1
|
Domingos LB, Müller HK, da Silva NR, Filiou MD, Nielsen AL, Guimarães FS, Wegener G, Joca S. Repeated cannabidiol treatment affects neuroplasticity and endocannabinoid signaling in the prefrontal cortex of the Flinders Sensitive Line (FSL) rat model of depression. Neuropharmacology 2024; 248:109870. [PMID: 38401791 DOI: 10.1016/j.neuropharm.2024.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Delayed therapeutic responses and limited efficacy are the main challenges of existing antidepressant drugs, thereby incentivizing the search for new potential treatments. Cannabidiol (CBD), non-psychotomimetic component of cannabis, has shown promising antidepressant effects in different rodent models, but its mechanism of action remains unclear. Herein, we investigated the antidepressant-like effects of repeated CBD treatment on behavior, neuroplasticity markers and lipidomic profile in the prefrontal cortex (PFC) of Flinders Sensitive Line (FSL), a genetic animal model of depression, and their control counterparts Flinders Resistant Line (FRL) rats. Male FSL animals were treated with CBD (10 mg/kg; i.p.) or vehicle (7 days) followed by Open Field Test (OFT) and the Forced Swimming Test (FST). The PFC was analyzed by a) western blotting to assess markers of synaptic plasticity and cannabinoid signaling in synaptosome and cytosolic fractions; b) mass spectrometry-based lipidomics to investigate endocannabinoid levels (eCB). CBD attenuated the increased immobility observed in FSL, compared to FRL in FST, without changing the locomotor behavior in the OFT. In synaptosomes, CBD increased ERK1, mGluR5, and Synaptophysin, but failed to reverse the reduced CB1 and CB2 levels in FSL rats. In the cytosolic fraction, CBD increased ERK2 and decreased mGluR5 expression in FSL rats. Surprisingly, there were no significant changes in eCB levels in response to CBD treatment. These findings suggest that CBD effects in FSL animals are associated with changes in synaptic plasticity markers involving mGluR5, ERK1, ERK2, and synaptophysin signaling in the PFC, without increasing the levels of endocannabinoids in this brain region.
Collapse
Affiliation(s)
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Greece; Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | | | | | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
de Kloet ER, Joëls M. The cortisol switch between vulnerability and resilience. Mol Psychiatry 2024; 29:20-34. [PMID: 36599967 DOI: 10.1038/s41380-022-01934-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
In concert with neuropeptides and transmitters, the end products of the hypothalamus-pituitary-adrenal (HPA) axis, the glucocorticoid hormones cortisol and corticosterone (CORT), promote resilience: i.e., the ability to cope with threats, adversity, and trauma. To exert this protective action, CORT activates mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) that operate in a complementary manner -as an on/off switch- to coordinate circadian events, stress-coping, and adaptation. The evolutionary older limbic MR facilitates contextual memory retrieval and supports an on-switch in the selection of stress-coping styles at a low cost. The rise in circulating CORT concentration after stress subsequently activates a GR-mediated off-switch underlying recovery of homeostasis by providing the energy for restraining the primary stress reactions and promoting cognitive control over emotional reactivity. GR activation facilitates contextual memory storage of the experience to enable future stress-coping. Such complementary MR-GR-mediated actions involve rapid non-genomic and slower gene-mediated mechanisms; they are time-dependent, conditional, and sexually dimorphic, and depend on genetic background and prior experience. If coping fails, GR activation impairs cognitive control and promotes emotional arousal which eventually may compromise resilience. Such breakdown of resilience involves a transition to a chronic stress construct, where information processing is crashed; it leads to an imbalanced MR-GR switch and hence increased vulnerability. Novel MR-GR modulators are becoming available that may reset a dysregulated stress response system to reinstate the cognitive flexibility required for resilience.
Collapse
Affiliation(s)
- E Ronald de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, The Netherlands.
- Leiden/Amsterdam Center of Drug Research, Leiden University, Leiden, The Netherlands.
| | - Marian Joëls
- Dept. Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Funayama Y, Li H, Ishimori E, Kawatake-Kuno A, Inaba H, Yamagata H, Seki T, Nakagawa S, Watanabe Y, Murai T, Oishi N, Uchida S. Antidepressant Response and Stress Resilience Are Promoted by CART Peptides in GABAergic Neurons of the Anterior Cingulate Cortex. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:87-98. [PMID: 36712563 PMCID: PMC9874166 DOI: 10.1016/j.bpsgos.2021.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/27/2021] [Indexed: 02/01/2023] Open
Abstract
Background A key challenge in the understanding and treatment of depression is identifying cell types and molecular mechanisms that mediate behavioral responses to antidepressant drugs. Because treatment responses in clinical depression are heterogeneous, it is crucial to examine treatment responders and nonresponders in preclinical studies. Methods We used the large variance in behavioral responses to long-term treatment with multiple classes of antidepressant drugs in different inbred mouse strains and classified the mice into responders and nonresponders based on their response in the forced swim test. Medial prefrontal cortex tissues were subjected to RNA sequencing to identify molecules that are consistently associated across antidepressant responders. We developed and used virus-mediated gene transfer to induce the gene of interest in specific cell types and performed forced swim, sucrose preference, social interaction, and open field tests to investigate antidepressant-like and anxiety-like behaviors. Results Cartpt expression was consistently upregulated in responders to four types of antidepressants but not in nonresponders in different mice strains. Responder mice given a single dose of ketamine, a fast-acting non-monoamine-based antidepressant, exhibited high CART peptide expression. CART peptide overexpression in the GABAergic (gamma-aminobutyric acidergic) neurons of the anterior cingulate cortex led to antidepressant-like behavior and drove chronic stress resiliency independently of mouse genetic background. Conclusions These data demonstrate that activation of CART peptide signaling in GABAergic neurons of the anterior cingulate cortex is a common molecular mechanism across antidepressant responders and that this pathway also drives stress resilience.
Collapse
Affiliation(s)
- Yuki Funayama
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Haiyan Li
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Erina Ishimori
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromichi Inaba
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Tomoe Seki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Toshiya Murai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoya Oishi
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Transcriptomic Studies of Antidepressant Action in Rodent Models of Depression: A First Meta-Analysis. Int J Mol Sci 2022; 23:ijms232113543. [DOI: 10.3390/ijms232113543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Antidepressants (ADs) are, for now, the best everyday treatment we have for moderate to severe major depressive episodes (MDEs). ADs are among the most prescribed drugs in the Western Hemisphere; however, the trial-and-error prescription strategy and side-effects leave a lot to be desired. More than 60% of patients suffering from major depression fail to respond to the first AD they are prescribed. For those who respond, full response is only observed after several weeks of treatment. In addition, there are no biomarkers that could help with therapeutic decisions; meanwhile, this is already true in cancer and other fields of medicine. For years, many investigators have been working to decipher the underlying mechanisms of AD response. Here, we provide the first systematic review of animal models. We thoroughly searched all the studies involving rodents, profiling transcriptomic alterations consecutive to AD treatment in naïve animals or in animals subjected to stress-induced models of depression. We have been confronted by an important heterogeneity regarding the drugs and the experimental settings. Thus, we perform a meta-analysis of the AD signature of fluoxetine (FLX) in the hippocampus, the most studied target. Among genes and pathways consistently modulated across species, we identify both old players of AD action and novel transcriptional biomarker candidates that warrant further investigation. We discuss the most prominent transcripts (immediate early genes and activity-dependent synaptic plasticity pathways). We also stress the need for systematic studies of AD action in animal models that span across sex, peripheral and central tissues, and pharmacological classes.
Collapse
|
5
|
Qu D, Ye Z, Zhang W, Dai B, Chen G, Wang L, Shao X, Xiang A, Lu Z, Shi J. Cyanidin Chloride Improves LPS-Induced Depression-Like Behavior in Mice by Ameliorating Hippocampal Inflammation and Excitotoxicity. ACS Chem Neurosci 2022; 13:3023-3033. [PMID: 36254458 DOI: 10.1021/acschemneuro.2c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Depression is a global disease that places a significant burden on human health. Neuroinflammation and disturbance of glutamate metabolism in brain regions, such as the hippocampus, play vital roles in the development of depression. Previous studies have shown that cyanidin chloride (Cycl) has anti-inflammatory and antioxidant properties with neuroprotective effects in peripheral tissues. However, the effects of Cycl on depression and the possible mechanism by which this compound targets brain regions remain less elucidated. We investigated the role of Cycl in lipopolysaccharide (LPS)-induced depression and examined the influence of the drug on central inflammation and the expression of excitatory amino acid transporters in the hippocampus. We found that prophylactic i.p. application of Cycl at 20 or 40 mg/kg for 5 days significantly reduced the immobility time assessed by the tail suspension test (TST) and forced swim test (FST) in LPS-challenged mice, suggesting an effective antidepressant activity of the drug. Western blotting and immunofluorescence staining in the hippocampus revealed that Cycl inhibited the upregulation of proinflammatory cytokines, including TNF-α and IL-6, and suppressed the hyperactivity of microglia induced by LPS, indicating an anti-inflammatory role in the hippocampus. Moreover, treatment with Cycl also recovered the downregulated expression of glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF), and glutamate-aspartate transporter (GLAST) and excitatory amino acid transporter 2 (EAAT2), two members in the excitatory amino acid transporter family. The role of Cycl was also verified in cultured BV2 and U251 cells. In conclusion, the present in vivo and in vitro studies demonstrate that Cycl exerts potent antidepressant action in an LPS-induced depression model and the underlying mechanism is associated with reduced hippocampal inflammation, improved neurotrophic function, and attenuated excitotoxicity induced by glutamate.
Collapse
Affiliation(s)
- Di Qu
- The College of Life Sciences, Northwest University, Xi'an 710127, Shaanxi Province, China.,State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zichen Ye
- Department of Health Service, Health Service Training Base, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Wenli Zhang
- The College of Life Sciences, Northwest University, Xi'an 710127, Shaanxi Province, China.,State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Bing Dai
- The College of Life Sciences, Northwest University, Xi'an 710127, Shaanxi Province, China.,State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Guo Chen
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Li Wang
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xiaolong Shao
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - An Xiang
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Juan Shi
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
6
|
Pisanu C, Severino G, De Toma I, Dierssen M, Fusar-Poli P, Gennarelli M, Lio P, Maffioletti E, Maron E, Mehta D, Minelli A, Potier MC, Serretti A, Stacey D, van Westrhenen R, Xicota L, Baune BT, Squassina A. Transcriptional biomarkers of response to pharmacological treatments in severe mental disorders: A systematic review. Eur Neuropsychopharmacol 2022; 55:112-157. [PMID: 35016057 DOI: 10.1016/j.euroneuro.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/18/2021] [Accepted: 12/16/2021] [Indexed: 11/04/2022]
Abstract
Variation in the expression level and activity of genes involved in drug disposition and action in tissues of pharmacological importance have been increasingly investigated in patients treated with psychotropic drugs. Findings are promising, but reliable predictive biomarkers of response have yet to be identified. Here we conducted a PRISMA-compliant systematic search of PubMed, Scopus and PsycInfo up to 12 September 2020 for studies investigating RNA expression levels in cells or biofluids from patients with major depressive disorder, schizophrenia or bipolar disorder characterized for response to psychotropic drugs (antidepressants, antipsychotics or mood stabilizers) or adverse effects. Among 5497 retrieved studies, 123 (63 on antidepressants, 33 on antipsychotics and 27 on mood stabilizers) met inclusion criteria. Studies were either focused on mRNAs (n = 96), microRNAs (n = 19) or long non-coding RNAs (n = 1), with only a minority investigating both mRNAs and microRNAs levels (n = 7). The most replicated results include genes playing a role in inflammation (antidepressants), neurotransmission (antidepressants and antipsychotics) or mitochondrial function (mood stabilizers). Compared to those investigating response to antidepressants, studies focused on antipsychotics or mood stabilizers more often showed lower sample size and lacked replication. Strengths and limitations of available studies are presented and discussed in light of the specific designs, methodology and clinical characterization of included patients for transcriptomic compared to DNA-based studies. Finally, future directions of transcriptomics of psychopharmacological interventions in psychiatric disorders are discussed.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Giovanni Severino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Ilario De Toma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mara Dierssen
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Paolo Fusar-Poli
- Early Psychosis: Intervention and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, King's College London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Pietro Lio
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Elisabetta Maffioletti
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Eduard Maron
- Department of Psychiatry, University of Tartu, Tartu, Estonia; Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| | - Divya Mehta
- Queensland University of Technology, Centre for Genomics and Personalised Health, Faculty of Health, Kelvin Grove, Queensland, Australia
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Italy
| | - David Stacey
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Roos van Westrhenen
- Parnassia Psychiatric Institute, Amsterdam, The Netherlands; Department of Psychiatry and Neuropsychology, Faculty of Health and Sciences, Maastricht University, Maastricht, The Netherlands; Institute of Psychiatry, Psychology&Neuroscience (IoPPN) King's College London, UK
| | - Laura Xicota
- Paris Brain Institute ICM, Salpetriere Hospital, Paris, France
| | | | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Germany; Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
7
|
Integrative multi-omics landscape of fluoxetine action across 27 brain regions reveals global increase in energy metabolism and region-specific chromatin remodelling. Mol Psychiatry 2022; 27:4510-4525. [PMID: 36056172 PMCID: PMC9734063 DOI: 10.1038/s41380-022-01725-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.
Collapse
|
8
|
Herzog DP, Perumal N, Manicam C, Treccani G, Nadig J, Rossmanith M, Engelmann J, Jene T, Hasch A, van der Kooij MA, Lieb K, Gassen NC, Grus FH, Müller MB. Longitudinal CSF proteome profiling in mice to uncover the acute and sustained mechanisms of action of rapid acting antidepressant (2R,6R)-hydroxynorketamine (HNK). Neurobiol Stress 2021; 15:100404. [PMID: 34632008 PMCID: PMC8488754 DOI: 10.1016/j.ynstr.2021.100404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 02/04/2023] Open
Abstract
Delayed onset of antidepressant action is a shortcoming in depression treatment. Ketamine and its metabolite (2R,6R)-hydroxynorketamine (HNK) have emerged as promising rapid-acting antidepressants. However, their mechanism of action remains unknown. In this study, we first described the anxious and depression-prone inbred mouse strain, DBA/2J, as an animal model to assess the antidepressant-like effects of ketamine and HNK in vivo. To decode the molecular mechanisms mediating HNK's rapid antidepressant effects, a longitudinal cerebrospinal fluid (CSF) proteome profiling of its acute and sustained effects was conducted using an unbiased, hypothesis-free mass spectrometry-based proteomics approach. A total of 387 proteins were identified, with a major implication of significantly differentially expressed proteins in the glucocorticoid receptor (GR) signaling pathway, providing evidence for a link between HNK and regulation of the stress hormone system. Mechanistically, we identified HNK to repress GR-mediated transcription and reduce hormonal sensitivity of GR in vitro. In addition, mammalian target of rapamycin (mTOR) and brain-derived neurotrophic factor (BDNF) were predicted to be important upstream regulators of HNK treatment. Our results contribute to precise understanding of the temporal dynamics and molecular targets underlying HNK's rapid antidepressant-like effects, which can be used as a benchmark for improved treatment strategies for depression in future.
Collapse
Affiliation(s)
- David P Herzog
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Natarajan Perumal
- Experimental and Translational Ophthalmology, Department of Ophthalmology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Caroline Manicam
- Experimental and Translational Ophthalmology, Department of Ophthalmology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Giulia Treccani
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany.,Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Medical Center, Mainz, Germany.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Jens Nadig
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Milena Rossmanith
- Experimental and Translational Ophthalmology, Department of Ophthalmology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Jan Engelmann
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Tanja Jene
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Annika Hasch
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Michael A van der Kooij
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Nils C Gassen
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Medical Center Bonn, Bonn, Germany
| | - Franz H Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Marianne B Müller
- Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
9
|
Moisan MP, Foury A, Dexpert S, Cole SW, Beau C, Forestier D, Ledaguenel P, Magne E, Capuron L. Transcriptomic signaling pathways involved in a naturalistic model of inflammation-related depression and its remission. Transl Psychiatry 2021; 11:203. [PMID: 33824279 PMCID: PMC8024399 DOI: 10.1038/s41398-021-01323-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/19/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed at identifying molecular biomarkers of inflammation-related depression in order to improve diagnosis and treatment. For this, we performed whole-genome expression profiling from peripheral blood in a naturalistic model of inflammation-associated major depressive disorder (MDD) represented by comorbid depression in obese patients. We took advantage of the marked reduction of depressive symptoms and inflammation following bariatric surgery to test the robustness of the identified biomarkers. Depression was assessed during a clinical interview using Mini-International Neuropsychiatric Interview and the 10-item, clinician-administered, Montgomery-Asberg Depression Rating Scale. From a cohort of 100 massively obese patients, we selected 33 of them for transcriptomic analysis. Twenty-four of them were again analyzed 4-12 months after bariatric surgery. We conducted differential gene expression analyses before and after surgery in unmedicated MDD and non-depressed obese subjects. We found that TP53 (Tumor Protein 53), GR (Glucocorticoid Receptor), and NFκB (Nuclear Factor kappa B) pathways were the most discriminating pathways associated with inflammation-related MDD. These signaling pathways were processed in composite z-scores of gene expression that were used as biomarkers in regression analyses. Results showed that these transcriptomic biomarkers highly predicted depressive symptom intensity at baseline and their remission after bariatric surgery. While inflammation was present in all patients, GR signaling over-activation was found only in depressed ones where it may further increase inflammatory and apoptosis pathways. In conclusion, using an original model of inflammation-related depression and its remission without antidepressants, we provide molecular predictors of inflammation-related MDD and new insights in the molecular pathways involved.
Collapse
Affiliation(s)
- Marie-Pierre Moisan
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France.
| | - Aline Foury
- grid.488493.a0000 0004 0383 684XUniv. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Sandra Dexpert
- grid.488493.a0000 0004 0383 684XUniv. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Steve W. Cole
- grid.19006.3e0000 0000 9632 6718Division of Hematology-Oncology, Department of Psychiatry & Biobehavioral Sciences and Department of Medicine, UCLA School of Medicine, Los Angeles, CA USA
| | - Cédric Beau
- Service de Chirurgie Digestive et Pariétale, Clinique Tivoli, Bordeaux, and Clinique Jean Villar, Bruges, France
| | - Damien Forestier
- Service de Chirurgie Digestive et Pariétale, Clinique Tivoli, Bordeaux, and Clinique Jean Villar, Bruges, France
| | - Patrick Ledaguenel
- Service de Chirurgie Digestive et Pariétale, Clinique Tivoli, Bordeaux, and Clinique Jean Villar, Bruges, France
| | - Eric Magne
- Service de Chirurgie Digestive et Pariétale, Clinique Tivoli, Bordeaux, and Clinique Jean Villar, Bruges, France
| | - Lucile Capuron
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France.
| |
Collapse
|
10
|
Molendijk ML, de Kloet ER. Forced swim stressor: Trends in usage and mechanistic consideration. Eur J Neurosci 2021; 55:2813-2831. [PMID: 33548153 PMCID: PMC9291081 DOI: 10.1111/ejn.15139] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
The acquired immobility response during the “forced swim test (FST)” is not a rodent model of depression, but the test has some validity in predicting a compound's antidepressant potential. Nevertheless, 60% of the about 600 papers that were published annually the past 2 years label the rodent's immobility response as depression‐like behaviour, but the relative contribution per country is changing. When the Editors‐in‐Chief of 5 journals publishing most FST papers were asked for their point of view on labelling immobility as depression‐like behaviour and despair, they responded that they primarily rely on the reviewers regarding scientific merit of the submission. One Editor informs authors of the recent NIMH notice (https://grants.nih.gov/grants/guide/notice‐files/NOT‐MH‐19‐053.html) which encourages investigators to use animal models “for” addressing neurobiological questions rather than as model “of” specific mental disorders. The neurobiological questions raised by use of the FST fall in two categories. First, research on the role of endocrine and metabolic factors, with roots in the 1980s, and with focus on the bottom‐up action of glucocorticoids on circuits processing salient information, executive control and memory consolidation. Second, recent findings using novel technological and computational advances that have allowed great progress in charting top‐down control in the switch from active to passive coping with the inescapable stressor executed by neuronal ensembles of the medial prefrontal cortex via the peri‐aquaductal grey. It is expected that combining neural top‐down and endocrine bottom‐up approaches will provide new insights in the role of stress‐coping and adaptation in pathogenesis of mental disorders.
Collapse
Affiliation(s)
- Marc L Molendijk
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
| | - E Ronald de Kloet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Herzog DP, Pascual Cuadrado D, Treccani G, Jene T, Opitz V, Hasch A, Lutz B, Lieb K, Sillaber I, van der Kooij MA, Tiwari VK, Müller MB. A distinct transcriptional signature of antidepressant response in hippocampal dentate gyrus granule cells. Transl Psychiatry 2021; 11:4. [PMID: 33414410 PMCID: PMC7791134 DOI: 10.1038/s41398-020-01136-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/27/2020] [Accepted: 12/01/2020] [Indexed: 11/09/2022] Open
Abstract
Major depressive disorder is the most prevalent mental illness worldwide, still its pharmacological treatment is limited by various challenges, such as the large heterogeneity in treatment response and the lack of insight into the neurobiological pathways underlying this phenomenon. To decode the molecular mechanisms shaping antidepressant response and to distinguish those from general paroxetine effects, we used a previously established approach targeting extremes (i.e., good vs poor responder mice). We focused on the dentate gyrus (DG), a subregion of major interest in the context of antidepressant mechanisms. Transcriptome profiling on micro-dissected DG granule cells was performed to (i) reveal cell-type-specific changes in paroxetine-induced gene expression (paroxetine vs vehicle) and (ii) to identify molecular signatures of treatment response within a cohort of paroxetine-treated animals. We identified 112 differentially expressed genes associated with paroxetine treatment. The extreme group comparison (good vs poor responder) yielded 211 differentially expressed genes. General paroxetine effects could be distinguished from treatment response-associated molecular signatures, with a differential gene expression overlap of only 4.6% (15 genes). Biological pathway enrichment and cluster analyses identified candidate mechanisms associated with good treatment response, e.g., neuropeptide signaling, synaptic transmission, calcium signaling, and regulation of glucocorticoid secretion. Finally, we examined glucocorticoid receptor (GR)-dependent regulation of selected response-associated genes to analyze a hypothesized interplay between GR signaling and good antidepressant treatment response. Among the most promising candidates, we suggest potential targets such as the developmental gene Otx2 or Htr2c for further investigations into antidepressant treatment response in the future.
Collapse
Affiliation(s)
- David P. Herzog
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Diego Pascual Cuadrado
- grid.410607.4Institute of Physiological Chemistry, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Giulia Treccani
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Institute of Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Tanja Jene
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Verena Opitz
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Annika Hasch
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Beat Lutz
- grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Institute of Physiological Chemistry, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Klaus Lieb
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | | | - Michael A. van der Kooij
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Vijay K. Tiwari
- grid.5802.f0000 0001 1941 7111Institute of Molecular Biology, Johannes Gutenberg University Mainz, Mainz, Germany ,grid.4777.30000 0004 0374 7521Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK
| | - Marianne B. Müller
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
12
|
Park DI, Novak B, Yan Y, Kaya ME, Turck CW. Paroxetine binding and activation of phosphofructokinase implicates energy metabolism in antidepressant mode of action. J Psychiatr Res 2020; 129:8-14. [PMID: 32540574 DOI: 10.1016/j.jpsychires.2020.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the predominant drugs prescribed for Major Depressive Disorder. The immediate pharmacological target of SSRIs is the serotonin transporter. However, the delayed therapeutic effect and high rate of patient non-response make it highly likely that SSRIs also have other molecular targets that are yet to be identified. Cellular thermal shift assay (CETSA) is a method based on thermal stabilization of target proteins upon drug binding. In the present study, we show that the SSRI paroxetine binds to phosphofructokinase (PFK) protein using CETSA. We found that mouse brain PFK and recombinant human PFK proteins are stabilized by paroxetine incubation. Chronic paroxetine treatment also significantly increased mouse brain PFK thermal stability. Paroxetine significantly elevated in vitro and in vivo PFK activity. Levels of several metabolites in glutamate- and energy metabolism-related pathways are significantly correlated with PFK activity in mouse hippocampus. Our data show that paroxetine can bind to PFK and affect its activity. Implications of these results for the antidepressant mode of action of paroxetine are discussed.
Collapse
Affiliation(s)
- Dong Ik Park
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany; Danish Research Institute of Translational Neuroscience (DANDRITE), Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Danish National Research Foundation Center, PROMEMO, Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Božidar Novak
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany
| | - Yu Yan
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany
| | - Melahat Ezgi Kaya
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany
| | - Christoph W Turck
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, 80804, Munich, Germany
| |
Collapse
|
13
|
Munkholm K, Winkelbeiner S, Homan P. Individual response to antidepressants for depression in adults-a meta-analysis and simulation study. PLoS One 2020; 15:e0237950. [PMID: 32853222 PMCID: PMC7451660 DOI: 10.1371/journal.pone.0237950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The observation that some patients appear to respond better to antidepressants for depression than others encourages the assumption that the effect of antidepressants differs between individuals and that treatment can be personalized. OBJECTIVE To compare the outcome variance in patients receiving antidepressants with the outcome variance in patients receiving placebo in randomized controlled trials (RCTs) of adults with major depressive disorder (MDD) and to illustrate, using simulated data, components of variation of RCTs. METHODS From a dataset comprising 522 RCTs of antidepressants for adult MDD, we selected the placebo-controlled RCTs reporting outcomes on the 17 or 21 item Hamilton Depression Rating Scale or the Montgomery-Asberg Depression Rating Scale and extracted the means and SDs of raw endpoint scores or baseline to endpoint changes scores on eligible depression symptom rating scales. We conducted inverse variance random-effects meta-analysis with the variability ratio (VR), the ratio between the outcome variance in the group of patients receiving antidepressants and the outcome variance in the group receiving placebo, as the primary outcome. An increased variance in the antidepressant group would indicate individual differences in response to antidepressants. RESULTS We analysed 222 RCTs that investigated 19 different antidepressants compared with placebo in 345 comparisons, comprising a total of 61144 adults with an MDD diagnosis. Across all comparisons, the VR for raw endpoint scores was 0.98 (95% CI 0.96 to 1.00, I2 = 0%) and 1.00 (95% CI 0.99 to 1.02, I2 = 0%) for baseline-to-endpoint change scores. CONCLUSION Based on these data, we cannot reject the null hypothesis of equal variances in the antidepressant group and the placebo group. Given that RCTs cannot provide direct evidence for individual treatment effects, it may be most reasonable to assume that the average effect of antidepressants applies also to the individual patient.
Collapse
Affiliation(s)
- Klaus Munkholm
- Nordic Cochrane Centre, Rigshospitalet, Copenhagen, Denmark
| | | | - Philipp Homan
- Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Cattaneo A, Cattane N, Scassellati C, D'Aprile I, Riva MA, Pariante CM. Convergent Functional Genomics approach to prioritize molecular targets of risk in early life stress-related psychiatric disorders. Brain Behav Immun Health 2020; 8:100120. [PMID: 34589878 PMCID: PMC8474593 DOI: 10.1016/j.bbih.2020.100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022] Open
Abstract
There is an overwhelming evidence proving that mental disorders are not the product of a single risk factor - i.e. genetic variants or environmental factors, including exposure to maternal perinatal mental health problems or childhood adverse events - rather the product of a trajectory of cumulative and multifactorial insults occurring during development, such as exposures during the foetal life to adverse mental condition in the mother, or exposures to adverse traumatic events during childhood or adolescence. In this review, we aim to highlight the potential utility of a Convergent Functional Genomics (CFG) approach to clarify the complex brain-relevant molecular mechanisms and alterations induced by early life stress (ELS). We describe different studies based on CFG in psychiatry and neuroscience, and we show how this 'hypothesis-free' tool can prioritize a stringent number of genes modulated by ELS, that can be tested as potential candidates for Gene x Environment (GxE) interaction studies. We discuss the results obtained by using a CFG approach identifying FoxO1 as a gene where genetic variability can mediate the effect of an adverse environment on the development of depression. Moreover, we also demonstrate that FoxO1 has a functional relevance in stress-induced reduction of neurogenesis, and can be a potential target for the prevention or treatment of stress-related psychiatric disorders. Overall, we suggest that CFG approach could include trans-species and tissues data integration and we also propose the application of CFG to examine in depth and to prioritize top candidate genes that are affected by ELS across lifespan and generations.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia
| | - Ilari D'Aprile
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Carmine Maria Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom
| |
Collapse
|
15
|
Dethloff F, Vargas F, Elijah E, Quinn R, Park DI, Herzog DP, Müller MB, Gentry EC, Knight R, Gonzalez A, Dorrestein PC, Turck CW. Paroxetine Administration Affects Microbiota and Bile Acid Levels in Mice. Front Psychiatry 2020; 11:518. [PMID: 32581888 PMCID: PMC7287167 DOI: 10.3389/fpsyt.2020.00518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Recent interest in the role of microbiota in health and disease has implicated gut microbiota dysbiosis in psychiatric disorders including major depressive disorder. Several antidepressant drugs that belong to the class of selective serotonin reuptake inhibitors have been found to display antimicrobial activities. In fact, one of the first antidepressants discovered serendipitously in the 1950s, the monoamine-oxidase inhibitor Iproniazid, was a drug used for the treatment of tuberculosis. In the current study we chronically treated DBA/2J mice for 2 weeks with paroxetine, a selective serotonin reuptake inhibitor, and collected fecal pellets as a proxy for the gut microbiota from the animals after 7 and 14 days. Behavioral testing with the forced swim test revealed significant differences between paroxetine- and vehicle-treated mice. Untargeted mass spectrometry and 16S rRNA profiling of fecal pellet extracts showed several primary and secondary bile acid level, and microbiota alpha diversity differences, respectively between paroxetine- and vehicle-treated mice, suggesting that microbiota functions are altered by the drug. In addition to their lipid absorbing activities bile acids have important signaling activities and have been associated with gastrointestinal diseases and colorectal cancer. Antidepressant drugs like paroxetine should therefore be used with caution to prevent undesirable side effects.
Collapse
Affiliation(s)
- Frederik Dethloff
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Fernando Vargas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA , United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
- Division of Biological Science, University of California, San Diego, La Jolla, CA, United States
| | - Emmanuel Elijah
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA , United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA , United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Dong Ik Park
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - David P. Herzog
- Laboratory of Translational Psychiatry, Department of Psychiatry and Psychotherapy & Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Marianne B. Müller
- Laboratory of Translational Psychiatry, Department of Psychiatry and Psychotherapy & Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Emily C. Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA , United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Rob Knight
- Department of Pediatrics, Bioengineering and Computer Science and Engineering, and Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
| | - Antonio Gonzalez
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA , United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Christoph W. Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
16
|
Jabbi M, Nemeroff CB. Convergent neurobiological predictors of mood and anxiety symptoms and treatment response. Expert Rev Neurother 2019; 19:587-597. [PMID: 31096806 DOI: 10.1080/14737175.2019.1620604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Mood and anxiety disorders are leading contributors to the global burden of diseases. Comorbid mood and anxiety disorders have a lifetime prevalence of ~20% globally and increases the risk for suicide, a leading cause of death. Areas covered: In this review, authors highlight recent advances in the understanding of multilevel-neurobiological mechanisms for normal/pathological human affective-functioning. The authors then address the complex interplay between environmental-adversity and molecular-genetic mediators of brain correlates of affective-symptoms. The molecular focus is strategically limited to GTF2i, BDNF, and FKBP5 genes that are, respectively, involved in transcriptional-, neurodevelopmental- and neuroendocrine-pathway mediation of affective-functions. The importance of these genes is illustrated with studies of copy-number-variants, genome-wide association (GWAS), and candidate gene-sequence variant associations with disease etiology. Authors concluded by highlighting the predictive values of integrative neurobiological processing of gene-environment interactions for affective disorder symptom management. Expert opinion: Given the transcriptional, neurodevelopmental and neuroimmune relevance of GTF2i, BDNF, and FKBP5 genes, respectively, authors reviewed the putative roles of these genes in neurobiological mediation of adaptive affective-responses. Authors discussed the importance of studying gene-dosage effects in understanding affective disorder risk biology, and how such targeted neurogenetic studies could guide precision identification of novel pharmacotherapeutic targets and aid in prediction of treatment response.
Collapse
Affiliation(s)
- Mbemba Jabbi
- a Department of Psychiatry , Dell Medical School, University of Texas at Austin , Austin , TX , USA.,b Mulva Neuroscience Institute, Dell Medical School , University of Texas at Austin , Austin , TX , USA.,c Institute of Neuroscience , University of Texas at Austin , Austin , TX , USA.,d Department of Psychology , University of Texas at Austin , Austin , TX , USA
| | - Charles B Nemeroff
- a Department of Psychiatry , Dell Medical School, University of Texas at Austin , Austin , TX , USA.,b Mulva Neuroscience Institute, Dell Medical School , University of Texas at Austin , Austin , TX , USA.,e Institute for Early Life Adversity , Dell Medical School, University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
17
|
Tertil M, Skupio U, Barut J, Dubovyk V, Wawrzczak-Bargiela A, Soltys Z, Golda S, Kudla L, Wiktorowska L, Szklarczyk K, Korostynski M, Przewlocki R, Slezak M. Glucocorticoid receptor signaling in astrocytes is required for aversive memory formation. Transl Psychiatry 2018; 8:255. [PMID: 30487639 PMCID: PMC6261947 DOI: 10.1038/s41398-018-0300-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/15/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022] Open
Abstract
Stress elicits the release of glucocorticoids (GCs) that regulate energy metabolism and play a role in emotional memory. Astrocytes express glucocorticoid receptors (GR), but their contribution to cognitive effects of GC's action in the brain is unknown. To address this question, we studied how astrocyte-specific elimination of GR affects animal behavior known to be regulated by stress. Mice with astrocyte-specific ablation of GR presented impaired aversive memory expression in two different paradigms of Pavlovian learning: contextual fear conditioning and conditioned place aversion. These mice also displayed compromised regulation of genes encoding key elements of the glucose metabolism pathway upon GR stimulation. In particular, we identified that the glial, but not the neuronal isoform of a crucial stress-response molecule, Sgk1, undergoes GR-dependent regulation in vivo and demonstrated the involvement of SGK1 in regulation of glucose uptake in astrocytes. Together, our results reveal astrocytes as a central element in GC-dependent formation of aversive memory and suggest their relevance for stress-induced alteration of brain glucose metabolism. Consequently, astrocytes should be considered as a cellular target of therapies of stress-induced brain diseases.
Collapse
Affiliation(s)
- Magdalena Tertil
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Urszula Skupio
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Justyna Barut
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Valentyna Dubovyk
- Team Brain Microcircuits in Psychiatric Diseases, BioMed X Innovation Center, Heidelberg, 69120 Germany
| | - Agnieszka Wawrzczak-Bargiela
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Zbigniew Soltys
- 0000 0001 2162 9631grid.5522.0Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, 30-387 Poland
| | - Slawomir Golda
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Lucja Kudla
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Lucja Wiktorowska
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Klaudia Szklarczyk
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Michal Korostynski
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Ryszard Przewlocki
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Michal Slezak
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343, Poland. .,Team Brain Microcircuits in Psychiatric Diseases, BioMed X Innovation Center, Heidelberg, 69120, Germany.
| |
Collapse
|
18
|
Romay-Tallon R, Kulhawy E, Brymer KJ, Allen J, Rivera-Baltanas T, Olivares JM, Kalynchuk LE, Caruncho HJ. Changes in Membrane Protein Clustering in Peripheral Lymphocytes in an Animal Model of Depression Parallel Those Observed in Naïve Depression Patients: Implications for the Development of Novel Biomarkers of Depression. Front Pharmacol 2018; 9:1149. [PMID: 30374301 PMCID: PMC6196231 DOI: 10.3389/fphar.2018.01149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022] Open
Abstract
Naïve depression patients show alterations in serotonin transporter (SERT) and serotonin 2A (5HT2A) receptor clustering in peripheral lymphocytes, and these alterations have been proposed as a biomarker of therapeutic efficacy in major depression. Repeated corticosterone (CORT) induces a consistent depression-like phenotype and has been widely used as an animal model to study neurobiological alterations underlying the depressive symptoms. In this experiment, we used the CORT paradigm to evaluate whether depression-like behavior is associated with similar changes in the pattern of SERT and 5HT2A membrane protein clustering as those observed in depression patients. We also analyzed the clustering of other proteins expressed in lipid rafts in lymphocytes. Rats received daily CORT or vehicle injections for 21 consecutive days. Afterward they underwent the forced swim test to evaluate depression-like behavior, and isolated lymphocytes were analyzed by immunocytochemistry coupled to image-analysis to study clustering parameters of the SERT, 5HT2A receptor, dopamine transporter (DAT), Beta2 adrenergic receptor (β2AR), NMDA 2B receptor (NR2B), Pannexin 1 (Pnx1), and prion cellular protein (PrPc). Our results showed that CORT increases the size of protein clusters for all proteins with the exception of β 2AR, which is decreased. CORT also increased the number of clusters for Pnx1 and PrPc only. Overall, these results indicate that alterations in SERT and 5HT2A protein clustering in naïve depression patients are paralleled by changes seen in an animal model of depression. The CORT paradigm may be a useful screen for examining additional proteins in lymphocytes as a preliminary step prior to their analysis as biomarkers of depression in human blood samples.
Collapse
Affiliation(s)
| | - Erin Kulhawy
- Innovate-Calgary, University of Calgary, Calgary, AB, Canada
| | - Kyle J Brymer
- Department of Psychology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Josh Allen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Jose M Olivares
- Division of Psychiatry, Hospital Alvaro Cunqueiro, CHUVI, Vigo, Spain
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
19
|
Abstract
The brain is continuously exposed to varying levels of adrenal corticosteroid hormones such as corticosterone in rodents and cortisol in humans. Natural fluctuations occur due to ultradian and circadian variations or are caused by exposure to stressful situations. Brain cells express two types of corticosteroid receptors, i.e. mineralocorticoid and glucocorticoid receptors, which differ in distribution and affinity. These receptors can mediate both rapid non-genomic and slow gene-mediated neuronal actions. As a consequence of these factors, natural (e.g. stress-induced) shifts in corticosteroid level are associated with a complex mosaic of time- and region-dependent changes in neuronal activity. A series of experiments in humans and rodents have revealed that these time- and region-dependent cellular characteristics are also reflected in distinct cognitive patterns after stress. Thus, directly after a peak of corticosteroids, attention and vigilance are increased, and areas involved in emotional responses and simple behavioral strategies show enhanced activity. In the aftermath of stress, areas involved in higher cognitive functions become activated allowing individuals to link stressful events to the specific context and to store information for future use. Both phases of the brain's response to stress are important to face a continuously changing environment, promoting adaptation at the short as well as long term. We argue that a balanced response during the two phases is essential for resilience. This balance may become compromised after repeated stress exposure, particularly in genetically vulnerable individuals and aggravate disease manifestation. This not only applies to psychiatric disorders but also to neurological diseases such as epilepsy.
Collapse
Affiliation(s)
- Marian Joëls
- Department of Translational NeuroscienceBrain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- University of GroningenUniversity Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, Joëls M. Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front Neuroendocrinol 2018; 49:124-145. [PMID: 29428549 DOI: 10.1016/j.yfrne.2018.02.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 01/14/2023]
Abstract
Bruce McEwen's discovery of receptors for corticosterone in the rat hippocampus introduced higher brain circuits in the neuroendocrinology of stress. Subsequently, these receptors were identified as mineralocorticoid receptors (MRs) that are involved in appraisal processes, choice of coping style, encoding and retrieval. The MR-mediated actions on cognition are complemented by slower actions via glucocorticoid receptors (GRs) on contextualization, rationalization and memory storage of the experience. These sequential phases in cognitive performance depend on synaptic metaplasticity that is regulated by coordinate MR- and GR activation. The receptor activation includes recruitment of coregulators and transcription factors as determinants of context-dependent specificity in steroid action; they can be modulated by genetic variation and (early) experience. Interestingly, inflammatory responses to damage seem to be governed by a similarly balanced MR:GR-mediated action as the initiating, terminating and priming mechanisms involved in stress-adaptation. We conclude with five questions challenging the MR:GR balance hypothesis.
Collapse
Affiliation(s)
- E R de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - O C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - A F de Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina.
| | - R H de Rijk
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands & Department of Clinical Psychology, Leiden University, The Netherlands.
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; University of Groningen, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
21
|
Herzog DP, Beckmann H, Lieb K, Ryu S, Müller MB. Understanding and Predicting Antidepressant Response: Using Animal Models to Move Toward Precision Psychiatry. Front Psychiatry 2018; 9:512. [PMID: 30405454 PMCID: PMC6204461 DOI: 10.3389/fpsyt.2018.00512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
There are two important gaps of knowledge in depression treatment, namely the lack of biomarkers predicting response to antidepressants and the limited knowledge of the molecular mechanisms underlying clinical improvement. However, individually tailored treatment strategies and individualized prescription are greatly needed given the huge socio-economic burden of depression, the latency until clinical improvement can be observed and the response variability to a particular compound. Still, individual patient-level antidepressant treatment outcomes are highly unpredictable. In contrast to other therapeutic areas and despite tremendous efforts during the past years, the genomics era so far has failed to provide biological or genetic predictors of clinical utility for routine use in depression treatment. Specifically, we suggest to (1) shift the focus from the group patterns to individual outcomes, (2) use dimensional classifications such as Research Domain Criteria, and (3) envision better planning and improved connections between pre-clinical and clinical studies within translational research units. In contrast to studies in patients, animal models enable both searches for peripheral biosignatures predicting treatment response and in depth-analyses of the neurobiological pathways shaping individual antidepressant response in the brain. While there is a considerable number of animal models available aiming at mimicking disease-like conditions such as those seen in depressive disorder, only a limited number of preclinical or truly translational investigations is dedicated to the issue of heterogeneity seen in response to antidepressant treatment. In this mini-review, we provide an overview on the current state of knowledge and propose a framework for successful translational studies into antidepressant treatment response.
Collapse
Affiliation(s)
- David P Herzog
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Holger Beckmann
- Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany.,German Resilience Center, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Soojin Ryu
- Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany.,German Resilience Center, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Marianne B Müller
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| |
Collapse
|