1
|
Peñalba JV, Runemark A, Meier JI, Singh P, Wogan GOU, Sánchez-Guillén R, Mallet J, Rometsch SJ, Menon M, Seehausen O, Kulmuni J, Pereira RJ. The Role of Hybridization in Species Formation and Persistence. Cold Spring Harb Perspect Biol 2024; 16:a041445. [PMID: 38438186 PMCID: PMC11610762 DOI: 10.1101/cshperspect.a041445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Hybridization, or interbreeding between different taxa, was traditionally considered to be rare and to have a largely detrimental impact on biodiversity, sometimes leading to the breakdown of reproductive isolation and even to the reversal of speciation. However, modern genomic and analytical methods have shown that hybridization is common in some of the most diverse clades across the tree of life, sometimes leading to rapid increase of phenotypic variability, to introgression of adaptive alleles, to the formation of hybrid species, and even to entire species radiations. In this review, we identify consensus among diverse research programs to show how the field has progressed. Hybridization is a multifaceted evolutionary process that can strongly influence species formation and facilitate adaptation and persistence of species in a rapidly changing world. Progress on testing this hypothesis will require cooperation among different subdisciplines.
Collapse
Affiliation(s)
- Joshua V Peñalba
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, 10115 Berlin, Germany
| | - Anna Runemark
- Department of Biology, Lund University, 22632 Lund, Sweden
| | - Joana I Meier
- Tree of Life, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
- Department of Zoology, University of Cambridge, Cambridgeshire CB2 3EJ, United Kingdom
| | - Pooja Singh
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), CH-8600 Kastanienbaum, Switzerland
| | - Guinevere O U Wogan
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | - James Mallet
- Organismal and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Sina J Rometsch
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
- Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut 06511, USA
| | - Mitra Menon
- Department of Evolution and Ecology, University of California Davis, Davis, California 95616, USA
| | - Ole Seehausen
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), CH-8600 Kastanienbaum, Switzerland
| | - Jonna Kulmuni
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Biocenter 3, Helsinki, Finland
| | - Ricardo J Pereira
- Department of Zoology, State Museum of Natural History Stuttgart, Stuttgart 70191, Germany
| |
Collapse
|
2
|
Zhang L, Nonaka E, Higgie M, Egan S. How Important Is Variation in Extrinsic Reproductive Isolation to the Process of Speciation? Cold Spring Harb Perspect Biol 2024; 16:a041430. [PMID: 38503503 PMCID: PMC11529849 DOI: 10.1101/cshperspect.a041430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The strength of reproductive isolation (RI) between two or more lineages during the process of speciation can vary by the ecological conditions. However, most speciation research has been limited to studying how ecologically dependent RI varies among a handful of broadly categorized environments. Very few studies consider the variability of RI and its effects on speciation at finer scales-that is, within each environment due to spatial or temporal environmental heterogeneity. Such variation in RI across time and/or space may inhibit speciation through leaky reproductive barriers or promote speciation by facilitating reinforcement. To investigate this overlooked aspect of speciation research, we conducted a literature review of existing studies of variation in RI in the field and then conducted individual-based simulations to examine how variation in hybrid fitness across time and space affects the degree of gene flow. Our simulations indicate that the presence of variation in hybrid fitness across space and time often leads to an increase in gene flow compared to scenarios where hybrid fitness remains static. This observation can be attributed to the convex relationship between the degree of gene flow and the strength of selection on hybrids. Our simulations also show that the effect of variation in RI on facilitating gene flow is most pronounced when RI, on average, is relatively low. This finding suggests that it could serve as an important mechanism to explain why the completion of speciation is often challenging. While direct empirical evidence documenting variation in extrinsic RI is limited, we contend that it is a prevalent yet underexplored phenomenon. We support this argument by proposing common scenarios in which RI is likely to exhibit variability and thus influence the process of speciation.
Collapse
Affiliation(s)
- Linyi Zhang
- Department of Biological Sciences, George Washington University, Washington, D.C. 20052, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S3B2, Canada
| | - Etsuko Nonaka
- Department of Agricultural Science, University of Helsinki 00170, Finland
- Station Linné, Förjestaden, Öland 00014, Sweden
| | - Megan Higgie
- College of Science & Engineering, James Cook University, Townsville City, Queensland 4814, Australia
| | - Scott Egan
- Department of BioSciences, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
3
|
Salamon M, Astorg L, Paccard A, Chain F, Hendry A, Derry A, Barrett R. Limited Migration From Physiological Refugia Constrains the Rescue of Native Gastropods Facing an Invasive Predator. Evol Appl 2024; 17:e70004. [PMID: 39439433 PMCID: PMC11493756 DOI: 10.1111/eva.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/03/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024] Open
Abstract
Biological invasions have caused the loss of freshwater biodiversity worldwide. The interplay between adaptive responses and demographic characteristics of populations impacted by invasions is expected to be important for their resilience, but the interaction between these factors is poorly understood. The freshwater gastropod Amnicola limosus is native to the Upper St. Lawrence River and distributed along a water calcium concentration gradient within which high-calcium habitats are impacted by an invasive predator fish (Neogobius melanostomus, round goby), whereas low-calcium habitats provide refuges for the gastropods from the invasive predator. Our objectives were to (1) test for adaptation of A. limosus to the invasive predator and the low-calcium habitats, and (2) investigate if migrant gastropods could move from refuge populations to declining invaded populations (i.e., demographic rescue), which could also help maintain genetic diversity through gene flow (i.e., genetic rescue). We conducted a laboratory reciprocal transplant of wild F0 A. limosus sourced from the two habitat types (high calcium/invaded and low calcium/refuge) to measure adult survival and fecundity in home and transplant treatments of water calcium concentration (low/high) and round goby cue (present/absent). We then applied pooled whole-genome sequencing of 12 gastropod populations from across the calcium/invasion gradient. We identified patterns of life-history traits and genetic differentiation across the habitats that are consistent with local adaptation to low-calcium concentrations in refuge populations and to round goby predation in invaded populations. We also detected restricted gene flow from the low-calcium refugia towards high-calcium invaded populations, implying that the potential for demographic and genetic rescue is limited by natural dispersal. Our study highlights the importance of considering the potentially conflicting effects of local adaptation and gene flow for the resilience of populations coping with invasive predators.
Collapse
Affiliation(s)
| | - Louis Astorg
- Université du Québec à MontréalMontrealQuebecCanada
| | | | - Frederic Chain
- University of Massachusetts LowellLowellMassachusettsUSA
| | | | | | | |
Collapse
|
4
|
Thompson KA, Brandvain Y, Coughlan JM, Delmore KE, Justen H, Linnen CR, Ortiz-Barrientos D, Rushworth CA, Schneemann H, Schumer M, Stelkens R. The Ecology of Hybrid Incompatibilities. Cold Spring Harb Perspect Biol 2024; 16:a041440. [PMID: 38151331 PMCID: PMC11368197 DOI: 10.1101/cshperspect.a041440] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Ecologically mediated selection against hybrids, caused by hybrid phenotypes fitting poorly into available niches, is typically viewed as distinct from selection caused by epistatic Dobzhansky-Muller hybrid incompatibilities. Here, we show how selection against transgressive phenotypes in hybrids manifests as incompatibility. After outlining our logic, we summarize current approaches for studying ecology-based selection on hybrids. We then quantitatively review QTL-mapping studies and find traits differing between parent taxa are typically polygenic. Next, we describe how verbal models of selection on hybrids translate to phenotypic and genetic fitness landscapes, highlighting emerging approaches for detecting polygenic incompatibilities. Finally, in a synthesis of published data, we report that trait transgression-and thus possibly extrinsic hybrid incompatibility in hybrids-escalates with the phenotypic divergence between parents. We discuss conceptual implications and conclude that studying the ecological basis of hybrid incompatibility will facilitate new discoveries about mechanisms of speciation.
Collapse
Affiliation(s)
- Ken A Thompson
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St Paul, Minnesota 55108, USA
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Kira E Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, Queensland 4072, Australia
| | - Catherine A Rushworth
- Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322, USA
| | - Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., Calnali 43240, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Dopman EB, Shaw KL, Servedio MR, Butlin RK, Smadja CM. Coupling of Barriers to Gene Exchange: Causes and Consequences. Cold Spring Harb Perspect Biol 2024; 16:a041432. [PMID: 38191516 PMCID: PMC11293547 DOI: 10.1101/cshperspect.a041432] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Coupling has emerged as a concept to describe the transition from differentiated populations to newly evolved species through the strengthening of reproductive isolation. However, the term has been used in multiple ways, and relevant processes have sometimes not been clearly distinguished. Here, we synthesize existing uses of the concept of coupling and find three main perspectives: (1) coupling as the build-up of linkage disequilibrium among loci underlying barriers to gene exchange, (2) coupling as the build-up of genome-wide linkage disequilibrium, and (3) coupling as the process generating a coincidence of distinct barrier effects. We compare and contrast these views, show the diverse processes involved and the complexity of the relationships among recombination, linkage disequilibrium, and reproductive isolation, and, finally, we emphasize how each perspective can guide new directions in speciation research. Although the importance of coupling for evolutionary divergence and speciation is well established, many theoretical and empirical questions remain unanswered.
Collapse
Affiliation(s)
- Erik B Dopman
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | - Maria R Servedio
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Roger K Butlin
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
- Department of Marine Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Carole M Smadja
- Institut des Sciences de l'Evolution de Montpellier ISEM, Universite de Montpellier, CNRS, IRD, Montpellier 34095, France
| |
Collapse
|
6
|
Langdon QK, Groh JS, Aguillon SM, Powell DL, Gunn T, Payne C, Baczenas JJ, Donny A, Dodge TO, Du K, Schartl M, Ríos-Cárdenas O, Gutiérrez-Rodríguez C, Morris M, Schumer M. Swordtail fish hybrids reveal that genome evolution is surprisingly predictable after initial hybridization. PLoS Biol 2024; 22:e3002742. [PMID: 39186811 PMCID: PMC11379403 DOI: 10.1371/journal.pbio.3002742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/06/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Over the past 2 decades, biologists have come to appreciate that hybridization, or genetic exchange between distinct lineages, is remarkably common-not just in particular lineages but in taxonomic groups across the tree of life. As a result, the genomes of many modern species harbor regions inherited from related species. This observation has raised fundamental questions about the degree to which the genomic outcomes of hybridization are repeatable and the degree to which natural selection drives such repeatability. However, a lack of appropriate systems to answer these questions has limited empirical progress in this area. Here, we leverage independently formed hybrid populations between the swordtail fish Xiphophorus birchmanni and X. cortezi to address this fundamental question. We find that local ancestry in one hybrid population is remarkably predictive of local ancestry in another, demographically independent hybrid population. Applying newly developed methods, we can attribute much of this repeatability to strong selection in the earliest generations after initial hybridization. We complement these analyses with time-series data that demonstrates that ancestry at regions under selection has remained stable over the past approximately 40 generations of evolution. Finally, we compare our results to the well-studied X. birchmanni × X. malinche hybrid populations and conclude that deeper evolutionary divergence has resulted in stronger selection and higher repeatability in patterns of local ancestry in hybrids between X. birchmanni and X. cortezi.
Collapse
Affiliation(s)
- Quinn K. Langdon
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Jeffrey S. Groh
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
| | - Stepfanie M. Aguillon
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States of America
| | - Daniel L. Powell
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Theresa Gunn
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Cheyenne Payne
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - John J. Baczenas
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Alex Donny
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Tristram O. Dodge
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Kang Du
- Xiphophorus Genetic Stock Center, Texas State University San Marcos, San Marcos, United States of America
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Texas State University San Marcos, San Marcos, United States of America
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Oscar Ríos-Cárdenas
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| | | | - Molly Morris
- Department of Biological Sciences, Ohio University, Athens, Ohio, United States of America
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
- Freeman Hrabowski Fellow, Howard Hughes Medical Institute, Stanford, California, United States of America
| |
Collapse
|
7
|
Shogren EH, Sardell JM, Muirhead CA, Martí E, Cooper EA, Moyle RG, Presgraves DC, Uy JAC. Recent secondary contact, genome-wide admixture, and asymmetric introgression of neo-sex chromosomes between two Pacific island bird species. PLoS Genet 2024; 20:e1011360. [PMID: 39172766 PMCID: PMC11340901 DOI: 10.1371/journal.pgen.1011360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/28/2024] [Indexed: 08/24/2024] Open
Abstract
Secondary contact between closely related taxa represents a "moment of truth" for speciation-an opportunity to test the efficacy of reproductive isolation that evolved in allopatry and to identify the genetic, behavioral, and/or ecological barriers that separate species in sympatry. Sex chromosomes are known to rapidly accumulate differences between species, an effect that may be exacerbated for neo-sex chromosomes that are transitioning from autosomal to sex-specific inheritance. Here we report that, in the Solomon Islands, two closely related bird species in the honeyeater family-Myzomela cardinalis and Myzomela tristrami-carry neo-sex chromosomes and have come into recent secondary contact after ~1.1 my of geographic isolation. Hybrids of the two species were first observed in sympatry ~100 years ago. To determine the genetic consequences of hybridization, we use population genomic analyses of individuals sampled in allopatry and in sympatry to characterize gene flow in the contact zone. Using genome-wide estimates of diversity, differentiation, and divergence, we find that the degree and direction of introgression varies dramatically across the genome. For sympatric birds, autosomal introgression is bidirectional, with phenotypic hybrids and phenotypic parentals of both species showing admixed ancestry. In other regions of the genome, however, the story is different. While introgression on the Z/neo-Z-linked sequence is limited, introgression of W/neo-W regions and mitochondrial sequence (mtDNA) is highly asymmetric, moving only from the invading M. cardinalis to the resident M. tristrami. The recent hybridization between these species has thus enabled gene flow in some genomic regions but the interaction of admixture, asymmetric mate choice, and/or natural selection has led to the variation in the amount and direction of gene flow at sex-linked regions of the genome.
Collapse
Affiliation(s)
- Elsie H. Shogren
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Jason M. Sardell
- PrecisionLife Ltd, Hanborough Business Park, Long Hanborough, Witney, Oxon, United Kingdom
| | - Christina A. Muirhead
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- The Ronin Institute, Montclair, New Jersey, United States of America
| | - Emiliano Martí
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Elizabeth A. Cooper
- Department of Bioinformatics & Genomics, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Robert G. Moyle
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Daven C. Presgraves
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - J. Albert C. Uy
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
8
|
Schneemann H, De Sanctis B, Welch JJ. Fisher's Geometric Model as a Tool to Study Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041442. [PMID: 38253415 PMCID: PMC11216183 DOI: 10.1101/cshperspect.a041442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Interactions between alleles and across environments play an important role in the fitness of hybrids and are at the heart of the speciation process. Fitness landscapes capture these interactions and can be used to model hybrid fitness, helping us to interpret empirical observations and clarify verbal models. Here, we review recent progress in understanding hybridization outcomes through Fisher's geometric model, an intuitive and analytically tractable fitness landscape that captures many fitness patterns observed across taxa. We use case studies to show how the model parameters can be estimated from different types of data and discuss how these estimates can be used to make inferences about the divergence history and genetic architecture. We also highlight some areas where the model's predictions differ from alternative incompatibility-based models, such as the snowball effect and outlier patterns in genome scans.
Collapse
Affiliation(s)
- Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Bianca De Sanctis
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
9
|
McFarlane SE, Jahner JP, Lindtke D, Buerkle CA, Mandeville EG. Selection leads to remarkable variability in the outcomes of hybridisation across replicate hybrid zones. Mol Ecol 2024; 33:e17359. [PMID: 38699787 DOI: 10.1111/mec.17359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Hybrid zones have been viewed as an opportunity to see speciation in action. When hybrid zones are replicated, it is assumed that if the same genetic incompatibilities are maintaining reproductive isolation across all instances of secondary contact, those incompatibilities should be identifiable by consistent patterns in the genome. In contrast, changes in allele frequencies due to genetic drift should be idiosyncratic for each hybrid zone. To test this assumption, we simulated 20 replicates of each of 12 hybrid zone scenarios with varied genetic incompatibilities, rates of migration, selection and different starting population size ratios of parental species. We found remarkable variability in the outcomes of hybridisation in replicate hybrid zones, particularly with Bateson-Dobzhansky-Muller incompatibilities and strong selection. We found substantial differences among replicates in the overall genomic composition of individuals, including admixture proportions, inter-specific ancestry complement and number of ancestry junctions. Additionally, we found substantial variation in genomic clines among replicates at focal loci, regardless of locus-specific selection. We conclude that processes other than selection are responsible for some consistent outcomes of hybridisation, whereas selection on incompatibilities can lead to genomically widespread and highly variable outcomes. We highlight the challenge of mapping between pattern and process in hybrid zones and call attention to how selection against incompatibilities will commonly lead to variable outcomes. We hope that this study informs future research on replicate hybrid zones and encourages further development of statistical techniques, theoretical models and exploration of additional axes of variation to understand reproductive isolation.
Collapse
Affiliation(s)
- S Eryn McFarlane
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Joshua P Jahner
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | | | - C Alex Buerkle
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Elizabeth G Mandeville
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Biology Department, Northern Michigan University, Marquette, Michigan, USA
| |
Collapse
|
10
|
Bock DG, Baeckens S, Kolbe JJ, Losos JB. When adaptation is slowed down: Genomic analysis of evolutionary stasis in thermal tolerance during biological invasion in a novel climate. Mol Ecol 2024; 33:e17075. [PMID: 37489260 DOI: 10.1111/mec.17075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
Research conducted during the past two decades has demonstrated that biological invasions are excellent models of rapid evolution. Even so, characteristics of invasive populations such as a short time for recombination to assemble optimal combinations of alleles may occasionally limit adaptation to new environments. Here, we investigated such genetic constraints to adaptation in the invasive brown anole (Anolis sagrei)-a tropical ectotherm that was introduced to the southeastern United States, a region with a much colder climate than in its native Caribbean range. We examined thermal physiology for 30 invasive populations and tested for a climatic cline in cold tolerance. Also, we used genomics to identify mechanisms that may limit adaptation. We found no support for a climatic cline, indicating that thermal tolerance did not shift adaptively. Concomitantly, population genomic results were consistent with the occurrence of recombination cold spots that comprise more than half of the genome and maintain long-range associations among alleles in invasive populations. These genomic regions overlap with both candidate thermal tolerance loci that we identified using a standard genome-wide association test. Moreover, we found that recombination cold spots do not have a large contribution to population differentiation in the invasive range, contrary to observations in the native range. We suggest that limited recombination is constraining the contribution of large swaths of the genome to adaptation in invasive brown anoles. Our study provides an example of evolutionary stasis during invasion and highlights the possibility that reduced recombination occasionally slows down adaptation in invasive populations.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Simon Baeckens
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Evolution and Optics of Nanostructures Lab, Department of Biology, Ghent University, Ghent, Belgium
- Functional Morphology Lab, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Jonathan B Losos
- Department of Biology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Lawson DJ, Howard-McCombe J, Beaumont M, Senn H. How admixed captive breeding populations could be rescued using local ancestry information. Mol Ecol 2024:e17349. [PMID: 38634332 DOI: 10.1111/mec.17349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 04/19/2024]
Abstract
This paper asks the question: can genomic information be used to recover a species that is already on the pathway to extinction due to genetic swamping from a related and more numerous population? We show that a breeding strategy in a captive breeding program can use whole genome sequencing to identify and remove segments of DNA introgressed through hybridisation. The proposed policy uses a generalized measure of kinship or heterozygosity accounting for local ancestry, that is, whether a specific genetic location was inherited from the target of conservation. We then show that optimizing these measures would minimize undesired ancestry while also controlling kinship and/or heterozygosity, in a simulated breeding population. The process is applied to real data representing the hybridized Scottish wildcat breeding population, with the result that it should be possible to breed out domestic cat ancestry. The ability to reverse introgression is a powerful tool brought about through the combination of sequencing with computational advances in ancestry estimation. Since it works best when applied early in the process, important decisions need to be made about which genetically distinct populations should benefit from it and which should be left to reform into a single population.
Collapse
Affiliation(s)
- Daniel J Lawson
- Institute of Statistical Sciences, School of Mathematics, University of Bristol, Bristol, UK
| | - Jo Howard-McCombe
- RZSS WildGenes Laboratory, Conservation Department, Royal Zoological Society of Scotland, Edinburgh, UK
| | - Mark Beaumont
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Helen Senn
- RZSS WildGenes Laboratory, Conservation Department, Royal Zoological Society of Scotland, Edinburgh, UK
| |
Collapse
|
12
|
Blain SA, Justen HC, Easton W, Delmore KE. Reduced hybrid survival in a migratory divide between songbirds. Ecol Lett 2024; 27:e14420. [PMID: 38578004 DOI: 10.1111/ele.14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
Migratory divides, hybrid zones between populations that use different seasonal migration routes, are hypothesised to contribute to speciation. Specifically, relative to parental species, hybrids at divides are predicted to exhibit (1) intermediate migratory behaviour and (2) reduced fitness as a result. We provide the first direct test of the second prediction here with one of the largest existing avian tracking datasets, leveraging a divide between Swainson's thrushes where the first prediction is supported. Using detection rates as a proxy for survival, our results supported the migratory divide hypothesis with lower survival rates for hybrids than parental forms. This finding was juvenile-specific (vs. adults), suggesting selection against hybrids is stronger earlier in life. Reduced hybrid survival was not explained by selection against intermediate phenotypes or negative interactions among phenotypes. Additional work connecting specific features of migration is needed, but these patterns provide strong support for migration as an ecological driver of speciation.
Collapse
Affiliation(s)
- Stephanie A Blain
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Hannah C Justen
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Wendy Easton
- Canadian Wildlife Service, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Kira E Delmore
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
13
|
Sianta SA, Moeller DA, Brandvain Y. The extent of introgression between incipient Clarkia species is determined by temporal environmental variation and mating system. Proc Natl Acad Sci U S A 2024; 121:e2316008121. [PMID: 38466849 PMCID: PMC10963018 DOI: 10.1073/pnas.2316008121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Introgression is pervasive across the tree of life but varies across taxa, geography, and genomic regions. However, the factors modulating this variation and how they may be affected by global change are not well understood. Here, we used 200 genomes and a 15-y site-specific environmental dataset to investigate the effects of environmental variation and mating system divergence on the magnitude of introgression between a recently diverged outcrosser-selfer pair of annual plants in the genus Clarkia. These sister taxa diverged very recently and subsequently came into secondary sympatry where they form replicated contact zones. Consistent with observations of other outcrosser-selfer pairs, we found that introgression was asymmetric between taxa, with substantially more introgression from the selfer to the outcrosser. This asymmetry was caused by a bias in the direction of initial F1 hybrid formation and subsequent backcrossing. We also found extensive variation in the outcrosser's admixture proportion among contact zones, which was predicted nearly entirely by interannual variance in spring precipitation. Greater fluctuations in spring precipitation resulted in higher admixture proportions, likely mediated by the effects of spring precipitation on the expression of traits that determine premating reproductive isolation. Climate-driven hybridization dynamics may be particularly affected by global change, potentially reshaping species boundaries and adaptation to novel environments.
Collapse
Affiliation(s)
- Shelley A. Sianta
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN55108
| | - David A. Moeller
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN55108
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN55108
| |
Collapse
|
14
|
Delmore K, Justen H, Kay KM, Kitano J, Moyle LC, Stelkens R, Streisfeld MA, Yamasaki YY, Ross J. Genomic Approaches Are Improving Taxonomic Representation in Genetic Studies of Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041438. [PMID: 37848243 PMCID: PMC10835617 DOI: 10.1101/cshperspect.a041438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Until recently, our understanding of the genetics of speciation was limited to a narrow group of model species with a specific set of characteristics that made genetic analysis feasible. Rapidly advancing genomic technologies are eliminating many of the distinctions between laboratory and natural systems. In light of these genomic developments, we review the history of speciation genetics, advances that have been gleaned from model and non-model organisms, the current state of the field, and prospects for broadening the diversity of taxa included in future studies. Responses to a survey of speciation scientists across the world reveal the ongoing division between the types of questions that are addressed in model and non-model organisms. To bridge this gap, we suggest integrating genetic studies from model systems that can be reared in the laboratory or greenhouse with genomic studies in related non-models where extensive ecological knowledge exists.
Collapse
Affiliation(s)
- Kira Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Matthew A Streisfeld
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Yo Y Yamasaki
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Joseph Ross
- Department of Biology, California State University, Fresno, California 93740, USA
| |
Collapse
|
15
|
Langdon QK, Groh JS, Aguillon SM, Powell DL, Gunn T, Payne C, Baczenas JJ, Donny A, Dodge TO, Du K, Schartl M, Ríos-Cárdenas O, Gutierrez-Rodríguez C, Morris M, Schumer M. Genome evolution is surprisingly predictable after initial hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572897. [PMID: 38187753 PMCID: PMC10769416 DOI: 10.1101/2023.12.21.572897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Over the past two decades, evolutionary biologists have come to appreciate that hybridization, or genetic exchange between distinct lineages, is remarkably common - not just in particular lineages but in taxonomic groups across the tree of life. As a result, the genomes of many modern species harbor regions inherited from related species. This observation has raised fundamental questions about the degree to which the genomic outcomes of hybridization are repeatable and the degree to which natural selection drives such repeatability. However, a lack of appropriate systems to answer these questions has limited empirical progress in this area. Here, we leverage independently formed hybrid populations between the swordtail fish Xiphophorus birchmanni and X. cortezi to address this fundamental question. We find that local ancestry in one hybrid population is remarkably predictive of local ancestry in another, demographically independent hybrid population. Applying newly developed methods, we can attribute much of this repeatability to strong selection in the earliest generations after initial hybridization. We complement these analyses with time-series data that demonstrates that ancestry at regions under selection has remained stable over the past ~40 generations of evolution. Finally, we compare our results to the well-studied X. birchmanni×X. malinche hybrid populations and conclude that deeper evolutionary divergence has resulted in stronger selection and higher repeatability in patterns of local ancestry in hybrids between X. birchmanni and X. cortezi.
Collapse
Affiliation(s)
- Quinn K. Langdon
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California
| | - Jeffrey S. Groh
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis
| | - Stepfanie M. Aguillon
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
| | - Daniel L. Powell
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Theresa Gunn
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Cheyenne Payne
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | | | - Alex Donny
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Tristram O. Dodge
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Kang Du
- Xiphophorus Genetic Stock Center, Texas State University San Marcos
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Texas State University San Marcos
- Developmental Biochemistry, Biocenter, University of Würzburg
| | | | | | | | - Molly Schumer
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
- Freeman Hrabowski Fellow, Howard Hughes Medical Institute
| |
Collapse
|
16
|
Sotola VA, Berg CS, Samuli M, Chen H, Mantel SJ, Beardsley PA, Yuan YW, Sweigart AL, Fishman L. Genomic mechanisms and consequences of diverse postzygotic barriers between monkeyflower species. Genetics 2023; 225:iyad156. [PMID: 37603838 DOI: 10.1093/genetics/iyad156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023] Open
Abstract
The evolution of genomic incompatibilities causing postzygotic barriers to hybridization is a key step in species divergence. Incompatibilities take 2 general forms-structural divergence between chromosomes leading to severe hybrid sterility in F1 hybrids and epistatic interactions between genes causing reduced fitness of hybrid gametes or zygotes (Dobzhansky-Muller incompatibilities). Despite substantial recent progress in understanding the molecular mechanisms and evolutionary origins of both types of incompatibility, how each behaves across multiple generations of hybridization remains relatively unexplored. Here, we use genetic mapping in F2 and recombinant inbred line (RIL) hybrid populations between the phenotypically divergent but naturally hybridizing monkeyflowers Mimulus cardinalis and M. parishii to characterize the genetic basis of hybrid incompatibility and examine its changing effects over multiple generations of experimental hybridization. In F2s, we found severe hybrid pollen inviability (<50% reduction vs parental genotypes) and pseudolinkage caused by a reciprocal translocation between Chromosomes 6 and 7 in the parental species. RILs retained excess heterozygosity around the translocation breakpoints, which caused substantial pollen inviability when interstitial crossovers had not created compatible heterokaryotypic configurations. Strong transmission ratio distortion and interchromosomal linkage disequilibrium in both F2s and RILs identified a novel 2-locus genic incompatibility causing sex-independent gametophytic (haploid) lethality. The latter interaction eliminated 3 of the expected 9 F2 genotypic classes via F1 gamete loss without detectable effects on the pollen number or viability of F2 double heterozygotes. Along with the mapping of numerous milder incompatibilities, these key findings illuminate the complex genetics of plant hybrid breakdown and are an important step toward understanding the genomic consequences of natural hybridization in this model system.
Collapse
Affiliation(s)
- V Alex Sotola
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Colette S Berg
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Matthew Samuli
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Hongfei Chen
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Samuel J Mantel
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Paul A Beardsley
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA 91768, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Andrea L Sweigart
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
17
|
Suchocki CR, Ka'apu-Lyons C, Copus JM, Walsh CAJ, Lee AM, Carter JM, Johnson EA, Etter PD, Forsman ZH, Bowen BW, Toonen RJ. Geographic destiny trumps taxonomy in the Roundtail Chub, Gila robusta species complex (Teleostei, Leuciscidae). Sci Rep 2023; 13:15810. [PMID: 37737242 PMCID: PMC10517014 DOI: 10.1038/s41598-023-41719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
The Gila robusta species complex in the lower reaches of the Colorado River includes three nominal and contested species (G. robusta, G. intermedia, and G. nigra) originally defined by morphological and meristic characters. In subsequent investigations, none of these characters proved diagnostic, and species assignments were based on capture location. Two recent studies applied conservation genomics to assess species boundaries and reached contrasting conclusions: an ezRAD phylogenetic study resolved 5 lineages with poor alignment to species categories and proposed a single species with multiple population partitions. In contrast, a dd-RAD coalescent study concluded that the three nominal species are well-supported evolutionarily lineages. Here we developed a draft genome (~ 1.229 Gbp) to apply genome-wide coverage (10,246 SNPs) with nearly range-wide sampling of specimens (G. robusta N = 266, G. intermedia N = 241, and G. nigra N = 117) to resolve this debate. All three nominal species were polyphyletic, whereas 5 of 8 watersheds were monophyletic. AMOVA partitioned 23.1% of genetic variance among nominal species, 30.9% among watersheds, and the Little Colorado River was highly distinct (FST ranged from 0.79 to 0.88 across analyses). Likewise, DAPC identified watersheds as more distinct than species, with the Little Colorado River having 297 fixed nucleotide differences compared to zero fixed differences among the three nominal species. In every analysis, geography explains more of the observed variance than putative taxonomy, and there are no diagnostic molecular or morphological characters to justify species designation. Our analysis reconciles previous work by showing that species identities based on type location are supported by significant divergence, but natural geographic partitions show consistently greater divergence. Thus, our data confirm Gila robusta as a single polytypic species with roughly a dozen highly isolated geographic populations, providing a strong scientific basis for watershed-based future conservation.
Collapse
Affiliation(s)
- Christopher R Suchocki
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
| | - Cassie Ka'apu-Lyons
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
| | - Joshua M Copus
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
| | - Cameron A J Walsh
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
| | - Anne M Lee
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
| | - Julie Meka Carter
- Arizona Game and Fish Department, 5000 W. Carefree Highway, Phoenix, AZ, 85086, USA
| | - Eric A Johnson
- Institute of Molecular Biology, University of Oregon, 1585 E 13th Ave., Eugene, OR, 97403, USA
| | - Paul D Etter
- Institute of Molecular Biology, University of Oregon, 1585 E 13th Ave., Eugene, OR, 97403, USA
| | - Zac H Forsman
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
- Reefscape Restoration Initiative, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Brian W Bowen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA.
| |
Collapse
|
18
|
Mantel SJ, Sweigart AL. Postzygotic barriers persist despite ongoing introgression in hybridizing Mimulus species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.05.552095. [PMID: 37577468 PMCID: PMC10418264 DOI: 10.1101/2023.08.05.552095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The evolution of postzygotic isolation is thought to be a key step in maintaining species boundaries upon secondary contact, yet the dynamics and persistence of hybrid incompatibilities in sympatric species are not well understood.Here, we explore these issues using genetic mapping in three populations of recombinant inbred lines between naturally hybridizing monkeyflowers Mimulus guttatus and M. nasutus from the sympatric Catherine Creek population.The three M. guttatus founders differ dramatically in admixture history. Comparative genetic mapping also reveals three putative inversions segregating among the M. guttatus founders, two due to admixture. We observe strong, genome-wide transmission ratio distortion, but patterns are highly variable among populations. Some distortion is explained by epistatic selection favoring parental genotypes, but tests of inter-chromosomal linkage disequilibrium also reveal multiple candidate Dobzhansky-Muller incompatibilities. We also map several genetic loci for hybrid fertility, including two interacting pairs coinciding with peaks of distortion.Remarkably, in this limited sample of M. guttatus, we discover abundant segregating variation for hybrid incompatibilities with M. nasutus, suggesting this population harbors diverse contributors to postzygotic isolation. Moreover, even with substantial admixture, hybrid incompatibilities between Mimulus species persist, suggesting postzygotic isolation might be a potent force in maintaining species barriers in this system.
Collapse
Affiliation(s)
- Samuel J. Mantel
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
19
|
Hudson CM, Cuenca Cambronero M, Moosmann M, Narwani A, Spaak P, Seehausen O, Matthews B. Environmentally independent selection for hybrids between divergent freshwater stickleback lineages in semi-natural ponds. J Evol Biol 2023; 36:1166-1184. [PMID: 37394735 DOI: 10.1111/jeb.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/03/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Hybridization following secondary contact of genetically divergent populations can influence the range expansion of invasive species, though specific outcomes depend on the environmental dependence of hybrid fitness. Here, using two genetically and ecologically divergent threespine stickleback lineages that differ in their history of freshwater colonization, we estimate fitness variation of parental lineages and hybrids in semi-natural freshwater ponds with contrasting histories of nutrient loading. In our experiment, we found that fish from the older freshwater lineage (Lake Geneva) and hybrids outperformed fish from the younger freshwater lineage (Lake Constance) in terms of both growth and survival, regardless of the environmental context of our ponds. Across all ponds, hybrids exhibited the highest survival. Although wild-caught adult populations differed in their functional and defence morphology, it is unclear which of these traits underlie the fitness differences observed among juveniles in our experiment. Overall, our work suggests that when hybrid fitness is insensitive to environmental conditions, as observed here, introgression may promote population expansion into unoccupied habitats and accelerate invasion success.
Collapse
Affiliation(s)
- Cameron Marshall Hudson
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Maria Cuenca Cambronero
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Aquatic Ecology Group, University of Vic, Central University of Catalonia, Vic, Spain
| | - Marvin Moosmann
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Anita Narwani
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Piet Spaak
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
| |
Collapse
|
20
|
Zhang L, Chaturvedi S, Nice CC, Lucas LK, Gompert Z. Population genomic evidence of selection on structural variants in a natural hybrid zone. Mol Ecol 2023; 32:1497-1514. [PMID: 35398939 DOI: 10.1111/mec.16469] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Abstract
Structural variants (SVs) can promote speciation by directly causing reproductive isolation or by suppressing recombination across large genomic regions. Whereas examples of each mechanism have been documented, systematic tests of the role of SVs in speciation are lacking. Here, we take advantage of long-read (Oxford nanopore) whole-genome sequencing and a hybrid zone between two Lycaeides butterfly taxa (L. melissa and Jackson Hole Lycaeides) to comprehensively evaluate genome-wide patterns of introgression for SVs and relate these patterns to hypotheses about speciation. We found >100,000 SVs segregating within or between the two hybridizing species. SVs and SNPs exhibited similar levels of genetic differentiation between species, with the exception of inversions, which were more differentiated. We detected credible variation in patterns of introgression among SV loci in the hybrid zone, with 562 of 1419 ancestry-informative SVs exhibiting genomic clines that deviated from null expectations based on genome-average ancestry. Overall, hybrids exhibited a directional shift towards Jackson Hole Lycaeides ancestry at SV loci, consistent with the hypothesis that these loci experienced more selection on average than SNP loci. Surprisingly, we found that deletions, rather than inversions, showed the highest skew towards excess ancestry from Jackson Hole Lycaeides. Excess Jackson Hole Lycaeides ancestry in hybrids was also especially pronounced for Z-linked SVs and inversions containing many genes. In conclusion, our results show that SVs are ubiquitous and suggest that SVs in general, but especially deletions, might disproportionately affect hybrid fitness and thus contribute to reproductive isolation.
Collapse
Affiliation(s)
- Linyi Zhang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biology, Utah State University, Logan, Utah, USA
| | - Samridhi Chaturvedi
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Chris C Nice
- Department of Biology, Texas State University, San Marcos, Texas, USA
| | - Lauren K Lucas
- Department of Biology, Utah State University, Logan, Utah, USA
| | | |
Collapse
|
21
|
Stankowski S, Chase MA, McIntosh H, Streisfeld MA. Integrating top-down and bottom-up approaches to understand the genetic architecture of speciation across a monkeyflower hybrid zone. Mol Ecol 2023; 32:2041-2054. [PMID: 36651268 DOI: 10.1111/mec.16849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Understanding the phenotypic and genetic architecture of reproductive isolation is a long-standing goal of speciation research. In several systems, large-effect loci contributing to barrier phenotypes have been characterized, but such causal connections are rarely known for more complex genetic architectures. In this study, we combine "top-down" and "bottom-up" approaches with demographic modelling toward an integrated understanding of speciation across a monkeyflower hybrid zone. Previous work suggests that pollinator visitation acts as a primary barrier to gene flow between two divergent red- and yellow-flowered ecotypes of Mimulus aurantiacus. Several candidate isolating traits and anonymous single nucleotide polymorphism loci under divergent selection have been identified, but their genomic positions remain unknown. Here, we report findings from demographic analyses that indicate this hybrid zone formed by secondary contact, but that subsequent gene flow was restricted by widespread barrier loci across the genome. Using a novel, geographic cline-based genome scan, we demonstrate that candidate barrier loci are broadly distributed across the genome, rather than mapping to one or a few "islands of speciation." Quantitative trait locus (QTL) mapping reveals that most floral traits are highly polygenic, with little evidence that QTL colocalize, indicating that most traits are genetically independent. Finally, we find little evidence that QTL and candidate barrier loci overlap, suggesting that some loci contribute to other forms of reproductive isolation. Our findings highlight the challenges of understanding the genetic architecture of reproductive isolation and reveal that barriers to gene flow other than pollinator isolation may play an important role in this system.
Collapse
Affiliation(s)
- Sean Stankowski
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Madeline A Chase
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Hanna McIntosh
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | | |
Collapse
|
22
|
Anderson SAS, López-Fernández H, Weir JT. Ecology and the origin of non-ephemeral species. Am Nat 2022; 201:619-638. [PMID: 37130236 DOI: 10.1086/723763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractResearch over the past three decades has shown that ecology-based extrinsic reproductive barriers can rapidly arise to generate incipient species-but such barriers can also rapidly dissolve when environments change, resulting in incipient species collapse. Understanding the evolution of unconditional, "intrinsic" reproductive barriers is therefore important for understanding the longer-term buildup of biodiversity. In this article, we consider ecology's role in the evolution of intrinsic reproductive isolation. We suggest that this topic has fallen into a gap between disciplines: while evolutionary ecologists have traditionally focused on the rapid evolution of extrinsic isolation between co-occurring ecotypes, speciation geneticists studying intrinsic isolation in other taxa have devoted little attention to the ecological context in which it evolves. We argue that for evolutionary ecology to close this gap, the field will have to expand its focus beyond rapid adaptation and its traditional model systems. Synthesizing data from several subfields, we present circumstantial evidence for and against different forms of ecological adaptation as promoters of intrinsic isolation and discuss alternative forces that may be significant. We conclude by outlining complementary approaches that can better address the role of ecology in the evolution of nonephemeral reproductive barriers and, by extension, less ephemeral species.
Collapse
|
23
|
Schneemann H, Munzur AD, Thompson KA, Welch JJ. The diverse effects of phenotypic dominance on hybrid fitness. Evolution 2022; 76:2846-2863. [PMID: 36221216 PMCID: PMC10092378 DOI: 10.1111/evo.14645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/14/2022] [Indexed: 01/22/2023]
Abstract
When divergent populations interbreed, their alleles are brought together in hybrids. In the initial F1 cross, most divergent loci are heterozygous. Therefore, F1 fitness can be influenced by dominance effects that could not have been selected to function well together. We present a systematic study of these F1 dominance effects by introducing variable phenotypic dominance into Fisher's geometric model. We show that dominance often reduces hybrid fitness, which can generate optimal outbreeding followed by a steady decline in F1 fitness, as is often observed. We also show that "lucky" beneficial effects sometimes arise by chance, which might be important when hybrids can access novel environments. We then show that dominance can lead to violations of Haldane's Rule (reduced fitness of the heterogametic F1) but strengthens Darwin's Corollary (F1 fitness differences between cross directions). Taken together, results show that the effects of dominance on hybrid fitness can be surprisingly difficult to isolate, because they often resemble the effects of uniparental inheritance or expression. Nevertheless, we identify a pattern of environment-dependent heterosis that only dominance can explain, and for which there is some suggestive evidence. Our results also show how existing data set upper bounds on the size of dominance effects. These bounds could explain why additive models often provide good predictions for later-generation recombinant hybrids, even when dominance qualitatively changes outcomes for the F1.
Collapse
Affiliation(s)
- Hilde Schneemann
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK
| | - Aslı D Munzur
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Ken A Thompson
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.,Current address: Department of Biology, Stanford University & Department of Plant Biology, Carnegie Institution for Science, Stanford, USA
| | - John J Welch
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
24
|
Stuckert AMM, Matute DR. Using neutral loci to quantify reproductive isolation and speciation: a commentary on Westram et al., 2022. J Evol Biol 2022; 35:1169-1174. [PMID: 36063155 DOI: 10.1111/jeb.14057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/23/2023]
Affiliation(s)
- Adam M M Stuckert
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
25
|
Abstract
Speciation is the process by which barriers to gene flow evolve between populations. Although we now know that speciation is largely driven by natural selection, knowledge of the agents of selection and the genetic and genomic mechanisms that facilitate divergence is required for a satisfactory theory of speciation. In this essay, we highlight three advances/problems in our understanding of speciation that have arisen from studies of the genes and genomic regions that underlie the evolution of reproductive isolation. First, we describe how the identification of “speciation” genes makes it possible to identify the agents of selection causing the evolution of reproductive isolation, while also noting that the link between the genetics of phenotypic divergence and intrinsic postzygotic reproductive barriers remains tenuous. Second, we discuss the important role of recombination suppressors in facilitating speciation with gene flow, but point out that the means and timing by which reproductive barriers become associated with recombination cold spots remains uncertain. Third, we establish the importance of ancient genetic variation in speciation, although we argue that the focus of speciation studies on evolutionarily young groups may bias conclusions in favor of ancient variation relative to new mutations.
Collapse
|
26
|
Thompson KA, Schluter D. Heterosis counteracts hybrid breakdown to forestall speciation by parallel natural selection. Proc Biol Sci 2022; 289:20220422. [PMID: 35506223 PMCID: PMC9065978 DOI: 10.1098/rspb.2022.0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 01/04/2023] Open
Abstract
In contrast to ecological speciation, where reproductive isolation evolves as a consequence of divergent natural selection, speciation by parallel natural selection has been less thoroughly studied. To test whether parallel evolution drives speciation, we leveraged the repeated evolution of benthic and limnetic ecotypes of threespine stickleback fish and estimated fitness for pure crosses and within-ecotype hybrids in semi-natural ponds and in laboratory aquaria. In ponds, we detected hybrid breakdown in both ecotypes but this was counterbalanced by heterosis and the strength of post-zygotic isolation was nil. In aquaria, we detected heterosis in limnetic crosses and breakdown in benthic crosses, which is suggestive of process- and ecotype-specific environment-dependence. In ponds, heterosis and breakdown were three times greater in limnetic crosses than in benthic crosses, contrasting the prediction that the fitness consequences of hybridization should be greater in crosses among more derived ecotypes. Consistent with a primary role for stochastic processes, patterns differed among crosses between populations from different lakes. Yet, the observation of qualitatively similar patterns of heterosis and hybrid breakdown for both ecotypes when averaging the lake pairs indicates that the outcome of hybridization is repeatable in a general sense.
Collapse
Affiliation(s)
- Ken A. Thompson
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dolph Schluter
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Hagberg L, Celemín E, Irisarri I, Hawlitschek O, Bella JL, Mott T, Pereira RJ. Extensive introgression at late stages of species formation: Insights from grasshopper hybrid zones. Mol Ecol 2022; 31:2384-2399. [PMID: 35191134 DOI: 10.1111/mec.16406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
The process of species formation is characterised by the accumulation of multiple reproductive barriers. The evolution of hybrid male sterility, or Haldane's rule, typically characterises later stages of species formation, when reproductive isolation is strongest. Yet, understanding how quickly reproductive barriers evolve and their consequences for maintaining genetic boundaries between emerging species remains a challenging task because it requires studying taxa that hybridise in nature. Here, we address these questions using the meadow grasshopper Pseudochorthippus parallelus, where populations that show multiple reproductive barriers, including hybrid male sterility, hybridise in two natural hybrid zones. Using mitochondrial data, we infer that such populations have diverged some 100,000 years ago, at the beginning of the last glacial cycle in Europe. Nuclear data shows that contractions at multiple glacial refugia, and post-glacial expansions have facilitated genetic differentiation between lineages that today interact in hybrid zones. We find extensive introgression throughout the sampled species range, irrespective of current strength of reproductive isolation. Populations exhibiting hybrid male sterility in two hybrid zones show repeatable patterns of genomic differentiation, consistent with shared genomic constraints affecting ancestral divergence or with the role of those regions in reproductive isolation. Together, our results suggest that reproductive barriers that characterise late stages of species formation can evolve relatively quickly, particularly when associated with strong demographic changes. Moreover, we show that such barriers persist in the face of extensive gene flow, allowing future studies to identify associated genomic regions.
Collapse
Affiliation(s)
- Linda Hagberg
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Enrique Celemín
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany.,Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany.,Campus Institute Data Science (CIDAS), Göttingen, Germany
| | - Oliver Hawlitschek
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.,Zoologische Staatssammlung (SNSB-ZSM), Münchhausenstr. 21, 81247, Munich, Germany
| | - José L Bella
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Tamí Mott
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, 57072-900, Maceió, Alagoas, Brazil
| | - Ricardo J Pereira
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
28
|
Coughlan J. One fish, two fish, red fish, dead fish: Detecting the genomic footprint of ecological incompatibilities. PLoS Biol 2022; 20:e3001504. [PMID: 35015759 PMCID: PMC8752012 DOI: 10.1371/journal.pbio.3001504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
As we uncover the ubiquity of hybridization in nature, determining how natural selection acts on hybrids has newfound importance for speciation. A study in PLOS Biology uses threespine stickleback to detect a genomic signature of ecological incompatibilities.
Collapse
Affiliation(s)
- Jenn Coughlan
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|