1
|
Stoll FM, Rudebeck PH. Decision-making shapes dynamic inter-areal communication within macaque ventral frontal cortex. Curr Biol 2024; 34:4526-4538.e5. [PMID: 39293441 PMCID: PMC11461104 DOI: 10.1016/j.cub.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Macaque ventral frontal cortex is composed of a set of anatomically heterogeneous and highly interconnected areas. Collectively, these areas have been implicated in many higher-level affective and cognitive processes, most notably the adaptive control of decision-making. Despite this appreciation, little is known about how subdivisions of ventral frontal cortex dynamically interact with each other during decision-making. Here, we assessed functional interactions between areas by analyzing the activity of thousands of single neurons recorded from eight anatomically defined subdivisions of ventral frontal cortex in macaques performing a visually guided two-choice probabilistic task for different fruit juices. We found that the onset of stimuli and reward delivery globally increased communication between all parts of ventral frontal cortex. Inter-areal communication was, however, temporally specific, occurred through unique activity subspaces between areas, and depended on the encoding of decision variables. In particular, areas 12l and 12o showed the highest connectivity with other areas while being more likely to receive information from other parts of ventral frontal cortex than to send it. This pattern of functional connectivity suggests a role for these two areas in integrating diverse sources of information during decision processes. Taken together, our work reveals the specific patterns of inter-areal communication between anatomically connected subdivisions of ventral frontal cortex that are dynamically engaged during decision-making.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Eldridge MAG, Mohanty A, Hines BE, Kaskan PM, Murray EA. Aspiration removal of orbitofrontal cortex disrupts cholinergic fibers of passage to anterior cingulate cortex in rhesus macaques. Brain Struct Funct 2024; 229:1011-1019. [PMID: 38502331 PMCID: PMC11003915 DOI: 10.1007/s00429-024-02776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
The study of anthropoid nonhuman primates has provided valuable insights into frontal cortex function in humans, as these primates share similar frontal anatomical subdivisions (Murray et al. 2011). Causal manipulation studies have been instrumental in advancing our understanding of this area. One puzzling finding is that macaques with bilateral aspiration removals of orbitofrontal cortex (OFC) are impaired on tests of cognitive flexibility and emotion regulation, whereas those with bilateral excitotoxic lesions of OFC are not (Rudebeck et al. 2013). This discrepancy is attributed to the inadvertent disruption of fibers of passage by aspiration lesions but not by excitotoxic lesions. Which fibers of passage are responsible for the impairments observed? One candidate is cholinergic fibers originating in the nucleus basalis magnocellularis (NBM) and passing nearby or through OFC on their way to other frontal cortex regions (Kitt et al. 1987). To investigate this possibility, we performed unilateral aspiration lesions of OFC in three macaques, and then compared cholinergic innervation of the anterior cingulate cortex (ACC) between hemispheres. Histological assessment revealed diminished cholinergic innervation in the ACC of hemispheres with OFC lesions relative to intact hemispheres. This finding indicates that aspiration lesions of the OFC disrupt cholinergic fibers of passage, and suggests the possibility that loss of cholinergic inputs to ACC contributes to the impairments in cognitive flexibility and emotion regulation observed after aspiration but not excitotoxic lesions of OFC.
Collapse
Affiliation(s)
- M A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - A Mohanty
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - B E Hines
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - P M Kaskan
- Leo M. Davidoff Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - E A Murray
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Meng X, Lin Q, Zeng X, Jiang J, Li M, Luo X, Chen K, Wu H, Hu Y, Liu C, Su B. Brain developmental and cortical connectivity changes in transgenic monkeys carrying the human-specific duplicated gene SRGAP2C. Natl Sci Rev 2023; 10:nwad281. [PMID: 38090550 PMCID: PMC10712708 DOI: 10.1093/nsr/nwad281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024] Open
Abstract
Human-specific duplicated genes contributed to phenotypic innovations during the origin of our own species, such as an enlarged brain and highly developed cognitive abilities. While prior studies on transgenic mice carrying the human-specific SRGAP2C gene have shown enhanced brain connectivity, the relevance to humans remains unclear due to the significant evolutionary gap between humans and rodents. In this study, to investigate the phenotypic outcome and underlying genetic mechanism of SRGAP2C, we generated transgenic cynomolgus macaques (Macaca fascicularis) carrying the human-specific SRGAP2C gene. Longitudinal MRI imaging revealed delayed brain development with region-specific volume changes, accompanied by altered myelination levels in the temporal and occipital regions. On a cellular level, the transgenic monkeys exhibited increased deep-layer neurons during fetal neurogenesis and delayed synaptic maturation in adolescence. Moreover, transcriptome analysis detected neotenic expression in molecular pathways related to neuron ensheathment, synaptic connections, extracellular matrix and energy metabolism. Cognitively, the transgenic monkeys demonstrated improved motor planning and execution skills. Together, our findings provide new insights into the mechanisms by which the newly evolved gene shapes the unique development and circuitry of the human brain.
Collapse
Affiliation(s)
- Xiaoyu Meng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Lin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xuerui Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Min Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xin Luo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Kaimin Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Haixu Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Cirong Liu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
4
|
Howard AFD, Huszar IN, Smart A, Cottaar M, Daubney G, Hanayik T, Khrapitchev AA, Mars RB, Mollink J, Scott C, Sibson NR, Sallet J, Jbabdi S, Miller KL. An open resource combining multi-contrast MRI and microscopy in the macaque brain. Nat Commun 2023; 14:4320. [PMID: 37468455 PMCID: PMC10356772 DOI: 10.1038/s41467-023-39916-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
Understanding brain structure and function often requires combining data across different modalities and scales to link microscale cellular structures to macroscale features of whole brain organisation. Here we introduce the BigMac dataset, a resource combining in vivo MRI, extensive postmortem MRI and multi-contrast microscopy for multimodal characterisation of a single whole macaque brain. The data spans modalities (MRI and microscopy), tissue states (in vivo and postmortem), and four orders of spatial magnitude, from microscopy images with micrometre or sub-micrometre resolution, to MRI signals on the order of millimetres. Crucially, the MRI and microscopy images are carefully co-registered together to facilitate quantitative multimodal analyses. Here we detail the acquisition, curation, and first release of the data, that together make BigMac a unique, openly-disseminated resource available to researchers worldwide. Further, we demonstrate example analyses and opportunities afforded by the data, including improvement of connectivity estimates from ultra-high angular resolution diffusion MRI, neuroanatomical insight provided by polarised light imaging and myelin-stained histology, and the joint analysis of MRI and microscopy data for reconstruction of the microscopy-inspired connectome. All data and code are made openly available.
Collapse
Affiliation(s)
- Amy F D Howard
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Istvan N Huszar
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Adele Smart
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Michiel Cottaar
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Greg Daubney
- Wellcome Centre for Integrative Neuroimaging, Experimental Psychology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Taylor Hanayik
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Jeroen Mollink
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Connor Scott
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, Experimental Psychology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Rolls ET. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Struct Funct 2023; 228:1201-1257. [PMID: 37178232 PMCID: PMC10250292 DOI: 10.1007/s00429-023-02644-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
The orbitofrontal cortex and amygdala are involved in emotion and in motivation, but the relationship between these functions performed by these brain structures is not clear. To address this, a unified theory of emotion and motivation is described in which motivational states are states in which instrumental goal-directed actions are performed to obtain rewards or avoid punishers, and emotional states are states that are elicited when the reward or punisher is or is not received. This greatly simplifies our understanding of emotion and motivation, for the same set of genes and associated brain systems can define the primary or unlearned rewards and punishers such as sweet taste or pain. Recent evidence on the connectivity of human brain systems involved in emotion and motivation indicates that the orbitofrontal cortex is involved in reward value and experienced emotion with outputs to cortical regions including those involved in language, and is a key brain region involved in depression and the associated changes in motivation. The amygdala has weak effective connectivity back to the cortex in humans, and is implicated in brainstem-mediated responses to stimuli such as freezing and autonomic activity, rather than in declarative emotion. The anterior cingulate cortex is involved in learning actions to obtain rewards, and with the orbitofrontal cortex and ventromedial prefrontal cortex in providing the goals for navigation and in reward-related effects on memory consolidation mediated partly via the cholinergic system.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
6
|
Home alone: A population neuroscience investigation of brain morphology substrates. Neuroimage 2023; 269:119936. [PMID: 36781113 DOI: 10.1016/j.neuroimage.2023.119936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
As a social species, ready exchange with peers is a pivotal asset - our "social capital". Yet, single-person households have come to pervade metropolitan cities worldwide, with unknown consequences in the long run. Here, we systematically explore the morphological manifestations associated with singular living in ∼40,000 UK Biobank participants. The uncovered population-level signature spotlights the highly associative default mode network, in addition to findings such as in the amygdala central, cortical and corticoamygdaloid nuclei groups, as well as the hippocampal fimbria and dentate gyrus. Both positive effects, equating to greater gray matter volume associated with living alone, and negative effects, which can be interpreted as greater gray matter associations with not living alone, were found across the cortex and subcortical structures Sex-stratified analyses revealed male-specific neural substrates, including somatomotor, saliency and visual systems, while female-specific neural substrates centered on the dorsomedial prefrontal cortex. In line with our demographic profiling results, the discovered neural pattern of living alone is potentially linked to alcohol and tobacco consumption, anxiety, sleep quality as well as daily TV watching. The persistent trend for solitary living will require new answers from public-health decision makers. SIGNIFICANCE STATEMENT: Living alone has profound consequences for mental and physical health. Despite this, there has been a rapid increase in single-person households worldwide, with the long-term consequences yet unknown. In the largest study of its kind, we investigate how the objective lack of everyday social interaction, through living alone, manifests in the brain. Our population neuroscience approach uncovered a gray matter signature that converged on the 'default network', alongside targeted subcortical, sex and demographic profiling analyses. The human urge for social relationships is highlighted by the evolving COVID-19 pandemic. Better understanding of how social isolation relates to the brain will influence health and social policy decision-making of pandemic planning, as well as social interventions in light of global shifts in houseful structures.
Collapse
|
7
|
Wittmann MK, Scheuplein M, Gibbons SG, Noonan MP. Local and global reward learning in the lateral frontal cortex show differential development during human adolescence. PLoS Biol 2023; 21:e3002010. [PMID: 36862726 PMCID: PMC10013901 DOI: 10.1371/journal.pbio.3002010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 03/14/2023] [Accepted: 01/20/2023] [Indexed: 03/03/2023] Open
Abstract
Reward-guided choice is fundamental for adaptive behaviour and depends on several component processes supported by prefrontal cortex. Here, across three studies, we show that two such component processes, linking reward to specific choices and estimating the global reward state, develop during human adolescence and are linked to the lateral portions of the prefrontal cortex. These processes reflect the assignment of rewards contingently to local choices, or noncontingently, to choices that make up the global reward history. Using matched experimental tasks and analysis platforms, we show the influence of both mechanisms increase during adolescence (study 1) and that lesions to lateral frontal cortex (that included and/or disconnected both orbitofrontal and insula cortex) in human adult patients (study 2) and macaque monkeys (study 3) impair both local and global reward learning. Developmental effects were distinguishable from the influence of a decision bias on choice behaviour, known to depend on medial prefrontal cortex. Differences in local and global assignments of reward to choices across adolescence, in the context of delayed grey matter maturation of the lateral orbitofrontal and anterior insula cortex, may underlie changes in adaptive behaviour.
Collapse
Affiliation(s)
- Marco K. Wittmann
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Department of Experimental Psychology, University College London, London, United Kingdom
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, United Kingdom
| | - Maximilian Scheuplein
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- Institute of Education and Child Studies, Leiden University, Leiden, the Netherlands
| | - Sophie G. Gibbons
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - MaryAnn P. Noonan
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- Department of Psychology, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Ho AMC, Peyton MP, Scaletty SJ, Trapp S, Schreiber A, Madden BJ, Choi DS, Matthews DB. Chronic Intermittent Ethanol Exposure Alters Behavioral Flexibility in Aged Rats Compared to Adult Rats and Modifies Protein and Protein Pathways Related to Alzheimer's Disease. ACS OMEGA 2022; 7:46260-46276. [PMID: 36570296 PMCID: PMC9774340 DOI: 10.1021/acsomega.2c04528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/17/2022] [Indexed: 05/13/2023]
Abstract
Repeated excessive alcohol consumption increases the risk of developing cognitive decline and dementia. Hazardous drinking among older adults further increases such vulnerabilities. To investigate whether alcohol induces cognitive deficits in older adults, we performed a chronic intermittent ethanol exposure paradigm (ethanol or water gavage every other day 10 times) in 8-week-old young adult and 70-week-old aged rats. While spatial memory retrieval ascertained by probe trials in the Morris water maze was not significantly different between ethanol-treated and water-treated rats in both age groups after the fifth and tenth gavages, behavioral flexibility was impaired in ethanol-treated rats compared to water-treated rats in the aged group but not in the young adult group. We then examined ethanol-treatment-associated hippocampal proteomic and phosphoproteomic differences distinct in the aged rats. We identified several ethanol-treatment-related proteins, including the upregulations of the Prkcd protein level, several of its phosphosites, and its kinase activity and downregulation in the Camk2a protein level. Our bioinformatic analysis revealed notable changes in pathways involved in neurotransmission regulation, synaptic plasticity, neuronal apoptosis, and insulin receptor signaling. In conclusion, our behavioral and proteomic results identified several candidate proteins and pathways potentially associated with alcohol-induced cognitive decline in aged adults.
Collapse
Affiliation(s)
- Ada Man-Choi Ho
- Department
of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Mina P. Peyton
- Bioinformatics
and Computational Biology Program, University
of Minnesota, Minneapolis, Minnesota55455, United States
| | - Samantha J. Scaletty
- Department
of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Sarah Trapp
- Department
of Psychology, University of Wisconsin—Eau
Claire, Eau Claire, Wisconsin54701, United States
| | - Areonna Schreiber
- Department
of Psychology, University of Wisconsin—Eau
Claire, Eau Claire, Wisconsin54701, United States
| | - Benjamin J. Madden
- Mayo
Clinic Proteomics Core, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Doo-Sup Choi
- Department
of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota55905, United States
- Department
of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Douglas B. Matthews
- Department
of Psychology, University of Wisconsin—Eau
Claire, Eau Claire, Wisconsin54701, United States
| |
Collapse
|
9
|
Kenwood MM, Oler JA, Tromp DPM, Fox AS, Riedel MK, Roseboom PH, Brunner KG, Aggarwal N, Murray EA, Kalin NH. Prefrontal influences on the function of the neural circuitry underlying anxious temperament in primates. OXFORD OPEN NEUROSCIENCE 2022; 2:kvac016. [PMID: 37583705 PMCID: PMC10426770 DOI: 10.1093/oons/kvac016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 08/17/2023]
Abstract
Anxious temperament, characterized by heightened behavioral and physiological reactivity to potential threat, is an early childhood risk factor for the later development of stress-related psychopathology. Using a well-validated nonhuman primate model, we tested the hypothesis that the prefrontal cortex (PFC) is critical in regulating the expression of primate anxiety-like behavior, as well as the function of subcortical components of the anxiety-related neural circuit. We performed aspiration lesions of a narrow 'strip' of the posterior orbitofrontal cortex (OFC) intended to disrupt both cortex and axons entering, exiting and coursing through the pOFC, particularly those of the uncinate fasciculus (UF), a white matter tract that courses adjacent to and through this region. The OFC is of particular interest as a potential regulatory region because of its extensive reciprocal connections with amygdala, other subcortical structures and other frontal lobe regions. We validated this lesion method by demonstrating marked lesion-induced decreases in the microstructural integrity of the UF, which contains most of the fibers that connect the ventral PFC with temporal lobe structures as well as with other frontal regions. While the lesions resulted in modest decreases in threat-related behavior, they substantially decreased metabolism in components of the circuit underlying threat processing. These findings provide evidence for the importance of structural connectivity between the PFC and key subcortical structures in regulating the functions of brain regions known to be involved in the adaptive and maladaptive expression of anxiety.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kevin G Brunner
- Wisconsin National Primate Research Center, Univ. of Wisconsin, Madison, WI
| | | | - Elisabeth A Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, NIMH, Bethesda, MD
| | - Ned H Kalin
- Psychiatry, Univ. of Wisconsin, Madison, WI
- Wisconsin National Primate Research Center, Univ. of Wisconsin, Madison, WI
| |
Collapse
|
10
|
Chronic Intermittent Ethanol Administration during Adolescence Produces Sex Dependent Impairments in Behavioral Flexibility and Survivability. Brain Sci 2022; 12:brainsci12050606. [PMID: 35624993 PMCID: PMC9139058 DOI: 10.3390/brainsci12050606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic intermittent ethanol exposure during adolescence produces behavioral impairments and neurobiological changes that can last into young adulthood. One such behavioral impairment is reduced behavioral flexibility, a behavioral impairment that has been correlated with the risk for increased ethanol intake. In the current study, we investigated if chronic intermittent ethanol exposure during adolescence alters cognition, including behavioral flexibility, over a 22-month testing period. Female and male rats were treated with either 3.0 g/kg or 5.0 g/kg ethanol via gavage in a chronic intermittent fashion during adolescence and then tested every 4 to 5 months on a series of cognitive measures in the Morris water maze. Chronic intermittent ethanol selectively impaired behavioral flexibility in both female and male rats, although the pattern of results was different as a function of sex. In addition, female, but not male, rats were impaired in a short-term relearning test. Finally, male rats administered ethanol during adolescence were significantly more likely to not survive the 22-month experiment compared to female rats administered ethanol during adolescence. The current results demonstrate that adolescence is a unique period of development where chronic intermittent ethanol exposure produces long-lasting, selective cognitive impairments across the lifespan.
Collapse
|
11
|
Trambaiolli LR, Peng X, Lehman JF, Linn G, Russ BE, Schroeder CE, Liu H, Haber SN. Anatomical and functional connectivity support the existence of a salience network node within the caudal ventrolateral prefrontal cortex. eLife 2022; 11:e76334. [PMID: 35510840 PMCID: PMC9106333 DOI: 10.7554/elife.76334] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Three large-scale networks are considered essential to cognitive flexibility: the ventral and dorsal attention (VANet and DANet) and salience (SNet) networks. The ventrolateral prefrontal cortex (vlPFC) is a known component of the VANet and DANet, but there is a gap in the current knowledge regarding its involvement in the SNet. Herein, we used a translational and multimodal approach to demonstrate the existence of a SNet node within the vlPFC. First, we used tract-tracing methods in non-human primates (NHP) to quantify the anatomical connectivity strength between different vlPFC areas and the frontal and insular cortices. The strongest connections were with the dorsal anterior cingulate cortex (dACC) and anterior insula (AI) - the main cortical SNet nodes. These inputs converged in the caudal area 47/12, an area that has strong projections to subcortical structures associated with the SNet. Second, we used resting-state functional MRI (rsfMRI) in NHP data to validate this SNet node. Third, we used rsfMRI in the human to identify a homologous caudal 47/12 region that also showed strong connections with the SNet cortical nodes. Taken together, these data confirm a SNet node in the vlPFC, demonstrating that the vlPFC contains nodes for all three cognitive networks: VANet, DANet, and SNet. Thus, the vlPFC is in a position to switch between these three networks, pointing to its key role as an attentional hub. Its additional connections to the orbitofrontal, dorsolateral, and premotor cortices, place the vlPFC at the center for switching behaviors based on environmental stimuli, computing value, and cognitive control.
Collapse
Affiliation(s)
- Lucas R Trambaiolli
- McLean Hospital, Harvard Medical School, Belmont, United States
- University of Rochester School of Medicine & Dentistry, Rochester, United States
| | - Xiaolong Peng
- Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Medical University of South Carolina, Charleston, United States
| | - Julia F Lehman
- University of Rochester School of Medicine & Dentistry, Rochester, United States
| | - Gary Linn
- Translational Neuropscienc lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, United States
| | - Brian E Russ
- Translational Neuropscienc lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, United States
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States
- Department of Psychiatry, New York University at Langone, New York, United States
| | - Charles E Schroeder
- Translational Neuropscienc lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, United States
- Department of Psychiatry, Columbia University Medical Center, New York, United States
| | - Hesheng Liu
- Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Medical University of South Carolina, Charleston, United States
| | - Suzanne N Haber
- McLean Hospital, Harvard Medical School, Belmont, United States
- University of Rochester School of Medicine & Dentistry, Rochester, United States
| |
Collapse
|
12
|
Cheng X, Li Y, Cui X, Cheng H, Li C, Fu L, Jiang J, Hu Z, Ke X. Atypical Neural Responses of Cognitive Flexibility in Parents of Children With Autism Spectrum Disorder. Front Neurosci 2022; 15:747273. [PMID: 34975368 PMCID: PMC8719598 DOI: 10.3389/fnins.2021.747273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Impaired cognitive flexibility has been repeatedly demonstrated in autism spectrum disorder (ASD). There is strong evidence for genetic involvement in ASD. First-degree relatives of individuals with ASD may show mild deficits in cognitive inflexibility. The present study investigated cognitive flexibility and its neuroelectrophysiological mechanisms in first-degree relatives of individuals with ASD to assess its potential familiality. Forty-five biological parents of individuals/children with ASD (pASD) and thirty-one biological parents of typically developing individuals/children (pTD), matched by gender, age, and IQ, were enrolled. The broad autism phenotype questionnaire (BAPQ) and cognitive flexibility inventory (CFI) were used to quantitatively assess autistic traits and cognitive flexibility in daily life, respectively. The task-switching paradigm was used to evaluate the behavioral flexibility in a structured assessment situation. Event-related potentials (ERPs) induced by this paradigm were also collected. Results showed that compared with the pTD group, the pASD group had lower CFI scores (t = −2.756, p < 0.01), while both groups showed an equivalent “switch cost” in the task-switching task (p > 0.05). Compared with the pTD group, the pASD group induced greater N2 amplitude at F3, F4, Fz, and C4 (F = 3.223, p < 0.05), while P3 amplitude and latency did not differ between the two groups. In addition, there was a significant negative correlation between the CFI total scores and BAPQ total scores in the pASD group (r = −0.734, p < 0.01). After controlling for age and IQ, the N2 amplitude in the frontal lobe of pASD was negatively correlated with the CFI total scores under the repetition sequence (r = −0.304, p = 0.053). These results indicated that pASD had deficit in cognitive flexibility at the self-reported and neurological levels. The cognitive flexibility difficulties of parents of children with ASD were related to autistic traits. These findings support that cognitive flexibility is most likely a neurocognitive endophenotype of ASD, which is worthy of further investigation.
Collapse
Affiliation(s)
- Xin Cheng
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Yu Li
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiwen Cui
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Hong Cheng
- Physical Diagnostic Department, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chunyan Li
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Linyan Fu
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jiying Jiang
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhenyu Hu
- Department of Child Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Xiaoyan Ke
- The Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Monosov IE, Rushworth MFS. Interactions between ventrolateral prefrontal and anterior cingulate cortex during learning and behavioural change. Neuropsychopharmacology 2022; 47:196-210. [PMID: 34234288 PMCID: PMC8617208 DOI: 10.1038/s41386-021-01079-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/27/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Hypotheses and beliefs guide credit assignment - the process of determining which previous events or actions caused an outcome. Adaptive hypothesis formation and testing are crucial in uncertain and changing environments in which associations and meanings are volatile. Despite primates' abilities to form and test hypotheses, establishing what is causally responsible for the occurrence of particular outcomes remains a fundamental challenge for credit assignment and learning. Hypotheses about what surprises are due to stochasticity inherent in an environment as opposed to real, systematic changes are necessary for identifying the environment's predictive features, but are often hard to test. We review evidence that two highly interconnected frontal cortical regions, anterior cingulate cortex and ventrolateral prefrontal area 47/12o, provide a biological substrate for linking two crucial components of hypothesis-formation and testing: the control of information seeking and credit assignment. Neuroimaging, targeted disruptions, and neurophysiological studies link an anterior cingulate - 47/12o circuit to generation of exploratory behaviour, non-instrumental information seeking, and interpretation of subsequent feedback in the service of credit assignment. Our observations support the idea that information seeking and credit assignment are linked at the level of neural circuits and explain why this circuit is important for ensuring behaviour is flexible and adaptive.
Collapse
Affiliation(s)
- Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
- Department of Neurosurgery, Washington University, St. Louis, MO, USA.
- Pain Center, Washington University, St. Louis, MO, USA.
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Folloni D, Fouragnan E, Wittmann MK, Roumazeilles L, Tankelevitch L, Verhagen L, Attali D, Aubry JF, Sallet J, Rushworth MFS. Ultrasound modulation of macaque prefrontal cortex selectively alters credit assignment-related activity and behavior. SCIENCE ADVANCES 2021; 7:eabg7700. [PMID: 34910510 PMCID: PMC8673758 DOI: 10.1126/sciadv.abg7700] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 10/28/2021] [Indexed: 05/30/2023]
Abstract
Credit assignment is the association of specific instances of reward to the specific events, such as a particular choice, that caused them. Without credit assignment, choice values reflect an approximate estimate of how good the environment was when the choice was made—the global reward state—rather than exactly which outcome the choice caused. Combined transcranial ultrasound stimulation (TUS) and functional magnetic resonance imaging in macaques demonstrate credit assignment–related activity in prefrontal area 47/12o, and when this signal was disrupted with TUS, choice value representations across the brain were impaired. As a consequence, behavior was no longer guided by choice value, and decision-making was poorer. By contrast, global reward state–related activity in the adjacent anterior insula remained intact and determined decision-making after prefrontal disruption.
Collapse
Affiliation(s)
- Davide Folloni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
| | - Elsa Fouragnan
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
- School of Psychology, University of Plymouth, Plymouth, UK
| | - Marco K. Wittmann
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
| | - Lea Roumazeilles
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
| | - Lev Tankelevitch
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6525 HR, Netherlands
| | - David Attali
- Physics for Medicine Paris, ESPCI Paris, INSERM, CNRS, PSL Research University, Paris, France
- GHU PARIS Psychiatrie and Neurosciences, site Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire, Paris 15, F-75014 Paris, France
- Université de Paris, F-75005 Paris, France
| | - Jean-François Aubry
- Physics for Medicine Paris, ESPCI Paris, INSERM, CNRS, PSL Research University, Paris, France
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 18 Avenue Doyen Lepine, 69500 Bron, France
| | - Matthew F. S. Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Ainsworth M, Sallet J, Joly O, Kyriazis D, Kriegeskorte N, Duncan J, Schüffelgen U, Rushworth MFS, Bell AH. Viewing Ambiguous Social Interactions Increases Functional Connectivity between Frontal and Temporal Nodes of the Social Brain. J Neurosci 2021; 41:6070-6086. [PMID: 34099508 PMCID: PMC8276745 DOI: 10.1523/jneurosci.0870-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 11/25/2022] Open
Abstract
Social behavior is coordinated by a network of brain regions, including those involved in the perception of social stimuli and those involved in complex functions, such as inferring perceptual and mental states and controlling social interactions. The properties and function of many of these regions in isolation are relatively well understood, but less is known about how these regions interact while processing dynamic social interactions. To investigate whether the functional connectivity between brain regions is modulated by social context, we collected fMRI data from male monkeys (Macaca mulatta) viewing videos of social interactions labeled as "affiliative," "aggressive," or "ambiguous." We show activation related to the perception of social interactions along both banks of the superior temporal sulcus, parietal cortex, medial and lateral frontal cortex, and the caudate nucleus. Within this network, we show that fronto-temporal functional connectivity is significantly modulated by social context. Crucially, we link the observation of specific behaviors to changes in functional connectivity within our network. Viewing aggressive behavior was associated with a limited increase in temporo-temporal and a weak increase in cingulate-temporal connectivity. By contrast, viewing interactions where the outcome was uncertain was associated with a pronounced increase in temporo-temporal, and cingulate-temporal functional connectivity. We hypothesize that this widespread network synchronization occurs when cingulate and temporal areas coordinate their activity when more difficult social inferences are being made.SIGNIFICANCE STATEMENT Processing social information from our environment requires the activation of several brain regions, which are concentrated within the frontal and temporal lobes. However, little is known about how these areas interact to facilitate the processing of different social interactions. Here we show that functional connectivity within and between the frontal and temporal lobes is modulated by social context. Specifically, we demonstrate that viewing social interactions where the outcome was unclear is associated with increased synchrony within and between the cingulate cortex and temporal cortices. These findings suggest that the coordination between the cingulate and temporal cortices is enhanced when more difficult social inferences are being made.
Collapse
Affiliation(s)
- Matthew Ainsworth
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom, CB2 7EF
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, OX2 6GG
| | - Jérôme Sallet
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, OX2 6GG
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom, OX3 9DU
- Inserm, Stem Cell and Brain Research Institute U1208, Université Lyon 1, 69500 Bron, France
| | - Olivier Joly
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom, CB2 7EF
| | - Diana Kyriazis
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom, CB2 7EF
| | - Nikolaus Kriegeskorte
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom, CB2 7EF
- Zuckerman Mind Brain Institute, Columbia University, New York, New York, NY 10027
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom, CB2 7EF
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, OX2 6GG
| | - Urs Schüffelgen
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, OX2 6GG
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom, OX3 9DU
| | - Matthew F S Rushworth
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, OX2 6GG
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom, OX3 9DU
| | - Andrew H Bell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom, CB2 7EF
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, OX2 6GG
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom, OX3 9DU
| |
Collapse
|
16
|
Xing L, Kubik-Zahorodna A, Namba T, Pinson A, Florio M, Prochazka J, Sarov M, Sedlacek R, Huttner WB. Expression of human-specific ARHGAP11B in mice leads to neocortex expansion and increased memory flexibility. EMBO J 2021; 40:e107093. [PMID: 33938018 PMCID: PMC8246068 DOI: 10.15252/embj.2020107093] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Neocortex expansion during human evolution provides a basis for our enhanced cognitive abilities. Yet, which genes implicated in neocortex expansion are actually responsible for higher cognitive abilities is unknown. The expression of human-specific ARHGAP11B in embryonic/foetal mouse, ferret and marmoset neocortex was previously found to promote basal progenitor proliferation, upper-layer neuron generation and neocortex expansion during development, features commonly thought to contribute to increased cognitive abilities. However, a key question is whether this phenotype persists into adulthood and if so, whether cognitive abilities are indeed increased. Here, we generated a transgenic mouse line with physiological ARHGAP11B expression that exhibits increased neocortical size and upper-layer neuron numbers persisting into adulthood. Adult ARHGAP11B-transgenic mice showed altered neurobehaviour, notably increased memory flexibility and a reduced anxiety level. Our data are consistent with the notion that neocortex expansion by ARHGAP11B, a gene implicated in human evolution, underlies some of the altered neurobehavioural features observed in the transgenic mice, such as the increased memory flexibility, a neocortex-associated trait, with implications for the increase in cognitive abilities during human evolution.
Collapse
Affiliation(s)
- Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Agnieszka Kubik-Zahorodna
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anneline Pinson
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marta Florio
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
17
|
Barreiros IV, Ishii H, Walton ME, Panayi MC. Defining an orbitofrontal compass: Functional and anatomical heterogeneity across anterior-posterior and medial-lateral axes. Behav Neurosci 2021; 135:165-173. [PMID: 34060873 PMCID: PMC7613671 DOI: 10.1037/bne0000442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/10/2020] [Accepted: 11/28/2020] [Indexed: 11/15/2022]
Abstract
The orbitofrontal cortex (OFC) plays a critical role in the flexible control of behaviors and has been the focus of increasing research interest. However, there have been a number of controversies around the exact theoretical role of the OFC. One potential source of these issues is the comparison of evidence from different studies, particularly across species, which focus on different specific sub-regions within the OFC. Furthermore, there is emerging evidence that there may be functional diversity across the OFC which may account for these theoretical differences. Therefore, in this review we consider evidence supporting functional heterogeneity within the OFC and how it relates to underlying anatomical heterogeneity. We highlight the importance of anatomical and functional distinctions within the traditionally defined OFC subregions across the medial-lateral axis, which are often not differentiated for practical and historical reasons. We then consider emerging evidence of even finer-grained distinctions within these defined subregions along the anterior-posterior axis. These fine-grained anatomical considerations reveal a pattern of dissociable, but often complementary functions within the OFC. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Hironori Ishii
- Department of Experimental Psychology, University of Oxford
| | - Mark E Walton
- Department of Experimental Psychology, University of Oxford
| | | |
Collapse
|
18
|
Sosa JLR, Buonomano D, Izquierdo A. The orbitofrontal cortex in temporal cognition. Behav Neurosci 2021; 135:154-164. [PMID: 34060872 DOI: 10.1037/bne0000430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the most important factors in decision-making is estimating the value of available options. Subregions of the prefrontal cortex, including the orbitofrontal cortex (OFC), have been deemed essential for this process. Value computations require a complex integration across numerous dimensions, including, reward magnitude, effort, internal state, and time. The importance of the temporal dimension is well illustrated by temporal discounting tasks, in which subjects select between smaller-sooner versus larger-later rewards. The specific role of OFC in telling time and integrating temporal information into decision-making remains unclear. Based on the current literature, in this review we reevaluate current theories of OFC function, accounting for the influence of time. Incorporating temporal information into value estimation and decision-making requires distinct, yet interrelated, forms of temporal information including the ability to tell time, represent time, create temporal expectations, and the ability to use this information for optimal decision-making in a wide range of tasks, including temporal discounting and wagering. We use the term "temporal cognition" to refer to the integrated use of these different aspects of temporal information. We suggest that the OFC may be a critical site for the integration of reward magnitude and delay, and thus important for temporal cognition. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Dean Buonomano
- Department of Psychology, University of California-Los Angeles
| | | |
Collapse
|
19
|
Sallet J, Emberton A, Wood J, Rushworth M. Impact of internal and external factors on prosocial choices in rhesus macaques. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190678. [PMID: 33423628 PMCID: PMC7815427 DOI: 10.1098/rstb.2019.0678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
While traditional economic models assume that agents are self-interested, humans and most non-human primates are social species. Therefore, many of decisions they make require the integration of information about other social agents. This study asks to what extent information about social status and the social context in which decisions are taken impact on reward-guided decisions in rhesus macaques. We tested 12 monkeys of varying dominance status in several experimental versions of a two-choice task in which reward could be delivered to self only, only another monkey, both the self and another monkey, or neither. Results showed dominant animals were more prone to make prosocial choices than subordinates, but only when the decision was between a reward for self only and a reward for both self and other. If the choice was between a reward for self only and a reward for other only, no animal expressed altruistic behaviour. Finally, prosocial choices were true social decisions as they were strikingly reduced when the social partner was replaced by a non-social object. These results showed that as in humans, rhesus macaques' social decisions are adaptive and modulated by social status and the cost associated with being prosocial. This article is part of the theme issue 'Existence and prevalence of economic behaviours among non-human primates'.
Collapse
Affiliation(s)
- Jérôme Sallet
- Wellcome Integrative Neuroimaging Centre, Department of Experimental Psychology, Oxford, OX1 3SR, UK.,Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Andrew Emberton
- Biomedical Sciences Services, University of Oxford, Oxford, OX1 3SR, UK
| | - Jessica Wood
- Biomedical Sciences Services, University of Oxford, Oxford, OX1 3SR, UK
| | - Matthew Rushworth
- Wellcome Integrative Neuroimaging Centre, Department of Experimental Psychology, Oxford, OX1 3SR, UK
| |
Collapse
|
20
|
Global reward state affects learning and activity in raphe nucleus and anterior insula in monkeys. Nat Commun 2020; 11:3771. [PMID: 32724052 PMCID: PMC7387352 DOI: 10.1038/s41467-020-17343-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/05/2020] [Indexed: 01/27/2023] Open
Abstract
People and other animals learn the values of choices by observing the contingencies between them and their outcomes. However, decisions are not guided by choice-linked reward associations alone; macaques also maintain a memory of the general, average reward rate - the global reward state - in an environment. Remarkably, global reward state affects the way that each choice outcome is valued and influences future decisions so that the impact of both choice success and failure is different in rich and poor environments. Successful choices are more likely to be repeated but this is especially the case in rich environments. Unsuccessful choices are more likely to be abandoned but this is especially likely in poor environments. Functional magnetic resonance imaging (fMRI) revealed two distinct patterns of activity, one in anterior insula and one in the dorsal raphe nucleus, that track global reward state as well as specific outcome events.
Collapse
|