1
|
Yadav S, Kalwan G, Meena S, Gill SS, Yadava YK, Gaikwad K, Jain PK. Unravelling the due importance of pseudogenes and their resurrection in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108062. [PMID: 37778114 DOI: 10.1016/j.plaphy.2023.108062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
The complexities of a genome are underpinned to the vast expanses of the intergenic region, which constitutes ∼97-98% of the genome. This region is essentially composed of what is colloquially referred to as the "junk DNA" and is composed of various elements like transposons, repeats, pseudogenes, etc. The latter have long been considered as dead elements merely contributing to transcriptional noise in the genome. Many studies now describe the previously unknown regulatory functions of these genes. Recent advances in the Next-generation sequencing (NGS) technologies have allowed unprecedented access to these regions. With the availability of whole genome sequences of more than 788 different plant species in past 20 years, genome annotation has become feasible like never before. Different bioinformatic pipelines are available for the identification of pseudogenes. However, still little is known about their biological functions. The functional validation of these genes remains challenging and research in this area is still in infancy, particularly in plants. CRISPR/Cas-based genome editing could provide solutions to understand the biological roles of these genes by allowing creation of precise edits within these genes. The possibility of pseudogene reactivation or resurrection as has been demonstrated in a few studies might open new avenues of genetic manipulation to yield a desirable phenotype. This review aims at comprehensively summarizing the progress made with regards to the identification of pseudogenes and understanding their biological functions in plants.
Collapse
Affiliation(s)
- Sheel Yadav
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India; Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Gopal Kalwan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shashi Meena
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India; Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sarvajeet Singh Gill
- Stress Physiology & Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124 001, Haryana, India
| | - Yashwant K Yadava
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - P K Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
2
|
Youssef D, El-Bakatoushi R, Elframawy A, El-Sadek L, Badan GE. Molecular phylogenetic study of flavonoids in medicinal plants: a case study family Apiaceae. JOURNAL OF PLANT RESEARCH 2023; 136:305-322. [PMID: 36853579 PMCID: PMC10126080 DOI: 10.1007/s10265-023-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/12/2023] [Indexed: 05/25/2023]
Abstract
The current study examined the phylogenetic pattern of medicinal species of the family Apiaceae based on flavonoid groups production, as well as the overall mechanism of the key genes involved in flavonol and flavone production. Thirteen species of the family Apiaceae were used, including Eryngium campestre from the subfamily Saniculoideae, as well as Cuminum cyminum, Carum carvi, Coriandrum sativum, Apium graveolens, Petroselinum crispum, Pimpinella anisum, Anethum graveolens, Foeniculum vulgare, Daucus carota, Ammi majus, Torilis arvensis, and Deverra tortuosa from the subfamily Apioideae. The seeds were cultivated, and the leaves were collected to estimate flavonoids and their groups, physiological factors, transcription levels of flavonol and flavone production-related genes. The phylogenetic relationship between the studied species was established using the L-ribosomal 16 (rpl16) chloroplast gene. The results revealed that the studied species were divided into two patterns: six plant species, E. campestre, C. carvi, C. sativum, P. anisum, An. graveolens, and D. carota, contained low content of flavonoids, while the other seven species had high content. This pattern of flavonoids production coincided with the phylogenetic relationships between the studied species. In contrast, the phylogeny of the flavonol and flavone synthase genes was incompatible with the quantitative production of their products. The study concluded that the increment in the production of flavonol depends on the high expression of chalcone synthase, chalcone isomerase, flavanone 3 hydroxylase, flavonol synthase, the increase of Abscisic acid, sucrose, and phenyl ammonia lyase, while flavone mainly depends on evolution and on the high expression of the flavone synthase gene.
Collapse
Affiliation(s)
- Dalia Youssef
- Biology and Geology Sciences Department, Faculty of Education, University of Alexandria, EgyptAlexandria, El-Shatby, 21526, Egypt.
| | - Ranya El-Bakatoushi
- Biology and Geology Sciences Department, Faculty of Education, University of Alexandria, EgyptAlexandria, El-Shatby, 21526, Egypt
| | - Asmaa Elframawy
- Nucleic Acids Research Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, Borg El-Arab, Alexandria, 21933, Egypt
| | - Laila El-Sadek
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Camp Caesar, Alexandria, 21525, Egypt
| | - Ghada El Badan
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Camp Caesar, Alexandria, 21525, Egypt
| |
Collapse
|
3
|
Tripathi AM, Singh R, Verma AK, Singh A, Mishra P, Dwivedi V, Narayan S, Gandhivel VHS, Shirke PA, Shivaprasad PV, Roy S. Indian Himalayan natural Arabidopsis thaliana accessions with abolished miR158 levels exhibit robust miR173-initiated trans-acting cascade silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:855-874. [PMID: 36883862 DOI: 10.1111/tpj.16175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/13/2023] [Accepted: 03/03/2023] [Indexed: 05/27/2023]
Abstract
Small RNAs (sRNAs) such as microRNAs (miRNAs) and small interfering RNAs (siRNAs) are short 20-24-nucleotide non-coding RNAs. They are key regulators of gene expression in plants and other organisms. Several 22-nucleotide miRNAs trigger biogenesis cascades of trans-acting secondary siRNAs, which are involved in various developmental and stress responses. Here we show that Himalayan Arabidopsis thaliana accessions having natural mutations in the miR158 locus exhibit robust cascade silencing of the pentatricopeptide repeat (PPR)-like locus. Furthermore, we show that these cascade sRNAs trigger tertiary silencing of a gene involved in transpiration and stomatal opening. The natural deletions or insertions in MIR158 led to improper processing of miR158 precursors, thereby blocking synthesis of mature miR158. Reduced miR158 levels led to increased levels of its target, a pseudo-PPR gene that is targeted by tasiRNAs generated by the miR173 cascade in other accessions. Using sRNA datasets derived from Indian Himalayan accessions, as well as overexpression and knockout lines of miR158, we show that absence of miR158 led to buildup of pseudo-PPR-derived tertiary sRNAs. These tertiary sRNAs mediated robust silencing of a gene involved in stomatal closure in Himalayan accessions lacking miR158 expression. We functionally validated the tertiary phasiRNA that targets NHX2, which encodes a Na+ -K+ /H+ antiporter protein, thereby regulating transpiration and stomatal conductance. Overall, we report the role of the miRNA-TAS-siRNA-pseudogene-tertiary phasiRNA-NHX2 pathway in plant adaptation.
Collapse
Affiliation(s)
- Abhinandan Mani Tripathi
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajneesh Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashwani Kumar Verma
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akanksha Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Parneeta Mishra
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Varun Dwivedi
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Shiv Narayan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Vivek Hari Sundar Gandhivel
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Pramod Arvind Shirke
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Sribash Roy
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Liu P, Bu C, Chen P, El-Kassaby YA, Zhang D, Song Y. Enhanced genome-wide association reveals the role of YABBY11-NGATHA-LIKE1 in leaf serration development of Populus. PLANT PHYSIOLOGY 2023; 191:1702-1718. [PMID: 36535002 PMCID: PMC10022644 DOI: 10.1093/plphys/kiac585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Leaf margins are complex plant morphological features that contribute to leaf shape diversity, which affects plant structure, yield, and adaptation. Although several leaf margin regulators have been identified to date, the genetic basis of their natural variation has not been fully elucidated. In this study, we profiled two distinct leaf morphology types (serrated and smooth) using the persistent homology mathematical framework (PHMF) in two poplar species (Populus tomentosa and Populus simonii, respectively). A combined genome-wide association study (GWAS) and expression quantitative trait nucleotide (eQTN) mapping were applied to create a leaf morphology control module using data from P. tomentosa and P. simonii populations. Natural variation in leaf margins was associated with YABBY11 (YAB11) transcript abundance in poplar. In P. tomentosa, PtoYAB11 carries a premature stop codon (PtoYAB11PSC), resulting in the loss of its positive regulation of NGATHA-LIKE1 (PtoNGAL-1) and RIBULOSE BISPHOSPHATE CARBOXYLASE LARGE SUBUNIT (PtoRBCL). Overexpression of PtoYAB11PSC promoted serrated leaf margins, enlarged leaves, enhanced photosynthesis, and increased biomass. Overexpression of PsiYAB11 in P. tomentosa promoted smooth leaf margins, higher stomatal density, and greater light damage repair ability. In poplar, YAB11-NGAL1 is sensitive to environmental conditions, acts as a positive regulator of leaf margin serration, and may also link environmental signaling to leaf morphological plasticity.
Collapse
Affiliation(s)
- Peng Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
| | - Chenhao Bu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
| | - Panfei Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Deqiang Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
| | - Yuepeng Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
| |
Collapse
|
5
|
Li Z, Pan X, Cai YD. Identification of Type 2 Diabetes Biomarkers From Mixed Single-Cell Sequencing Data With Feature Selection Methods. Front Bioeng Biotechnol 2022; 10:890901. [PMID: 35721855 PMCID: PMC9201257 DOI: 10.3389/fbioe.2022.890901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is the most common disease and a major threat to human health. Type 2 diabetes (T2D) makes up about 90% of all cases. With the development of high-throughput sequencing technologies, more and more fundamental pathogenesis of T2D at genetic and transcriptomic levels has been revealed. The recent single-cell sequencing can further reveal the cellular heterogenicity of complex diseases in an unprecedented way. With the expectation on the molecular essence of T2D across multiple cell types, we investigated the expression profiling of more than 1,600 single cells (949 cells from T2D patients and 651 cells from normal controls) and identified the differential expression profiling and characteristics at the transcriptomics level that can distinguish such two groups of cells at the single-cell level. The expression profile was analyzed by several machine learning algorithms, including Monte Carlo feature selection, support vector machine, and repeated incremental pruning to produce error reduction (RIPPER). On one hand, some T2D-associated genes (MTND4P24, MTND2P28, and LOC100128906) were discovered. On the other hand, we revealed novel potential pathogenic mechanisms in a rule manner. They are induced by newly recognized genes and neglected by traditional bulk sequencing techniques. Particularly, the newly identified T2D genes were shown to follow specific quantitative rules with diabetes prediction potentials, and such rules further indicated several potential functional crosstalks involved in T2D.
Collapse
Affiliation(s)
- Zhandong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Xiaoyong Pan
- Key Laboratory of System Control and Information Processing, Institute of Image Processing and Pattern Recognition, Ministry of Education of China, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Yu-Dong Cai,
| |
Collapse
|
6
|
Pseudogenes: Four Decades of Discovery. Methods Mol Biol 2021. [PMID: 34165705 DOI: 10.1007/978-1-0716-1503-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
A pseudogene is defined as a genomic DNA sequence that looks like a mutated or truncated version of a known functional gene. Nearly four decades since their first discovery it has been estimated that between ~12,000 and ~20,000 pseudogenes exist in the human genome. Early efforts to characterize functions for pseudogenes were unsuccessful, thus they were considered functionless relics of evolutionary selection, junk DNA or genetic fossils. Remarkably, an increasing number of pseudogenes have been reported to be expressed as RNA transcripts above and beyond levels considered accidental or spurious transcription. There is emerging evidence that some expressed pseudogene transcripts have biological functions and should be defined as a subclass of functional long noncoding RNAs (lncRNA). In this introductory chapter, I briefly summarize the history and the current knowledge of pseudogenes, and highlight the emerging functions of some pseudogenes in human biology and disease. This second iteration of Pseudogenes in Methods in Molecular Biology highlights new methodological approaches to investigate this intriguing family of lncRNAs and the extent of their biological function.
Collapse
|
7
|
Chen S, Wu J, Zhang Y, Zhao Y, Xu W, Li Y, Xie J. Genome-Wide Analysis of Coding and Non-coding RNA Reveals a Conserved miR164-NAC-mRNA Regulatory Pathway for Disease Defense in Populus. Front Genet 2021; 12:668940. [PMID: 34122520 PMCID: PMC8195341 DOI: 10.3389/fgene.2021.668940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) contribute to plant defense responses by increasing the overall genetic diversity; however, their origins and functional importance in plant defense remain unclear. Here, we employed Illumina sequencing technology to assess how miRNA and messenger RNA (mRNA) populations vary in the Chinese white poplar (Populus tomentosa) during a leaf black spot fungus (Marssonina brunnea) infection. We sampled RNAs from infective leaves at conidia germinated stage [12 h post-inoculation (hpi)], infective vesicles stage (24 hpi), and intercellular infective hyphae stage (48 hpi), three essential stages associated with plant colonization and biotrophic growth in M. brunnea fungi. In total, 8,938 conserved miRNA-target gene pairs and 3,901 Populus-specific miRNA-target gene pairs were detected. The result showed that Populus-specific miRNAs (66%) were more involved in the regulation of the disease resistance genes. By contrast, conserved miRNAs (>80%) target more whole-genome duplication (WGD)-derived transcription factors (TFs). Among the 1,023 WGD-derived TF pairs, 44.9% TF pairs had only one paralog being targeted by a miRNA that could be due to either gain or loss of a miRNA binding site after the WGD. A conserved hierarchical regulatory network combining promoter analyses and hierarchical clustering approach uncovered a miR164–NAM, ATAF, and CUC (NAC) transcription factor–mRNA regulatory module that has potential in Marssonina defense responses. Furthermore, analyses of the locations of miRNA precursor sequences reveal that pseudogenes and transposon contributed a certain proportion (∼30%) of the miRNA origin. Together, these observations provide evolutionary insights into the origin and potential roles of miRNAs in plant defense and functional innovation.
Collapse
Affiliation(s)
- Sisi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiadong Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yanfeng Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yiyang Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weijie Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Garewal N, Goyal N, Pathania S, Kaur J, Singh K. Gauging the trends of pseudogenes in plants. Crit Rev Biotechnol 2021; 41:1114-1129. [PMID: 33993808 DOI: 10.1080/07388551.2021.1901648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pseudogenes, the debilitated parts of ancient genes, were previously scrapped off as junk or discarded genes with no functional significance. Pseudogenes have come under scrutiny for their functionality, since recent studies have unveiled their importance in the regulation of their corresponding parent genes and various biological mechanisms. Despite the enormous occurrence of pseudogenes in plants, the lack of experimental validation has contributed toward their unresolved roles in gene regulation. Contrarily, most of the studies associated with gene regulation have been mainly reported for humans, mice, and other mammalian genomes. Consequently, in order to present a cumulative report on plant-based pseudogenes research, an attempt has been made to assemble multiple studies presenting the pseudogene classification, the prediction and the determination of comparative accuracies of various computational pipelines, and recent trends in analyzing their biological functions, and regulatory mechanisms. This review represents the classical, as well as the recent advances on pseudogene identification and their potential roles in transcriptional regulation, which could possibly invigorate the quality of genome annotation, evolutionary analysis, and complexity surrounding the regulatory pathways in plants. Thus, when the ambiguous boundary girdling the pseudogenes eventually recedes on account of their explicit orchestration role, research in flora would no longer saunter compared to that on fauna.
Collapse
Affiliation(s)
- Naina Garewal
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Neetu Goyal
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
9
|
Mascagni F, Usai G, Cavallini A, Porceddu A. Structural characterization and duplication modes of pseudogenes in plants. Sci Rep 2021; 11:5292. [PMID: 33674668 PMCID: PMC7935947 DOI: 10.1038/s41598-021-84778-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/19/2021] [Indexed: 11/24/2022] Open
Abstract
We identified and characterized the pseudogene complements of five plant species: four dicots (Arabidopsis thaliana, Vitis vinifera, Populus trichocarpa and Phaseolus vulgaris) and one monocot (Oryza sativa). Retroposition was considered of modest importance for pseudogene formation in all investigated species except V. vinifera, which showed an unusually high number of retro-pseudogenes in non coding genic regions. By using a pipeline for the classification of sequence duplicates in plant genomes, we compared the relative importance of whole genome, tandem, proximal, transposed and dispersed duplication modes in the pseudo and functional gene complements. Pseudogenes showed higher tendencies than functional genes to genomic dispersion. Dispersed pseudogenes were prevalently fragmented and showed high sequence divergence at flanking regions. On the contrary, those deriving from whole genome duplication were proportionally less than expected based on observations on functional loci and showed higher levels of flanking sequence conservation than dispersed pseudogenes. Pseudogenes deriving from tandem and proximal duplications were in excess compared to functional loci, probably reflecting the high evolutionary rate associated with these duplication modes in plant genomes. These data are compatible with high rates of sequence turnover at neutral sites and double strand break repairs mediated duplication mechanisms.
Collapse
Affiliation(s)
- Flavia Mascagni
- Department of Agricultural, Food, and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Gabriele Usai
- Department of Agricultural, Food, and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Cavallini
- Department of Agricultural, Food, and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Porceddu
- Dipartimento di Agraria, Università degli studi di Sassari, Via Enrico de Nicola 1, 07100, Sassari, Italy.
| |
Collapse
|
10
|
Kimura T. [Non-coding Natural Antisense RNA: Mechanisms of Action in the Regulation of Target Gene Expression and Its Clinical Implications]. YAKUGAKU ZASSHI 2020; 140:687-700. [PMID: 32378673 DOI: 10.1248/yakushi.20-00002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent advances in high-throughput technologies have revealed that 75% of the human genome is transcribed to RNA, whereas only 3% of transcripts are translated into proteins. Consequently, many long non-coding RNAs (lncRNAs) have been identified, which has improved our understanding of the complexity of biological processes. LncRNAs comprise multiple classes of RNA transcripts that regulate the transcription, stability and translation of protein-coding genes in a genome. Natural antisense transcripts (NATs) form one such class, and the GENCODE v30 catalog contains 16193 lncRNA loci, of which 5611 are antisense loci. This review outlines our emerging understanding of lncRNAs, with a particular focus on how lncRNAs regulate gene expression using interferon-α1 (IFN-α1) mRNA and its antisense partner IFN-α1 antisense (as)RNA as an example. We have identified and characterized the asRNA that determines post-transcriptional IFN-α1 mRNA levels. IFN-α1 asRNA stabilizes IFN-α1 mRNA by cytoplasmic sense-antisense duplex formation, which may enhance the accessibility of an RNA stabilizer protein or decrease the affinity of an RNA decay factor for the RNA. IFN-α1 asRNA can also act as competing molecules in the competing endogenous (ce)RNA network with other members of the IFNA multigene family mRNAs/asRNAs, and other cellular mRNA transcripts. Furthermore, antisense oligoribonucleotides representing functional domains of IFN-α1 asRNA inhibit influenza virus proliferation in the respiratory tract of virus-infected animals. Thus, these findings support, at least in part, the rationale that dissecting the activity of NAT on gene expression regulation promises to reveal previously unanticipated biology, with potential to provide new therapeutic approaches to diseases.
Collapse
Affiliation(s)
- Tominori Kimura
- Laboratory of Microbiology and Cell Biology, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
11
|
Chen X, Wan L, Wang W, Xi WJ, Yang AG, Wang T. Re-recognition of pseudogenes: From molecular to clinical applications. Theranostics 2020; 10:1479-1499. [PMID: 32042317 PMCID: PMC6993246 DOI: 10.7150/thno.40659] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Pseudogenes were initially regarded as "nonfunctional" genomic elements that did not have protein-coding abilities due to several endogenous inactivating mutations. Although pseudogenes are widely expressed in prokaryotes and eukaryotes, for decades, they have been largely ignored and classified as gene "junk" or "relics". With the widespread availability of high-throughput sequencing analysis, especially omics technologies, knowledge concerning pseudogenes has substantially increased. Pseudogenes are evolutionarily conserved and derive primarily from a mutation or retrotransposon, conferring the pseudogene with a "gene repository" role to store and expand genetic information. In contrast to previous notions, pseudogenes have a variety of functions at the DNA, RNA and protein levels for broadly participating in gene regulation to influence the development and progression of certain diseases, especially cancer. Indeed, some pseudogenes have been proven to encode proteins, strongly contradicting their "trash" identification, and have been confirmed to have tissue-specific and disease subtype-specific expression, indicating their own value in disease diagnosis. Moreover, pseudogenes have been correlated with the life expectancy of patients and exhibit great potential for future use in disease treatment, suggesting that they are promising biomarkers and therapeutic targets for clinical applications. In this review, we summarize the natural properties, functions, disease involvement and clinical value of pseudogenes. Although our knowledge of pseudogenes remains nascent, this field deserves more attention and deeper exploration.
Collapse
|
12
|
Chatron N, Cassinari K, Quenez O, Baert-Desurmont S, Bardel C, Buisine MP, Calpena E, Capri Y, Corominas Galbany J, Diguet F, Edery P, Isidor B, Labalme A, Le Caignec C, Lévy J, Lecoquierre F, Lindenbaum P, Pichon O, Rollat-Farnier PA, Simonet T, Saugier-Veber P, Tabet AC, Toutain A, Wilkie AOM, Lesca G, Sanlaville D, Nicolas G, Schluth-Bolard C. Identification of mobile retrocopies during genetic testing: Consequences for routine diagnosis. Hum Mutat 2019; 40:1993-2000. [PMID: 31230393 DOI: 10.1002/humu.23845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022]
Abstract
Human retrocopies, that is messenger RNA transcripts benefitting from the long interspersed element 1 machinery for retrotransposition, may have specific consequences for genomic testing. Next genetration sequencing (NGS) techniques allow the detection of such mobile elements but they may be misinterpreted as genomic duplications or be totally overlooked. We report eight observations of retrocopies detected during diagnostic NGS analyses of targeted gene panels, exome, or genome sequencing. For seven cases, while an exons-only copy number gain was called, read alignment inspection revealed a depth of coverage shift at every exon-intron junction where indels were also systematically called. Moreover, aberrant chimeric read pairs spanned entire introns or were paired with another locus for terminal exons. The 8th retrocopy was present in the reference genome and thus showed a normal NGS profile. We emphasize the existence of retrocopies and strategies to accurately detect them at a glance during genetic testing and discuss pitfalls for genetic testing.
Collapse
Affiliation(s)
- Nicolas Chatron
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - Kevin Cassinari
- Department of Genetics and CNR-MAJ, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Olivier Quenez
- Department of Genetics and CNR-MAJ, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Stéphanie Baert-Desurmont
- Department of Genetics, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Claire Bardel
- Bioinformatics group of the Lyon University Hospital NGS facility, Groupement Hospitalier Est, Lyon, France.,Biostatistics and Bioinformatics Department, HCL, Lyon, France
| | - Marie-Pierre Buisine
- Department of Biochemistry and Molecular Biology, JPA Research Center, Inserm UMR-S 1172, Lille University, Lille University Hospital, Lille, France
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yline Capri
- Genetics Department, Clinical Genetics Unit, Hôpital Universitaire Robert Debré, Paris, France
| | | | - Flavie Diguet
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - Patrick Edery
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | | | - Audrey Labalme
- Genetics Department, Hospices Civils de Lyon, Lyon, France
| | - Cedric Le Caignec
- Genetics Department, CHU Nantes, Nantes, France.,INSERM UMR_S915, Institut du thorax, Nantes University, Nantes, France
| | - Jonathan Lévy
- Genetics Department, Cytogenetics Unit, Hôpital Universitaire Robert Debré, Paris, France
| | - François Lecoquierre
- Department of Genetics, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Pierre Lindenbaum
- INSERM, UMR_S1087, Institut du thorax, Nantes, France.,CNRS, UMR 6291, Nantes, France
| | | | - Pierre-Antoine Rollat-Farnier
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,Bioinformatics group of the Lyon University Hospital NGS facility, Groupement Hospitalier Est, Lyon, France
| | - Thomas Simonet
- Cellular Biotechnology Center, Hospices Civils de Lyon, Lyon, France.,Nerve-Muscle Interactions Team, Institut NeuroMyoGène CNRS UMR 5310-INSERM U1217-Université Claude Bernard Lyon 1, Lyon, France
| | - Pascale Saugier-Veber
- Department of Genetics, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Anne-Claude Tabet
- Genetics Department, Cytogenetics Unit, Hôpital Universitaire Robert Debré, Paris, France.,Neuroscience Department, Human Genetics and Cognitive Function Unit, Institut Pasteur, Paris, France
| | - Annick Toutain
- Genetics Department, Hôpital Bretonneau, CHU, Tours, France.,UMR 1253, iBrain, Tours University, Inserm, Tours, France
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Gaetan Lesca
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - Damien Sanlaville
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - Gaël Nicolas
- Department of Genetics and CNR-MAJ, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Caroline Schluth-Bolard
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| |
Collapse
|
13
|
Xie J, Li Y, Liu X, Zhao Y, Li B, Ingvarsson PK, Zhang D. Evolutionary Origins of Pseudogenes and Their Association with Regulatory Sequences in Plants. THE PLANT CELL 2019; 31:563-578. [PMID: 30760562 PMCID: PMC6482637 DOI: 10.1105/tpc.18.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/03/2018] [Accepted: 02/12/2019] [Indexed: 05/06/2023]
Abstract
Pseudogenes (Ψs), nonfunctional relatives of functional genes, form by duplication or retrotransposition, and loss of gene function by disabling mutations. Evolutionary analysis provides clues to Ψ origins and effects on gene regulation. However, few systematic studies of plant Ψs have been conducted, hampering comparative analyses. Here, we examined the origin, evolution, and expression patterns of Ψs and their relationships with noncoding sequences in seven angiosperm plants. We identified ∼250,000 Ψs, most of which are more lineage specific than protein-coding genes. The distribution of Ψs on the chromosome indicates that genome recombination may contribute to Ψ elimination. Most Ψs evolve rapidly in terms of sequence and expression levels, showing tissue- or stage-specific expression patterns. We found that a surprisingly large fraction of nontransposable element regulatory noncoding RNAs (microRNAs and long noncoding RNAs) originate from transcription of Ψ proximal upstream regions. We also found that transcription factor binding sites preferentially occur in putative Ψ proximal upstream regions compared with random intergenic regions, suggesting that Ψs have conditioned genome evolution by providing transcription factor binding sites that serve as promoters and enhancers. We therefore propose that rapid rewiring of Ψ transcriptional regulatory regions is a major mechanism driving the origin of novel regulatory modules.
Collapse
Affiliation(s)
- Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
| | - Ying Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
| | - Xiaomin Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
| | - Yiyang Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
| | - Bailian Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- Department of Forestry, North Carolina State University, Raleigh, North Carolina 27695-8203
| | - Pär K Ingvarsson
- Linnean Center for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala, Sweden
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
| |
Collapse
|
14
|
Li D, Qiao H, Qiu W, Xu X, Liu T, Jiang Q, Liu R, Jiao Z, Zhang K, Bi L, Chen R, Kan Y. Identification and functional characterization of intermediate-size non-coding RNAs in maize. BMC Genomics 2018; 19:730. [PMID: 30286715 PMCID: PMC6172812 DOI: 10.1186/s12864-018-5103-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The majority of eukaryote genomes can be actively transcribed into non-coding RNAs (ncRNAs), which are functionally important in development and evolution. In the study of maize, an important crop for both humans and animals, aside from microRNAs and long non-coding RNAs, few studies have been conducted on intermediate-size ncRNAs. RESULTS We constructed a homogenized cDNA library of 50-500 nt RNAs in the maize inbred line Chang 7-2. Sequencing revealed 169 ncRNAs, which contained 58 known and 111 novel ncRNAs (including 70 snoRNAs, 27 snRNAs, 13 unclassified ncRNAs and one tRNA). Forty of the novel ncRNAs were specific to the Panicoideae, and 24% of them are located on sense-strand of the 5' or 3' terminus of protein coding genes on chromosome. Target site analysis found that 22 snoRNAs can guide to 38 2'-O-methylation and pseudouridylation modification sites of ribosomal RNAs and small nuclear RNAs. Expression analysis showed that 43 ncRNAs exhibited significantly altered expression in different tissues or developmental stages of maize seedlings, eight ncRNAs had tissue-specific expression and five ncRNAs were strictly accumulated in the early stage of leaf development. Further analysis showed that 3 of the 5 stage-specific ncRNAs (Zm-3, Zm-18, and Zm-73) can be highly induced under drought and salt stress, while one snoRNA Zm-8 can be repressed under PEG-simulated drought condition. CONCLUSIONS We provided a genome-wide identification and functional analysis of ncRNAs with a size range of 50-500 nt in maize. 111 novel ncRNAs were cloned and 40 ncRNAs were determined to be specific to Panicoideae. 43 ncRNAs changed significantly during maize development, three ncRNAs can be strongly induced under drought and salt stress, suggesting their roles in maize stress response. This work set a foundation for further study of intermediate-size ncRNAs in maize.
Collapse
Affiliation(s)
- Dandan Li
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Huili Qiao
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Wujie Qiu
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Xin Xu
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Tiemei Liu
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Qianling Jiang
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhujin Jiao
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Kun Zhang
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Lijun Bi
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Runsheng Chen
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunchao Kan
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China.
| |
Collapse
|
15
|
Liu F, Gong R, He B, Chen F, Hu Z. TUSC2P suppresses the tumor function of esophageal squamous cell carcinoma by regulating TUSC2 expression and correlates with disease prognosis. BMC Cancer 2018; 18:894. [PMID: 30219035 PMCID: PMC6139140 DOI: 10.1186/s12885-018-4804-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
Background Pseudogenes are RNA transcripts with high homology with its parent protein-coding genes. Although pseudogenes lost the ability to produce protein, it still exert import biological function, and play important role in the pathogenesis of a wide varity of tumors; However, the role of pseudogenes in esophageal squamous cell carcinoma (ESCC) is poorly understood. Methods TUSC2P function in ESCC were explored using both in vitro and in vivo experiments cell proliferation, invasion and apoptosis assay was performed to evaluated the effect of TUSC2P on the tumor biology of ESCC. Expression of relative genes was assessed by quantitative real-time PCR (qRT-PCR) and western blotting in EC109 and TE-1 cell, as well as ESCC patients. 3’UTR luciferase assay was used to confirm the direct binding of miRNAs with TUSC2 and TUSC2P 3’UTR. Relation betweenTUSC2P, TUSC2 and ESCC prognosis was predicted by survival analysis (n = 56). Results Pseudogene TUSC2P was down regulated in ESCC tissues compared with paired normal adjacent tissues, and the expression of TUSC2P was significantly correlated with survivalof ESCC patients. Over expression of TUSC2P in EC109 and TE-1 cells resulted in altered expression of TUSC2, thus inhibited proliferation, invasion and promoted apoptosis. Dual luciferase assay demonstrated that TUSC2P 3’UTR decoyed miR-17-5p, miR-520a-3p, miR-608, miR-661 from binding to TUSC2. Conclusions TUSC2P can suppresses the tumor function of esophageal squamous cell carcinoma by regulating TUSC2 expression and may also serve as a prognostic factor for ESCC patients. Electronic supplementary material The online version of this article (10.1186/s12885-018-4804-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fengqiong Liu
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian, 350108, People's Republic of China.,Department of Epidemiology and Health Statistic, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian, China
| | - Ruijie Gong
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian, 350108, People's Republic of China
| | - Baochang He
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian, 350108, People's Republic of China.,Department of Epidemiology and Health Statistic, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian, China
| | - Fa Chen
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian, 350108, People's Republic of China.,Department of Epidemiology and Health Statistic, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian, China
| | - Zhijian Hu
- Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian, 350108, People's Republic of China. .,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian, China. .,Department of Epidemiology and Health Statistic, School of Public Health, Fujian Medical University, 1 Xuefubei Road, Fuzhou, Fujian, China.
| |
Collapse
|
16
|
Wang J, Samuels DC, Zhao S, Xiang Y, Zhao YY, Guo Y. Current Research on Non-Coding Ribonucleic Acid (RNA). Genes (Basel) 2017; 8:genes8120366. [PMID: 29206165 PMCID: PMC5748684 DOI: 10.3390/genes8120366] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022] Open
Abstract
Non-coding ribonucleic acid (RNA) has without a doubt captured the interest of biomedical researchers. The ability to screen the entire human genome with high-throughput sequencing technology has greatly enhanced the identification, annotation and prediction of the functionality of non-coding RNAs. In this review, we discuss the current landscape of non-coding RNA research and quantitative analysis. Non-coding RNA will be categorized into two major groups by size: long non-coding RNAs and small RNAs. In long non-coding RNA, we discuss regular long non-coding RNA, pseudogenes and circular RNA. In small RNA, we discuss miRNA, transfer RNA, piwi-interacting RNA, small nucleolar RNA, small nuclear RNA, Y RNA, single recognition particle RNA, and 7SK RNA. We elaborate on the origin, detection method, and potential association with disease, putative functional mechanisms, and public resources for these non-coding RNAs. We aim to provide readers with a complete overview of non-coding RNAs and incite additional interest in non-coding RNA research.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biostatistics, Vanderbilt University, Medical Center, Nashville, TN 37232, USA.
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University, Medical Center, Nashville, TN 37232, USA.
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Yan Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87102, USA.
| |
Collapse
|
17
|
Seki Y, Suzuki M, Guo X, Glenn AS, Vuguin PM, Fiallo A, Du Q, Ko YA, Yu Y, Susztak K, Zheng D, Greally JM, Katz EB, Charron MJ. In Utero Exposure to a High-Fat Diet Programs Hepatic Hypermethylation and Gene Dysregulation and Development of Metabolic Syndrome in Male Mice. Endocrinology 2017; 158:2860-2872. [PMID: 28911167 PMCID: PMC5659663 DOI: 10.1210/en.2017-00334] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/16/2017] [Indexed: 12/12/2022]
Abstract
Exposure to a high-fat (HF) diet in utero is associated with increased incidence of cardiovascular disease, diabetes, and metabolic syndrome later in life. However, the molecular basis of this enhanced susceptibility for metabolic disease is poorly understood. Gene expression microarray and genome-wide DNA methylation analyses of mouse liver revealed that exposure to a maternal HF milieu activated genes of immune response, inflammation, and hepatic dysfunction. DNA methylation analysis revealed 3360 differentially methylated loci, most of which (76%) were hypermethylated and distributed preferentially to hotspots on chromosomes 4 [atherosclerosis susceptibility quantitative trait loci (QTLs) 1] and 18 (insulin-dependent susceptibility QTLs 21). Interestingly, we found six differentially methylated genes within these hotspot QTLs associated with metabolic disease that maintain altered gene expression into adulthood (Arhgef19, Epha2, Zbtb17/Miz-1, Camta1 downregulated; and Ccdc11 and Txnl4a upregulated). Most of the hypermethylated genes in these hotspots are associated with cardiovascular system development and function. There were 140 differentially methylated genes that showed a 1.5-fold increase or decrease in messenger RNA levels. Many of these genes play a role in cell signaling pathways associated with metabolic disease. Of these, metalloproteinase 9, whose dysregulation plays a key role in diabetes, obesity, and cardiovascular disease, was upregulated 1.75-fold and hypermethylated in the gene body. In summary, exposure to a maternal HF diet causes DNA hypermethylation, which is associated with long-term gene expression changes in the liver of exposed offspring, potentially contributing to programmed development of metabolic disease later in life.
Collapse
Affiliation(s)
- Yoshinori Seki
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Xingyi Guo
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Alan Scott Glenn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Patricia M. Vuguin
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ariana Fiallo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Quan Du
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Yi-An Ko
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yiting Yu
- Department of Oncology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - John M. Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ellen B. Katz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Maureen J. Charron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
- Departments of Obstetrics and Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
18
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
19
|
Casola C, Betrán E. The Genomic Impact of Gene Retrocopies: What Have We Learned from Comparative Genomics, Population Genomics, and Transcriptomic Analyses? Genome Biol Evol 2017; 9:1351-1373. [PMID: 28605529 PMCID: PMC5470649 DOI: 10.1093/gbe/evx081] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2017] [Indexed: 02/07/2023] Open
Abstract
Gene duplication is a major driver of organismal evolution. Gene retroposition is a mechanism of gene duplication whereby a gene's transcript is used as a template to generate retroposed gene copies, or retrocopies. Intriguingly, the formation of retrocopies depends upon the enzymatic machinery encoded by retrotransposable elements, genomic parasites occurring in the majority of eukaryotes. Most retrocopies are depleted of the regulatory regions found upstream of their parental genes; therefore, they were initially considered transcriptionally incompetent gene copies, or retropseudogenes. However, examples of functional retrocopies, or retrogenes, have accumulated since the 1980s. Here, we review what we have learned about retrocopies in animals, plants and other eukaryotic organisms, with a particular emphasis on comparative and population genomic analyses complemented with transcriptomic datasets. In addition, these data have provided information about the dynamics of the different "life cycle" stages of retrocopies (i.e., polymorphic retrocopy number variants, fixed retropseudogenes and retrogenes) and have provided key insights into the retroduplication mechanisms, the patterns and evolutionary forces at work during the fixation process and the biological function of retrogenes. Functional genomic and transcriptomic data have also revealed that many retropseudogenes are transcriptionally active and a biological role has been experimentally determined for many. Finally, we have learned that not only non-long terminal repeat retroelements but also long terminal repeat retroelements play a role in the emergence of retrocopies across eukaryotes. This body of work has shown that mRNA-mediated duplication represents a widespread phenomenon that produces an array of new genes that contribute to organismal diversity and adaptation.
Collapse
Affiliation(s)
- Claudio Casola
- Department of Ecosystem Science and Management, Texas A&M University, TX
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX
| |
Collapse
|
20
|
Protein-Coding Genes' Retrocopies and Their Functions. Viruses 2017; 9:v9040080. [PMID: 28406439 PMCID: PMC5408686 DOI: 10.3390/v9040080] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Transposable elements, often considered to be not important for survival, significantly contribute to the evolution of transcriptomes, promoters, and proteomes. Reverse transcriptase, encoded by some transposable elements, can be used in trans to produce a DNA copy of any RNA molecule in the cell. The retrotransposition of protein-coding genes requires the presence of reverse transcriptase, which could be delivered by either non-long terminal repeat (non-LTR) or LTR transposons. The majority of these copies are in a state of “relaxed” selection and remain “dormant” because they are lacking regulatory regions; however, many become functional. In the course of evolution, they may undergo subfunctionalization, neofunctionalization, or replace their progenitors. Functional retrocopies (retrogenes) can encode proteins, novel or similar to those encoded by their progenitors, can be used as alternative exons or create chimeric transcripts, and can also be involved in transcriptional interference and participate in the epigenetic regulation of parental gene expression. They can also act in trans as natural antisense transcripts, microRNA (miRNA) sponges, or a source of various small RNAs. Moreover, many retrocopies of protein-coding genes are linked to human diseases, especially various types of cancer.
Collapse
|
21
|
Desiderio A, Spinelli R, Ciccarelli M, Nigro C, Miele C, Beguinot F, Raciti GA. Epigenetics: spotlight on type 2 diabetes and obesity. J Endocrinol Invest 2016; 39:1095-103. [PMID: 27180180 DOI: 10.1007/s40618-016-0473-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/18/2016] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes (T2D) and obesity are the major public health problems. Substantial efforts have been made to define loci and variants contributing to the individual risk of these disorders. However, the overall risk explained by genetic variation is very modest. Epigenetics is one of the fastest growing research areas in biomedicine as changes in the epigenome are involved in many biological processes, impact on the risk for several complex diseases including diabetes and may explain susceptibility. In this review, we focus on the role of DNA methylation in contributing to the risk of T2D and obesity.
Collapse
Affiliation(s)
- A Desiderio
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - R Spinelli
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - M Ciccarelli
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - C Nigro
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - C Miele
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - F Beguinot
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy.
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - G A Raciti
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
22
|
Lehti-Shiu MD, Panchy N, Wang P, Uygun S, Shiu SH. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:3-20. [PMID: 27522016 DOI: 10.1016/j.bbagrm.2016.08.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/21/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Nicholas Panchy
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Peipei Wang
- Department of Plant Biology, East Lansing, MI 48824, USA
| | - Sahra Uygun
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, East Lansing, MI 48824, USA; The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
23
|
Panchy N, Lehti-Shiu M, Shiu SH. Evolution of Gene Duplication in Plants. PLANT PHYSIOLOGY 2016; 171:2294-316. [PMID: 27288366 PMCID: PMC4972278 DOI: 10.1104/pp.16.00523] [Citation(s) in RCA: 845] [Impact Index Per Article: 93.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication.
Collapse
Affiliation(s)
- Nicholas Panchy
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| | - Melissa Lehti-Shiu
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| | - Shin-Han Shiu
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
24
|
The distribution and evolution of Arabidopsis thaliana cis natural antisense transcripts. BMC Genomics 2015; 16:444. [PMID: 26054753 PMCID: PMC4467840 DOI: 10.1186/s12864-015-1587-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/27/2015] [Indexed: 12/13/2022] Open
Abstract
Background Natural antisense transcripts (NATs) are regulatory RNAs that contain sequence complementary to other RNAs, these other RNAs usually being messenger RNAs. In eukaryotic genomes, cis-NATs overlap the gene they complement. Results Here, our goal is to analyze the distribution and evolutionary conservation of cis-NATs for a variety of available data sets for Arabidopsis thaliana, to gain insights into cis-NAT functional mechanisms and their significance. Cis-NATs derived from traditional sequencing are largely validated by other data sets, although different cis-NAT data sets have different prevalent cis-NAT topologies with respect to overlapping protein-coding genes. A. thaliana cis-NATs have substantial conservation (28-35% in the three substantive data sets analyzed) of expression in A. lyrata. We examined evolutionary sequence conservation at cis-NAT loci in Arabidopsis thaliana across nine sequenced Brassicaceae species (picked for optimal discernment of purifying selection), focussing on the parts of their sequences not overlapping protein-coding transcripts (dubbed ‘NOLPs’). We found significant NOLP sequence conservation for 28-34% NATs across different cis-NAT sets. This NAT NOLP sequence conservation versus A. lyrata is generally significantly correlated with conservation of expression. We discover a significant enrichment of transcription factor binding sites (as evidenced by CHIP-seq data) in NOLPs compared to randomly sampled near-gene NOLP-like DNA , that is linked to significant sequence conservation. Conversely, there is no such evidence for a general significant link between NOLPs and formation of small interfering RNAs (siRNAs), with the substantial majority of unique siRNAs arising from the overlapping portions of the cis-NATs. Conclusions In aggregate, our results suggest that many cis-NAT NOLPs function in the regulation of conserved promoter/regulatory elements that they ‘over-hang’. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1587-0) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Nucleosome Organization around Pseudogenes in the Human Genome. BIOMED RESEARCH INTERNATIONAL 2015; 2015:821596. [PMID: 26064955 PMCID: PMC4434184 DOI: 10.1155/2015/821596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/17/2014] [Indexed: 12/02/2022]
Abstract
Pseudogene, disabled copy of functional gene, plays a subtle role in gene
expression and genome evolution. The first step in deciphering RNA-level regulation
of pseudogenes is to understand their transcriptional activity. So far, there has been no
report on possible roles of nucleosome organization in pseudogene transcription. In
this paper, we investigated the effect of nucleosome positioning on pseudogene
transcription. For transcribed pseudogenes, the experimental nucleosome occupancy
shows a prominent depletion at the regions both upstream of pseudogene start
positions and downstream of pseudogene end positions. Intriguingly, the same
depletion is also observed for nontranscribed pseudogenes, which is unexpected
since nucleosome depletion in those regions is thought to be unnecessary in light of the
nontranscriptional property of those pseudogenes. The sequence-dependent
prediction of nucleosome occupancy shows a consistent pattern with the experimental
data-based analysis. Our results indicate that nucleosome positioning may play
important roles in both the transcription initiation and termination of pseudogenes.
Collapse
|
26
|
Abstract
Pseudogenes were once considered genomic fossils, but recent studies indicate that they may function as gene regulators through the generation of endogenous small interfering RNAs (esiRNAs), antisense RNAs, and decoys for microRNAs. In this review, we summarize pseudogene study methods, emphasizing relevant publicly available resources, and we describe a systematic pipeline to identify pseudogene-derived esiRNAs and their targets, which can lead to a deeper understanding of pseudogene function.
Collapse
Affiliation(s)
- Wen-Ling Chan
- Biomedical Informatics, Asia University, Taichung, Taiwan
| | | |
Collapse
|
27
|
Vitiello M, Tuccoli A, Poliseno L. Long non-coding RNAs in cancer: implications for personalized therapy. Cell Oncol (Dordr) 2014; 38:17-28. [PMID: 25113790 DOI: 10.1007/s13402-014-0180-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs, pseudogenes and circRNAs) have recently come into light as powerful players in cancer pathogenesis and it is becoming increasingly clear that they have the potential of greatly contributing to the spread and success of personalized cancer medicine. In this concise review, we briefly introduce these three classes of long non-coding RNAs. We then discuss their applications as diagnostic and prognostic biomarkers. Finally, we describe their appeal as targets and as drugs, while pointing out the limitations that still lie ahead of their definitive entry into clinical practice.
Collapse
Affiliation(s)
- Marianna Vitiello
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori c/o IFC-CNR, via Moruzzi 1, 56124, Pisa, Italy
| | | | | |
Collapse
|
28
|
Abstract
A pseudogene arises when a gene loses the ability to produce a protein, which can be due to mutation or inaccurate duplication. Previous dogma has dictated that because the pseudogene no longer produces a protein it becomes functionless and evolutionarily inert, being neither conserved nor removed. However, recent evidence has forced a re-evaluation of this view. Some pseudogenes, although not translated into protein, are at least transcribed into RNA. In some cases, these pseudogene transcripts are capable of influencing the activity of other genes that code for proteins, thereby altering expression and in turn affecting the phenotype of the organism. In the present chapter, we will define pseudogenes, describe the evidence that they are transcribed into non-coding RNAs and outline the mechanisms by which they are able to influence the machinery of the eukaryotic cell.
Collapse
|
29
|
Characterization of human pseudogene-derived non-coding RNAs for functional potential. PLoS One 2014; 9:e93972. [PMID: 24699680 PMCID: PMC3974860 DOI: 10.1371/journal.pone.0093972] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/10/2014] [Indexed: 11/19/2022] Open
Abstract
Thousands of pseudogenes exist in the human genome and many are transcribed, but their functional potential remains elusive and understudied. To explore these issues systematically, we first developed a computational pipeline to identify transcribed pseudogenes from RNA-Seq data. Applying the pipeline to datasets from 16 distinct normal human tissues identified ∼ 3,000 pseudogenes that could produce non-coding RNAs in a manner of low abundance but high tissue specificity under normal physiological conditions. Cross-tissue comparison revealed that the transcriptional profiles of pseudogenes and their parent genes showed mostly positive correlations, suggesting that pseudogene transcription could have a positive effect on the expression of their parent genes, perhaps by functioning as competing endogenous RNAs (ceRNAs), as previously suggested and demonstrated with the PTEN pseudogene, PTENP1. Our analysis of the ENCODE project data also found many transcriptionally active pseudogenes in the GM12878 and K562 cell lines; moreover, it showed that many human pseudogenes produced small RNAs (sRNAs) and some pseudogene-derived sRNAs, especially those from antisense strands, exhibited evidence of interfering with gene expression. Further integrated analysis of transcriptomics and epigenomics data, however, demonstrated that trimethylation of histone 3 at lysine 9 (H3K9me3), a posttranslational modification typically associated with gene repression and heterochromatin, was enriched at many transcribed pseudogenes in a transcription-level dependent manner in the two cell lines. The H3K9me3 enrichment was more prominent in pseudogenes that produced sRNAs at pseudogene loci and their adjacent regions, an observation further supported by the co-enrichment of SETDB1 (a H3K9 methyltransferase), suggesting that pseudogene sRNAs may have a role in regional chromatin repression. Taken together, our comprehensive and systematic characterization of pseudogene transcription uncovers a complex picture of how pseudogene ncRNAs could influence gene and pseudogene expression, at both epigenetic and post-transcriptional levels.
Collapse
|
30
|
Wei L, Xiao M, Hayward A, Fu D. Applications and challenges of next-generation sequencing in Brassica species. PLANTA 2013; 238:1005-24. [PMID: 24062086 DOI: 10.1007/s00425-013-1961-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 05/09/2023]
Abstract
Next-generation sequencing (NGS) produces numerous (often millions) short DNA sequence reads, typically varying between 25 and 400 bp in length, at a relatively low cost and in a short time. This revolutionary technology is being increasingly applied in whole-genome, transcriptome, epigenome and small RNA sequencing, molecular marker and gene discovery, comparative and evolutionary genomics, and association studies. The Brassica genus comprises some of the most agro-economically important crops, providing abundant vegetables, condiments, fodder, oil and medicinal products. Many Brassica species have undergone the process of polyploidization, which makes their genomes exceptionally complex and can create difficulties in genomics research. NGS injects new vigor into Brassica research, yet also faces specific challenges in the analysis of complex crop genomes and traits. In this article, we review the advantages and limitations of different NGS technologies and their applications and challenges, using Brassica as an advanced model system for agronomically important, polyploid crops. Specifically, we focus on the use of NGS for genome resequencing, transcriptome sequencing, development of single-nucleotide polymorphism markers, and identification of novel microRNAs and their targets. We present trends and advances in NGS technology in relation to Brassica crop improvement, with wide application for sophisticated genomics research into agronomically important polyploid crops.
Collapse
Affiliation(s)
- Lijuan Wei
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Meili Xiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Alice Hayward
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, 4072, Australia
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
31
|
Gomes AQ, Nolasco S, Soares H. Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci 2013; 14:16010-39. [PMID: 23912238 PMCID: PMC3759897 DOI: 10.3390/ijms140816010] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022] Open
Abstract
In the last years it has become increasingly clear that the mammalian transcriptome is highly complex and includes a large number of small non-coding RNAs (sncRNAs) and long noncoding RNAs (lncRNAs). Here we review the biogenesis pathways of the three classes of sncRNAs, namely short interfering RNAs (siRNAs), microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs). These ncRNAs have been extensively studied and are involved in pathways leading to specific gene silencing and the protection of genomes against virus and transposons, for example. Also, lncRNAs have emerged as pivotal molecules for the transcriptional and post-transcriptional regulation of gene expression which is supported by their tissue-specific expression patterns, subcellular distribution, and developmental regulation. Therefore, we also focus our attention on their role in differentiation and development. SncRNAs and lncRNAs play critical roles in defining DNA methylation patterns, as well as chromatin remodeling thus having a substantial effect in epigenetics. The identification of some overlaps in their biogenesis pathways and functional roles raises the hypothesis that these molecules play concerted functions in vivo, creating complex regulatory networks where cooperation with regulatory proteins is necessary. We also highlighted the implications of biogenesis and gene expression deregulation of sncRNAs and lncRNAs in human diseases like cancer.
Collapse
Affiliation(s)
- Anita Quintal Gomes
- Health Technology College of Lisbon—Polytechnic Institute of Lisbon, 1990-096 Lisbon, Portugal; E-Mails: (A.Q.G.); (S.N.)
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Sofia Nolasco
- Health Technology College of Lisbon—Polytechnic Institute of Lisbon, 1990-096 Lisbon, Portugal; E-Mails: (A.Q.G.); (S.N.)
- Gulbenkian Science Institute, 2780-256 Oeiras, Portugal
- Interdisciplinary Centre of Research in Animal Health (CIISA), Faculty of Veterinary Medicine, 1300-666 Lisbon, Portugal
| | - Helena Soares
- Health Technology College of Lisbon—Polytechnic Institute of Lisbon, 1990-096 Lisbon, Portugal; E-Mails: (A.Q.G.); (S.N.)
- Gulbenkian Science Institute, 2780-256 Oeiras, Portugal
- Center for Chemistry and Biochemistry, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +351-217-500-853; Fax: +351-217-500-088
| |
Collapse
|
32
|
Zheng LL, Wen YZ, Yang JH, Liao JY, Shao P, Xu H, Zhou H, Wen JZ, Lun ZR, Ayala FJ, Qu LH. Comparative transcriptome analysis of small noncoding RNAs in different stages of Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2013; 19:863-875. [PMID: 23704326 PMCID: PMC3683921 DOI: 10.1261/rna.035683.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
Trypanosoma brucei, a pathogen of human and domestic animals, is an early evolved parasitic protozoan with a complex life cycle. Most genes of this parasite are post-transcriptionally regulated. However, the mechanisms and the molecules involved remain largely unknown. We have deep-sequenced the small RNAs of two life stages of this parasite--the bloodstream form and the procyclic form. Our results show that the small RNAs of T. brucei could derive from multiple sources, including NATs (natural antisense transcripts), tRNAs, and rRNAs. Most of these small RNAs in the two stages were found to share uniform characteristics. However, our results demonstrate that their variety and expression show significant differences between different stages, indicating possible functional differentiation. Dicer-knockdown evidence further proved that some of the small interfering RNAs (siRNAs) could regulate the expression of genes. Based on the genome-wide analysis of the small RNAs in the two stages of T. brucei, our results not only provide evidence to study their differentiation but also shed light on questions regarding the origins and evolution of small RNA-based mechanisms in early eukaryotes.
Collapse
MESH Headings
- Base Sequence
- Computational Biology
- Evolution, Molecular
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Genes, Protozoan
- High-Throughput Nucleotide Sequencing
- Molecular Sequence Data
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribonuclease III/genetics
- Ribonuclease III/metabolism
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/metabolism
Collapse
Affiliation(s)
- Ling-Ling Zheng
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yan-Zi Wen
- Key Laboratory of Tropical Disease and Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian-Hua Yang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian-You Liao
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Peng Shao
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hui Xu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hui Zhou
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun-Zhi Wen
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhao-Rong Lun
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory of Tropical Disease and Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- Centre for Parasitology and Disease, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, United Kingdom
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | - Liang-Hu Qu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
33
|
Shen L, Choi I, Nestler EJ, Won KJ. Human Transcriptome and Chromatin Modifications: An ENCODE Perspective. Genomics Inform 2013; 11:60-7. [PMID: 23843771 PMCID: PMC3704928 DOI: 10.5808/gi.2013.11.2.60] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/05/2013] [Accepted: 03/13/2013] [Indexed: 11/22/2022] Open
Abstract
A decade-long project, led by several international research groups, called the Encyclopedia of DNA Elements (ENCODE), recently released an unprecedented amount of data. The ambitious project covers transcriptome, cistrome, epigenome, and interactome data from more than 1,600 sets of experiments in human. To make use of this valuable resource, it is important to understand the information it represents and the techniques that were used to generate these data. In this review, we introduce the data that ENCODE generated, summarize the observations from the data analysis, and revisit a computational approach that ENCODE used to predict gene expression, with a focus on the human transcriptome and its association with chromatin modifications.
Collapse
Affiliation(s)
- Li Shen
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
34
|
Kurosaki M, Bolis M, Fratelli M, Barzago MM, Pattini L, Perretta G, Terao M, Garattini E. Structure and evolution of vertebrate aldehyde oxidases: from gene duplication to gene suppression. Cell Mol Life Sci 2013; 70:1807-30. [PMID: 23263164 PMCID: PMC11113236 DOI: 10.1007/s00018-012-1229-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 12/20/2022]
Abstract
Aldehyde oxidases (AOXs) and xanthine dehydrogenases (XDHs) belong to the family of molybdo-flavoenzymes. Although AOXs are not identifiable in fungi, these enzymes are represented in certain protists and the majority of plants and vertebrates. The physiological functions and substrates of AOXs are unknown. Nevertheless, AOXs are major drug metabolizing enzymes, oxidizing a wide range of aromatic aldehydes and heterocyclic compounds of medical/toxicological importance. Using genome sequencing data, we predict the structures of AOX genes and pseudogenes, reconstructing their evolution. Fishes are the most primitive organisms with an AOX gene (AOXα), originating from the duplication of an ancestral XDH. Further evolution of fishes resulted in the duplication of AOXα into AOXβ and successive pseudogenization of AOXα. AOXβ is maintained in amphibians and it is the likely precursors of reptilian, avian, and mammalian AOX1. Amphibian AOXγ is a duplication of AOXβ and the likely ancestor of reptilian and avian AOX2, which, in turn, gave rise to mammalian AOX3L1. Subsequent gene duplications generated the two mammalian genes, AOX3 and AOX4. The evolution of mammalian AOX genes is dominated by pseudogenization and deletion events. Our analysis is relevant from a structural point of view, as it provides information on the residues characterizing the three domains of each mammalian AOX isoenzyme. We cloned the cDNAs encoding the AOX proteins of guinea pig and cynomolgus monkeys, two unique species as to the evolution of this enzyme family. We identify chimeric RNAs from the human AOX3 and AOX3L1 pseudogenes with potential to encode a novel microRNA.
Collapse
Affiliation(s)
- Mami Kurosaki
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Marco Bolis
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Maria Monica Barzago
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Linda Pattini
- Department of Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Gemma Perretta
- Istututo di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche, via Anguillarese 301, 00123 Rome, Italy
| | - Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche “Mario Negri”, via La Masa 19, 20156 Milan, Italy
| |
Collapse
|
35
|
Li W, Yang W, Wang XJ. Pseudogenes: pseudo or real functional elements? J Genet Genomics 2013; 40:171-7. [PMID: 23618400 DOI: 10.1016/j.jgg.2013.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 11/24/2022]
Abstract
Pseudogenes are genomic remnants of ancient protein-coding genes which have lost their coding potentials through evolution. Although broadly existed, pseudogenes used to be considered as junk or relics of genomes which have not drawn enough attentions of biologists until recent years. With the broad applications of high-throughput experimental techniques, growing lines of evidence have strongly suggested that some pseudogenes possess special functions, including regulating parental gene expression and participating in the regulation of many biological processes. In this review, we summarize some basic features of pseudogenes and their functions in regulating development and diseases. All of these observations indicate that pseudogenes are not purely dead fossils of genomes, but warrant further exploration in their distribution, expression regulation and functions. A new nomenclature is desirable for the currently called 'pseudogenes' to better describe their functions.
Collapse
Affiliation(s)
- Wen Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
36
|
Retrotransposition of gene transcripts leads to structural variation in mammalian genomes. Genome Biol 2013; 14:R22. [PMID: 23497673 PMCID: PMC3663115 DOI: 10.1186/gb-2013-14-3-r22] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/13/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Retroposed processed gene transcripts are an important source of material for new gene formation on evolutionary timescales. Most prior work on gene retrocopy discovery compared copies in reference genome assemblies to their source genes. Here, we explore gene retrocopy insertion polymorphisms (GRIPs) that are present in the germlines of individual humans, mice, and chimpanzees, and we identify novel gene retrocopy insertions in cancerous somatic tissues that are absent from patient-matched non-cancer genomes. RESULTS Through analysis of whole-genome sequence data, we found evidence for 48 GRIPs in the genomes of one or more humans sequenced as part of the 1,000 Genomes Project and The Cancer Genome Atlas, but which were not in the human reference assembly. Similarly, we found evidence for 755 GRIPs at distinct locations in one or more of 17 inbred mouse strains but which were not in the mouse reference assembly, and 19 GRIPs across a cohort of 10 chimpanzee genomes, which were not in the chimpanzee reference genome assembly. Many of these insertions are new members of existing gene families whose source genes are highly and widely expressed, and the majority have detectable hallmarks of processed gene retrocopy formation. We estimate the rate of novel gene retrocopy insertions in humans and chimps at roughly one new gene retrocopy insertion for every 6,000 individuals. CONCLUSIONS We find that gene retrocopy polymorphisms are a widespread phenomenon, present a multi-species analysis of these events, and provide a method for their ascertainment.
Collapse
|
37
|
Axonal trafficking of an antisense RNA transcribed from a pseudogene is regulated by classical conditioning. Sci Rep 2013; 3:1027. [PMID: 23293742 PMCID: PMC3537157 DOI: 10.1038/srep01027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/12/2012] [Indexed: 11/23/2022] Open
Abstract
Natural antisense transcripts (NATs) are endogenous RNA molecules that are complementary to known RNA transcripts. The functional significance of NATs is poorly understood, but their prevalence in the CNS suggests a role in brain function. Here we investigated a long NAT (antiNOS-2 RNA) associated with the regulation of nitric oxide (NO) production in the CNS of Lymnaea, an established model for molecular analysis of learning and memory. We show the antiNOS-2 RNA is axonally trafficked and demonstrate that this is regulated by classical conditioning. Critically, a single conditioning trial changes the amount of antiNOS-2 RNA transported along the axon. This occurs within the critical time window when neurotransmitter NO is required for memory formation. Our data suggest a role for the antiNOS-2 RNA in establishing memories through the regulation of NO signaling at the synapse.
Collapse
|
38
|
McManus MT, Joshi S, Searle B, Pither-Joyce M, Shaw M, Leung S, Albert N, Shigyo M, Jakse J, Havey MJ, McCallum J. Genotypic variation in sulfur assimilation and metabolism of onion (Allium cepa L.) III. Characterization of sulfite reductase. PHYTOCHEMISTRY 2012; 83:34-42. [PMID: 22944351 DOI: 10.1016/j.phytochem.2012.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 06/01/2023]
Abstract
Genomic and cDNA sequences corresponding to a ferredoxin-sulfite reductase (SiR) have been cloned from bulb onion (Allium cepa L.) and the expression of the gene and activity of the enzyme characterized with respect to sulfur (S) supply. Cloning, mapping and expression studies revealed that onion has a single functional SiR gene and also expresses an unprocessed pseudogene (φ-SiR). Northern and qPCR analysis revealed differences in expression pattern between the SiR gene and the pseudogene. Western analysis using antibodies raised to a recombinant SiR revealed that the enzyme is present in chloroplasts and phylogenetic analysis has shown that the onion protein groups with lower eudicots. In hydroponically-grown plants, levels of SiR transcripts were significantly higher in the roots of S-sufficient when compared with S-deficient plants of the pungent cultivar 'W202A' but not the less pungent cultivar 'Texas Grano'. In these same treatments, a higher level of enzyme activity was observed in the S-sufficient treatment in leaves of both cultivars before and after bulbing. In a factorial field trial with and without sulfur fertilization, a statistically significant increase in SiR activity was observed in the leaves of the pungent cultivar 'Kojak' in response to added S but not in the less pungent cultivar 'Encore'.
Collapse
Affiliation(s)
- Michael T McManus
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pei B, Sisu C, Frankish A, Howald C, Habegger L, Mu XJ, Harte R, Balasubramanian S, Tanzer A, Diekhans M, Reymond A, Hubbard TJ, Harrow J, Gerstein MB. The GENCODE pseudogene resource. Genome Biol 2012; 13:R51. [PMID: 22951037 PMCID: PMC3491395 DOI: 10.1186/gb-2012-13-9-r51] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/30/2012] [Accepted: 06/25/2012] [Indexed: 12/11/2022] Open
Abstract
Background Pseudogenes have long been considered as nonfunctional genomic sequences. However, recent evidence suggests that many of them might have some form of biological activity, and the possibility of functionality has increased interest in their accurate annotation and integration with functional genomics data. Results As part of the GENCODE annotation of the human genome, we present the first genome-wide pseudogene assignment for protein-coding genes, based on both large-scale manual annotation and in silico pipelines. A key aspect of this coupled approach is that it allows us to identify pseudogenes in an unbiased fashion as well as untangle complex events through manual evaluation. We integrate the pseudogene annotations with the extensive ENCODE functional genomics information. In particular, we determine the expression level, transcription-factor and RNA polymerase II binding, and chromatin marks associated with each pseudogene. Based on their distribution, we develop simple statistical models for each type of activity, which we validate with large-scale RT-PCR-Seq experiments. Finally, we compare our pseudogenes with conservation and variation data from primate alignments and the 1000 Genomes project, producing lists of pseudogenes potentially under selection. Conclusions At one extreme, some pseudogenes possess conventional characteristics of functionality; these may represent genes that have recently died. On the other hand, we find interesting patterns of partial activity, which may suggest that dead genes are being resurrected as functioning non-coding RNAs. The activity data of each pseudogene are stored in an associated resource, psiDR, which will be useful for the initial identification of potentially functional pseudogenes.
Collapse
Affiliation(s)
- Baikang Pei
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Katju V. In with the old, in with the new: the promiscuity of the duplication process engenders diverse pathways for novel gene creation. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:341932. [PMID: 23008799 PMCID: PMC3449122 DOI: 10.1155/2012/341932] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/03/2012] [Indexed: 01/26/2023]
Abstract
The gene duplication process has exhibited far greater promiscuity in the creation of paralogs with novel exon-intron structures than anticipated even by Ohno. In this paper I explore the history of the field, from the neo-Darwinian synthesis through Ohno's formulation of the canonical model for the evolution of gene duplicates and culminating in the present genomic era. I delineate the major tenets of Ohno's model and discuss its failure to encapsulate the full complexity of the duplication process as revealed in the era of genomics. I discuss the diverse classes of paralogs originating from both DNA- and RNA-mediated duplication events and their evolutionary potential for assuming radically altered functions, as well as the degree to which they can function unconstrained from the pressure of gene conversion. Lastly, I explore theoretical population-genetic considerations of how the effective population size (N(e)) of a species may influence the probability of emergence of genes with radically altered functions.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
41
|
Nolasco S, Bellido J, Gonçalves J, Tavares A, Zabala JC, Soares H. The expression of tubulin cofactor A (TBCA) is regulated by a noncoding antisense Tbca RNA during testis maturation. PLoS One 2012; 7:e42536. [PMID: 22880023 PMCID: PMC3412815 DOI: 10.1371/journal.pone.0042536] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
Background Recently, long noncoding RNAs have emerged as pivotal molecules for the regulation of coding genes' expression. These molecules might result from antisense transcription of functional genes originating natural antisense transcripts (NATs) or from transcriptional active pseudogenes. TBCA interacts with β-tubulin and is involved in the folding and dimerization of new tubulin heterodimers, the building blocks of microtubules. Methodology/Principal Findings We found that the mouse genome contains two structurally distinct Tbca genes located in chromosomes 13 (Tbca13) and 16 (Tbca16). Interestingly, the two Tbca genes albeit ubiquitously expressed, present differential expression during mouse testis maturation. In fact, as testis maturation progresses Tbca13 mRNA levels increase progressively, while Tbca16 mRNA levels decrease. This suggests a regulatory mechanism between the two genes and prompted us to investigate the presence of the two proteins. However, using tandem mass spectrometry we were unable to identify the TBCA16 protein in testis extracts even in those corresponding to the maturation step with the highest levels of Tbca16 transcripts. These puzzling results led us to re-analyze the expression of Tbca16. We then detected that Tbca16 transcription produces sense and natural antisense transcripts. Strikingly, the specific depletion by RNAi of these transcripts leads to an increase of Tbca13 transcript levels in a mouse spermatocyte cell line. Conclusions/Significance Our results demonstrate that Tbca13 mRNA levels are post-transcriptionally regulated by the sense and natural antisense Tbca16 mRNA levels. We propose that this regulatory mechanism operates during spermatogenesis, a process that involves microtubule rearrangements, the assembly of specific microtubule structures and requires critical TBCA levels.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line
- Chromosomes, Mammalian/genetics
- Gene Expression Regulation, Developmental
- Gene Knockdown Techniques
- Genome/genetics
- Male
- Mice
- Microtubule-Associated Proteins/chemistry
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Models, Molecular
- Molecular Chaperones/chemistry
- Molecular Chaperones/genetics
- Molecular Chaperones/metabolism
- Molecular Sequence Data
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Spermatocytes/metabolism
- Spermatogenesis/genetics
- Testis/growth & development
- Testis/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Sofia Nolasco
- Departamento de Biología Molecular, Facultad de Medicina, IFIMAV-Universidad de Cantabria, Santander, Spain
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Javier Bellido
- Departamento de Biología Molecular, Facultad de Medicina, IFIMAV-Universidad de Cantabria, Santander, Spain
| | - João Gonçalves
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alexandra Tavares
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Juan Carlos Zabala
- Departamento de Biología Molecular, Facultad de Medicina, IFIMAV-Universidad de Cantabria, Santander, Spain
| | - Helena Soares
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
42
|
Liu Y, Wang B, Cui P, Li L, Xue JY, Yu J, Qiu YL. The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants. PLoS One 2012; 7:e35168. [PMID: 22511984 PMCID: PMC3325193 DOI: 10.1371/journal.pone.0035168] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 03/13/2012] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bin Wang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peng Cui
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Libo Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jia-Yu Xue
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Jun Yu
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yin-Long Qiu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
43
|
Freeling M, Woodhouse MR, Subramaniam S, Turco G, Lisch D, Schnable JC. Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:131-9. [PMID: 22341793 DOI: 10.1016/j.pbi.2012.01.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/07/2011] [Accepted: 01/21/2012] [Indexed: 05/06/2023]
Abstract
Unlike in mammals, plants rapidly delete functionless, nonrepetitive DNA from their genomes. Following paleopolyploidies, duplicate genes are deleted by intrachromosomal recombination. This may explain how flowering plants have survived multiple whole genome duplications. Genes are disproportionately lost from one parental subgenome, the subgenome that is less expressed in the polyploid. The origin of this unbalanced expression between genomes remains unknown. The consequences of the tradeoffs between transposon repression and gene expression represent one potential explanation of genome dominance. If so, the same mechanisms may act in heterosis: genome dominance is like inbreeding depression. Regulatory DNA deletion following polyploidy combined with abundant RNA-seq expression datasets are being used to generate testable hypothesizes regarding the function of specific cis-regulatory sequences.
Collapse
Affiliation(s)
- Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Recent significant progress toward understanding the function of pseudogenes in protozoa (Trypanosoma brucei), metazoa (mouse) and plants, make it pertinent to provide a brief overview on what has been learned about this fascinating subject. We discuss the regulatory mechanisms of pseudogenes at the post-transcriptional level and advance new ideas toward understanding the evolution of these, sometimes called "garbage genes" or "junk DNA," seeking to stimulate the interest of scientists and additional research on the subject. We hope this point-of-view can be helpful to scientists working or seeking to work on these and related issues.
Collapse
Affiliation(s)
- Yan-Zi Wen
- School of Life Sciences and Key Laboratory of Tropical Diseases and Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
45
|
Evolution of microRNA genes in Oryza sativa and Arabidopsis thaliana: an update of the inverted duplication model. PLoS One 2011; 6:e28073. [PMID: 22194805 PMCID: PMC3237417 DOI: 10.1371/journal.pone.0028073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/31/2011] [Indexed: 12/12/2022] Open
Abstract
The origin and evolution of microRNA (miRNA) genes, which are of significance in tuning and buffering gene expressions in a number of critical cellular processes, have long attracted evolutionary biologists. However, genome-wide perspectives on their origins, potential mechanisms of their de novo generation and subsequent evolution remain largely unsolved in flowering plants. Here, genome-wide analyses of Oryza sativa and Arabidopsis thaliana revealed apparently divergent patterns of miRNA gene origins. A large proportion of miRNA genes in O. sativa were TE-related and MITE-related miRNAs in particular, whereas the fraction of these miRNA genes much decreased in A. thaliana. Our results show that the majority of TE-related and pseudogene-related miRNA genes have originated through inverted duplication instead of segmental or tandem duplication events. Based on the presented findings, we hypothesize and illustrate the four likely molecular mechanisms to de novo generate novel miRNA genes from TEs and pseudogenes. Our rice genome analysis demonstrates that non-MITEs and MITEs mediated inverted duplications have played different roles in de novo generating miRNA genes. It is confirmed that the previously proposed inverted duplication model may give explanations for non-MITEs mediated duplication events. However, many other miRNA genes, known from the earlier proposed model, were rather arisen from MITE transpositions into target genes to yield binding sites. We further investigated evolutionary processes spawned from de novo generated to maturely-formed miRNA genes and their regulatory systems. We found that miRNAs increase the tunability of some gene regulatory systems with low gene copy numbers. The results also suggest that gene balance effects may have largely contributed to the evolution of miRNA regulatory systems.
Collapse
|
46
|
Lozada-Chávez I, Stadler PF, Prohaska SJ. "Hypothesis for the modern RNA world": a pervasive non-coding RNA-based genetic regulation is a prerequisite for the emergence of multicellular complexity. ORIGINS LIFE EVOL B 2011; 41:587-607. [PMID: 22322874 DOI: 10.1007/s11084-011-9262-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 12/12/2011] [Indexed: 02/06/2023]
Abstract
The transitions to multicellularity mark the most pivotal and distinctive events in life's history on Earth. Although several transitions to "simple" multicellularity (SM) have been recorded in both bacterial and eukaryotic clades, transitions to complex multicellularity (CM) have only happened a few times in eukaryotes. A large number of cell types (associated with large body size), increased energy consumption per gene expressed, and an increment of non-protein-coding DNA positively correlate with CM. These three factors can indeed be understood as the causes and consequences of the regulation of gene expression. Here, we discuss how a vast expansion of non-protein-coding RNA (ncRNAs) regulators rather than large numbers of novel protein regulators can easily contribute to the emergence of CM. We also propose that the evolutionary advantage of RNA-based gene regulation derives from the robustness of the RNA structure that makes it easy to combine genetic drift with functional exploration. We describe a model which aims to explain how the evolutionary dynamic of ncRNAs becomes dominated by the accessibility of advantageous mutations to innovate regulation in complex multicellular organisms. The information and models discussed here outline the hypothesis that pervasive ncRNA-based regulatory systems, only capable of being expanded and explored in higher eukaryotes, are prerequisite to complex multicellularity. Thereby, regulatory RNA molecules in Eukarya have allowed intensification of morphological complexity by stabilizing critical phenotypes and controlling developmental precision. Although the origin of RNA on early Earth is still controversial, it is becoming clear that once RNA emerged into a protocellular system, its relevance within the evolution of biological systems has been greater than we previously thought.
Collapse
Affiliation(s)
- Irma Lozada-Chávez
- Computational EvoDevo Group, University of Leipzig, Härtelstrasse 16-18, 04107, Leipzig, Germany.
| | | | | |
Collapse
|
47
|
Sen K, Podder S, Ghosh TC. On the quest for selective constraints shaping the expressivity of the genes casting retropseudogenes in human. BMC Genomics 2011; 12:401. [PMID: 21824418 PMCID: PMC3162935 DOI: 10.1186/1471-2164-12-401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 08/08/2011] [Indexed: 02/04/2023] Open
Abstract
Background Pseudogenes, the nonfunctional homologues of functional genes are now coming to light as important resources regarding the study of human protein evolution. Processed pseudogenes arising by reverse transcription and reinsertion can provide molecular record on the dynamics and evolution of genomes. Researches on the progenitors of human processed pseudogenes delved out their highly expressed and evolutionarily conserved characters. They are reported to be short and GC-poor indicating their high efficiency for retrotransposition. In this article we focused on their high expressivity and explored the factors contributing for that and their relevance in the milieu of protein sequence evolution. Results We here, analyzed the high expressivity of these genes configuring processed or retropseudogenes by their immense connectivity in protein-protein interaction network, an inclination towards alternative splicing mechanism, a lower rate of mRNA disintegration and a slower evolutionary rate. While the unusual trend of the upraised disorder in contrast with the high expressivity of the proteins encoded by processed pseudogene ancestors is accredited by a predominance of hub-protein encoding genes, a high propensity of repeat sequence containing genes, elevated protein stability and the functional constraint to perform the transcription regulatory jobs. Linear regression analysis demonstrates mRNA decay rate and protein intrinsic disorder as the influential factors controlling the expressivity of these retropseudogene ancestors while the latter one is found to have the most significant regulatory power. Conclusions Our findings imply that, the affluence of disordered regions elevating the network attachment to be involved in important cellular assignments and the stability in transcriptional level are acting as the prevailing forces behind the high expressivity of the human genes configuring processed pseudogenes.
Collapse
Affiliation(s)
- Kamalika Sen
- Bioinformatics Centre, Bose Institute, P 1/12, C,I,T, Scheme VII M, Kolkata- 700 054, India
| | | | | |
Collapse
|
48
|
Muro EM, Mah N, Andrade-Navarro MA. Functional evidence of post-transcriptional regulation by pseudogenes. Biochimie 2011; 93:1916-21. [PMID: 21816204 DOI: 10.1016/j.biochi.2011.07.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/19/2011] [Indexed: 11/26/2022]
Abstract
Pseudogenes have been mainly considered as functionless evolutionary relics since their discovery in 1977. However, multiple mechanisms of pseudogene functionality have been proposed both at the transcriptional and post-transcriptional level. This review focuses on the role of pseudogenes as post-transcriptional regulators. Two lines of research have recently presented strong evidence of their potential function as post-transcriptional regulators of the corresponding parental genes from which they originate. First, pseudogene genomic sequences can encode siRNAs. Second, pseudogene transcripts can act as indirect post-transcriptional regulators decoying ncRNA, in particular miRNAs that target the parental gene. This has been demonstrated for PTEN and KRAS, two genes involved in tumorigenesis. The role of pseudogenes in disease has not been proven and seems to be the next research landmark. In this review, we chronicle the events following the initial discovery of the 'useless' pseudogene to its breakthrough as a functional molecule with hitherto unbeknownst potential to influence human disease.
Collapse
Affiliation(s)
- Enrique M Muro
- Max-Delbrück Center for Molecular Medicine, Robert Rössle Str. 10, 13125 Berlin, Germany.
| | | | | |
Collapse
|
49
|
Pink RC, Wicks K, Caley DP, Punch EK, Jacobs L, Carter DRF. Pseudogenes: pseudo-functional or key regulators in health and disease? RNA (NEW YORK, N.Y.) 2011; 17:792-8. [PMID: 21398401 PMCID: PMC3078729 DOI: 10.1261/rna.2658311] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pseudogenes have long been labeled as "junk" DNA, failed copies of genes that arise during the evolution of genomes. However, recent results are challenging this moniker; indeed, some pseudogenes appear to harbor the potential to regulate their protein-coding cousins. Far from being silent relics, many pseudogenes are transcribed into RNA, some exhibiting a tissue-specific pattern of activation. Pseudogene transcripts can be processed into short interfering RNAs that regulate coding genes through the RNAi pathway. In another remarkable discovery, it has been shown that pseudogenes are capable of regulating tumor suppressors and oncogenes by acting as microRNA decoys. The finding that pseudogenes are often deregulated during cancer progression warrants further investigation into the true extent of pseudogene function. In this review, we describe the ways in which pseudogenes exert their effect on coding genes and explore the role of pseudogenes in the increasingly complex web of noncoding RNA that contributes to normal cellular regulation.
Collapse
Affiliation(s)
- Ryan Charles Pink
- School of Life Sciences, Oxford Brookes University, Headington, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Pseudogene-derived small interference RNAs regulate gene expression in African Trypanosoma brucei. Proc Natl Acad Sci U S A 2011; 108:8345-50. [PMID: 21531904 DOI: 10.1073/pnas.1103894108] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pseudogenes have been shown to acquire unique regulatory roles from more and more organisms. We report the observation of a cluster of siRNAs derived from pseudogenes of African Trypanosoma brucei using high through-put analysis. We show that these pseudogene-derived siRNAs suppress gene expression through RNA interference. The discovery that siRNAs may originate from pseudogenes and regulate gene expression in a unicellular eukaryote provides insights into the functional roles of pseudogenes and into the origin of noncoding small RNAs.
Collapse
|