1
|
Chen Y, Liu P, Zhong Z, Zhang H, Sun A, Wang Y. STIM1 functions as a proton sensor to coordinate cytosolic pH with store-operated calcium entry. J Biol Chem 2024; 300:107924. [PMID: 39454952 PMCID: PMC11626807 DOI: 10.1016/j.jbc.2024.107924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The meticulous regulation of intracellular pH (pHi) is crucial for maintaining cellular function and homeostasis, impacting physiological processes such as heart rhythm, cell migration, proliferation, and differentiation. Dysregulation of pHi is implicated in various pathologies such as arrhythmias, cancer, and neurodegenerative diseases. Here, we explore the role of STIM1, an ER calcium (Ca2+) sensor mediating Store Operated Ca2+ Entry (SOCE), in sensing pHi changes. Our study reveals that STIM1 functions as a sensor for pHi changes, independent of its Ca2+-binding state. Through comprehensive experimental approaches including confocal microscopy, FRET-based sensors, and mutagenesis, we demonstrate that changes in pHi induce conformational alterations in STIM1, thereby modifying its subcellular localization and activity. We identify two conserved histidines within STIM1 essential for sensing pHi shifts. Moreover, intracellular alkalization induced by agents such as Angiotensin II or NH4Cl enhances STIM1-mediated SOCE, promoting cardiac hypertrophy. These findings reveal a novel facet of STIM1 as a multi-modal stress sensor that coordinates cellular responses to both Ca2+ and pH fluctuations. This dual functionality underscores its potential as a therapeutic target for diseases associated with pH and Ca2+ dysregulation.
Collapse
Affiliation(s)
- Yilan Chen
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Panpan Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ziyi Zhong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hanhan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Aomin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
2
|
Wu Q, Wang Y, Liu J, Guan X, Chang X, Liu Z, Liu R. Microtubules and cardiovascular diseases: insights into pathology and therapeutic strategies. Int J Biochem Cell Biol 2024; 175:106650. [PMID: 39237031 DOI: 10.1016/j.biocel.2024.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Microtubules, complex cytoskeletal structures composed of tubulin proteins in eukaryotic cells, have garnered recent attention in cardiovascular research. Investigations have focused on the post-translational modifications of tubulin, including acetylation and detyrosination. Perturbations in microtubule homeostasis have been implicated in various pathological processes associated with cardiovascular diseases such as heart failure, ischemic heart disease, and arrhythmias. Thus, elucidating the intricate interplay between microtubule dynamics and cardiovascular pathophysiology is imperative for advancing preventive and therapeutic strategies. Several natural compounds have been identified to potentially modulate microtubules, thereby exerting regulatory effects on cardiovascular diseases. This review synthesizes current literature to delineate the roles of microtubules in cardiovascular diseases and assesses the potential of natural compounds in microtubule-targeted therapies.
Collapse
Affiliation(s)
- Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
3
|
Zhou S, Liu S, Jiang A, Li Z, Duan C, Li B. New insights into the stromal interaction molecule 2 function and its impact on the immunomodulation of tumor microenvironment. Cell Biosci 2024; 14:119. [PMID: 39272139 PMCID: PMC11395313 DOI: 10.1186/s13578-024-01292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Immune cells-enhanced immunotherapy exhibits unprecedented overall survival-prolongation even curable in some cancer patients. Although so, most of the patients show no response. Tumor microenvironment (TME) where immune cells settle down has multi-faceted influences, but usually creates an immunosuppressive niche that facilitating tumor cells escape from immune attack. The metabolites and malnutrition of TME exert enormous effects on the resident immune cells, but the underlying mechanism is largely unknown. The stromal interaction molecules 2 (STIM2) is an endoplasmic reticulum (ER) calcium (Ca2+) sensor to maintain Ca2+ homeostasis. Notably, the cytosol STIM2 C-terminus is long with various domains that are available for the combination or/and molecular modification. This distinct structure endows STIM2 with a high susceptibility to numerous permeable physico-chemical molecules or protein interactions. STIM2 and its variants are extensively expressed in various immune cells, especially in T immune cells. STIM2 was reported closely correlated with the function of immune cells via regulating Ca2+ signaling, energy metabolism and cell fitness. Herein, we sum the latest findings on the STIM2 structure, focusing on its distinct characteristics and profound effect on the regulation of Ca2+ homeostasis and multi-talented functionality. We also outline the advancements on the underlying mechanism how STIM2 anomalies influence the function of immune cells and on the turbulent expression or/and amenably modification of STIM2 within the tumor niches. Then we discuss the translation of these researches into antitumor approaches, emphasizing the potential of STIM2 as a therapeutic target for direct inhibition of tumor cells or more activation towards immune cells driving to flare TME. This review is an update on STIM2, aiming to rationalize the potential of STIM2 as a therapeutic target for immunomodulation, engaging immune cells to exert the utmost anti-tumor effect.
Collapse
Affiliation(s)
- Shishan Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shujie Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Anfeng Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhiyuan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Du Y, Wang F, Liu P, Zheng S, Li J, Huang R, Li W, Zhang X, Wang Y. Redox Enzymes P4HB and PDIA3 Interact with STIM1 to Fine-Tune Its Calcium Sensitivity and Activation. Int J Mol Sci 2024; 25:7578. [PMID: 39062821 PMCID: PMC11276767 DOI: 10.3390/ijms25147578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Sensing the lowering of endoplasmic reticulum (ER) calcium (Ca2+), STIM1 mediates a ubiquitous Ca2+ influx process called the store-operated Ca2+ entry (SOCE). Dysregulated STIM1 function or abnormal SOCE is strongly associated with autoimmune disorders, atherosclerosis, and various forms of cancers. Therefore, uncovering the molecular intricacies of post-translational modifications, such as oxidation, on STIM1 function is of paramount importance. In a recent proteomic screening, we identified three protein disulfide isomerases (PDIs)-Prolyl 4-hydroxylase subunit beta (P4HB), protein disulfide-isomerase A3 (PDIA3), and thioredoxin domain-containing protein 5 (TXNDC5)-as the ER-luminal interactors of STIM1. Here, we demonstrated that these PDIs dynamically associate with STIM1 and STIM2. The mutation of the two conserved cysteine residues of STIM1 (STIM1-2CA) decreased its Ca2+ affinity both in cellulo and in situ. Knockdown of PDIA3 or P4HB increased the Ca2+ affinity of wild-type STIM1 while showing no impact on the STIM1-2CA mutant, indicating that PDIA3 and P4HB regulate STIM1's Ca2+ affinity by acting on ER-luminal cysteine residues. This modulation of STIM1's Ca2+ sensitivity was further confirmed by Ca2+ imaging experiments, which showed that knockdown of these two PDIs does not affect STIM1-mediated SOCE upon full store depletion but leads to enhanced SOCE amplitudes upon partial store depletion. Thus, P4HB and PDIA3 dynamically modulate STIM1 activation by fine-tuning its Ca2+ binding affinity, adjusting the level of activated STIM1 in response to physiological cues. The coordination between STIM1-mediated Ca2+ signaling and redox responses reported herein may have implications for cell physiology and pathology.
Collapse
Affiliation(s)
- Yangchun Du
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Feifan Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Panpan Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Sisi Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Jia Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Rui Huang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Wanjie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Xiaoyan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Wang L, Zhang J, Li W, Zhang X, Yokoyama T, Sakamoto M, Wang Y. The A-kinase anchoring protein Yotiao decrease the ER calcium content by inhibiting the store operated calcium entry. Cell Calcium 2024; 121:102906. [PMID: 38781694 DOI: 10.1016/j.ceca.2024.102906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
The meticulous regulation of ER calcium (Ca2+) homeostasis is indispensable for the proper functioning of numerous cellular processes. Disrupted ER Ca2+ balance is implicated in diverse diseases, underscoring the need for a systematic exploration of its regulatory factors in cells. Our recent genomic-scale screen identified a scaffolding protein A-kinase anchoring protein 9 (AKAP9) as a regulator of ER Ca2+ levels, but the underlying molecular mechanisms remain elusive. Here, we reveal that Yotiao, the smallest splicing variant of AKAP9 decreased ER Ca2+ content in animal cells. Additional testing using a combination of Yotiao truncations, knock-out cells and pharmacological tools revealed that, Yotiao does not require most of its interactors, including type 1 inositol 1,4,5-trisphosphate receptors (IP3R1), protein kinase A (PKA), protein phosphatase 1 (PP1), adenylyl cyclase type 2 (AC2) and so on, to reduce ER Ca2+ levels. However, adenylyl cyclase type 9 (AC9), which is known to increases its cAMP generation upon interaction with Yotiao for the modulation of potassium channels, plays an essential role for Yotiao's ER-Ca2+-lowering effect. Mechanistically, Yotiao may work through AC9 to act on Orai1-C terminus and suppress store operated Ca2+ entry, resulting in reduced ER Ca2+ levels. These findings not only enhance our comprehension of the interplay between Yotiao and AC9 but also contribute to a more intricate understanding of the finely tuned mechanisms governing ER Ca2+ homeostasis.
Collapse
Affiliation(s)
- Liuqing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jiaxuan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wanjie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xiaoyan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tatsushi Yokoyama
- Department of Optical Neural and Molecular Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masayuki Sakamoto
- Department of Optical Neural and Molecular Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
6
|
Sallinger M, Grabmayr H, Humer C, Bonhenry D, Romanin C, Schindl R, Derler I. Activation mechanisms and structural dynamics of STIM proteins. J Physiol 2024; 602:1475-1507. [PMID: 36651592 DOI: 10.1113/jp283828] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.
Collapse
Affiliation(s)
- Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Christina Humer
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
| | - Christoph Romanin
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
7
|
Liu X, Zheng T, Jiang Y, Wang L, Zhang Y, Liang Q, Chen Y. Molecular Mechanism Analysis of STIM1 Thermal Sensation. Cells 2023; 12:2613. [PMID: 37998348 PMCID: PMC10670385 DOI: 10.3390/cells12222613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
STIM1 has been identified as a new warm sensor, but the exact molecular mechanism remains unclear. In this study, a variety of mutants of STIM1, Orai1 and Orai3 were generated. The single-cell calcium imaging and confocal analysis were used to evaluate the thermal sensitivity of the resulting STIM mutants and the interaction between STIM1 and Orai mutants in response to temperature. Our results suggested that the CC1-SOAR of STIM1 was a direct activation domain of temperature, leading to subsequent STIM1 activation, and the transmembrane (TM) region and K domain but not EF-SAM were needed for this process. Furthermore, both the TM and SOAR domains exhibited similarities and differences between STIM1-mediated thermal sensation and store-operated calcium entry (SOCE), and the key sites of Orai1 showed similar roles in these two responses. Additionally, the TM23 (comprising TM2, loop2, and TM3) region of Orai1 was identified as the key domain determining the STIM1/Orai1 thermal response pattern, while the temperature reactive mode of STIM1/Orai3 seemed to result from a combined effect of Orai3. These findings provide important support for the specific molecular mechanism of STIM1-induced thermal response, as well as the interaction mechanism of STIM1 with Orai1 and Orai3 after being activated by temperature.
Collapse
Affiliation(s)
- Xiaoling Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102401, China; (T.Z.); (L.W.); (Y.Z.); (Q.L.)
| | - Tianyuan Zheng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102401, China; (T.Z.); (L.W.); (Y.Z.); (Q.L.)
| | - Yan Jiang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Lei Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102401, China; (T.Z.); (L.W.); (Y.Z.); (Q.L.)
| | - Yuchen Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102401, China; (T.Z.); (L.W.); (Y.Z.); (Q.L.)
| | - Qiyu Liang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102401, China; (T.Z.); (L.W.); (Y.Z.); (Q.L.)
| | - Yuejie Chen
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| |
Collapse
|
8
|
Zhou Y, Jennette MR, Ma G, Kazzaz SA, Baraniak JH, Nwokonko RM, Groff ML, Velasquez-Reynel M, Huang Y, Wang Y, Gill DL. An apical Phe-His pair defines the Orai1-coupling site and its occlusion within STIM1. Nat Commun 2023; 14:6921. [PMID: 37903816 PMCID: PMC10616141 DOI: 10.1038/s41467-023-42254-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/04/2023] [Indexed: 11/01/2023] Open
Abstract
Ca2+ signal-generation through inter-membrane junctional coupling between endoplasmic reticulum (ER) STIM proteins and plasma membrane (PM) Orai channels, remains a vital but undefined mechanism. We identify two unusual overlapping Phe-His aromatic pairs within the STIM1 apical helix, one of which (F394-H398) mediates important control over Orai1-STIM1 coupling. In resting STIM1, this locus is deeply clamped within the folded STIM1-CC1 helices, likely near to the ER surface. The clamped environment in holo-STIM1 is critical-positive charge replacing Phe-394 constitutively unclamps STIM1, mimicking store-depletion, negative charge irreversibly locks the clamped-state. In store-activated, unclamped STIM1, Phe-394 mediates binding to the Orai1 channel, but His-398 is indispensable for transducing STIM1-binding into Orai1 channel-gating, and is spatially aligned with Phe-394 in the exposed Sα2 helical apex. Thus, the Phe-His locus traverses between ER and PM surfaces and is decisive in the two critical STIM1 functions-unclamping to activate STIM1, and conformational-coupling to gate the Orai1 channel.
Collapse
Affiliation(s)
- Yandong Zhou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Michelle R Jennette
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Guolin Ma
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Sarah A Kazzaz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - James H Baraniak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Robert M Nwokonko
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mallary L Groff
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Marcela Velasquez-Reynel
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
9
|
Li J, Shang Z, Chen JH, Gu W, Yao L, Yang X, Sun X, Wang L, Wang T, Liu S, Li J, Hou T, Xing D, Gill DL, Li J, Wang SQ, Hou L, Zhou Y, Tang AH, Zhang X, Wang Y. Engineering of NEMO as calcium indicators with large dynamics and high sensitivity. Nat Methods 2023:10.1038/s41592-023-01852-9. [PMID: 37081094 DOI: 10.1038/s41592-023-01852-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/16/2023] [Indexed: 04/22/2023]
Abstract
Genetically encoded calcium indicators (GECIs) are indispensable tools for real-time monitoring of intracellular calcium signals and cellular activities in living organisms. Current GECIs face the challenge of suboptimal peak signal-to-baseline ratio (SBR) with limited resolution for reporting subtle calcium transients. We report herein the development of a suite of calcium sensors, designated NEMO, with fast kinetics and wide dynamic ranges (>100-fold). NEMO indicators report Ca2+ transients with peak SBRs around 20-fold larger than the top-of-the-range GCaMP6 series. NEMO sensors further enable the quantification of absolution calcium concentration with ratiometric or photochromic imaging. Compared with GCaMP6s, NEMOs could detect single action potentials in neurons with a peak SBR two times higher and a median peak SBR four times larger in vivo, thereby outperforming most existing state-of-the-art GECIs. Given their high sensitivity and resolution to report intracellular Ca2+ signals, NEMO sensors may find broad applications in monitoring neuronal activities and other Ca2+-modulated physiological processes in both mammals and plants.
Collapse
Affiliation(s)
- Jia Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ziwei Shang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jia-Hui Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, and Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenjia Gu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Li Yao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xin Yang
- Exercise Physiology and Neurobiology Laboratory, College of PE and Sports, Beijing Normal University, Beijing, China
| | - Xiaowen Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Liuqing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tianlu Wang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Siyao Liu
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Jiajing Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tingting Hou
- State Key Laboratory of Membrane Biology College of Life Sciences, Peking University, Beijing, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shi-Qiang Wang
- State Key Laboratory of Membrane Biology College of Life Sciences, Peking University, Beijing, China
| | - Lijuan Hou
- Exercise Physiology and Neurobiology Laboratory, College of PE and Sports, Beijing Normal University, Beijing, China
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA.
| | - Ai-Hui Tang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, and Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
10
|
Yuan X, Tang B, Chen Y, Zhou L, Deng J, Han L, Zhai Y, Zhou Y, Gill DL, Lu C, Wang Y. Celastrol inhibits store operated calcium entry and suppresses psoriasis. Front Pharmacol 2023; 14:1111798. [PMID: 36817139 PMCID: PMC9928759 DOI: 10.3389/fphar.2023.1111798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Psoriasis is an inflammatory autoimmune skin disease that is hard to cure and prone to relapse. Currently available global immunosuppressive agents for psoriasis may cause severe side effects, thus it is crucial to identify new therapeutic reagents and druggable signaling pathways for psoriasis. Methods: To check the effects of SOCE inhibitors on psoriasis, we used animal models, biochemical approaches, together with various imaging techniques, including calcium, confocal and FRET imaging. Results and discussion: Store operated calcium (Ca2+) entry (SOCE), mediated by STIM1 and Orai1, is crucial for the function of keratinocytes and immune cells, the two major players in psoriasis. Here we showed that a natural compound celastrol is a novel SOCE inhibitor, and it ameliorated the skin lesion and reduced PASI scores in imiquimod-induced psoriasis-like mice. Celastrol dose- and time-dependently inhibited SOCE in HEK cells and HaCaT cells, a keratinocyte cell line. Mechanistically, celastrol inhibited SOCE via its actions both on STIM1 and Orai1. It inhibited Ca2+ entry through constitutively-active Orai1 mutants independent of STIM1. Rather than blocking the conformational switch and oligomerization of STIM1 during SOCE activation, celastrol diminished the transition from oligomerized STIM1 into aggregates, thus locking STIM1 in a partially active state. As a result, it abolished the functional coupling between STIM1 and Orai1, diminishing SOCE signals. Overall, our findings identified a new SOCE inhibitor celastrol that suppresses psoriasis, suggesting that SOCE pathway may serve as a new druggable target for treating psoriasis.
Collapse
Affiliation(s)
- Xiaoman Yuan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Bin Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yilan Chen
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lijuan Zhou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jingwen Deng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yandong Zhou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Donald L. Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Youjun Wang, ; Chuanjian Lu,
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China,*Correspondence: Youjun Wang, ; Chuanjian Lu,
| |
Collapse
|
11
|
Tandl D, Sponagel T, Alansary D, Fuck S, Smit T, Hehlgans S, Jakob B, Fournier C, Niemeyer BA, Rödel F, Roth B, Moroni A, Thiel G. X-ray irradiation triggers immune response in human T-lymphocytes via store-operated Ca2+ entry and NFAT activation. J Gen Physiol 2022; 154:213138. [PMID: 35416945 PMCID: PMC9011325 DOI: 10.1085/jgp.202112865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/25/2021] [Accepted: 02/11/2022] [Indexed: 12/30/2022] Open
Abstract
Radiation therapy efficiently eliminates cancer cells and reduces tumor growth. To understand collateral agonistic and antagonistic effects of this treatment on the immune system, we examined the impact of x-ray irradiation on human T cells. We find that, in a major population of leukemic Jurkat T cells and peripheral blood mononuclear cells, clinically relevant radiation doses trigger delayed oscillations of the cytosolic Ca2+ concentration. They are generated by store-operated Ca2+ entry (SOCE) following x-ray–induced clustering of Orai1 and STIM1 and formation of a Ca2+ release–activated Ca2+ (CRAC) channel. A consequence of the x-ray–triggered Ca2+ signaling cascade is translocation of the transcription factor nuclear factor of activated T cells (NFAT) from the cytosol into the nucleus, where it elicits the expression of genes required for immune activation. The data imply activation of blood immune cells by ionizing irradiation, with consequences for toxicity and therapeutic effects of radiation therapy.
Collapse
Affiliation(s)
- Dominique Tandl
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Tim Sponagel
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Dalia Alansary
- Molecular Biophysics, University of Saarland, Center for Integrative Physiology and Molecular Medicine, Homburg/Saar, Germany
| | - Sebastian Fuck
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Timo Smit
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe-University, Frankfurt am Main, Germany
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, University of Saarland, Center for Integrative Physiology and Molecular Medicine, Homburg/Saar, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe-University, Frankfurt am Main, Germany
| | - Bastian Roth
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences and CNR IBF-Mi, Università degli Studi di Milano, Milano, Italy
| | - Gerhard Thiel
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
12
|
Collins HE, Zhang D, Chatham JC. STIM and Orai Mediated Regulation of Calcium Signaling in Age-Related Diseases. FRONTIERS IN AGING 2022; 3:876785. [PMID: 35821821 PMCID: PMC9261457 DOI: 10.3389/fragi.2022.876785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Tight spatiotemporal regulation of intracellular Ca2+ plays a critical role in regulating diverse cellular functions including cell survival, metabolism, and transcription. As a result, eukaryotic cells have developed a wide variety of mechanisms for controlling Ca2+ influx and efflux across the plasma membrane as well as Ca2+ release and uptake from intracellular stores. The STIM and Orai protein families comprising of STIM1, STIM2, Orai1, Orai2, and Orai3, are evolutionarily highly conserved proteins that are core components of all mammalian Ca2+ signaling systems. STIM1 and Orai1 are considered key players in the regulation of Store Operated Calcium Entry (SOCE), where release of Ca2+ from intracellular stores such as the Endoplasmic/Sarcoplasmic reticulum (ER/SR) triggers Ca2+ influx across the plasma membrane. SOCE, which has been widely characterized in non-excitable cells, plays a central role in Ca2+-dependent transcriptional regulation. In addition to their role in Ca2+ signaling, STIM1 and Orai1 have been shown to contribute to the regulation of metabolism and mitochondrial function. STIM and Orai proteins are also subject to redox modifications, which influence their activities. Considering their ubiquitous expression, there has been increasing interest in the roles of STIM and Orai proteins in excitable cells such as neurons and myocytes. While controversy remains as to the importance of SOCE in excitable cells, STIM1 and Orai1 are essential for cellular homeostasis and their disruption is linked to various diseases associated with aging such as cardiovascular disease and neurodegeneration. The recent identification of splice variants for most STIM and Orai isoforms while complicating our understanding of their function, may also provide insight into some of the current contradictions on their roles. Therefore, the goal of this review is to describe our current understanding of the molecular regulation of STIM and Orai proteins and their roles in normal physiology and diseases of aging, with a particular focus on heart disease and neurodegeneration.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
13
|
Xie J, Ma G, Zhou L, He L, Zhang Z, Tan P, Huang Z, Fang S, Wang T, Lee Y, Wen S, Siwko S, Wang L, Liu J, Du Y, Zhang N, Liu X, Han L, Huang Y, Wang R, Wang Y, Zhou Y, Han W. Identification of a STIM1 Splicing Variant that Promotes Glioblastoma Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103940. [PMID: 35076181 PMCID: PMC9008427 DOI: 10.1002/advs.202103940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Deregulated store-operated calcium entry (SOCE) mediated by aberrant STIM1-ORAI1 signaling is closely implicated in cancer initiation and progression. Here the authors report the identification of an alternatively spliced variant of STIM1, designated STIM1β, that harbors an extra exon to encode 31 additional amino acids in the cytoplasmic domain. STIM1β, highly conserved in mammals, is aberrantly upregulated in glioma tissues to perturb Ca2+ signaling. At the molecular level, the 31-residue insertion destabilizes STIM1β by perturbing its cytosolic inhibitory domain and accelerating its activation kinetics to efficiently engage and gate ORAI calcium channels. Functionally, STIM1β depletion affects SOCE in glioblastoma cells, suppresses tumor cell proliferation and growth both in vitro and in vivo. Collectively, their study establishes a splicing variant-specific tumor-promoting role of STIM1β that can be potentially targeted for glioblastoma intervention.
Collapse
Affiliation(s)
- Jiansheng Xie
- Department of Medical OncologyLaboratory of Cancer BiologyInstitute of Clinical ScienceSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Guolin Ma
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Lijuan Zhou
- Beijing Key Laboratory of Gene Resource and Molecular DevelopmentCollege of Life SciencesBeijing Normal UniversityBeijing100875P. R. China
| | - Lian He
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Zhao Zhang
- MOE Key Laboratory of Metabolism and Molecular MedicineDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Biochemistry and Molecular BiologyUniversity of Texas Health Science Center at Houston McGovern Medical SchoolHoustonTX77030USA
| | - Peng Tan
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Zixian Huang
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Shaohai Fang
- Center for Epigenetics and Disease PreventionInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Tianlu Wang
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Yi‐Tsang Lee
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Shufan Wen
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Stefan Siwko
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Liuqing Wang
- Beijing Key Laboratory of Gene Resource and Molecular DevelopmentCollege of Life SciencesBeijing Normal UniversityBeijing100875P. R. China
| | - Jindou Liu
- Beijing Key Laboratory of Gene Resource and Molecular DevelopmentCollege of Life SciencesBeijing Normal UniversityBeijing100875P. R. China
| | - Yangchun Du
- Beijing Key Laboratory of Gene Resource and Molecular DevelopmentCollege of Life SciencesBeijing Normal UniversityBeijing100875P. R. China
| | - Ningxia Zhang
- Department of Medical OncologyLaboratory of Cancer BiologyInstitute of Clinical ScienceSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Xiaoxuan Liu
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Leng Han
- Department of Biochemistry and Molecular BiologyUniversity of Texas Health Science Center at Houston McGovern Medical SchoolHoustonTX77030USA
- Center for Epigenetics and Disease PreventionInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Yun Huang
- Center for Epigenetics and Disease PreventionInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Rui Wang
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular DevelopmentCollege of Life SciencesBeijing Normal UniversityBeijing100875P. R. China
| | - Yubin Zhou
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
- Department of Translational Medical SciencesCollege of MedicineTexas A&M UniversityHoustonTX77030USA
| | - Weidong Han
- Department of Medical OncologyLaboratory of Cancer BiologyInstitute of Clinical ScienceSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| |
Collapse
|
14
|
Humer C, Romanin C. “Functional communication between IP3R and STIM2 at subthreshold stimuli is a critical checkpoint for initiation of SOCE”. Cell Calcium 2022; 104:102574. [DOI: 10.1016/j.ceca.2022.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
|
15
|
Jing J, Zhou Y, Wang Y. Dimming the donor to brighten up FRET-based biosensors. Cell Calcium 2021; 99:102474. [PMID: 34543786 DOI: 10.1016/j.ceca.2021.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
The current biosensors based on Förster resonance energy transfer (FRET) lack good anisotrophy-based indicators for detecting rotational changes triggered by analyte-binding. Laskaratou et al. developed a FRET-induced Angular Displacement Evaluation via Dim donor (FADED) tool to expand the existing toolkit. With less bleed-through from a donor with dim fluorescence, the changes in acceptor anisotropy signals of these tools could readily indicate cytosolic calcium dynamics.
Collapse
Affiliation(s)
- Ji Jing
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, United States
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
16
|
Emrich SM, Yoast RE, Xin P, Arige V, Wagner LE, Hempel N, Gill DL, Sneyd J, Yule DI, Trebak M. Omnitemporal choreographies of all five STIM/Orai and IP 3Rs underlie the complexity of mammalian Ca 2+ signaling. Cell Rep 2021; 34:108760. [PMID: 33657364 PMCID: PMC7968378 DOI: 10.1016/j.celrep.2021.108760] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Stromal-interaction molecules (STIM1/2) sense endoplasmic reticulum (ER) Ca2+ depletion and activate Orai channels. However, the choreography of interactions between native STIM/Orai proteins under physiological agonist stimulation is unknown. We show that the five STIM1/2 and Orai1/2/3 proteins are non-redundant and function together to ensure the graded diversity of mammalian Ca2+ signaling. Physiological Ca2+ signaling requires functional interactions between STIM1/2, Orai1/2/3, and IP3Rs, ensuring that receptor-mediated Ca2+ release is tailored to Ca2+ entry and nuclear factor of activated T cells (NFAT) activation. The N-terminal Ca2+-binding ER-luminal domains of unactivated STIM1/2 inhibit IP3R-evoked Ca2+ release. A gradual increase in agonist intensity and STIM1/2 activation relieves IP3R inhibition. Concomitantly, activated STIM1/2 C termini differentially interact with Orai1/2/3 as agonist intensity increases. Thus, coordinated and omnitemporal functions of all five STIM/Orai and IP3Rs translate the strength of agonist stimulation to precise levels of Ca2+ signaling and NFAT induction, ensuring the fidelity of complex mammalian Ca2+ signaling.
Collapse
Affiliation(s)
- Scott M Emrich
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ping Xin
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Larry E Wagner
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Nadine Hempel
- Department of Pharmacology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Penn State Cancer Institute, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - James Sneyd
- Department of Mathematics, The University of Auckland, 38 Princes Street, Auckland 1010, New Zealand
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Penn State Cancer Institute, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
17
|
Huo J, Dong H. Gating and regulation of the calcium release-activated calcium channel: Recent progress from experiments and molecular modeling. Biopolymers 2021; 111:e23392. [PMID: 33460071 DOI: 10.1002/bip.23392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 11/08/2022]
Abstract
Calcium release-activated calcium (CRAC) channels are highly calcium ion (Ca2+)-selective channels in the plasma membrane. The transient drop of endoplasmic reticulum Ca2+ level activates its calcium sensor stromal interaction molecule (STIM) and then triggers the gating of the CRAC channel pore unit Orai. This process involves a variety of activities of the immune system. Therefore, understanding how the activation and regulation of the CRAC channel can be accomplished is essential. Here we briefly summarize the recent progress on Orai gating and its regulation by 2-aminoethoxydiphenylborate (2-APB) obtained from structural biology studies, biochemical and electrophysiological measurements, as well as molecular modeling. Indeed, integration between experiments and computations has further deepened our understanding of the channel gating and regulation.
Collapse
Affiliation(s)
- Jun Huo
- Kuang Yaming Honors School, Nanjing University, Nanjing, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
18
|
He L, Wang L, Zeng H, Tan P, Ma G, Zheng S, Li Y, Sun L, Dou F, Siwko S, Huang Y, Wang Y, Zhou Y. Engineering of a bona fide light-operated calcium channel. Nat Commun 2021; 12:164. [PMID: 33431868 PMCID: PMC7801460 DOI: 10.1038/s41467-020-20425-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
The current optogenetic toolkit lacks a robust single-component Ca2+-selective ion channel tailored for remote control of Ca2+ signaling in mammals. Existing tools are either derived from engineered channelrhodopsin variants without strict Ca2+ selectivity or based on the stromal interaction molecule 1 (STIM1) that might crosstalk with other targets. Here, we describe the design of a light-operated Ca2+ channel (designated LOCa) by inserting a plant-derived photosensory module into the intracellular loop of an engineered ORAI1 channel. LOCa displays biophysical features reminiscent of the ORAI1 channel, which enables precise optical control over Ca2+ signals and hallmark Ca2+-dependent physiological responses. Furthermore, we demonstrate the use of LOCa to modulate aberrant hematopoietic stem cell self-renewal, transcriptional programming, cell suicide, as well as neurodegeneration in a Drosophila model of amyloidosis. Existing optogenetic methods to induce calcium mobilisation lack selectivity and specificity. Here, the authors design and engineer a single-component light-operated calcium channel to provide optical control over calcium signals and calcium-dependent physiological responses: LOCa.
Collapse
Affiliation(s)
- Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Liuqing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hongxiang Zeng
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Sisi Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yaxin Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Fei Dou
- Beijing Key Laboratory of Genetic Engineering Drugs and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Stefan Siwko
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA. .,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA. .,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
19
|
Liu X, Pan Z. Store-Operated Calcium Entry in the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:303-333. [DOI: 10.1007/978-981-16-4254-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Grabmayr H, Romanin C, Fahrner M. STIM Proteins: An Ever-Expanding Family. Int J Mol Sci 2020; 22:E378. [PMID: 33396497 PMCID: PMC7795233 DOI: 10.3390/ijms22010378] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/20/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Stromal interaction molecules (STIM) are a distinct class of ubiquitously expressed single-pass transmembrane proteins in the endoplasmic reticulum (ER) membrane. Together with Orai ion channels in the plasma membrane (PM), they form the molecular basis of the calcium release-activated calcium (CRAC) channel. An intracellular signaling pathway known as store-operated calcium entry (SOCE) is critically dependent on the CRAC channel. The SOCE pathway is activated by the ligand-induced depletion of the ER calcium store. STIM proteins, acting as calcium sensors, subsequently sense this depletion and activate Orai ion channels via direct physical interaction to allow the influx of calcium ions for store refilling and downstream signaling processes. This review article is dedicated to the latest advances in the field of STIM proteins. New results of ongoing investigations based on the recently published functional data as well as structural data from nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations are reported and complemented with a discussion of the latest developments in the research of STIM protein isoforms and their differential functions in regulating SOCE.
Collapse
Affiliation(s)
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria;
| | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria;
| |
Collapse
|
21
|
Novello MJ, Zhu J, Zhang M, Feng Q, Stathopulos PB. Synergistic stabilization by nitrosoglutathione-induced thiol modifications in the stromal interaction molecule-2 luminal domain suppresses basal and store operated calcium entry. Sci Rep 2020; 10:10177. [PMID: 32576932 PMCID: PMC7311479 DOI: 10.1038/s41598-020-66961-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/01/2020] [Indexed: 11/25/2022] Open
Abstract
Stromal interaction molecule−1 and −2 (STIM1/2) are endoplasmic reticulum (ER) membrane-inserted calcium (Ca2+) sensing proteins that, together with Orai1-composed Ca2+ channels on the plasma membrane (PM), regulate intracellular Ca2+ levels. Recent evidence suggests that S-nitrosylation of the luminal STIM1 Cys residues inhibits store operated Ca2+ entry (SOCE). However, the effects of thiol modifications on STIM2 during nitrosative stress and their role in regulating basal Ca2+ levels remain unknown. Here, we demonstrate that the nitric oxide (NO) donor nitrosoglutathione (GSNO) thermodynamically stabilizes the STIM2 Ca2+ sensing region in a Cys-specific manner. We uncovered a remarkable synergism in this stabilization involving the three luminal Cys of STIM2, which is unique to this paralog. S-Nitrosylation causes structural perturbations that converge on the face of the EF-hand and sterile α motif (EF-SAM) domain, implicated in unfolding-coupled activation. In HEK293T cells, enhanced free basal cytosolic Ca2+ and SOCE mediated by STIM2 overexpression could be attenuated by GSNO or mutation of the modifiable Cys located in the luminal domain. Collectively, we identify the Cys residues within the N-terminal region of STIM2 as modifiable targets during nitrosative stress that can profoundly and cooperatively affect basal Ca2+ and SOCE regulation.
Collapse
Affiliation(s)
- Matthew J Novello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Jinhui Zhu
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Ontario, N6A5C1, Canada.,Dentistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - MengQi Zhang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Ontario, N6A5C1, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H8M5, Canada
| | - Qingping Feng
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Ontario, N6A5C1, Canada.
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Ontario, N6A5C1, Canada.
| |
Collapse
|
22
|
Li J, Wang L, Chen Y, Yang Y, Liu J, Liu K, Lee YT, He N, Zhou Y, Wang Y. Visible light excited ratiometric-GECIs for long-term in-cellulo monitoring of calcium signals. Cell Calcium 2020; 87:102165. [DOI: 10.1016/j.ceca.2020.102165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
|
23
|
Niu L, Wu F, Li K, Li J, Zhang SL, Hu J, Wang Q. STIM1 interacts with termini of Orai channels in a sequential manner. J Cell Sci 2020; 133:jcs239491. [PMID: 32107289 DOI: 10.1242/jcs.239491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is critical for numerous Ca2+-related processes. The activation of SOCE requires engagement between stromal interaction molecule 1 (STIM1) molecules on the endoplasmic reticulum and Ca2+ release-activated channel (CRAC) Orai on the plasma membrane. However, the molecular details of their interactions remain elusive. Here, we analyzed STIM1-Orai interactions using synthetic peptides derived from the N- and C-termini of Orai channels (Orai-NT and Orai-CT, respectively) and purified fragments of STIM1. The binding of STIM1 to Orai-NT is hydrophilic based, whereas binding to the Orai-CT is mostly hydrophobic. STIM1 decreases its affinity for Orai-CT when Orai-NT is present, supporting a stepwise interaction. Orai3-CT exhibits stronger binding to STIM1 than Orai1-CT, largely due to the shortness of one helical turn. The role of newly identified residues was confirmed by co-immunoprecipitation and Ca2+ imaging using full-length molecules. Our results provide important insight into CRAC gating by STIM1.
Collapse
Affiliation(s)
- Liling Niu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, and Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin 300070, China
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fuyun Wu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Kaili Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shenyuan L Zhang
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, TX 76504, USA
| | - Junjie Hu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, and Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin 300070, China
| |
Collapse
|
24
|
Yang X, Ma G, Zheng S, Qin X, Li X, Du L, Wang Y, Zhou Y, Li M. Optical Control of CRAC Channels Using Photoswitchable Azopyrazoles. J Am Chem Soc 2020; 142:9460-9470. [DOI: 10.1021/jacs.0c02949] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xingye Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Sisi Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaojun Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
25
|
Ma G, He L, Liu S, Xie J, Huang Z, Jing J, Lee YT, Wang R, Luo H, Han W, Huang Y, Zhou Y. Optogenetic engineering to probe the molecular choreography of STIM1-mediated cell signaling. Nat Commun 2020; 11:1039. [PMID: 32098964 PMCID: PMC7042325 DOI: 10.1038/s41467-020-14841-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Genetically encoded photoswitches have enabled spatial and temporal control of cellular events to achieve tailored functions in living cells, but their applications to probe the structure-function relations of signaling proteins are still underexplored. We illustrate herein the incorporation of various blue light-responsive photoreceptors into modular domains of the stromal interaction molecule 1 (STIM1) to manipulate protein activity and faithfully recapitulate STIM1-mediated signaling events. Capitalizing on these optogenetic tools, we identify the molecular determinants required to mediate protein oligomerization, intramolecular conformational switch, and protein-target interactions. In parallel, we have applied these synthetic devices to enable light-inducible gating of calcium channels, conformational switch, dynamic protein-microtubule interactions and assembly of membrane contact sites in a reversible manner. Our optogenetic engineering approach can be broadly applied to aid the mechanistic dissection of cell signaling, as well as non-invasive interrogation of physiological processes with high precision. Optogenetic tools have been used to control cellular behaviours but their use to probe structure-function relations of signalling proteins are underexplored. Here the authors engineer optogenetic modules into STIM1 to dissect molecular details of STIM1-mediated signalling and control various cellular events.
Collapse
Affiliation(s)
- Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Shuzhong Liu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.,Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiansheng Xie
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.,Department of Medical Oncology, Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zixian Huang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.,Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Yi-Tsang Lee
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Rui Wang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Hesheng Luo
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Weidong Han
- Department of Medical Oncology, Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA. .,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Ong HL, Ambudkar IS. The Endoplasmic Reticulum-Plasma Membrane Junction: A Hub for Agonist Regulation of Ca 2+ Entry. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035253. [PMID: 31501196 DOI: 10.1101/cshperspect.a035253] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stimulation of cell-surface receptors induces cytosolic Ca2+ ([Ca2+]i) increases that are detected and transduced by effector proteins for regulation of cell function. Intracellular Ca2+ release, via endoplasmic reticulum (ER) proteins inositol 1,4,5-trisphosphate receptors (IP3R) and ryanodine receptors (RyR), and Ca2+ influx, via store-operated Ca2+ entry (SOCE), contribute to the increase in [Ca2+]i The amplitude, frequency, and spatial characteristics of the [Ca2+]i increases are controlled by the compartmentalization of proteins into signaling complexes such as receptor-signaling complexes and SOCE complexes. Both complexes include protein and lipid components, located in the plasma membrane (PM) and ER. Receptor signaling initiates in the PM via phospholipase C (PLC)-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), and culminates with the activation of IP3R in the ER. Conversely, SOCE is initiated in the ER by Ca2+-sensing stromal interaction molecule (STIM) proteins, which then interact with PM channels Orai1 and TRPC1 to activate Ca2+ entry. This review will address how ER-PM junctions serve a central role in agonist regulation of SOCE.
Collapse
Affiliation(s)
- Hwei Ling Ong
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda Maryland 20892
| | - Indu Suresh Ambudkar
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda Maryland 20892
| |
Collapse
|
27
|
Type 3 Inositol 1,4,5-Trisphosphate Receptor is a Crucial Regulator of Calcium Dynamics Mediated by Endoplasmic Reticulum in HEK Cells. Cells 2020; 9:cells9020275. [PMID: 31979185 PMCID: PMC7072192 DOI: 10.3390/cells9020275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/11/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Being the largest the Ca2+ store in mammalian cells, endoplasmic reticulum (ER)-mediated Ca2+ signalling often involves both Ca2+ release via inositol 1, 4, 5-trisphosphate receptors (IP3R) and store operated Ca2+ entries (SOCE) through Ca2+ release activated Ca2+ (CRAC) channels on plasma membrane (PM). IP3Rs are functionally coupled with CRAC channels and other Ca2+ handling proteins. However, it still remains less well defined as to whether IP3Rs could regulate ER-mediated Ca2+ signals independent of their Ca2+ releasing ability. To address this, we generated IP3Rs triple and double knockout human embryonic kidney (HEK) cell lines (IP3Rs-TKO, IP3Rs-DKO), and systemically examined ER Ca2+ dynamics and CRAC channel activity in these cells. The results showed that the rate of ER Ca2+ leakage and refilling, as well as SOCE were all significantly reduced in IP3Rs-TKO cells. And these TKO effects could be rescued by over-expression of IP3R3. Further, results showed that the diminished SOCE was caused by NEDD4L-mediated ubiquitination of Orai1 protein. Together, our findings indicate that IP3R3 is one crucial player in coordinating ER-mediated Ca2+ signalling.
Collapse
|
28
|
ER Ca 2+ release and store-operated Ca 2+ entry - partners in crime or independent actors in oncogenic transformation? Cell Calcium 2019; 82:102061. [PMID: 31394337 DOI: 10.1016/j.ceca.2019.102061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Ca2+ is a pleiotropic messenger that controls life and death decisions from fertilisation until death. Cellular Ca2+ handling mechanisms show plasticity and are remodelled throughout life to meet the changing needs of the cell. In turn, as the demands on a cell alter, for example through a change in its niche environment or its functional requirements, Ca2+ handling systems may be targeted to sustain the remodelled cellular state. Nowhere is this more apparent than in cancer. Oncogenic transformation is a multi-stage process during which normal cells become progressively differentiated towards a cancerous state that is principally associated with enhanced proliferation and avoidance of death. Ca2+ signalling is intimately involved in almost all aspects of the life of a transformed cell and alterations in Ca2+ handling have been observed in cancer. Moreover, this remodelling of Ca2+ signalling pathways is also required in some cases to sustain the transformed phenotype. As such, Ca2+ handling is hijacked by oncogenic processes to deliver and maintain the transformed phenotype. Central to generation of intracellular Ca2+ signals is the release of Ca2+ from the endoplasmic reticulum intracellular (ER) Ca2+ store via inositol 1,4,5-trisphosphate receptors (InsP3Rs). Upon depletion of ER Ca2+, store-operated Ca2+ entry (SOCE) across the plasma membrane occurs via STIM-gated Orai channels. SOCE serves to both replenish stores but also sustain Ca2+ signalling events. Here, we will discuss the role and regulation of these two signalling pathways and their interplay in oncogenic transformation.
Collapse
|
29
|
Emrich SM, Yoast RE, Xin P, Zhang X, Pathak T, Nwokonko R, Gueguinou MF, Subedi KP, Zhou Y, Ambudkar IS, Hempel N, Machaca K, Gill DL, Trebak M. Cross-talk between N-terminal and C-terminal domains in stromal interaction molecule 2 (STIM2) determines enhanced STIM2 sensitivity. J Biol Chem 2019; 294:6318-6332. [PMID: 30824535 DOI: 10.1074/jbc.ra118.006801] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous pathway for Ca2+ influx across the plasma membrane (PM). SOCE is mediated by the endoplasmic reticulum (ER)-associated Ca2+-sensing proteins stromal interaction molecule 1 (STIM1) and STIM2, which transition into an active conformation in response to ER Ca2+ store depletion, thereby interacting with and gating PM-associated ORAI1 channels. Although structurally homologous, STIM1 and STIM2 generate distinct Ca2+ signatures in response to varying strengths of agonist stimulation. The physiological functions of these Ca2+ signatures, particularly under native conditions, remain unclear. To investigate the structural properties distinguishing STIM1 and STIM2 activation of ORAI1 channels under native conditions, here we used CRISPR/Cas9 to generate STIM1-/-, STIM2-/-, and STIM1/2-/- knockouts in HEK293 and colorectal HCT116 cells. We show that depending on cell type, STIM2 can significantly sustain SOCE in response to maximal store depletion. Utilizing the SOCE modifier 2-aminoethoxydiphenyl borate (2-APB), we demonstrate that 2-APB-activated store-independent Ca2+ entry is mediated exclusively by endogenous STIM2. Using variants that either stabilize or disrupt intramolecular interactions of STIM C termini, we show that the increased flexibility of the STIM2 C terminus contributes to its selective store-independent activation by 2-APB. However, STIM1 variants with enhanced flexibility in the C terminus failed to support its store-independent activation. STIM1/STIM2 chimeric constructs indicated that coordination between N-terminal sensitivity and C-terminal flexibility is required for specific store-independent STIM2 activation. Our results clarify the structural determinants underlying activation of specific STIM isoforms, insights that are potentially useful for isoform-selective drug targeting.
Collapse
Affiliation(s)
- Scott M Emrich
- From the Departments of Cellular and Molecular Physiology and
| | - Ryan E Yoast
- From the Departments of Cellular and Molecular Physiology and
| | - Ping Xin
- From the Departments of Cellular and Molecular Physiology and
| | - Xuexin Zhang
- From the Departments of Cellular and Molecular Physiology and
| | | | - Robert Nwokonko
- From the Departments of Cellular and Molecular Physiology and
| | | | - Krishna P Subedi
- the Secretory Physiology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Yandong Zhou
- From the Departments of Cellular and Molecular Physiology and
| | - Indu S Ambudkar
- the Secretory Physiology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Nadine Hempel
- Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Khaled Machaca
- the Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Donald L Gill
- From the Departments of Cellular and Molecular Physiology and
| | - Mohamed Trebak
- From the Departments of Cellular and Molecular Physiology and
| |
Collapse
|
30
|
Johnson M, Trebak M. ORAI channels in cellular remodeling of cardiorespiratory disease. Cell Calcium 2019; 79:1-10. [PMID: 30772685 DOI: 10.1016/j.ceca.2019.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 01/08/2023]
Abstract
Cardiorespiratory disease, which includes systemic arterial hypertension, restenosis, atherosclerosis, pulmonary arterial hypertension, asthma, and chronic obstructive pulmonary disease (COPD) are highly prevalent and devastating diseases with limited therapeutic modalities. A common pathophysiological theme to these diseases is cellular remodeling, which is contributed by changes in expression and activation of ion channels critical for either excitability or growth. Calcium (Ca2+) signaling and specifically ORAI Ca2+ channels have emerged as significant regulators of smooth muscle, endothelial, epithelial, platelet, and immune cell remodeling. This review details the dysregulation of ORAI in cardiorespiratory diseases, and how this dysregulation of ORAI contributes to cellular remodeling.
Collapse
Affiliation(s)
- Martin Johnson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|