1
|
Bennett HC, Zhang Q, Wu YT, Manjila SB, Chon U, Shin D, Vanselow DJ, Pi HJ, Drew PJ, Kim Y. Aging drives cerebrovascular network remodeling and functional changes in the mouse brain. Nat Commun 2024; 15:6398. [PMID: 39080289 PMCID: PMC11289283 DOI: 10.1038/s41467-024-50559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Aging is frequently associated with compromised cerebrovasculature and pericytes. However, we do not know how normal aging differentially impacts vascular structure and function in different brain areas. Here we utilize mesoscale microscopy methods and in vivo imaging to determine detailed changes in aged murine cerebrovascular networks. Whole-brain vascular tracing shows an overall ~10% decrease in vascular length and branching density with ~7% increase in vascular radii in aged brains. Light sheet imaging with 3D immunolabeling reveals increased arteriole tortuosity of aged brains. Notably, vasculature and pericyte densities show selective and significant reductions in the deep cortical layers, hippocampal network, and basal forebrain areas. We find increased blood extravasation, implying compromised blood-brain barrier function in aged brains. Moreover, in vivo imaging in awake mice demonstrates reduced baseline and on-demand blood oxygenation despite relatively intact neurovascular coupling. Collectively, we uncover regional vulnerabilities of cerebrovascular network and physiological changes that can mediate cognitive decline in normal aging.
Collapse
Affiliation(s)
- Hannah C Bennett
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Qingguang Zhang
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Department of Neurosurgery, Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Steffy B Manjila
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Uree Chon
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA, 94305, USA
| | - Donghui Shin
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Daniel J Vanselow
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Hyun-Jae Pi
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, Biology, and Neurosurgery, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA.
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
2
|
Beinlich FR, Asiminas A, Untiet V, Bojarowska Z, Plá V, Sigurdsson B, Timmel V, Gehrig L, Graber MH, Hirase H, Nedergaard M. Oxygen imaging of hypoxic pockets in the mouse cerebral cortex. Science 2024; 383:1471-1478. [PMID: 38547288 PMCID: PMC11251491 DOI: 10.1126/science.adn1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Consciousness is lost within seconds upon cessation of cerebral blood flow. The brain cannot store oxygen, and interruption of oxidative phosphorylation is fatal within minutes. Yet only rudimentary knowledge exists regarding cortical partial oxygen tension (Po2) dynamics under physiological conditions. Here we introduce Green enhanced Nano-lantern (GeNL), a genetically encoded bioluminescent oxygen indicator for Po2 imaging. In awake behaving mice, we uncover the existence of spontaneous, spatially defined "hypoxic pockets" and demonstrate their linkage to the abrogation of local capillary flow. Exercise reduced the burden of hypoxic pockets by 52% compared with rest. The study provides insight into cortical oxygen dynamics in awake behaving animals and concurrently establishes a tool to delineate the importance of oxygen tension in physiological processes and neurological diseases.
Collapse
Affiliation(s)
- Felix R.M. Beinlich
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Antonios Asiminas
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Verena Untiet
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Zuzanna Bojarowska
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Virginia Plá
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Björn Sigurdsson
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Vincenzo Timmel
- School of Engineering, FHNW University of Applied Sciences and Arts Northwestern Switzerland; 5210 Windisch, Switzerland
| | - Lukas Gehrig
- School of Engineering, FHNW University of Applied Sciences and Arts Northwestern Switzerland; 5210 Windisch, Switzerland
| | - Michael H. Graber
- School of Engineering, FHNW University of Applied Sciences and Arts Northwestern Switzerland; 5210 Windisch, Switzerland
| | - Hajime Hirase
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical Center; Rochester, NY 14642, USA
| |
Collapse
|
3
|
Gheres KW, Ünsal HS, Han X, Zhang Q, Turner KL, Zhang N, Drew PJ. Arousal state transitions occlude sensory-evoked neurovascular coupling in neonatal mice. Commun Biol 2023; 6:738. [PMID: 37460780 PMCID: PMC10352318 DOI: 10.1038/s42003-023-05121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
In the adult sensory cortex, increases in neural activity elicited by sensory stimulation usually drive vasodilation mediated by neurovascular coupling. However, whether neurovascular coupling is the same in neonatal animals as adults is controversial, as both canonical and inverted responses have been observed. We investigated the nature of neurovascular coupling in unanesthetized neonatal mice using optical imaging, electrophysiology, and BOLD fMRI. We find in neonatal (postnatal day 15, P15) mice, sensory stimulation induces a small increase in blood volume/BOLD signal, often followed by a large decrease in blood volume. An examination of arousal state of the mice revealed that neonatal mice were asleep a substantial fraction of the time, and that stimulation caused the animal to awaken. As cortical blood volume is much higher during REM and NREM sleep than the awake state, awakening occludes any sensory-evoked neurovascular coupling. When neonatal mice are stimulated during an awake period, they showed relatively normal (but slowed) neurovascular coupling, showing that that the typically observed constriction is due to arousal state changes. These result show that sleep-related vascular changes dominate over any sensory-evoked changes, and hemodynamic measures need to be considered in the context of arousal state changes.
Collapse
Affiliation(s)
- Kyle W Gheres
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hayreddin S Ünsal
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Electrical and Electronics Engineering, Abdullah Gul University, Kayseri, Türkiye
| | - Xu Han
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Qingguang Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kevin L Turner
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Patrick J Drew
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park, PA, 16802, USA.
- Departments of Neurosurgery and Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
4
|
Giblin J, Kura S, Nunuez JLU, Zhang J, Kureli G, Jiang J, Boas DA, Chen IA. High throughput detection of capillary stalling events with Bessel beam two-photon microscopy. NEUROPHOTONICS 2023; 10:035009. [PMID: 37705938 PMCID: PMC10495839 DOI: 10.1117/1.nph.10.3.035009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023]
Abstract
Significance Brief disruptions in capillary flow, commonly referred to as capillary "stalling," have gained interest recently for their potential role in disrupting cerebral blood flow and oxygen delivery. Approaches to studying this phenomenon have been hindered by limited volumetric imaging rates and cumbersome manual analysis. The ability to precisely and efficiently quantify the dynamics of these events will be key in understanding their potential role in stroke and neurodegenerative diseases, such as Alzheimer's disease. Aim Our study aimed to demonstrate that the fast volumetric imaging rates offered by Bessel beam two-photon microscopy combined with improved data analysis throughput allows for faster and more precise measurement of capillary stall dynamics. Results We found that while our analysis approach was unable to achieve full automation, we were able to cut analysis time in half while also finding stalling events that were missed in traditional blind manual analysis. The resulting data showed that our Bessel beam system was captured more stalling events compared to optical coherence tomography, particularly shorter stalling events. We then compare differences in stall dynamics between a young and old group of mice as well as a demonstrate changes in stalling before and after photothrombotic model of stroke. Finally, we also demonstrate the ability to monitor arteriole dynamics alongside stall dynamics. Conclusions Bessel beam two-photon microscopy combined with high throughput analysis is a powerful tool for studying capillary stalling due to its ability to monitor hundreds of capillaries simultaneously at high frame rates.
Collapse
Affiliation(s)
- John Giblin
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Sreekanth Kura
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Juan Luis Ugarte Nunuez
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Juncheng Zhang
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Gulce Kureli
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - John Jiang
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Ichun A. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| |
Collapse
|
5
|
Koyama Y, Yamamoto T, Hirayama JI, Jimura K, Sadato N, Chikazoe J. Cognitive Dynamics Estimation: A whole-brain spatial regression paradigm for extracting the temporal dynamics of cognitive processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.543130. [PMID: 37425727 PMCID: PMC10326986 DOI: 10.1101/2023.06.12.543130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Functional MRI (fMRI) has been instrumental in understanding how cognitive processes are spatially mapped in the brain, yielding insights about brain regions and functions. However, in case the orthogonality of behavioral or stimulus timing is not guaranteed, the estimated brain maps fail to dissociate each cognitive process, and the resultant maps become unstable. Also, the brain mapping exercise can not provide temporal information on the cognitive process. Here we propose a qualitatively different approach to fMRI analysis, named Cognitive Dynamics Estimation (CDE), that estimates how multiple cognitive processes change over time even when behavior or stimulus logs are unavailable. This method transposes the conventional brain mapping; the brain activity pattern at each time point is subject to regression analysis with data-driven maps of cognitive processes as regressors, resulting in the time series of cognitive processes. The estimated time series captured the fluctuation of intensity and timing of cognitive processes on a trial-by-trial basis, which conventional analysis could not capture. Notably, the estimated time series predicted participants' cognitive ability to perform each psychological task. As an addition to our fMRI analytic toolkit, these results suggest the potential for CDE to elucidate underexplored cognitive phenomena, especially in the temporal domain.
Collapse
Affiliation(s)
- Yutaro Koyama
- Department of Psychiatry, University of Wisconsin-Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate School for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Tetsuya Yamamoto
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate School for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Jun-Ichiro Hirayama
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Ibaraki, 305-8568, Japan
| | - Koji Jimura
- Department of Informatics, Gunma University, Maebashi 371-8510
| | - Norihiro Sadato
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate School for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Junichi Chikazoe
- Department of Physiological Sciences, School of Life Science, The Graduate School for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
- Araya, Inc., Tokyo, 107-6024, Japan
| |
Collapse
|
6
|
Bennett HC, Zhang Q, Wu YT, Chon U, Pi HJ, Drew PJ, Kim Y. Aging drives cerebrovascular network remodeling and functional changes in the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541998. [PMID: 37305850 PMCID: PMC10257218 DOI: 10.1101/2023.05.23.541998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aging is the largest risk factor for neurodegenerative disorders, and commonly associated with compromised cerebrovasculature and pericytes. However, we do not know how normal aging differentially impacts the vascular structure and function in different brain areas. Here we utilize mesoscale microscopy methods (serial two-photon tomography and light sheet microscopy) and in vivo imaging (wide field optical spectroscopy and two-photon imaging) to determine detailed changes in aged cerebrovascular networks. Whole-brain vascular tracing showed an overall ~10% decrease in vascular length and branching density, and light sheet imaging with 3D immunolabeling revealed increased arteriole tortuosity in aged brains. Vasculature and pericyte densities showed significant reductions in the deep cortical layers, hippocampal network, and basal forebrain areas. Moreover, in vivo imaging in awake mice identified delays in neurovascular coupling and disrupted blood oxygenation. Collectively, we uncover regional vulnerabilities of cerebrovascular network and physiological changes that can mediate cognitive decline in normal aging.
Collapse
Affiliation(s)
- Hannah C Bennett
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Equal contribution
| | - Qingguang Zhang
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Equal contribution
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Uree Chon
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Hyun-Jae Pi
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Biomedical Engineering, Biology, and Neurosurgery, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Lead contact
| |
Collapse
|
7
|
Gheres KW, Ãœnsal HS, Han X, Zhang Q, Turner KL, Zhang N, Drew PJ. Arousal state transitions occlude sensory-evoked neurovascular coupling in neonatal mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529057. [PMID: 36824895 PMCID: PMC9949139 DOI: 10.1101/2023.02.18.529057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
In the adult sensory cortex, increases in neural activity elicited by sensory stimulation usually drives vasodilation mediated by neurovascular coupling. However, whether neurovascular coupling is the same in neonatal animals as adults is controversial, as both canonical and inverted responses have been observed. We investigated the nature of neurovascular coupling in unanesthetized neonatal mice using optical imaging, electrophysiology, and BOLD fMRI. We find in neonatal (postnatal day 15, P15) mice, sensory stimulation induces a small increase in blood volume/BOLD signal, often followed by a large decrease in blood volume. An examination of arousal state of the mice revealed that neonatal mice were asleep a substantial fraction of the time, and that stimulation caused the animal to awaken. As cortical blood volume is much higher during REM and NREM sleep than the awake state, awakening occludes any sensory-evoked neurovascular coupling. When neonatal mice are stimulated during an awake period, they showed relatively normal (but slowed) neurovascular coupling, showing that that the typically observed constriction is due to arousal state changes. These result show that sleep-related vascular changes dominate over any sensory-evoked changes, and hemodynamic measures need to be considered in the context of arousal state changes. Significance Statement In the adult brain, increases in neural activity are often followed by vasodilation, allowing activity to be monitored using optical or magnetic resonance imaging. However, in neonates, sensory stimulation can drive vasoconstriction, whose origin was not understood. We used optical and magnetic resonance imaging approaches to investigate hemodynamics in neonatal mice. We found that sensory-induced vasoconstriction occurred when the mice were asleep, as sleep is associated with dilation of the vasculature of the brain relative to the awake state. The stimulus awakens the mice, causing a constriction due to the arousal state change. Our study shows the importance of monitoring arousal state, particularly when investigating subjects that may sleep, and the dominance arousal effects on brain hemodynamics.
Collapse
|
8
|
Wu D, Zhao B, Xie H, Xu Y, Yin Z, Bai Y, Fan H, Zhang Q, Liu D, Hu T, Jiang Y, An Q, Zhang X, Yang A, Zhang J. Profiling the low-beta characteristics of the subthalamic nucleus in early- and late-onset Parkinson's disease. Front Aging Neurosci 2023; 15:1114466. [PMID: 36875708 PMCID: PMC9978704 DOI: 10.3389/fnagi.2023.1114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Objectives Low-beta oscillation (13-20 Hz) has rarely been studied in patients with early-onset Parkinson's disease (EOPD, age of onset ≤50 years). We aimed to explore the characteristics of low-beta oscillation in the subthalamic nucleus (STN) of patients with EOPD and investigate the differences between EOPD and late-onset Parkinson's disease (LOPD). Methods We enrolled 31 EOPD and 31 LOPD patients, who were matched using propensity score matching. Patients underwent bilateral STN deep brain stimulation (DBS). Local field potentials were recorded using intraoperative microelectrode recording. We analyzed the low-beta band parameters, including aperiodic/periodic components, beta burst, and phase-amplitude coupling. We compared low-beta band activity between EOPD and LOPD. Correlation analyses were performed between the low-beta parameters and clinical assessment results for each group. Results We found that the EOPD group had lower aperiodic parameters, including offset (p = 0.010) and exponent (p = 0.047). Low-beta burst analysis showed that EOPD patients had significantly higher average burst amplitude (p = 0.016) and longer average burst duration (p = 0.011). Furthermore, EOPD had higher proportion of long burst (500-650 ms, p = 0.008), while LOPD had higher proportion of short burst (200-350 ms, p = 0.007). There was a significant difference in phase-amplitude coupling values between low-beta phase and fast high frequency oscillation (300-460 Hz) amplitude (p = 0.019). Conclusion We found that low-beta activity in the STN of patients with EOPD had characteristics that varied when compared with LOPD, and provided electrophysiological evidence for different pathological mechanisms between the two types of PD. These differences need to be considered when applying adaptive DBS on patients of different ages.
Collapse
Affiliation(s)
- Delong Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Houyou Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Quan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Defeng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianqi Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Zhang Q, Haselden WD, Charpak S, Drew PJ. Could respiration-driven blood oxygen changes modulate neural activity? Pflugers Arch 2023; 475:37-48. [PMID: 35761104 PMCID: PMC9794637 DOI: 10.1007/s00424-022-02721-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/26/2022] [Accepted: 06/16/2022] [Indexed: 01/31/2023]
Abstract
Oxygen is critical for neural metabolism, but under most physiological conditions, oxygen levels in the brain are far more than are required. Oxygen levels can be dynamically increased by increases in respiration rate that are tied to the arousal state of the brain and cognition, and not necessarily linked to exertion by the body. Why these changes in respiration occur when oxygen is already adequate has been a long-standing puzzle. In humans, performance on cognitive tasks can be affected by very high or very low oxygen levels, but whether the physiological changes in blood oxygenation produced by respiration have an appreciable effect is an open question. Oxygen has direct effects on potassium channels, increases the degradation rate of nitric oxide, and is rate limiting for the synthesis of some neuromodulators. We discuss whether oxygenation changes due to respiration contribute to neural dynamics associated with attention and arousal.
Collapse
Affiliation(s)
- Qingguang Zhang
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - William D Haselden
- Medical Scientist Training Program, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Serge Charpak
- Institut de La Vision, INSERM, CNRS, Sorbonne Université, Paris, France
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Neurosurgery, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
10
|
Drew PJ. Neurovascular coupling: motive unknown. Trends Neurosci 2022; 45:809-819. [PMID: 35995628 PMCID: PMC9768528 DOI: 10.1016/j.tins.2022.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022]
Abstract
In the brain, increases in neural activity drive changes in local blood flow via neurovascular coupling. The common explanation for increased blood flow (known as functional hyperemia) is that it supplies the metabolic needs of active neurons. However, there is a large body of evidence that is inconsistent with this idea. Baseline blood flow is adequate to supply oxygen needs even with elevated neural activity. Neurovascular coupling is irregular, absent, or inverted in many brain regions, behavioral states, and conditions. Increases in respiration can increase brain oxygenation without flow changes. Simulations show that given the architecture of the brain vasculature, areas of low blood flow are inescapable and cannot be removed by functional hyperemia. As discussed in this article, potential alternative functions of neurovascular coupling include supplying oxygen for neuromodulator synthesis, brain temperature regulation, signaling to neurons, stabilizing and optimizing the cerebral vascular structure, accommodating the non-Newtonian nature of blood, and driving the production and circulation of cerebrospinal fluid (CSF).
Collapse
Affiliation(s)
- Patrick J Drew
- Center for Neural Engineering, Departments of Engineering Science and Mechanics, Neurosurgery, Biology, and Biomedical Engineering, The Pennsylvania State University, W-317 Millennium Science Complex, University Park, PA 16802, USA.
| |
Collapse
|
11
|
Tu W, Zhang N. Neural underpinning of a respiration-associated resting-state fMRI network. eLife 2022; 11:e81555. [PMID: 36263940 PMCID: PMC9645809 DOI: 10.7554/elife.81555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Respiration can induce motion and CO2 fluctuation during resting-state fMRI (rsfMRI) scans, which will lead to non-neural artifacts in the rsfMRI signal. In the meantime, as a crucial physiologic process, respiration can directly drive neural activity change in the brain, and may thereby modulate the rsfMRI signal. Nonetheless, this potential neural component in the respiration-fMRI relationship is largely unexplored. To elucidate this issue, here we simultaneously recorded the electrophysiology, rsfMRI, and respiration signals in rats. Our data show that respiration is indeed associated with neural activity changes, evidenced by a phase-locking relationship between slow respiration variations and the gamma-band power of the electrophysiological signal recorded in the anterior cingulate cortex. Intriguingly, slow respiration variations are also linked to a characteristic rsfMRI network, which is mediated by gamma-band neural activity. In addition, this respiration-related brain network disappears when brain-wide neural activity is silenced at an isoelectrical state, while the respiration is maintained, further confirming the necessary role of neural activity in this network. Taken together, this study identifies a respiration-related brain network underpinned by neural activity, which represents a novel component in the respiration-rsfMRI relationship that is distinct from respiration-related rsfMRI artifacts. It opens a new avenue for investigating the interactions between respiration, neural activity, and resting-state brain networks in both healthy and diseased conditions.
Collapse
Affiliation(s)
- Wenyu Tu
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State UniversityUniversity ParkUnited States
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Nanyin Zhang
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State UniversityUniversity ParkUnited States
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Biomedical Engineering, The Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
12
|
Zhang Q, Turner KL, Gheres KW, Hossain MS, Drew PJ. Behavioral and physiological monitoring for awake neurovascular coupling experiments: a how-to guide. NEUROPHOTONICS 2022; 9:021905. [PMID: 35639834 PMCID: PMC8802326 DOI: 10.1117/1.nph.9.2.021905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 06/15/2023]
Abstract
Significance: Functional brain imaging in awake animal models is a popular and powerful technique that allows the investigation of neurovascular coupling (NVC) under physiological conditions. However, ubiquitous facial and body motions (fidgeting) are prime drivers of spontaneous fluctuations in neural and hemodynamic signals. During periods without movement, animals can rapidly transition into sleep, and the hemodynamic signals tied to arousal state changes can be several times larger than sensory-evoked responses. Given the outsized influence of facial and body motions and arousal signals in neural and hemodynamic signals, it is imperative to detect and monitor these events in experiments with un-anesthetized animals. Aim: To cover the importance of monitoring behavioral state in imaging experiments using un-anesthetized rodents, and describe how to incorporate detailed behavioral and physiological measurements in imaging experiments. Approach: We review the effects of movements and sleep-related signals (heart rate, respiration rate, electromyography, intracranial pressure, whisking, and other body movements) on brain hemodynamics and electrophysiological signals, with a focus on head-fixed experimental setup. We summarize the measurement methods currently used in animal models for detection of those behaviors and arousal changes. We then provide a guide on how to incorporate this measurements with functional brain imaging and electrophysiology measurements. Results: We provide a how-to guide on monitoring and interpreting a variety of physiological signals and their applications to NVC experiments in awake behaving mice. Conclusion: This guide facilitates the application of neuroimaging in awake animal models and provides neuroscientists with a standard approach for monitoring behavior and other associated physiological parameters in head-fixed animals.
Collapse
Affiliation(s)
- Qingguang Zhang
- The Pennsylvania State University, Center for Neural Engineering, Department of Engineering Science and Mechanics, University Park, Pennsylvania, United States
| | - Kevin L. Turner
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
| | - Kyle W. Gheres
- The Pennsylvania State University, Graduate Program in Molecular Cellular and Integrative Biosciences, University Park, Pennsylvania, United States
| | - Md Shakhawat Hossain
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
| | - Patrick J. Drew
- The Pennsylvania State University, Center for Neural Engineering, Department of Engineering Science and Mechanics, University Park, Pennsylvania, United States
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
- The Pennsylvania State University, Department of Neurosurgery, University Park, Pennsylvania, United States
| |
Collapse
|
13
|
Abstract
This review focuses on experimental work on nonlinear phenomena in microfluidics, which for the most part are phenomena for which the velocity of a fluid flowing through a microfluidic channel does not scale proportionately with the pressure drop. Examples include oscillations, flow-switching behaviors, and bifurcations. These phenomena are qualitatively distinct from laminar, diffusion-limited flows that are often associated with microfluidics. We explore the nonlinear behaviors of bubbles or droplets when they travel alone or in trains through a microfluidic network or when they assemble into either one- or two-dimensional crystals. We consider the nonlinearities that can be induced by the geometry of channels, such as their curvature or the bas-relief patterning of their base. By casting posts, barriers, or membranes─situated inside channels─from stimuli-responsive or flexible materials, the shape, size, or configuration of these elements can be altered by flowing fluids, which may enable autonomous flow control. We also highlight some of the nonlinearities that arise from operating devices at intermediate Reynolds numbers or from using non-Newtonian fluids or liquid metals. We include a brief discussion of relevant practical applications, including flow gating, mixing, and particle separations.
Collapse
Affiliation(s)
- Sarah Battat
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - George M Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|