147 DOI: 10.1038/s41598-024-61199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
For the past 15 years, the proportion of honey bee hives that fail to survive winter has averaged ~ 30% in the United States. Winter hive loss has significant negative impacts on agriculture, the economy, and ecosystems. Compared to other factors, the role of honey bee gut microbial communities in driving winter hive loss has received little attention. We investigate the relationship between winter survival and honey bee gut microbiome composition of 168 honey bees from 23 hives, nine of which failed to survive through winter 2022. We found that there was a substantial difference in the abundance and community composition of honey bee gut microbiomes based on hive condition, i.e., winter survival or failure. The overall microbial abundance, as assessed using Quantitative Microbiome Profiling (QMP), was significantly greater in hives that survived winter 2022 than in those that failed, and the average overall abundance of each of ten bacterial genera was also greater in surviving hives. There were no significant differences in alpha diversity based on hive condition, but there was a highly significant difference in beta diversity. The bacterial genera Commensalibacter and Snodgrassella were positively associated with winter hive survival. Logistic regression and random forest machine learning models on pooled ASV counts for the genus data were highly predictive of winter outcome, although model performance decreased when samples from the location with no hive failures were excluded from analysis. As a whole, our results show that the abundance and community composition of honey bee gut microbiota is associated with winter hive loss, and can potentially be used as a diagnostic tool in evaluating hive health prior to the onset of winter. Future work on the functional characterization of the honey bee gut microbiome's role in winter survival is warranted.
Collapse
Affiliation(s)
- David B Carlini
- Department of Biology, American University, 4400 Massachusetts Ave. NW, Washington, DC, 20016, USA.
| | - Sundre K Winslow
- Department of Biology, American University, 4400 Massachusetts Ave. NW, Washington, DC, 20016, USA
| | - Katja Cloppenborg-Schmidt
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - John F Baines
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
| |
Collapse
|
17
|
Braglia C, Alberoni D, Garrido PM, Porrini MP, Baffoni L, Scott D, Eguaras MJ, Di Gioia D, Mifsud D. Vairimorpha (Nosema) ceranae can promote Serratia development in honeybee gut: an underrated threat for bees? Front Cell Infect Microbiol 2024; 14:1323157. [PMID: 38808063 PMCID: PMC11131372 DOI: 10.3389/fcimb.2024.1323157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/04/2024] [Indexed: 05/30/2024] Open
Abstract
The genus Serratia harbors opportunistic pathogenic species, among which Serratia marcescens is pathogenic for honeybees although little studied. Recently, virulent strains of S. marcescens colonizing the Varroa destructor mite's mouth were found vectored into the honeybee body, leading to septicemia and death. Serratia also occurs as an opportunistic pathogen in the honeybee's gut with a low absolute abundance. The Serratia population seems controlled by the host immune system, but its presence may represent a hidden threat, ready to arise when honeybees are weakened by biotic and abiotic stressors. To shed light on the Serratia pathogen, this research aims at studying Serratia's development dynamics in the honeybee body and its interactions with the co-occurring fungal pathogen Vairimorpha ceranae. Firstly, the degree of pathogenicity and the ability to permeate the gut epithelial barrier of three Serratia strains, isolated from honeybees and belonging to different species (S. marcescens, Serratia liquefaciens, and Serratia nematodiphila), were assessed by artificial inoculation of newborn honeybees with different Serratia doses (104, 106, and 108 cells/mL). The absolute abundance of Serratia in the gut and in the hemocoel was assessed in qPCR with primers targeting the luxS gene. Moreover, the absolute abundance of Serratia was assessed in the gut of honeybees infected with V. ceranae at different development stages and supplied with beneficial microorganisms and fumagillin. Our results showed that all tested Serratia strains could pass through the gut epithelial barrier and proliferate in the hemocoel, with S. marcescens being the most pathogenic. Moreover, under cage conditions, Serratia better proliferates when a V. ceranae infection is co-occurring, with a positive and significant correlation. Finally, fumagillin and some of the tested beneficial microorganisms could control both Serratia and Vairimorpha development. Our findings suggest a correlation between the two pathogens under laboratory conditions, a co-occurring infection that should be taken into consideration by researches when testing antimicrobial compounds active against V. ceranae, and the related honeybees survival rate. Moreover, our findings suggest a positive control of Serratia by the environmental microorganism Apilactobacillus kunkeei in a in vivo model, confirming the potential of this specie as beneficial bacteria for honeybees.
Collapse
Affiliation(s)
- Chiara Braglia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Bologna, Italy
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Bologna, Italy
| | - Paula Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Faculty of Exact and Natural Sciences (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), National Scientific and Technical Research Council (CONICET), UNMdP, Centro Asoc. Simple Scientific research Commission Buenos Aires Province (CIC PBA), Mar del Plata, Buenos Aires, Argentina
| | - Martin Pablo Porrini
- Centro de Investigación en Abejas Sociales (CIAS), Faculty of Exact and Natural Sciences (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), National Scientific and Technical Research Council (CONICET), UNMdP, Centro Asoc. Simple Scientific research Commission Buenos Aires Province (CIC PBA), Mar del Plata, Buenos Aires, Argentina
| | - Loredana Baffoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Bologna, Italy
| | | | - Martin Javier Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Faculty of Exact and Natural Sciences (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), National Scientific and Technical Research Council (CONICET), UNMdP, Centro Asoc. Simple Scientific research Commission Buenos Aires Province (CIC PBA), Mar del Plata, Buenos Aires, Argentina
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Bologna, Italy
| | - David Mifsud
- Institute of Earth Systems, L-Universita ta’ Malta, Msida, Malta
| |
Collapse
|
18
|
Liu J, Liao C, Li Z, Shi X, Wu X. Synergistic resistance of honeybee (Apis mellifera) and their gut microorganisms to fluvalinate stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105865. [PMID: 38685241 DOI: 10.1016/j.pestbp.2024.105865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 05/02/2024]
Abstract
Fluvalinate is widely used in the control of Varroa destructor, but its residues in colonies threaten honeybees. The effect of fluvalinate-induced dysbiosis on honeybee-related gene expression and the gut microenvironment of honeybees has not yet been fully elucidated. In this study, two-day-old larvae to seven-day-old adult worker bees were continuously fed different amounts of fluvalinate-sucrose solutions (0, 0.5, 5, and 50 mg/kg), after which the expression levels of two immune-related genes (Hymenoptaecin and Defensin1) and three detoxication-related genes (GSTS3, CAT, and CYP450) in worker bees (1, 7, and 20 days old) were measured. The effect of fluvalinate on the gut microbes of worker bees at seven days old also was explored using 16S rRNA Illumina deep sequencing. The results showed that exposure of honeybees to the insecticide fluvalinate affected their gene expression and gut microbial composition. As the age of honeybees increased, the effect of fluvalinate on the expression of Hymenoptaecin, CYP450, and CAT decreased, and the abundance of honeybee gut bacteria was affected by increasing the fluvalinate concentration. These findings provide insights into the synergistic defense of honeybee hosts against exogenous stresses in conjunction with honeybee gut microbes.
Collapse
Affiliation(s)
- Jianhui Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Chunhua Liao
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zhen Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xinxin Shi
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
19
|
Yang C, Hu J, Su Q, Zhang Z, Du Y, Wang J, Sun H, Han B, Tang J, Guo L, Li H, Cai W, Zheng H, Zhou X, Zhang X. A review on recent taxonomic updates of gut bacteria associated with social bees, with a curated genomic reference database. INSECT SCIENCE 2024. [PMID: 38594229 DOI: 10.1111/1744-7917.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/13/2024] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
Honeybees and bumblebees play a crucial role as essential pollinators. The special gut microbiome of social bees is a key factor in determining the overall fitness and health of the host. Although bees harbor relatively simple microbial communities at the genus level, recent studies have unveiled significant genetic divergence and variations in gene content within each bacterial genus. However, a comprehensive and refined genomics-based taxonomic database specific to social bee gut microbiomes remains lacking. Here, we first provided an overview of the current knowledge on the distribution and function of social bee gut bacteria, as well as the factors that influence the gut population dynamics. We then consolidated all available genomes of the gut bacteria of social bees and refined the species-level taxonomy, by constructing a maximum-likelihood core genome phylogeny and calculating genome-wide pairwise average nucleotide identity. On the basis of the refined species taxonomy, we constructed a curated genomic reference database, named the bee gut microbe genome sequence database (BGM-GDb). To evaluate the species-profiling performance of the curated BGM-GDb, we retrieved a series of bee gut metagenomic data and inferred the species-level composition using metagenomic intra-species diversity analysis system (MIDAS), and then compared the results with those obtained from a prebuilt MIDAS database. We found that compared with the default database, the BGM-GDb excelled in aligned read counts and bacterial richness. Overall, this high-resolution and precise genomic reference database will facilitate research in understanding the gut community structure of social bees.
Collapse
Affiliation(s)
- Chengfeng Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Hainan Province, China
| | - Jiawei Hu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qinzhi Su
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zijing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yating Du
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jieni Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huihui Sun
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Hainan Province, China
| | - Benfeng Han
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junbo Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lizhen Guo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Hainan Province, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Smriti, Rana A, Singh G, Gupta G. Prospects of probiotics in beekeeping: a review for sustainable approach to boost honeybee health. Arch Microbiol 2024; 206:205. [PMID: 38573383 DOI: 10.1007/s00203-024-03926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Honeybees are vital for global crop pollination, making indispensable contributions to agricultural productivity. However, these vital insects are currently facing escalating colony losses on a global scale, primarily attributed to parasitic and pathogenic attacks. The prevalent response to combat these infections may involve the use of antibiotics. Nevertheless, the application of antibiotics raises concerns regarding potential adverse effects such as antibiotic resistance and imbalances in the gut microbiota of bees. In response to these challenges, this study reviews the utilization of a probiotic-supplemented pollen substitute diet to promote honeybee gut health, enhance immunity, and overall well-being. We systematically explore various probiotic strains and their impacts on critical parameters, including survival rate, colony strength, honey and royal jelly production, and the immune response of bees. By doing so, we emphasize the significance of maintaining a balanced gut microbial community in honeybees. The review also scrutinizes the factors influencing the gut microbial communities of bees, elucidates the consequences of dysbiosis, and evaluates the potential of probiotics to mitigate these challenges. Additionally, it delineates different delivery mechanisms for probiotic supplementation and elucidates their positive effects on diverse health parameters of honeybees. Given the alarming decline in honeybee populations and the consequential threat to global food security, this study provides valuable insights into sustainable practices aimed at supporting honeybee populations and enhancing agricultural productivity.
Collapse
Affiliation(s)
- Smriti
- Department of Biosciences (UIBT), Chandigarh University, Mohali, 140413, India
| | - Anita Rana
- Department of Biosciences (UIBT), Chandigarh University, Mohali, 140413, India.
| | - Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Mohali, 140413, India
| | - Garima Gupta
- Department of Agriculture (UIAS), Chandigarh University, Mohali, 140413, India
| |
Collapse
|
21
|
Zhu L, Wang K, Wu X, Zheng H, Liao X. Association of specific gut microbiota with polyethylene microplastics caused gut dysbiosis and increased susceptibility to opportunistic pathogens in honeybees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170642. [PMID: 38320694 DOI: 10.1016/j.scitotenv.2024.170642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
The emergence of microplastics as contaminants has raised concerns regarding their potential toxicity. Recent studies on microplastic pollution caused by food packaging have drawn attention to its impact on health. However, despite being used extensively in food packaging, there is little knowledge about the toxicity of polyethylene microplastics (PE-MPs). Here, we studied the toxicity of PE-MPs on the model animal honeybees using different particle sizes (1 μm, 10 μm, 100 μm in diameter). Oral exposure to 100-μm PE-MPs resulted in elevated honeybee mortality and increased their susceptibility to pathogens. This is likely due to the mechanical disruption and gut microbial dysbiosis by PE-MPs. Snodgrassella, a core functional gut bacteria, was specifically enriched on the surface of PE-MPs, which perturbs the gut microbial communities in honeybees. Furthermore, the increased mortality in challenge trials with the opportunistic pathogen Hafnia alvei for PE-MPs pre-exposed honeybees revealed a potential health risk. These findings provide fresh insights into evaluating the potential hazards associated with PE-MPs.
Collapse
Affiliation(s)
- Liya Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| | - Kewen Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China.
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| |
Collapse
|
22
|
Singh AS, Pathak D, Devi MS, Anifowoshe AT, Nongthomba U. Antibiotic alters host's gut microbiota, fertility, and antimicrobial peptide gene expression vis-à-vis ampicillin treatment on model organism Drosophila melanogaster. Int Microbiol 2024:10.1007/s10123-024-00507-9. [PMID: 38502456 DOI: 10.1007/s10123-024-00507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Antibiotics are commonly used to treat infectious diseases; however, persistence is often expressed by the pathogenic bacteria and their long-term relative effect on the host have been neglected. The present study investigated the impact of antibiotics in gut microbiota (GM) and metabolism of host. The effect of ampicillin antibiotics on GM of Drosophila melanogaster was analyzed through deep sequencing of 16S rRNA amplicon gene. The dominant phyla consisted of Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Planctomycetes, Chloroflexi, Euryarchaeota, Acedobacteria, Verrucomicrobia, and Cyanobacteria. It was found that the composition of GM was significantly altered on administration of antibiotics. On antibiotic treatments, there were decline in relative abundance of Proteobacteria and Firmicutes, while there were increase in relative abundance of Chlorophyta and Bacteroidota. High abundance of 14 genera, viz., Wolbachia, Lactobacillus, Bacillus, Pseudomonas, Thiolamprovum, Pseudoalteromonas, Vibrio, Romboutsia, Staphylococcus, Alteromonas, Clostridium, Lysinibacillus, Litoricola, and Cellulophaga were significant (p ≤ 0.05) upon antibiotic treatment. Particularly, the abundance of Acetobacter was significantly (p ≤ 0.05) declined but increased for Wolbachia. Further, a significant (p ≤ 0.05) increase in Wolbachia endosymbiont of D. melanogaster, Wolbachia endosymbiont of Curculio okumai, and Wolbachia pipientis and a decrease in the Acinetobacter sp. were observed. We observed an increase in functional capacity for biosynthesis of certain nucleotides and the enzyme activities. Further, the decrease in antimicrobial peptide production in the treated group and potential effects on the host's defense mechanisms were observed. This study helps shed light on an often-overlooked dimension, namely the persistence of antibiotics' effects on the host.
Collapse
Affiliation(s)
- Asem Sanjit Singh
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India, 560012.
| | - Dhruv Pathak
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India, 560012
| | - Manoharmayum Shaya Devi
- ICAR-Central Inland Fisheries Research Institute, P.O. Monirampore, Barrackpore, Kolkata, India, 700 120
| | - Abass Toba Anifowoshe
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India, 560012
| | - Upendra Nongthomba
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India, 560012.
| |
Collapse
|
23
|
Shah S, Ilyas M, Bian S, Yang FL. Discussion: Harnessing microbiome-mediated adaptations in insect pollinators to mitigate climate change impact on crop pollination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170145. [PMID: 38242478 DOI: 10.1016/j.scitotenv.2024.170145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Insect pollinators, vital for agriculture and biodiversity, face escalating threats from climate change. We argue and explore the pivotal role of the microbiomes in shaping adaptations of insect pollinator resilience amid climate-induced challenges (climate change and habitat alteration). Examining diverse taxonomic groups, we unravel the interplay between insect physiology, microbiomes, and adaptive mechanisms. Climate-driven alterations in microbiomes impact insect health, behavior, and plant interactions, posing significant effects on agricultural ecosystems. We propose harnessing microbiome-mediated adaptations as a strategic approach to mitigate climate change impacts on crop pollination. Insights into insect-pollinator microbiomes offer transformative avenues for sustainable agriculture, including probiotic interventions (use of EM PROBIOTIC) and microbiome engineering (such as engineering gut bacteria) to induce immune responses and enhanced pollination services. Integrating microbiome insights into conservation practices elucidates strategies for preserving pollinator habitats, optimizing agricultural landscapes, and developing policies to safeguard pollinator health in the face of environmental changes. Finally, we stress interdisciplinary collaboration and the urgency of understanding pollinator microbiome dynamics under climate change in future research.
Collapse
Affiliation(s)
- Sakhawat Shah
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Muhammad Ilyas
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666316 Menglun, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sufen Bian
- Department of Gardening and Horticulture, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng-Lian Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
24
|
Gok Yurttas A, Çinar K, Khan Z, Elgün T, Mayack C. Inactivation of Nosema spp. with zinc phthalocyanine. J Invertebr Pathol 2024; 203:108074. [PMID: 38350524 DOI: 10.1016/j.jip.2024.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Most honey bee pathogens, such as Vairimorpha (Nosema), cannot be rapidly and definitively diagnosed in a natural setting, consequently there is typically the spread of these diseases through shared and re-use of beekeeping equipment. Furthermore, there are no viable treatment options available for Nosema spores to aid in managing the spread of this bee disease. We therefore aimed to develop a new method using novel Zinc Phthalocyanine (ZnPc) as a photosensitizer for the photodynamic inactivation of Nosema spores that could be used for the decontamination of beekeeping equipment. Nosema spores were propagated for in vitro testing using four caged Apis mellifera honey bees. The ZnPc treatment was characterized, encapsulated with a liposome, and then used as either a 10 or 100 µM treatment for the freshly harvested Nosema spores, for either a 30 and or 60-minute time period, under either light or dark conditions, in-vitro, in 96-well plates. In the dark treatment, after 30-min, the ZnPc 100 µM treatment, caused a 30 % Nosema mortality, while this increased to 80 % at the same concentration after the light treatment. The high rate of anti-spore effects, in a short period of time, supports the notion that this could be an effective treatment for managing honey bee Nosema infections in the future. Our results also suggest that the photo activation of the treatment could be applied in the field setting and this would increase the sterilization of beekeeping equipment against Nosema.
Collapse
Affiliation(s)
- Asiye Gok Yurttas
- Department of Biochemistry, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Kamil Çinar
- Department of Physics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey.
| | - Zaeema Khan
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey.
| | - Tuğba Elgün
- Medical Biology, Faculty of Medicine, Istanbul Biruni University, Istanbul, Turkey.
| | - Christopher Mayack
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey; US Department of Agriculture, Invasive Species and Pollinator Health Research Unit (ISPHRU), Western Regional Research Center (WRRC) in the Pacific West Area (PWA), USDA ARS Bee Lab Trailer 1, United States.
| |
Collapse
|
25
|
Bhardwaj G, Riadi Y, Afzal M, Bansal P, Kaur H, Deorari M, Tonk RK, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Thangavelu L, Saleem S. The hidden threat: Environmental toxins and their effects on gut microbiota. Pathol Res Pract 2024; 255:155173. [PMID: 38364649 DOI: 10.1016/j.prp.2024.155173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
The human gut microbiota (GM), which consists of a complex and diverse ecosystem of bacteria, plays a vital role in overall wellness. However, the delicate balance of this intricate system is being compromised by the widespread presence of environmental toxins. The intricate connection between contaminants in the environment and human well-being has garnered significant attention in recent times. Although many environmental pollutants and their toxicity have been identified and studied in laboratory settings and animal models, there is insufficient data concerning their relevance to human physiology. Consequently, research on the toxicity of environmental toxins in GM has gained prominence in recent years. Various factors, such as air pollution, chemicals, heavy metals, and pesticides, have a detrimental impact on the composition and functioning of the GM. This comprehensive review aims to comprehend the toxic effects of numerous environmental pollutants, including antibiotics, endocrine-disrupting chemicals, heavy metals, and pesticides, on GM by examining recent research findings. The current analysis concludes that different types of environmental toxins can lead to GM dysbiosis and have various potential adverse effects on the well-being of animals. We investigate the alterations to the GM composition induced by contaminants and their impact on overall well-being, providing a fresh perspective on research related to pollutant exposure.
Collapse
Affiliation(s)
- Gautam Bhardwaj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Lakshmi Thangavelu
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Shakir Saleem
- Department of Public Health. College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia.
| |
Collapse
|
26
|
Xiaowen C, Jiahao L, Zhaorun D, Wenfeng L, Richou H, Yanping C, Huichun X, Yi Z. Honeybee symbiont Bombella apis could restore larval-to-pupal transition disrupted by antibiotic treatment. JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104601. [PMID: 38142957 DOI: 10.1016/j.jinsphys.2023.104601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Numerous studies have demonstrated the vital roles of gut microbes in the health, immunity, nutrient metabolism, and behavior of adult worker honeybees. However, a few studies have been conducted on gut microbiota associated with the larval stage of honeybees. In the present study, we explored the role of a gut bacterium in larval development and larval-pupal transition in the Asian honeybee, Apis cerana. First, our examination of gut microbial profiling showed that Bombella apis, a larvae-associated bacterium, was the most dominant bacterium colonized in the fifth instar larvae. Second, we demonstrated that tetracycline, an antibiotic used to treat a honeybee bacterial brood disease, could cause the complete depletion of gut bacteria. This antibiotic-induced gut microbiome depletion in turn, significantly impacted the survivorship, pupation rate and emergence rate of the treated larvae. Furthermore, our analysis of gene expression pattens revealed noteworthy changes in key genes. The expression of genes responsible for encoding storage proteins vitellogenin (vg) and major royal jelly protein 1 (mrjp1) was significantly down-regulated in the tetracycline-treated larvae. Concurrently, the expression of krüppel homolog 1(kr-h1), a pivotal gene in endocrine signaling, increased, whilethe expression of broad-complex (br-c) gene that plays a key role in the ecdysone regulation decreased. These alterations indicated a disruption in the coordination of juvenile hormone and ecdysteroid synthesis. Finally, we cultivated B. apis isolated from the fifth instar worker larval of A. cerana and fed tetracycline-treated larvae with a diet replenished by B. apis. This intervention resulted in a significant improvement in the pupation rate, emergence rate, and overall survival rate of the treated larvae. Our findings demonstrate the positive impact of B. apis on honeybee larvae development, providing new evidence of the functional capacities of gut microbes in honeybee growth and development.
Collapse
Affiliation(s)
- Chen Xiaowen
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xi'ning 810008, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Li Jiahao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Ding Zhaorun
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Li Wenfeng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Han Richou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Chen Yanping
- USDA-ARS Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Xie Huichun
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xi'ning 810008, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong 810500, China.
| | - Zhang Yi
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Yunfu 527527, China.
| |
Collapse
|
27
|
Motta EVS, Moran NA. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 2024; 22:122-137. [PMID: 38049554 PMCID: PMC10998682 DOI: 10.1038/s41579-023-00990-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Honeybees (Apis mellifera) are key pollinators that support global agriculture and are long-established models for developmental and behavioural research. Recently, they have emerged as models for studying gut microbial communities. Earlier research established that hindguts of adult worker bees harbour a conserved set of host-restricted bacterial species, each showing extensive strain variation. These bacteria can be cultured axenically and introduced to gnotobiotic hosts, and some have basic genetic tools available. In this Review, we explore the most recent research showing how the microbiota establishes itself in the gut and impacts bee biology and health. Microbiota members occupy specific niches within the gut where they interact with each other and the host. They engage in cross-feeding and antagonistic interactions, which likely contribute to the stability of the community and prevent pathogen invasion. An intact gut microbiota provides protection against diverse pathogens and parasites and contributes to the processing of refractory components of the pollen coat and dietary toxins. Absence or disruption of the microbiota results in altered expression of genes that underlie immunity, metabolism, behaviour and development. In the field, such disruption by agrochemicals may negatively impact bees. These findings demonstrate a key developmental and protective role of the microbiota, with broad implications for bee health.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
28
|
Acheampong SA, Polat MF, Kwong WK. Complete genome sequences of 12 bacterial strains from the honey bee gut, resolved with long-read nanopore sequencing. Microbiol Resour Announc 2024; 13:e0077523. [PMID: 38193702 PMCID: PMC10868161 DOI: 10.1128/mra.00775-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/30/2023] [Indexed: 01/10/2024] Open
Abstract
We report the de novo sequencing of six bacterial strains isolated from the Western honey bee, as well as the resequencing of six strains that have existing draft genomes, to obtain complete, chromosomal-level assemblies. These strains include the bee gut symbiont genera Bartonella, Bifidobacterium, Snodgrassella, Gilliamella, Lactobacillus, and the opportunistic pathogen Serratia marcescens KZ11.
Collapse
Affiliation(s)
| | | | - Waldan K. Kwong
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| |
Collapse
|
29
|
Hajra D, Kirthivasan N, Chakravortty D. Symbiotic Synergy from Sponges to Humans: Microflora-Host Harmony Is Crucial for Ensuring Survival and Shielding against Invading Pathogens. ACS Infect Dis 2024; 10:317-336. [PMID: 38170903 DOI: 10.1021/acsinfecdis.3c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Gut microbiota plays several roles in the host organism's metabolism and physiology. This phenomenon holds across different species from different kingdoms and classes. Different species across various classes engage in continuous crosstalk via various mechanisms with their gut microbiota, ensuring homeostasis of the host. In this Review, the diversity of the microflora, the development of the microflora in the host, its regulations by the host, and its functional implications on the host, especially in the context of dysbiosis, are discussed across different organisms from sponges to humans. Overall, our review aims to address the indispensable nature of the microbiome in the host's survival, fitness, and protection against invading pathogens.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Nikhita Kirthivasan
- Undergraduate Programme, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Dipshikha Chakravortty
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore, Karnataka-560012, India
| |
Collapse
|
30
|
Nguyen JB, Marshall CW, Cook CN. The buzz within: the role of the gut microbiome in honeybee social behavior. J Exp Biol 2024; 227:jeb246400. [PMID: 38344873 DOI: 10.1242/jeb.246400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Gut symbionts influence the physiology and behavior of their host, but the extent to which these effects scale to social behaviors is an emerging area of research. The use of the western honeybee (Apis mellifera) as a model enables researchers to investigate the gut microbiome and behavior at several levels of social organization. Insight into gut microbial effects at the societal level is critical for our understanding of how involved microbial symbionts are in host biology. In this Commentary, we discuss recent findings in honeybee gut microbiome research and synthesize these with knowledge of the physiology and behavior of other model organisms to hypothesize how host-microbe interactions at the individual level could shape societal dynamics and evolution.
Collapse
Affiliation(s)
- J B Nguyen
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - C W Marshall
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - C N Cook
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
31
|
Anderson KE, Allen NO, Copeland DC, Kortenkamp OL, Erickson R, Mott BM, Oliver R. A longitudinal field study of commercial honey bees shows that non-native probiotics do not rescue antibiotic treatment, and are generally not beneficial. Sci Rep 2024; 14:1954. [PMID: 38263184 PMCID: PMC10806037 DOI: 10.1038/s41598-024-52118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024] Open
Abstract
Probiotics are widely used in agriculture including commercial beekeeping, but there is little evidence supporting their effectiveness. Antibiotic treatments can greatly distort the gut microbiome, reducing its protective abilities and facilitating the growth of antibiotic resistant pathogens. Commercial beekeepers regularly apply antibiotics to combat bacterial infections, often followed by an application of non-native probiotics advertised to ease the impact of antibiotic-induced gut dysbiosis. We tested whether probiotics affect the gut microbiome or disease prevalence, or rescue the negative effects of antibiotic induced gut dysbiosis. We found no difference in the gut microbiome or disease markers by probiotic application or antibiotic recovery associated with probiotic treatment. A colony-level application of the antibiotics oxytetracycline and tylosin produced an immediate decrease in gut microbiome size, and over the longer-term, very different and persistent dysbiotic effects on the composition and membership of the hindgut microbiome. Our results demonstrate the lack of probiotic effect or antibiotic rescue, detail the duration and character of dysbiotic states resulting from different antibiotics, and highlight the importance of the gut microbiome for honeybee health.
Collapse
Affiliation(s)
- Kirk E Anderson
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ, 85719, USA.
| | - Nathan O Allen
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Duan C Copeland
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ, 85719, USA
| | - Oliver L Kortenkamp
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Robert Erickson
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ, 85719, USA
| | - Brendon M Mott
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ, 85719, USA
| | | |
Collapse
|
32
|
Šigutová H, Pyszko P, Šigut M, Czajová K, Kostovčík M, Kolařík M, Hařovská D, Drozd P. Concentration-dependent effect of plant secondary metabolites on bacterial and fungal microbiomes in caterpillar guts. Microbiol Spectr 2024; 12:e0299423. [PMID: 37991377 PMCID: PMC10783044 DOI: 10.1128/spectrum.02994-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE The caterpillar gut is an excellent model system for studying host-microbiome interactions, as it represents an extreme environment for microbial life that usually has low diversity and considerable variability in community composition. Our study design combines feeding caterpillars on a natural and artificial diet with controlled levels of plant secondary metabolites and uses metabarcoding and quantitative PCR to simultaneously profile bacterial and fungal assemblages, which has never been performed. Moreover, we focus on multiple caterpillar species and consider diet breadth. Contrary to many previous studies, our study suggested the functional importance of certain microbial taxa, especially bacteria, and confirmed the previously proposed lower importance of fungi for caterpillar holobiont. Our study revealed the lack of differences between monophagous and polyphagous species in the responses of microbial assemblages to plant secondary metabolites, suggesting the limited role of the microbiome in the plasticity of the herbivore diet.
Collapse
Affiliation(s)
- Hana Šigutová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Department of Zoology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Kateřina Czajová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Martin Kostovčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Denisa Hařovská
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| |
Collapse
|
33
|
Mosca M, Gyorffy A, Pietropaoli M, Giannetti L, Cersini A, Fortugno L, Formato G. IPM Strategy to Control EFB in Apis mellifera: Oxytetracycline Treatment Combined with Partial Shook Swarm and Queen Caging. Vet Sci 2024; 11:28. [PMID: 38250934 PMCID: PMC10819488 DOI: 10.3390/vetsci11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
We tested an integrated pest management (IPM) strategy to control European foulbrood (EFB) in honey bees. Colonies affected by EFB were assigned to two homogenous groups: an oxytetracycline-treated group (1.5 g OTC/hive) that underwent partial shook swarm (PSS) in combination with queen caging (QC) and an untreated group where only two beekeeping techniques, PSS and QC, were applied. The consumption of sucrose solution, the strength of the colonies, side effects of the mentioned techniques, clinical as well as subclinical relapses of EFB, and the amount of OTC residues in the honey were assessed over a 7-month-long monitoring period. Regarding the consumption of the sucrose solution, there was no significant difference between the OTC-treated and untreated groups. The strength of the untreated colonies was consistently but not significantly higher than those treated with OTC. PSS combined with QC resulted in various side effects in both groups: queen loss (52%), absconding (8%), and drone-laying queen (4%). Untreated colonies (16.7%) showed clinical EFB relapses 4 months after the application of PSS along with QC, while 15.4% of the OTC-treated colonies were confirmed EFB-positive by PCR. OTC residues were detected in the honey yielded in the cases of both groups. Two months after the PSS, the amount of OTC residues in the untreated group was 0.6 ± 0.2 µg/kg, while that in the OTC-treated group amounted to 5.8 ± 11.6 µg/kg; both results are below the maximum residue limit (MRL) of 100 ppb considered in the EU for cascade use.
Collapse
Affiliation(s)
- Michela Mosca
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy; (M.M.); (A.G.); (M.P.); (L.G.); (A.C.)
| | - Andrea Gyorffy
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy; (M.M.); (A.G.); (M.P.); (L.G.); (A.C.)
| | - Marco Pietropaoli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy; (M.M.); (A.G.); (M.P.); (L.G.); (A.C.)
| | - Luigi Giannetti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy; (M.M.); (A.G.); (M.P.); (L.G.); (A.C.)
| | - Antonella Cersini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy; (M.M.); (A.G.); (M.P.); (L.G.); (A.C.)
| | - Luca Fortugno
- Servizi Veterinari ASL di Viterbo, Via Vincenzo Cardarelli SNC, 01100 Viterbo, Italy;
| | - Giovanni Formato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy; (M.M.); (A.G.); (M.P.); (L.G.); (A.C.)
| |
Collapse
|
34
|
Caty SN, Alvarez-Buylla A, Vasek C, Tapia EE, Martin NA, McLaughlin T, Weber PK, Mayali X, Coloma LA, Morris MM, O'Connell LA. A toxic environment selects for specialist microbiome in poison frogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574901. [PMID: 38260330 PMCID: PMC10802471 DOI: 10.1101/2024.01.10.574901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Shifts in microbiome community composition can have large effects on host health. It is therefore important to understand how perturbations, like those caused by the introduction of exogenous chemicals, modulate microbiome community composition. In poison frogs within the family Dendrobatidae, the skin microbiome is exposed to the alkaloids that the frogs sequester from their diet and use for defense. Given the demonstrated antimicrobial effects of these poison frog alkaloids, these compounds may be structuring the skin microbial community. To test this, we first characterized microbial communities from chemically defended and closely related non-defended frogs from Ecuador. Then we conducted a laboratory experiment to monitor the effect of the alkaloid decahydroquinoline (DHQ) on the microbiome of a single frog species. In both the field and lab experiments, we found that alkaloid-exposed microbiomes are more species rich and phylogenetically diverse, with an increase in rare taxa. To better understand the strain-specific behavior in response to alkaloids, we cultured microbial strains from poison frog skin and found the majority of strains exhibited either enhanced growth or were not impacted by the addition of DHQ. Additionally, stable isotope tracing coupled to nanoSIMS suggests that some of these strains are able to metabolize DHQ. Taken together, these data suggest that poison frog chemical defenses open new niches for skin-associated microbes with specific adaptations, including the likely metabolism of alkaloids, that enable their survival in this toxic environment. This work helps expand our understanding of how exposure to exogenous compounds like alkaloids can impact host microbiomes.
Collapse
Affiliation(s)
| | | | - Cooper Vasek
- Department of Biology, Stanford University, Stanford CA, USA
| | - Elicio E Tapia
- Leibniz Institute for the Analysis of Biodiversity Change Martin-Luther-King-Platz 3 20146 Hamburg, Germany
| | - Nora A Martin
- Department of Biology, Stanford University, Stanford CA, USA
| | - Theresa McLaughlin
- Stanford University Mass Spectrometry, Stanford University, Stanford CA, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore CA, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore CA, USA
| | - Luis A Coloma
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Jambatu, San Rafael, Quito, Ecuador
| | - Megan M Morris
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore CA, USA
| | - Lauren A O'Connell
- Department of Biology, Stanford University, Stanford CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| |
Collapse
|
35
|
Deng Y, Yang S, Zhang L, Chen C, Cheng X, Hou C. Chronic bee paralysis virus exploits host antimicrobial peptides and alters gut microbiota composition to facilitate viral infection. THE ISME JOURNAL 2024; 18:wrae051. [PMID: 38519112 PMCID: PMC11014883 DOI: 10.1093/ismejo/wrae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/15/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
The significance of gut microbiota in regulating animal immune response to viral infection is increasingly recognized. However, how chronic bee paralysis virus (CBPV) exploits host immune to disturb microbiota for its proliferation remains elusive. Through histopathological examination, we discovered that the hindgut harbored the highest level of CBPV, and displayed visible signs of damages. The metagenomic analysis showed that a notable reduction in the levels of Snodgrassella alvi and Lactobacillus apis, and a significant increase in the abundance of the opportunistic pathogens such as Enterobacter hormaechei and Enterobacter cloacae following CBPV infection. Subsequent co-inoculation experiments showed that these opportunistic pathogens facilitated the CBPV proliferation, leading to accelerated mortality in bees and exacerbation of bloated abdomen symptoms after CBPV infection. The expression level of antimicrobial peptide (AMP) was found to be significantly up-regulated by over 1000 times in response to CBPV infection, as demonstrated by subsequent transcriptome and quantitative real-time PCR investigations. In particular, through correlation analysis and a bacteriostatic test revealed that the AMPs did not exhibit any inhibitory effect against the two opportunistic pathogens. However, they did demonstrate inhibitory activity against S. alvi and L. apis. Our findings provide different evidence that the virus infection may stimulate and utilize the host's AMPs to eradicate probiotic species and facilitate the proliferation of opportunistic bacteria. This process weakens the intestinal barrier and ultimately resulting in the typical bloated abdomen.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chenxiao Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xuefen Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chunsheng Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| |
Collapse
|
36
|
Sarkar A, McInroy CJA, Harty S, Raulo A, Ibata NGO, Valles-Colomer M, Johnson KVA, Brito IL, Henrich J, Archie EA, Barreiro LB, Gazzaniga FS, Finlay BB, Koonin EV, Carmody RN, Moeller AH. Microbial transmission in the social microbiome and host health and disease. Cell 2024; 187:17-43. [PMID: 38181740 PMCID: PMC10958648 DOI: 10.1016/j.cell.2023.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Cameron J A McInroy
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Siobhán Harty
- Independent, Tandy Court, Spitalfields, Dublin, Ireland
| | - Aura Raulo
- Department of Biology, University of Oxford, Oxford, UK; Department of Computing, University of Turku, Turku, Finland
| | - Neil G O Ibata
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mireia Valles-Colomer
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Katerina V-A Johnson
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joseph Henrich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Francesca S Gazzaniga
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
37
|
Damico ME, Beasley B, Greenstein D, Raymann K. Testing the Effectiveness of a Commercially Sold Probiotic on Restoring the Gut Microbiota of Honey Bees: a Field Study. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10203-1. [PMID: 38112994 DOI: 10.1007/s12602-023-10203-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Antibiotic use in apiculture is often necessary to ensure the survival of honey bee colonies. However, beekeepers are faced with the dilemma of needing to combat bacterial brood infections while also knowing that antibiotics kill beneficial bacteria important for bee health. In recent years, bee probiotics have become increasingly purchased by beekeepers because of product claims like being able to "replenish the microbes lost due to agricultural modifications of honey bees' environment" or "promote optimal gut health." Unfortunately, these products have little scientific evidence to support their efficacy, and previous lab experiments have refuted some of their claims. Here, we performed hive-level field experiments to test the effectiveness of SuperDFM-HoneyBee™ - the most commonly purchased honey bee probiotic in the United States - on restoring the honey bee gut microbiota after antibiotic treatment. We found slight but significant changes in the microbiota composition of bees following oxytetracycline (TerraPro) treatment and no difference between the microbiota of antibiotic treated bees with or without subsequent probiotic supplementation. Moreover, the microorganisms in the probiotic supplement were never found in the guts of the worker bee samples. These results highlight that more research is needed to test the efficacy and outcomes of currently available commercial honey bee probiotic supplements.
Collapse
Affiliation(s)
- Megan E Damico
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA
| | - Burton Beasley
- North Carolina State Beekeepers Association, Hurdle Mills, NC, 27541, USA
| | - Drew Greenstein
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA
| | - Kasie Raymann
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA.
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
38
|
Kim M, Kim WJ, Park SJ. Analyzing Gut Microbial Community in Varroa destructor-Infested Western Honeybee ( Apis mellifera). J Microbiol Biotechnol 2023; 33:1495-1505. [PMID: 37482801 DOI: 10.4014/jmb.2306.06040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
The western honeybee Apis mellifera L., a vital crop pollinator and producer of honey and royal jelly, faces numerous threats including diseases, chemicals, and mite infestations, causing widespread concern. While extensive research has explored the link between gut microbiota and their hosts. However, the impact of Varroa destructor infestation remains understudied. In this study, we employed massive parallel amplicon sequencing assays to examine the diversity and structure of gut microbial communities in adult bee groups, comparing healthy (NG) and Varroa-infested (VG) samples. Additionally, we analyzed Varroa-infested hives to assess the whole body of larvae. Our results indicated a notable prevalence of the genus Bombella in larvae and the genera Gillamella, unidentified Lactobacillaceae, and Snodgrassella in adult bees. However, no statistically significant difference was observed between NG and VG. Furthermore, our PICRUSt analysis demonstrated distinct KEGG classification patterns between larval and adult bee groups, with larvae displaying a higher abundance of genes involved in cofactor and vitamin production. Notably, despite the complex nature of the honeybee bacterial community, methanogens were found to be present in low abundance in the honeybee microbiota.
Collapse
Affiliation(s)
- Minji Kim
- Department of Biology, Jeju National University, Jeju 63243, Republic of Korea
| | - Woo Jae Kim
- Center for Life Science (HCLS), Harbin Institute of Technology, No.92 West Dazhi Street, Nangang District, Harbin City, Hei Longjiang Province, P.R. China
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
39
|
Deng Y, Pan J, Yang X, Yang S, Chi H, Yang X, Qu X, Sun S, You L, Hou C. Dual roles of nanocrystalline cellulose extracted from jute ( Corchorus olitorius L.) leaves in resisting antibiotics and protecting probiotics. NANOSCALE ADVANCES 2023; 5:6435-6448. [PMID: 38024324 PMCID: PMC10662138 DOI: 10.1039/d3na00345k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/14/2023] [Indexed: 12/01/2023]
Abstract
Antibiotics can cure diseases caused by bacterial infections, but their widespread use can have some side effects, such as probiotic reduction. There is an urgent need for such agents that can not only alleviate the damage caused by antibiotics, but also maintain the balance of the gut microbiota. In this study, we first characterized the nanocrystalline cellulose (NCC) extracted from plant jute (Corchorus olitorius L.) leaves. Next, we evaluated the protective effect of jute NCC and cellulose on human model gut bacteria (Lacticaseibacillus rhamnosus and Escherichia coli) under antibiotic stress by measuring bacterial growth and colony forming units. We found that NCC is more effective than cellulose in adsorbing antibiotics and defending the gut bacteria E. coli. Interestingly, the low-dose jute NCC clearly maintained the balance of key gut bacteria like Snodgrassella alvi and Lactobacillus Firm-4 in bees treated with tetracycline and reduced the toxicity caused by antibiotics. It also showed a more significant protective effect on human gut bacteria, especially L. rhamnosus, than cellulose. This study first demonstrated that low-dose NCC performed satisfactorily as a specific probiotic to mitigate the adverse effects of antibiotics on gut bacteria.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Jiangpeng Pan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Xiai Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences Beijing 100093 P. R. China
- Graduate School of Chinese Academy of Agricultural Sciences Beijing 100081 P. R. China
| | - Haiyang Chi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Xiushi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Xiaoxin Qu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Shitao Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Linfeng You
- Department of Food and Biotechnology Engineering, Chongqing Technology and Business University Chongqing 400067 P. R. China
| | - Chunsheng Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| |
Collapse
|
40
|
Deng Y, Yang X, Chen J, Yang S, Chi H, Chen C, Yang X, Hou C. Jute ( Corchorus olitorius L.) Nanocrystalline Cellulose Inhibits Insect Virus via Gut Microbiota and Metabolism. ACS NANO 2023; 17:21662-21677. [PMID: 37906569 DOI: 10.1021/acsnano.3c06824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Natural plant nanocrystalline cellulose (NCC), exhibiting a number of exceptional performance characteristics, is widely used in food fields. However, little is known about the relationship between NCC and the antiviral effect in animals. Here, we tested the function of NCC in antiviral methods utilizing honey bees as the model organism employing Israeli acute paralysis virus (IAPV), a typical RNA virus of honey bees. In both the lab and the field, we fed the IAPV-infected bees various doses of jute NCC (JNCC) under carefully controlled conditions. We found that JNCC can reduce IAPV proliferation and improve gut health. The metagenome profiling suggested that IAPV infection significantly decreased the abundance of gut core bacteria, while JNCC therapy considerably increased the abundance of the gut core bacteria Snodgrassella alvi and Lactobacillus Firm-4. Subsequent metabolome analysis further revealed that JNCC promoted the biosynthesis of fatty acids and unsaturated fatty acids, accelerated the purine metabolism, and then increased the expression of antimicrobial peptides (AMPs) and the genes involved in the Wnt and apoptosis signaling pathways against IAPV infection. Our results highlighted that JNCC could be considered as a prospective candidate agent against a viral infection.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, P. R. China
| | - Xiai Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, P. R. China
| | - Jiquan Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, P. R. China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, P. R. China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Haiyang Chi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, P. R. China
| | - Chenxiao Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, P. R. China
| | - Xiushi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, P. R. China
| | - Chunsheng Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, P. R. China
| |
Collapse
|
41
|
Rodríguez MA, Fernández LA, Daisley BA, Reynaldi FJ, Allen-Vercoe E, Thompson GJ. Probiotics and in-hive fermentation as a source of beneficial microbes to support the gut microbial health of honey bees. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:19. [PMID: 38055943 PMCID: PMC10699873 DOI: 10.1093/jisesa/iead093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 12/08/2023]
Abstract
Managed populations of honey bees (Apis mellifera Linnaeus; Hymenoptera: Apidae) are regularly exposed to infectious diseases. Good hive management including the occasional application of antibiotics can help mitigate infectious outbreaks, but new beekeeping tools and techniques that bolster immunity and help control disease transmission are welcome. In this review, we focus on the applications of beneficial microbes for disease management as well as to support hive health and sustainability within the apicultural industry. We draw attention to the latest advances in probiotic approaches as well as the integration of fermented foods (such as water kefir) with disease-fighting properties that might ultimately be delivered to hives as an alternative or partial antidote to antibiotics. There is substantial evidence from in vitro laboratory studies that suggest beneficial microbes could be an effective method for improving disease resistance in honey bees. However, colony level evidence is lacking and there is urgent need for further validation via controlled field trials experimentally designed to test defined microbial compositions against specific diseases of interest.
Collapse
Affiliation(s)
- María A Rodríguez
- Laboratorio de Estudios Apícolas (LabEA-CIC), Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Buenos Aires, Argentina
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Leticia A Fernández
- Laboratorio de Estudios Apícolas (LabEA-CIC), Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Brendan A Daisley
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Francisco J Reynaldi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centro de Microbiología Básica y Aplicada (CEMIBA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Graham J Thompson
- Department of Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
42
|
Sun H, Li H, Zhang X, Liu Y, Chen H, Zheng L, Zhai Y, Zheng H. The honeybee gut resistome and its role in antibiotic resistance dissemination. Integr Zool 2023; 18:1014-1026. [PMID: 36892101 DOI: 10.1111/1749-4877.12714] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
There is now general concern about widespread antibiotic resistance, and growing evidence indicates that gut microbiota is critical in providing antibiotic resistance. Honeybee is an important pollinator; the incidence of antibiotic resistance genes in honeybee gut causes potential risks to not only its own health but also to public and animal health, for its potential disseminator role, thus receiving more attention from the public. Recent analysis results reveal that the gut of honeybee serves as a reservoir of antibiotic resistance genes, probably due to antibiotics application history in beekeeping and horizontal gene transfer from the highly polluted environment. These antibiotic resistance genes accumulate in the honeybee gut and could be transferred to the pathogen, even having the potential to spread during pollination, tending, social interactions, etc. Newly acquired resistance traits may cause fitness reduction in bacteria whereas facilitating adaptive evolution as well. This review outlines the current knowledge about the resistome in honeybee gut and emphasizes its role in antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Huihui Sun
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| |
Collapse
|
43
|
Liu Y, Yu J, Zhu F, Shen Z, Jiang H, Li Z, Liu X, Xu H. Function of Cytochrome P450s and Gut Microbiome in Biopesticide Adaptation of Grapholita molesta on Different Host Diets. Int J Mol Sci 2023; 24:15435. [PMID: 37895115 PMCID: PMC10607806 DOI: 10.3390/ijms242015435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Insects that feed on various host plants possess diverse xenobiotic adaptations; however, the underlying mechanisms are poorly understood. In the present study, we used Grapholita molesta, which shifts feeding sites from peach shoots to apple fruits, as a model to explore the effects of shifts in host plant diet on the profiles of cytochrome P450s and the gut bacteria microbiome, as well as their effects on biopesticide adaptation. We found that the sensitivity of the fruit-feeding G. molesta to emamectin benzoate biopesticide was significantly lower than that of the shoot-feeding larvae. We also found that the P450 enzyme activity and the expression of nine cytochrome P450s were enhanced in G. molesta fed on Fuji apples compared to those fed on peach shoots. The survival rates of G. molesta exposed to emamectin benzoate significantly decreased as each of three of four emamectin benzoate-inducted cytochrome P450 genes were silenced. Furthermore, we discovered the gut bacteria dynamics of G. molesta changed with the host shift and the structure of the gut bacteria microbiome was determined by the final diet ingested; additionally, the dysbiosis of the gut microbiota induced by antibiotics could significantly increase the sensitivity to emamectin benzoate. Taken together, our results suggest that the expression of P450s and the composition of the gut bacteria microbiome promote adaptation to emamectin benzoate in G. molesta, providing new insights into the molecular mechanisms underlying xenobiotic adaptation in this notorious pest.
Collapse
Affiliation(s)
- Yanjun Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Y.L.)
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China (Z.L.)
| | - Jianmei Yu
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China (Z.L.)
- Institute of Vegetables, Zibo Academy of Agricultural Sciences, Zibo 255000, China
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Zhongjian Shen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - He Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Y.L.)
| | - Zhen Li
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China (Z.L.)
| | - Xiaoxia Liu
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China (Z.L.)
| | - Huanli Xu
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China (Z.L.)
| |
Collapse
|
44
|
Creus-Martí I, Marín-Miret J, Moya A, Santonja FJ. Evidence of the cooperative response of Blattella germanica gut microbiota to antibiotic treatment. Math Biosci 2023; 364:109057. [PMID: 37562583 DOI: 10.1016/j.mbs.2023.109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
Gut microbiota plays a key role in host health under normal conditions. However, bacterial composition can be altered by external factors such as antibiotic (AB) intake. While there are many descriptive publications about the effects of AB on gut microbiota composition after treatment, the dynamics and interactions among the bacterial taxa are still poorly understood. In this work, we performed a longitudinal study of gut microbiome dynamics in B. germanica treated with kanamycin. The AB was supplied in three separate periods, giving the microbiota time to recover between each antibiotic intake. We applied two new statistical models, not focusing on pair-wise interactions, to more realistically study the interactions between groups of bacterial taxa and how some groups affect a single taxon. The first model provides information on the importance of a given genus, and the rest of the community, to define the abundance of that genus. The second model, on the other hand, provides details about the relationship between groups of bacteria, focusing on which community groups affect the taxa. These models help us to identify which bacteria are community-dependent in stress conditions, which taxa might be better adapted than the rest of the community, and which bacteria might be working together within the community to overcome the antibiotic. In addition, these models enable us to identify different bacterial groups that were separated in control conditions but were found together in treated conditions, suggesting that when the environment is more hostile (as it is under antibiotic treatment), the whole community tends to work together.
Collapse
Affiliation(s)
- Irene Creus-Martí
- Institute for Integrative Systems Biology (I2Sysbio), Universitat de València and CSIC, València, Spain; Department of Statistics and Operation Research, Universitat de València, Valencia, Spain
| | - Jesús Marín-Miret
- Institute for Integrative Systems Biology (I2Sysbio), Universitat de València and CSIC, València, Spain
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2Sysbio), Universitat de València and CSIC, València, Spain; The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Valencia, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Francisco J Santonja
- Department of Statistics and Operation Research, Universitat de València, Valencia, Spain.
| |
Collapse
|
45
|
Lazarova S, Lozanova L, Neov B, Shumkova R, Balkanska R, Palova N, Salkova D, Radoslavov G, Hristov P. Composition and diversity of bacterial communities associated with honey bee foragers from two contrasting environments. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:693-702. [PMID: 37545319 DOI: 10.1017/s0007485323000378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The honey bee is associated with a diverse community of microbes (viruses, bacteria, fungi, and protists), commonly known as the microbiome. Here, we present data on honey bee microbiota from two localities having different surrounding landscapes - mountain (the Rhodope Mountains) and lowland (the Danube plain). The bacterial communities of abdomen of adult bees were studied using amplicon sequencing of the 16S rRNA gene. The composition and dominance structure and their variability within and between localities, alpha and beta diversity, and core and differential taxa were compared at different hierarchical levels (operational taxonomic units to phylum). Seven genera (Lactobacillus, Gilliamella, Bifidobacterium, Commensalibacter, Bartonella, Snodgrassella, and Frischella), known to include core gut-associated phylotypes or species clusters, dominated (92-100%) the bacterial assemblages. Significant variations were found in taxa distribution across both geographical regions and within each apiary. Lactobacillus (Firmicutes) prevailed significantly in the mountain locality followed by Gilliamella and Bartonella (Proteobacteria). Bacteria of four genera, core (Bartonella and Lactobacillus) and non-core (Pseudomonas and Morganella), dominated the bee-associated assemblages of the Danube plain locality. Several ubiquitous bacterial genera (e.g., Klebsiella, Serratia, and Providencia), some species known also as potential and opportunistic bee pathogens, had been found in the lowland locality. Beta diversity analyses confirmed the observed differences in the bacterial communities from both localities. The occurrence of non-core taxa contributes substantially to higher microbial richness and diversity in bees from the Danube plain locality. We assume that the observed differences in the microbiota of honey bees from both apiaries are due to a combination of factors specific for each region. The surrounding landscape features of both localities and related vegetation, anthropogenic impact and land use intensity, the beekeeping management practices, and bee health status might all contribute to observed differences in bee microbiota traits.
Collapse
Affiliation(s)
- Stela Lazarova
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lyudmila Lozanova
- Department of Ecosystem Research, Environmental Risk Assessment and Conservation Biology, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Boyko Neov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rositsa Shumkova
- Research Centre of Stockbreeding and Agriculture, Agricultural Academy, 4700 Smolyan, Bulgaria
| | - Ralitsa Balkanska
- Department 'Special Branches', Institute of Animal Science, Agricultural Academy, 2230 Kostinbrod, Bulgaria
| | - Nadezhda Palova
- Scientific Center of Agriculture, Agricultural Academy, Sredets 8300, Bulgaria
| | - Delka Salkova
- Department of Experimental Parasitology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Georgi Radoslavov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Peter Hristov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
46
|
Sun Z, Liu Y, Hou A, Han A, Yan C, Sun J. Transcriptome and gut microbiota analyses reveal a possible mechanism underlying rifampin-mediated interruption of the larval development of chironomid Propsilocerus akamusi (Diptera: Chironomidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115467. [PMID: 37716071 DOI: 10.1016/j.ecoenv.2023.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Chironomids, the most abundant insect group found in freshwater habitats, are known to be pollution tolerate and serve as important bioindicators of contaminant stress. Gut microbiota has recently been shown to potentially provide a number of beneficial services to insect hosts. However, the antibiotic-mediated interruption of chironomid gut microbial community and its subsequent influence on host body are still unclear. In the present study, the effects of rifampin on chironomid larvae were investigated at both transcriptome and microbiome level to assess the relationship between gut bacteria and associated genes. Our data indicated that the rifampin-induced imbalance of gut ecosystem could inhibit the development of chironomid larvae via decreasing the body weight, body length and larval eclosion rate during 96-h treatment. Both the community structure and taxonomic composition were significantly altered due to the invasion of rifampin in digestive tracts. The relative abundance of phylum Deferribacterota and Bacteroidota were dramatically increased with rifampin exposure. A set of genes involved in amino acid synthesis as well as xenobiotic metabolism pathways were greatly changed and proved to have tight correlation with certain genus. Bacterial genus Tyzzerella was positively correlated with detoxifying PaCYP6GF1 and PaCYP9HL1 genes. This study provides a reference for understanding the environmental risks of antibiotic and aims to accelerate new biological insights into the effects of antibiotic on the fitness of chironomids and into the microbe mediated-regulatory mechanism of aquatic insects.
Collapse
Affiliation(s)
- Zeyang Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Yue Liu
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Aoran Hou
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Anqi Han
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Chuncai Yan
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.
| | - Jinsheng Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
47
|
Lariviere PJ, Ashraf AHMZ, Leonard SP, Miller LG, Moran NA, Barrick JE. Single-step genome engineering in the bee gut symbiont Snodgrassella alvi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558440. [PMID: 37786689 PMCID: PMC10541602 DOI: 10.1101/2023.09.19.558440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Honey bees are economically relevant pollinators experiencing population declines due to a number of threats. As in humans, the health of bees is influenced by their microbiome. The bacterium Snodgrassella alvi is a key member of the bee gut microbiome and has a role in excluding pathogens. Despite this importance, there are not currently any easy-to-use methods for modifying the S. alvi chromosome to study its genetics. To solve this problem, we developed a one-step procedure that uses electroporation and homologous recombination, which we term SnODIFY (Snodgrassella-specific One-step gene Deletion or Insertion to alter FunctionalitY). We used SnODIFY to create seven single-gene knockout mutants and recovered mutants for all constructs tested. Nearly all transformants had the designed genome modifications, indicating that SnODIFY is highly accurate. Mutant phenotypes were validated through knockout of Type 4 pilus genes, which led to reduced biofilm formation. We also used SnODIFY to insert heterologous sequences into the genome by integrating fluorescent protein-coding genes. Finally, we confirmed that genome modification is dependent on S. alvi's endogenous RecA protein. Because it does not require expression of exogenous recombination machinery, SnODIFY is a straightforward, accurate, and lightweight method for genome editing in S. alvi. This workflow can be used to study the functions of S. alvi genes and to engineer this symbiont for applications including protection of honey bee health.
Collapse
Affiliation(s)
- Patrick J. Lariviere
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - A. H. M. Zuberi Ashraf
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sean P. Leonard
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Laurel G. Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E. Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
48
|
Salehi MM, Hassanzadeh-Afruzi F, Heidari G, Maleki A, Nazarzadeh Zare E. In situ preparation of MOF-199 into the carrageenan-grafted-polyacrylamide@Fe 3O 4 matrix for enhanced adsorption of levofloxacin and cefixime antibiotics from water. ENVIRONMENTAL RESEARCH 2023; 233:116466. [PMID: 37348634 DOI: 10.1016/j.envres.2023.116466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
In this research study, a novel method, an in-situ growth approach, to incorporate metal-organic framework (MOF) into carrageenan-grafted- polyacrylamide-Fe3O4 substrate was introduced. Carrageenan-grafted-polyacrylamide-Fe3O4/MOF nanocomposite (kC-g-PAAm@Fe3O4-MOF-199) was fabricated utilizing three stages. In this way, the polyacrylamide (PAAm) was grafted onto the carrageenan (kC) backbone via free radical polymerization in the presence of methylene bisacrylamide (MBA) as cross-linker and Fe3O4 magnetic nanoparticles. Next, the kC-g-PAAm@Fe3O4 was modified by MOF-199 via an in-situ solvothermal approach. Several analyses such as Fourier transform infrared spectroscopy (FT-IR), X-Ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-Dispersive X-ray Spectroscopy (EDX), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), Brunauer-Emmett-Teller (BET) demonstrated the successful synthesis of kC-g-PAAm@Fe3O4-MOF-199 magnetic hydrogel nanocomposite. The XRD pattern of magnetic hydrogel nanocomposite illustrated characteristic peaks of Fe3O4, neat kC, and MOF-199 with enhanced crystallinity in comparison with kC-g-PAAm@Fe3O4. TGA showed it has a char yield of 24 wt% at 800 °C. VSM confirmed its superparamagnetic behavior (with Ms of 8.04 emu g-1), and the BET surface area of kC-g-PAAm@Fe3O4-MOF-199 was measured at 64.864 m2 g-1, which was higher than that of kC-g-PAAm@Fe3O4 due to the highly porous MOF-199 incorporation with a BET surface area of 905.12 m2 g-1). The adsorption effectiveness of kC-g-PAAm@Fe3O4-MOF-199 for eliminating cephalosporin and quinolones antibiotics, i.e., Cefixime (CFX) and Levofloxacin (LEV) from the aquatic area was considered. Several experimental setups were used to evaluate the efficacy of adsorption, such as solution pH, amount of adsorbent, contact duration, and initial concentration. The maximum adsorption capacity (Qmax) of the prepared magnetic hydrogel nanocomposite was found to be 2000 and 1666.667 mg-1 for LEV and CFX using employing 0.0025 g of adsorbent. The Freundlich isotherm model well described the experimental adsorption data with R2CFX = 0.9986, and R2LEV = 0.9939. And the adsorption kinetic data were successfully represented by the pseudo-second-order model with R2LEV = 0.9949 and R2CFX = 0.9906. Hydrogen bonding, π-π interaction, diffusion, and entrapment in the hydrogel network all contributed to the successful adsorption of both antibiotics onto the kC-g-PAAm@Fe3O4-MOF-199 adsorbent. Other notable physicochemical properties include the three-dimensional structure and availability of the reactive adsorption sites. Moreover, the adsorption/desorption efficacy of magnetic hydrogel nanocomposites was not significantly diminished after four cycles of recovery.
Collapse
Affiliation(s)
- Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Golnaz Heidari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | | |
Collapse
|
49
|
Jaroszewski J, Mamun N, Czaja K. Bidirectional Interaction between Tetracyclines and Gut Microbiome. Antibiotics (Basel) 2023; 12:1438. [PMID: 37760733 PMCID: PMC10525114 DOI: 10.3390/antibiotics12091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The escalating misuse of antibiotics, particularly broad-spectrum antibiotics, has emerged as a pivotal driver of drug resistance. Among these agents, tetracyclines are widely prescribed for bacterial infections, but their indiscriminate use can profoundly alter the gut microbiome, potentially compromising both their effectiveness and safety. This review delves into the intricate and dynamic interplay between tetracyclines and the gut microbiome, shedding light on their reciprocal influence. By exploring the effects of tetracyclines on the gut microbiome and the impact of gut microbiota on tetracycline therapy, we seek to gain deeper insights into this complex relationship, ultimately guiding strategies for preserving antibiotic efficacy and mitigating resistance development.
Collapse
Affiliation(s)
- Jerzy Jaroszewski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland;
| | - Niles Mamun
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Krzysztof Czaja
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
50
|
Gaubert J, Giovenazzo P, Derome N. Individual and social defenses in Apis mellifera: a playground to fight against synergistic stressor interactions. Front Physiol 2023; 14:1172859. [PMID: 37485064 PMCID: PMC10360197 DOI: 10.3389/fphys.2023.1172859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
The honeybee is an important species for the agri-food and pharmaceutical industries through bee products and crop pollination services. However, honeybee health is a major concern, because beekeepers in many countries are experiencing significant colony losses. This phenomenon has been linked to the exposure of bees to multiple stresses in their environment. Indeed, several biotic and abiotic stressors interact with bees in a synergistic or antagonistic way. Synergistic stressors often act through a disruption of their defense systems (immune response or detoxification). Antagonistic interactions are most often caused by interactions between biotic stressors or disruptive activation of bee defenses. Honeybees have developed behavioral defense strategies and produce antimicrobial compounds to prevent exposure to various pathogens and chemicals. Expanding our knowledge about these processes could be used to develop strategies to shield bees from exposure. This review aims to describe current knowledge about the exposure of honeybees to multiple stresses and the defense mechanisms they have developed to protect themselves. The effect of multi-stress exposure is mainly due to a disruption of the immune response, detoxification, or an excessive defense response by the bee itself. In addition, bees have developed defenses against stressors, some behavioral, others involving the production of antimicrobials, or exploiting beneficial external factors.
Collapse
Affiliation(s)
- Joy Gaubert
- Laboratoire Derome, Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Laboratoire Giovenazzo, Département de Biologie, Université Laval, Québec, QC, Canada
| | - Pierre Giovenazzo
- Laboratoire Derome, Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Nicolas Derome
- Laboratoire Derome, Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Laboratoire Giovenazzo, Département de Biologie, Université Laval, Québec, QC, Canada
| |
Collapse
|