1
|
Dastghaib S, Shafiee SM, Ramezani F, Ashtari N, Tabasi F, Saffari-Chaleshtori J, Siri M, Vakili O, Igder S, Zamani M, Niknam M, Nasery MM, Kokabi F, Wiechec E, Mostafavi-Pour Z, Mokarram P, Ghavami S. NRF-mediated autophagy and UPR: Exploring new avenues to overcome cancer chemo-resistance. Eur J Pharmacol 2024; 988:177210. [PMID: 39706466 DOI: 10.1016/j.ejphar.2024.177210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The development of chemo-resistance remains a significant hurdle in effective cancer therapy. NRF1 and NRF2, key regulators of redox homeostasis, play crucial roles in the cellular response to oxidative stress, with implications for both tumor growth and resistance to chemotherapy. This study delves into the dualistic role of NRF2, exploring its protective functions in normal cells and its paradoxical support of tumor survival and drug resistance in cancerous cells. We investigate the interplay between the PERK/NRF signaling pathway, ER stress, autophagy, and the unfolded protein response, offering a mechanistic perspective on how these processes contribute to chemoresistance. Our findings suggest that targeting NRF signaling pathways may offer new avenues for overcoming resistance to chemotherapeutic agents, highlighting the importance of a nuanced approach to redox regulation in cancer treatment. This research provides a molecular basis for the development of NRF-targeted therapies, potentially enhancing the efficacy of existing cancer treatments and offering hope for more effective management of resistant tumors.
Collapse
Affiliation(s)
- Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, 7193635899, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 51664, Tabriz, Iran
| | - Niloufar Ashtari
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Farhad Tabasi
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Javad Saffari-Chaleshtori
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran; Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, 8813833435, Shahrekord, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran
| | - Omid Vakili
- Autophagy Research Center, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 73461-81746, Isfahan, Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, 6135715794, Ahvaz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran
| | - Maryam Niknam
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran
| | - Mahshid Moballegh Nasery
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), 7616911319, Tehran, Iran
| | - Fariba Kokabi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, 9177948564, Mashhad, Iran
| | - Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555, Katowice, Poland; Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergotland, 58185, Linköping, Sweden
| | - Zohreh Mostafavi-Pour
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran.
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada; Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555, Katowice, Poland; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, R3E 0V9, Canada.
| |
Collapse
|
2
|
Duran J, Salinas JE, Wheaton RP, Poolsup S, Allers L, Rosas-Lemus M, Chen L, Cheng Q, Pu J, Salemi M, Phinney B, Ivanov P, Lystad AH, Bhaskar K, Rajaiya J, Perkins DJ, Jia J. Calcium signaling from damaged lysosomes induces cytoprotective stress granules. EMBO J 2024; 43:6410-6443. [PMID: 39533058 DOI: 10.1038/s44318-024-00292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/18/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Lysosomal damage induces stress granule (SG) formation. However, the importance of SGs in determining cell fate and the precise mechanisms that mediate SG formation in response to lysosomal damage remain unclear. Here, we describe a novel calcium-dependent pathway controlling SG formation, which promotes cell survival during lysosomal damage. Mechanistically, the calcium-activated protein ALIX transduces lysosomal damage signals to SG formation by controlling eIF2α phosphorylation after sensing calcium leakage. ALIX enhances eIF2α phosphorylation by promoting the association between PKR and its activator PACT, with galectin-3 inhibiting this interaction; these regulatory events occur on damaged lysosomes. We further find that SG formation plays a crucial role in promoting cell survival upon lysosomal damage caused by factors such as SARS-CoV-2ORF3a, adenovirus, malarial pigment, proteopathic tau, or environmental hazards. Collectively, these data provide insights into the mechanism of SG formation upon lysosomal damage and implicate it in diseases associated with damaged lysosomes and SGs.
Collapse
Affiliation(s)
- Jacob Duran
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Jay E Salinas
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Rui Ping Wheaton
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Suttinee Poolsup
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Monica Rosas-Lemus
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Li Chen
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Qiuying Cheng
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Brett Phinney
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Pavel Ivanov
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; HMS Initiative for RNA Medicine, Boston, MA, 02115, USA
| | - Alf Håkon Lystad
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Jaya Rajaiya
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Douglas J Perkins
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Jingyue Jia
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA.
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA.
| |
Collapse
|
3
|
He X, He H, Hou Z, Wang Z, Shi Q, Zhou T, Wu Y, Qin Y, Wang J, Cai Z, Cui J, Jin S. ER-phagy restrains inflammatory responses through its receptor UBAC2. EMBO J 2024; 43:5057-5084. [PMID: 39284914 PMCID: PMC11535055 DOI: 10.1038/s44318-024-00232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/11/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
ER-phagy, a selective form of autophagic degradation of endoplasmic reticulum (ER) fragments, plays an essential role in governing ER homeostasis. Dysregulation of ER-phagy is associated with the unfolded protein response (UPR), which is a major clue for evoking inflammatory diseases. However, the molecular mechanism underpinning the connection between ER-phagy and disease remains poorly defined. Here, we identified ubiquitin-associated domain-containing protein 2 (UBAC2) as a receptor for ER-phagy, while at the same time being a negative regulator of inflammatory responses. UBAC2 harbors a canonical LC3-interacting region (LIR) in its cytoplasmic domain, which binds to autophagosomal GABARAP. Upon ER-stress or autophagy activation, microtubule affinity-regulating kinase 2 (MARK2) phosphorylates UBAC2 at serine (S) 223, promoting its dimerization. Dimerized UBAC2 interacts more strongly with GABARAP, thus facilitating selective degradation of the ER. Moreover, by affecting ER-phagy, UBAC2 restrains inflammatory responses and acute ulcerative colitis (UC) in mice. Our findings indicate that ER-phagy directed by a MARK2-UBAC2 axis may provide targets for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Xing He
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haowei He
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zitong Hou
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zheyu Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qinglin Shi
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Zhou
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- Institute of Precision Medicine, Department of Critical Care Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunfei Qin
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Cai
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jun Cui
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Buchan JR. Stress granule and P-body clearance: Seeking coherence in acts of disappearance. Semin Cell Dev Biol 2024; 159-160:10-26. [PMID: 38278052 PMCID: PMC10939798 DOI: 10.1016/j.semcdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Stress granules and P-bodies are conserved cytoplasmic biomolecular condensates whose assembly and composition are well documented, but whose clearance mechanisms remain controversial or poorly described. Such understanding could provide new insight into how cells regulate biomolecular condensate formation and function, and identify therapeutic strategies in disease states where aberrant persistence of stress granules in particular is implicated. Here, I review and compare the contributions of chaperones, the cytoskeleton, post-translational modifications, RNA helicases, granulophagy and the proteasome to stress granule and P-body clearance. Additionally, I highlight the potentially vital role of RNA regulation, cellular energy, and changes in the interaction networks of stress granules and P-bodies as means of eliciting clearance. Finally, I discuss evidence for interplay of distinct clearance mechanisms, suggest future experimental directions, and suggest a simple working model of stress granule clearance.
Collapse
Affiliation(s)
- J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85716, United States.
| |
Collapse
|
5
|
Duran J, Poolsup S, Allers L, Lemus MR, Cheng Q, Pu J, Salemi M, Phinney B, Jia J. A mechanism that transduces lysosomal damage signals to stress granule formation for cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587368. [PMID: 38617306 PMCID: PMC11014484 DOI: 10.1101/2024.03.29.587368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Lysosomal damage poses a significant threat to cell survival. Our previous work has reported that lysosomal damage induces stress granule (SG) formation. However, the importance of SG formation in determining cell fate and the precise mechanisms through which lysosomal damage triggers SG formation remains unclear. Here, we show that SG formation is initiated via a novel calcium-dependent pathway and plays a protective role in promoting cell survival in response to lysosomal damage. Mechanistically, we demonstrate that during lysosomal damage, ALIX, a calcium-activated protein, transduces lysosomal damage signals by sensing calcium leakage to induce SG formation by controlling the phosphorylation of eIF2α. ALIX modulates eIF2α phosphorylation by regulating the association between PKR and its activator PACT, with galectin-3 exerting a negative effect on this process. We also found this regulatory event of SG formation occur on damaged lysosomes. Collectively, these investigations reveal novel insights into the precise regulation of SG formation triggered by lysosomal damage, and shed light on the interaction between damaged lysosomes and SGs. Importantly, SG formation is significant for promoting cell survival in the physiological context of lysosomal damage inflicted by SARS-CoV-2 ORF3a, adenovirus infection, Malaria hemozoin, proteopathic tau as well as environmental hazard silica.
Collapse
Affiliation(s)
- Jacob Duran
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
| | - Suttinee Poolsup
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Monica Rosas Lemus
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Qiuying Cheng
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Brett Phinney
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Jingyue Jia
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
- Lead Contact
| |
Collapse
|
6
|
Ryoo HD. The integrated stress response in metabolic adaptation. J Biol Chem 2024; 300:107151. [PMID: 38462161 PMCID: PMC10998230 DOI: 10.1016/j.jbc.2024.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024] Open
Abstract
The integrated stress response (ISR) refers to signaling pathways initiated by stress-activated eIF2α kinases. Distinct eIF2α kinases respond to different stress signals, including amino acid deprivation and mitochondrial stress. Such stress-induced eIF2α phosphorylation attenuates general mRNA translation and, at the same time, stimulates the preferential translation of specific downstream factors to orchestrate an adaptive gene expression program. In recent years, there have been significant new advances in our understanding of ISR during metabolic stress adaptation. Here, I discuss those advances, reviewing among others the ISR activation mechanisms in response to amino acid deprivation and mitochondrial stress. In addition, I review how ISR regulates the amino acid metabolic pathways and how changes in the ISR impact the physiology and pathology of various disease models.
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
7
|
Corne A, Adolphe F, Estaquier J, Gaumer S, Corsi JM. ATF4 Signaling in HIV-1 Infection: Viral Subversion of a Stress Response Transcription Factor. BIOLOGY 2024; 13:146. [PMID: 38534416 PMCID: PMC10968437 DOI: 10.3390/biology13030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Cellular integrated stress response (ISR), the mitochondrial unfolded protein response (UPRmt), and IFN signaling are associated with viral infections. Activating transcription factor 4 (ATF4) plays a pivotal role in these pathways and controls the expression of many genes involved in redox processes, amino acid metabolism, protein misfolding, autophagy, and apoptosis. The precise role of ATF4 during viral infection is unclear and depends on cell hosts, viral agents, and models. Furthermore, ATF4 signaling can be hijacked by pathogens to favor viral infection and replication. In this review, we summarize the ATF4-mediated signaling pathways in response to viral infections, focusing on human immunodeficiency virus 1 (HIV-1). We examine the consequences of ATF4 activation for HIV-1 replication and reactivation. The role of ATF4 in autophagy and apoptosis is explored as in the context of HIV-1 infection programmed cell deaths contribute to the depletion of CD4 T cells. Furthermore, ATF4 can also participate in the establishment of innate and adaptive immunity that is essential for the host to control viral infections. We finally discuss the putative role of the ATF4 paralogue, named ATF5, in HIV-1 infection. This review underlines the role of ATF4 at the crossroads of multiple processes reflecting host-pathogen interactions.
Collapse
Affiliation(s)
- Adrien Corne
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Florine Adolphe
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jérôme Estaquier
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
- INSERM U1124, Université Paris Cité, 75006 Paris, France
| | - Sébastien Gaumer
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jean-Marc Corsi
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| |
Collapse
|
8
|
Tidu A, Martin F. The interplay between cis- and trans-acting factors drives selective mRNA translation initiation in eukaryotes. Biochimie 2024; 217:20-30. [PMID: 37741547 DOI: 10.1016/j.biochi.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Translation initiation consists in the assembly of the small and large ribosomal subunits on the start codon. This important step directly modulates the general proteome in living cells. Recently, genome wide studies revealed unexpected translation initiation events from unsuspected novel open reading frames resulting in the synthesis of a so-called 'dark proteome'. Indeed, the identification of the start codon by the translation machinery is a critical step that defines the translational landscape of the cell. Therefore, translation initiation is a highly regulated process in all organisms. In this review, we focus on the various cis- and trans-acting factors that rule the regulation of translation initiation in eukaryotes. Recent discoveries have shown that the guidance of the translation machinery for the choice of the start codon require sophisticated molecular mechanisms. In particular, the 5'UTR and the coding sequences contain cis-acting elements that trigger the use of AUG codons but also non-AUG codons to initiate protein synthesis. The use of these alternative start codons is also largely influenced by numerous trans-acting elements that drive selective mRNA translation in response to environmental changes.
Collapse
Affiliation(s)
- Antonin Tidu
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Franck Martin
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France.
| |
Collapse
|
9
|
van der Knaap MS, Bugiani M, Abbink TEM. Vanishing white matter. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:77-94. [PMID: 39322396 DOI: 10.1016/b978-0-323-99209-1.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
"Vanishing white matter" (VWM) is a leukodystrophy caused by autosomal recessive pathogenic variants in the genes encoding the subunits of eukaryotic initiation factor 2B (eIF2B). Disease onset and disease course are extremely variable. Onset varies from the antenatal period until senescence. The age of onset is predictive of disease severity. VWM is characterized by chronic neurologic deterioration and, additionally, episodes of rapid and major neurologic decline, provoked by stresses such as febrile infections and minor head trauma. The disease is dominated by degeneration of the white matter of the central nervous system due to dysfunction of oligodendrocytes and in particular astrocytes. Organs other than the brain are rarely affected, with the exception of the ovaries. The reason for the selective vulnerability of the white matter of the central nervous system and, less consistently, the ovaries is poorly understood. eIF2B is a central regulatory factor in the integrated stress response (ISR). Genetic variants decrease eIF2B activity and thereby cause constitutive activation of the ISR downstream of eIF2B. Strikingly, the ISR is specifically activated in astrocytes. Modulation of eIF2B activity and ISR activation in VWM mouse models impacts disease severity, revealing eIF2B-regulated pathways as potential druggable targets.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Marianna Bugiani
- Department of Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Truus E M Abbink
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Boone M, Zappa F. Signaling plasticity in the integrated stress response. Front Cell Dev Biol 2023; 11:1271141. [PMID: 38143923 PMCID: PMC10740175 DOI: 10.3389/fcell.2023.1271141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023] Open
Abstract
The Integrated Stress Response (ISR) is an essential homeostatic signaling network that controls the cell's biosynthetic capacity. Four ISR sensor kinases detect multiple stressors and relay this information to downstream effectors by phosphorylating a common node: the alpha subunit of the eukaryotic initiation factor eIF2. As a result, general protein synthesis is repressed while select transcripts are preferentially translated, thus remodeling the proteome and transcriptome. Mounting evidence supports a view of the ISR as a dynamic signaling network with multiple modulators and feedback regulatory features that vary across cell and tissue types. Here, we discuss updated views on ISR sensor kinase mechanisms, how the subcellular localization of ISR components impacts signaling, and highlight ISR signaling differences across cells and tissues. Finally, we consider crosstalk between the ISR and other signaling pathways as a determinant of cell health.
Collapse
|
11
|
Ito T, Wuerth JD, Weber F. Protection of eIF2B from inhibitory phosphorylated eIF2: A viral strategy to maintain mRNA translation during the PKR-triggered integrated stress response. J Biol Chem 2023; 299:105287. [PMID: 37742919 PMCID: PMC10616414 DOI: 10.1016/j.jbc.2023.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
The integrated stress response (ISR) protects cells from a variety of insults. Once elicited (e.g., by virus infections), it eventually leads to the block of mRNA translation. Central to the ISR are the interactions between translation initiation factors eIF2 and eIF2B. Under normal conditions, eIF2 drives the initiation of protein synthesis through hydrolysis of GTP, which becomes replenished by the guanine nucleotide exchange factor eIF2B. The antiviral branch of the ISR is activated by the RNA-activated kinase PKR which phosphorylates eIF2, thereby converting it into an eIF2B inhibitor. Here, we describe the recently solved structures of eIF2B in complex with eIF2 and a novel escape strategy used by viruses. While unphosphorylated eIF2 interacts with eIF2B in its "productive" conformation, phosphorylated eIF2 [eIF2(αP)] engages a different binding cavity on eIF2B and forces it into the "nonproductive" conformation that prohibits guanine nucleotide exchange factor activity. It is well established that viruses express so-called PKR antagonists that interfere with double-strand RNA, PKR itself, or eIF2. However recently, three taxonomically unrelated viruses were reported to encode antagonists targeting eIF2B instead. For one antagonist, the S segment nonstructural protein of Sandfly fever Sicilian virus, atomic structures showed that it occupies the eIF2(αP)-binding cavity on eIF2B without imposing a switch to the nonproductive conformation. S segment nonstructural protein thus antagonizes the activity of PKR by protecting eIF2B from inhibition by eIF2(αP). As the ISR and specifically eIF2B are central to neuroprotection and a wide range of genetic and age-related diseases, these developments may open new possibilities for treatments.
Collapse
Affiliation(s)
- Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | | | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany.
| |
Collapse
|
12
|
Meydan S, Guydosh NR. Is there a localized role for translational quality control? RNA (NEW YORK, N.Y.) 2023; 29:1623-1643. [PMID: 37582617 PMCID: PMC10578494 DOI: 10.1261/rna.079683.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
It is known that mRNAs and the machinery that translates them are not uniformly distributed throughout the cytoplasm. As a result, the expression of some genes is localized to particular parts of the cell and this makes it possible to carry out important activities, such as growth and signaling, in three-dimensional space. However, the functions of localized gene expression are not fully understood, and the underlying mechanisms that enable localized expression have not been determined in many cases. One consideration that could help in addressing these challenges is the role of quality control (QC) mechanisms that monitor translating ribosomes. On a global level, QC pathways are critical for detecting aberrant translation events, such as a ribosome that stalls while translating, and responding by activating stress pathways and resolving problematic ribosomes and mRNAs at the molecular level. However, it is unclear how these pathways, even when uniformly active throughout the cell, affect local translation. Importantly, some QC pathways have themselves been reported to be enriched in the proximity of particular organelles, but the extent of such localized activity remains largely unknown. Here, we describe the major QC pathways and review studies that have begun to explore their roles in localized translation. Given the limited data in this area, we also pose broad questions about the possibilities and limitations for how QC pathways could facilitate localized gene expression in the cell with the goal of offering ideas for future experimentation.
Collapse
Affiliation(s)
- Sezen Meydan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nicholas R Guydosh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
13
|
Kinger S, Dubey AR, Kumar P, Jagtap YA, Choudhary A, Kumar A, Prajapati VK, Dhiman R, Mishra A. Molecular Chaperones' Potential against Defective Proteostasis of Amyotrophic Lateral Sclerosis. Cells 2023; 12:cells12091302. [PMID: 37174703 PMCID: PMC10177248 DOI: 10.3390/cells12091302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neuronal degenerative condition identified via a build-up of mutant aberrantly folded proteins. The native folding of polypeptides is mediated by molecular chaperones, preventing their pathogenic aggregation. The mutant protein expression in ALS is linked with the entrapment and depletion of chaperone capacity. The lack of a thorough understanding of chaperones' involvement in ALS pathogenesis presents a significant challenge in its treatment. Here, we review how the accumulation of the ALS-linked mutant FUS, TDP-43, SOD1, and C9orf72 proteins damage cellular homeostasis mechanisms leading to neuronal loss. Further, we discuss how the HSP70 and DNAJ family co-chaperones can act as potential targets for reducing misfolded protein accumulation in ALS. Moreover, small HSPB1 and HSPB8 chaperones can facilitate neuroprotection and prevent stress-associated misfolded protein apoptosis. Designing therapeutic strategies by pharmacologically enhancing cellular chaperone capacity to reduce mutant protein proteotoxic effects on ALS pathomechanisms can be a considerable advancement. Chaperones, apart from directly interacting with misfolded proteins for protein quality control, can also filter their toxicity by initiating strong stress-response pathways, modulating transcriptional expression profiles, and promoting anti-apoptotic functions. Overall, these properties of chaperones make them an attractive target for gaining fundamental insights into misfolded protein disorders and designing more effective therapies against ALS.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| |
Collapse
|
14
|
Storkebaum E, Rosenblum K, Sonenberg N. Messenger RNA Translation Defects in Neurodegenerative Diseases. N Engl J Med 2023; 388:1015-1030. [PMID: 36920757 DOI: 10.1056/nejmra2215795] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Erik Storkebaum
- From the Molecular Neurobiology Laboratory, Donders Center for Neuroscience, Donders Institute for Brain, Cognition, and Behavior, and the Faculty of Science, Radboud University, Nijmegen, the Netherlands (E.S.); the Sagol Department of Neurobiology, Faculty of Natural Sciences, and the Center for Genetic Manipulation in the Brain, University of Haifa, Haifa, Israel (K.R.); and the Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal (N.S.)
| | - Kobi Rosenblum
- From the Molecular Neurobiology Laboratory, Donders Center for Neuroscience, Donders Institute for Brain, Cognition, and Behavior, and the Faculty of Science, Radboud University, Nijmegen, the Netherlands (E.S.); the Sagol Department of Neurobiology, Faculty of Natural Sciences, and the Center for Genetic Manipulation in the Brain, University of Haifa, Haifa, Israel (K.R.); and the Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal (N.S.)
| | - Nahum Sonenberg
- From the Molecular Neurobiology Laboratory, Donders Center for Neuroscience, Donders Institute for Brain, Cognition, and Behavior, and the Faculty of Science, Radboud University, Nijmegen, the Netherlands (E.S.); the Sagol Department of Neurobiology, Faculty of Natural Sciences, and the Center for Genetic Manipulation in the Brain, University of Haifa, Haifa, Israel (K.R.); and the Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal (N.S.)
| |
Collapse
|
15
|
Pro-Viral and Anti-Viral Roles of the RNA-Binding Protein G3BP1. Viruses 2023; 15:v15020449. [PMID: 36851663 PMCID: PMC9959972 DOI: 10.3390/v15020449] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Viruses depend on host cellular resources to replicate. Interaction between viral and host proteins is essential for the pathogens to ward off immune responses as well as for virus propagation within the infected cells. While different viruses employ unique strategies to interact with diverse sets of host proteins, the multifunctional RNA-binding protein G3BP1 is one of the common targets for many viruses. G3BP1 controls several key cellular processes, including mRNA stability, translation, and immune responses. G3BP1 also serves as the central hub for the protein-protein and protein-RNA interactions within a class of biomolecular condensates called stress granules (SGs) during stress conditions, including viral infection. Increasing evidence suggests that viruses utilize distinct strategies to modulate G3BP1 function-either by degradation, sequestration, or redistribution-and control the viral life cycle positively and negatively. In this review, we summarize the pro-viral and anti-viral roles of G3BP1 during infection among different viral families.
Collapse
|
16
|
Is ATP the Only Nucleoside Triphosphate among ATP, CTP, GTP, and UTP to Have a Role in Kinase Catalysis of Heme-Regulated Inhibitor toward eIF2α during Lung Cancer Development? Catalysts 2023. [DOI: 10.3390/catal13020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The heme-regulated eukaryotic initiation factor 2α (eIF2α) kinase, also known as heme-regulated inhibitor (HRI), detects misfolded proteins and induces cytoprotective response to stress, mainly caused by heme-shortage. The nucleoside triphosphate ATP serves as the main donor of phosphate for the phosphorylation of eIF2α by HRI in human cells. However, the other main nucleoside triphosphates (CTP, GTP, UTP) are also present at relatively high concentrations, especially in human tumor cells. Therefore, in this short communication we evaluate the role of four substrates (namely ATP, CTP, GTP, and UTP) on human HRI kinase activity. Additionally, for the first time, we perform a detailed kinetics study of the HRI G202S mutant, whose presence in the human lung is associated with cancer development. Here, the role of all four tested nucleoside triphosphates during cancer development is discussed from the point of view of the HRI activity. The results showed that the kcat value of GTP was lower than that of ATP but was significantly higher than those of CTP and UTP. Additionally, the kcat value of GTP for G202S was approximately 20% higher than that for wild-type, while the kcat values of ATP, CTP, and UTP for G202S were lower than those for wild-type.
Collapse
|
17
|
Tedesco B, Vendredy L, Timmerman V, Poletti A. The chaperone-assisted selective autophagy complex dynamics and dysfunctions. Autophagy 2023:1-23. [PMID: 36594740 DOI: 10.1080/15548627.2022.2160564] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Each protein must be synthesized with the correct amino acid sequence, folded into its native structure, and transported to a relevant subcellular location and protein complex. If any of these steps fail, the cell has the capacity to break down aberrant proteins to maintain protein homeostasis (also called proteostasis). All cells possess a set of well-characterized protein quality control systems to minimize protein misfolding and the damage it might cause. Autophagy, a conserved pathway for the degradation of long-lived proteins, aggregates, and damaged organelles, was initially characterized as a bulk degradation pathway. However, it is now clear that autophagy also contributes to intracellular homeostasis by selectively degrading cargo material. One of the pathways involved in the selective removal of damaged and misfolded proteins is chaperone-assisted selective autophagy (CASA). The CASA complex is composed of three main proteins (HSPA, HSPB8 and BAG3), essential to maintain protein homeostasis in muscle and neuronal cells. A failure in the CASA complex, caused by mutations in the respective coding genes, can lead to (cardio)myopathies and neurodegenerative diseases. Here, we summarize our current understanding of the CASA complex and its dynamics. We also briefly discuss how CASA complex proteins are involved in disease and may represent an interesting therapeutic target.Abbreviation ALP: autophagy lysosomal pathway; ALS: amyotrophic lateral sclerosis; AMOTL1: angiomotin like 1; ARP2/3: actin related protein 2/3; BAG: BAG cochaperone; BAG3: BAG cochaperone 3; CASA: chaperone-assisted selective autophagy; CMA: chaperone-mediated autophagy; DNAJ/HSP40: DnaJ heat shock protein family (Hsp40); DRiPs: defective ribosomal products; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK1/HRI: eukaryotic translation initiation factor 2 alpha kinase 1; GABARAP: GABA type A receptor-associated protein; HDAC6: histone deacetylase 6; HSP: heat shock protein; HSPA/HSP70: heat shock protein family A (Hsp70); HSP90: heat shock protein 90; HSPB8: heat shock protein family B (small) member 8; IPV: isoleucine-proline-valine; ISR: integrated stress response; KEAP1: kelch like ECH associated protein 1; LAMP2A: lysosomal associated membrane protein 2A; LATS1: large tumor suppressor kinase 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOC: microtubule organizing center; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-κB: nuclear factor kappa B; NFE2L2: NFE2 like bZIP transcription factor 2; PLCG/PLCγ: phospholipase C gamma; polyQ: polyglutamine; PQC: protein quality control; PxxP: proline-rich; RAN translation: repeat-associated non-AUG translation; SG: stress granule; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STUB1/CHIP: STIP1 homology and U-box containing protein 1; STK: serine/threonine kinase; SYNPO: synaptopodin; TBP: TATA-box binding protein; TARDBP/TDP-43: TAR DNA binding protein; TFEB: transcription factor EB; TPR: tetratricopeptide repeats; TSC1: TSC complex subunit 1; UBA: ubiquitin associated; UPS: ubiquitin-proteasome system; WW: tryptophan-tryptophan; WWTR1: WW domain containing transcription regulator 1; YAP1: Yes1 associated transcriptional regulator.
Collapse
Affiliation(s)
- Barbara Tedesco
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2027, Università degli studi di Milano, Milan, Italy.,Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Angelo Poletti
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2027, Università degli studi di Milano, Milan, Italy
| |
Collapse
|
18
|
Induction of ATF4-Regulated Atrogenes Is Uncoupled from Muscle Atrophy during Disuse in Halofuginone-Treated Mice and in Hibernating Brown Bears. Int J Mol Sci 2022; 24:ijms24010621. [PMID: 36614063 PMCID: PMC9820832 DOI: 10.3390/ijms24010621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Activating transcription factor 4 (ATF4) is involved in muscle atrophy through the overexpression of some atrogenes. However, it also controls the transcription of genes involved in muscle homeostasis maintenance. Here, we explored the effect of ATF4 activation by the pharmacological molecule halofuginone during hindlimb suspension (HS)-induced muscle atrophy. Firstly, we reported that periodic activation of ATF4-regulated atrogenes (Gadd45a, Cdkn1a, and Eif4ebp1) by halofuginone was not associated with muscle atrophy in healthy mice. Secondly, halofuginone-treated mice even showed reduced atrophy during HS, although the induction of the ATF4 pathway was identical to that in untreated HS mice. We further showed that halofuginone inhibited transforming growth factor-β (TGF-β) signalling, while promoting bone morphogenetic protein (BMP) signalling in healthy mice and slightly preserved protein synthesis during HS. Finally, ATF4-regulated atrogenes were also induced in the atrophy-resistant muscles of hibernating brown bears, in which we previously also reported concurrent TGF-β inhibition and BMP activation. Overall, we show that ATF4-induced atrogenes can be uncoupled from muscle atrophy. In addition, our data also indicate that halofuginone can control the TGF-β/BMP balance towards muscle mass maintenance. Whether halofuginone-induced BMP signalling can counteract the effect of ATF4-induced atrogenes needs to be further investigated and may open a new avenue to fight muscle atrophy. Finally, our study opens the way for further studies to identify well-tolerated chemical compounds in humans that are able to fine-tune the TGF-β/BMP balance and could be used to preserve muscle mass during catabolic situations.
Collapse
|
19
|
Kamble VS, Pachpor TA, Khandagale SB, Wagh VV, Khare SP. Translation initiation and dysregulation of initiation factors in rare diseases. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Tabassum Z, Tseng JH, Isemann C, Tian X, Chen Y, Herring LE, Cohen TJ. Identification of a reciprocal negative feedback loop between tau-modifying proteins MARK2 kinase and CBP acetyltransferase. J Biol Chem 2022; 298:101977. [PMID: 35469920 PMCID: PMC9136110 DOI: 10.1016/j.jbc.2022.101977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 11/30/2022] Open
Abstract
The posttranslational regulation of the neuronal proteome is critical for brain homeostasis but becomes dysregulated in the aged or diseased brain, in which abnormal posttranslational modifications (PTMs) are frequently observed. While the full extent of modified substrates that comprise the "PTM-ome" are slowly emerging, how the upstream enzymes catalyzing these processes are regulated themselves is not well understood, particularly in the context of neurodegeneration. Here, we describe the reciprocal regulation of a kinase, the microtubule affinity-regulating kinase 2 (MARK2), and an acetyltransferase, CREB-binding protein (CBP), two enzymes known to extensively modify tau proteins in the progression of Alzheimer's disease. We found that MARK2 negatively regulates CBP and, conversely, CBP directly acetylates and inhibits MARK2 kinase activity. These findings highlight a reciprocal negative feedback loop between a kinase and an acetyltransferase, which has implications for how PTM interplay is coordinated on substrates including tau. Our study suggests that PTM profiles occur through the posttranslational control of the master PTM remodeling enzymes themselves.
Collapse
Affiliation(s)
- Zarin Tabassum
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jui-Heng Tseng
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Camryn Isemann
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xu Tian
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Youjun Chen
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Todd J Cohen
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
21
|
Regulation and function of elF2B in neurological and metabolic disorders. Biosci Rep 2022; 42:231311. [PMID: 35579296 PMCID: PMC9208314 DOI: 10.1042/bsr20211699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic initiation factor 2B, eIF2B is a guanine nucleotide exchange, factor with a central role in coordinating the initiation of translation. During stress and disease, the activity of eIF2B is inhibited via the phosphorylation of its substrate eIF2 (p-eIF2α). A number of different kinases respond to various stresses leading to the phosphorylation of the alpha subunit of eIF2, and collectively this regulation is known as the integrated stress response, ISR. This targeting of eIF2B allows the cell to regulate protein synthesis and reprogramme gene expression to restore homeostasis. Advances within structural biology have furthered our understanding of how eIF2B interacts with eIF2 in both the productive GEF active form and the non-productive eIF2α phosphorylated form. Here, current knowledge of the role of eIF2B in the ISR is discussed within the context of normal and disease states focusing particularly on diseases such as vanishing white matter disease (VWMD) and permanent neonatal diabetes mellitus (PNDM), which are directly linked to mutations in eIF2B. The role of eIF2B in synaptic plasticity and memory formation is also discussed. In addition, the cellular localisation of eIF2B is reviewed and considered along with the role of additional in vivo eIF2B binding factors and protein modifications that may play a role in modulating eIF2B activity during health and disease.
Collapse
|
22
|
Yerlikaya A. Heme-regulated inhibitor: an overlooked eIF2α kinase in cancer investigations. Med Oncol 2022; 39:73. [PMID: 35568791 DOI: 10.1007/s12032-022-01668-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 10/18/2022]
Abstract
Heme-regulated inhibitor (HRI) kinase is a serine-threonine kinase, controlling the initiation of protein synthesis via phosphorylating α subunit of eIF2 on serine 51 residue, mainly in response to heme deprivation in erythroid cells. However, recent studies showed that HRI is also activated by several diverse signals, causing dysregulations in intracellular homeostatic mechanisms in non-erythroid cells. For instance, it was reported that the decrease in protein synthesis upon the 26S proteasomal inhibition by MG132 or bortezomib is mediated by increased eIF2α phosphorylation in an HRI-dependent manner in mouse embryonic fibroblast cells. The increase in eIF2α phosphorylation level through the activation of HRI upon 26S proteasomal inhibition is believed to protect cells against the buildup of misfolded and ubiquitinated proteins, having the potential to trigger the apoptotic response. In contrast, prolonged and sustained HRI-mediated eIF2α phosphorylation can induce cell death, which may involve ATF4 and CHOP expression. Altogether, these studies suggest that HRI-mediated eIF2α phosphorylation may be cytoprotective or cytotoxic depending on the cells, type, and duration of pharmacological agents used. It is thus hypothesized that both HRI activators, inducing eIF2α phosphorylation or HRI inhibitors causing disturbances in eIF2α phosphorylation, may be effective as novel strategies in cancer treatment if the balance in eIF2α phosphorylation is shifted in favor of autophagic or apoptotic response in cancer cells. It is here aimed to review the role of HRI in various biological mechanisms as well as the therapeutic potentials of recently developed HRI activators and inhibitors, targeting eIF2α phosphorylation in cancer cells.
Collapse
Affiliation(s)
- Azmi Yerlikaya
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey.
| |
Collapse
|
23
|
Boone M, Wang L, Lawrence RE, Frost A, Walter P, Schoof M. A point mutation in the nucleotide exchange factor eIF2B constitutively activates the integrated stress response by allosteric modulation. eLife 2022; 11:e76171. [PMID: 35416150 PMCID: PMC9132573 DOI: 10.7554/elife.76171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic cells, stressors reprogram the cellular proteome by activating the integrated stress response (ISR). In its canonical form, stress-sensing kinases phosphorylate the eukaryotic translation initiation factor eIF2 (eIF2-P), which ultimately leads to reduced levels of ternary complex required for initiation of mRNA translation. Previously we showed that translational control is primarily exerted through a conformational switch in eIF2's nucleotide exchange factor, eIF2B, which shifts from its active A-State conformation to its inhibited I-State conformation upon eIF2-P binding, resulting in reduced nucleotide exchange on eIF2 (Schoof et al. 2021). Here, we show functionally and structurally how a single histidine to aspartate point mutation in eIF2B's β subunit (H160D) mimics the effects of eIF2-P binding by promoting an I-State like conformation, resulting in eIF2-P independent activation of the ISR. These findings corroborate our previously proposed A/I-State model of allosteric ISR regulation.
Collapse
Affiliation(s)
- Morgane Boone
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Lan Wang
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Rosalie E Lawrence
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Peter Walter
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Michael Schoof
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| |
Collapse
|
24
|
Vasudevan D, Katow H, Huang HW, Tang G, Ryoo HD. A Protein-trap allele reveals roles for Drosophila ATF4 in photoreceptor degeneration, oogenesis and wing development. Dis Model Mech 2021; 15:273766. [PMID: 34919148 PMCID: PMC8938396 DOI: 10.1242/dmm.049119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
Metazoans have evolved various quality control mechanisms to cope with cellular stress inflicted by external and physiological conditions. ATF4 is a major effector of the Integrated Stress Response (ISR), an evolutionarily conserved pathway that mediates adaptation to various cellular stressors. Loss of function of Drosophila ATF4, encoded by the gene cryptocephal (crc), results in lethality during pupal development. The roles of crc in Drosophila disease models and in adult tissue homeostasis thus remain poorly understood. Here, we report that a protein-trap MiMIC insertion in the crc locus generates a crc-GFP fusion protein that allows visualization of crc activity in vivo. This allele also acts as a hypomorphic mutant that uncovers previously unknown roles for crc. Specifically, the crc protein-trap line shows crc-GFP induction in a Drosophila model for Retinitis Pigmentosa (RP). This crc allele renders flies more vulnerable to amino acid deprivation and age-dependent retinal degeneration. These mutants also show defects in wing veins and oocyte maturation. Together, our data reveal previously unknown roles for crc in development, cellular homeostasis and photoreceptor survival.
Collapse
Affiliation(s)
- Deepika Vasudevan
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hidetaka Katow
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Grace Tang
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
25
|
Guo Y, Hinchman MM, Lewandrowski M, Cross ST, Sutherland DM, Welsh OL, Dermody TS, Parker JSL. The multi-functional reovirus σ3 protein is a virulence factor that suppresses stress granule formation and is associated with myocardial injury. PLoS Pathog 2021; 17:e1009494. [PMID: 34237110 PMCID: PMC8291629 DOI: 10.1371/journal.ppat.1009494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/20/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian orthoreovirus double-stranded (ds) RNA-binding protein σ3 is a multifunctional protein that promotes viral protein synthesis and facilitates viral entry and assembly. The dsRNA-binding capacity of σ3 correlates with its capacity to prevent dsRNA-mediated activation of protein kinase R (PKR). However, the effect of σ3 binding to dsRNA during viral infection is largely unknown. To identify functions of σ3 dsRNA-binding activity during reovirus infection, we engineered a panel of thirteen σ3 mutants and screened them for the capacity to bind dsRNA. Six mutants were defective in dsRNA binding, and mutations in these constructs cluster in a putative dsRNA-binding region on the surface of σ3. Two recombinant viruses expressing these σ3 dsRNA-binding mutants, K287T and R296T, display strikingly different phenotypes. In a cell-type dependent manner, K287T, but not R296T, replicates less efficiently than wild-type (WT) virus. In cells in which K287T virus demonstrates a replication deficit, PKR activation occurs and abundant stress granules (SGs) are formed at late times post-infection. In contrast, the R296T virus retains the capacity to suppress activation of PKR and does not mediate formation of SGs at late times post-infection. These findings indicate that σ3 inhibits PKR independently of its capacity to bind dsRNA. In infected mice, K287T produces lower viral titers in the spleen, liver, lungs, and heart relative to WT or R296T. Moreover, mice inoculated with WT or R296T viruses develop myocarditis, whereas those inoculated with K287T do not. Overall, our results indicate that σ3 functions to suppress PKR activation and subsequent SG formation during viral infection and that these functions correlate with virulence in mice. The σ3 protein of mammalian orthoreoviruses is a double-stranded RNA binding protein that has classically been thought to function by scavenging dsRNA within infected cells and thus prevents activation of cellular sensors of dsRNA such as the kinase PKR. Here we used mutagenesis to identify the region of σ3 responsible for binding dsRNA. Characterization of mutant viruses expressing σ3 proteins incapable of binding dsRNA show that contrary to expectation, dsRNA binding is not required for σ3-mediated inhibition of PKR. We show that one mutant virus (R296T) despite being deficient in dsRNA-binding can inhibit PKR and replicates similar to WT virus. In contrast, another mutant virus (K287T) that bears a σ3 protein that cannot prevent dsRNA-mediated activation of PKR induces stress granules in infected cells and replicates less efficiently than WT virus. In vivo, the K287T mutant is attenuated in its replication and unlike WT virus and the R296T mutant virus does not cause heart disease (myocarditis).
Collapse
Affiliation(s)
- Yingying Guo
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Meleana M. Hinchman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Mercedes Lewandrowski
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Shaun T. Cross
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| | - Danica M. Sutherland
- Departments of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Olivia L. Welsh
- Departments of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Terence S. Dermody
- Departments of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Departments of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pennsylvania, United States of America
| | - John S. L. Parker
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|