1
|
Chitale GG, Kulkarni SR, Bapat SA. Chimerism: A whole new perspective in gene regulation. Biochim Biophys Acta Gen Subj 2025; 1869:130767. [PMID: 39855315 DOI: 10.1016/j.bbagen.2025.130767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
The diversity of molecular entities emerging from a single gene are recognized. Several studies have thus established the cellular role(s) of transcript variants and protein isoforms. A step ahead in challenging the central dogma towards expanding molecular diversity is the identification of fusion genes, chimeric transcripts and chimeric proteins that harbor sequences from more than one gene. The mechanisms for generation of chimeras largely follow similar patterns across all levels of gene regulation but also have interdependence and mutual exclusivity. Whole genome and RNA-seq technologies supported by development of computational algorithms and programs for processing datasets have increasingly enabled the identification of fusion genes and chimeric transcripts, while the discovery of chimeric proteins is as yet more subtle. Earlier thought to be associated with cellular transformation, the contribution of chimeric molecules to normal physiology is also realized and found to influence the expression of their parental genes and regulate cellular pathways. This review offers a collective and comprehensive overview of cellular chimeric entities encompassing the mechanisms involved in their generation, insights on their evolution, functions in gene regulation and their current and novel clinical applications.
Collapse
Affiliation(s)
- Gayatri G Chitale
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Shweta R Kulkarni
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Sharmila A Bapat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
2
|
Choi JD, Del Pinto LA, Sutter NB. SINE retrotransposons import polyadenylation signals to 3'UTRs in dog (Canis familiaris). Mob DNA 2025; 16:1. [PMID: 39755632 DOI: 10.1186/s13100-024-00338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Messenger RNA 3' untranslated regions (3'UTRs) control many aspects of gene expression and determine where the transcript will terminate. The polyadenylation signal (PAS) AAUAAA (AATAAA in DNA) is a key regulator of transcript termination and this hexamer, or a similar sequence, is very frequently found within 30 bp of 3'UTR ends. Short interspersed element (SINE) retrotransposons are found throughout genomes in high copy numbers. When inserted into genes they can disrupt expression, alter splicing, or cause nuclear retention of mRNAs. The genomes of the domestic dog and other carnivores carry hundreds of thousands of Can-SINEs, a tRNA-related SINE with transcription termination potential. Because of this we asked whether Can-SINEs may terminate transcript in some dog genes. RESULTS Each of the dog's nine Can-SINE consensus sequences carry an average of three AATAAA PASs on their sense strands but zero on their antisense strands. Consistent with the idea that Can-SINEs can terminate transcripts, we find that sense-oriented Can-SINEs are approximately ten times more frequent at 3' ends of 3'UTRs compared to further upstream within 3'UTRs. Furthermore, the count of AATAAA PASs on head-to-tail SINE sequences differs significantly between sense and antisense-oriented retrotransposons in transcripts. Can-SINEs near 3'UTR ends are likely to carry an AATAAA motif on the mRNA sense strand while those further upstream are not. We identified loci where Can-SINE insertion has truncated or altered a 3'UTR of the dog genome (dog 3'UTR) compared to the human ortholog. Dog 3'UTRs have peaks of AATAAA PAS frequency at 28, 32, and 36 bp from the end. The periodicity is partly explained by TAAA(n) repeats within Can-SINE AT-rich tails. We annotated all repeat-masked Can-SINE copies in the Boxer reference genome and found that the young SINEC_Cf type has a mode of 15 bp length for target site duplications (TSDs). All dog Can-SINE types favor integration at TSDs beginning with A(4). CONCLUSION Dog Can-SINE retrotransposition has imported AATAAA PASs into gene transcripts and led to alteration of 3'UTRs. AATAAA sequences are selectively removed from Can-SINEs in introns and upstream 3'UTR regions but are retained at the far downstream end of 3'UTRs, which we infer reflects their role as termination sequences for these transcripts.
Collapse
Affiliation(s)
- Jessica D Choi
- Department of Biology, La Sierra University, Riverside, CA, USA.
- The Jackson Laboratory, Bar Harbor, ME, USA.
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| | | | - Nathan B Sutter
- Department of Biology, La Sierra University, Riverside, CA, USA
| |
Collapse
|
3
|
Tandon D, Kubinyi E, Sándor S, Faughnan H, Miklósi Á, vonHoldt BM. Canine hyper-sociability structural variants associated with altered three-dimensional chromatin state. BMC Genomics 2024; 25:767. [PMID: 39112925 PMCID: PMC11305043 DOI: 10.1186/s12864-024-10614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/11/2024] [Indexed: 08/11/2024] Open
Abstract
Strong selection on complex traits can lead to skewed trait means and reduced trait variability in populations. An example of this phenomenon can be evidenced in allele frequency changes and skewed trait distributions driven by persistent human-directed selective pressures in domesticated species. Dog domestication is linked to several genomic variants; however, the functional impacts of these variants may not always be straightforward when found in non-coding regions of the genome. Four polymorphic transposable elements (TE) found within non-coding sites along a 5 Mb region on canine CFA6 have evolved due to directional selection associated with heightened human-directed hyper-sociability in domesticated dogs. We found that the polymorphic TE in intron 17 of the canine GTF2I gene, which was previously reported to be negatively correlated with canid human-directed hyper-sociability, is associated with altered chromatin looping and hence distinct cis-regulatory landscapes. We reported supporting evidence of an E2F1-DNA binding peak concordant with the altered loop and higher expression of GTF2I exon 18, indicative of alternative splicing. Globally, we discovered differences in pathways regulating the extra-cellular matrix with respect to TE copy number. Overall, we reported evidence suggesting an intriguing molecular convergence between the emergence of hypersocial behaviors in dogs and the same genes that, when hemizygous, produce human Williams Beuren Syndrome characterized by cranio-facial defects and heightened social behaviors. Our results additionally emphasize the often-overlooked potential role of chromatin architecture in social evolution.
Collapse
Affiliation(s)
- Dhriti Tandon
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Enikő Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
| | - Sára Sándor
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
| | - Hannah Faughnan
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Ádám Miklósi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
4
|
Castellanos FX, Moreno-Santillán D, Hughes GM, Paulat NS, Sipperly N, Brown AM, Martin KR, Poterewicz GM, Lim MCW, Russell AL, Moore MS, Johnson MG, Corthals AP, Ray DA, Dávalos LM. The evolution of antimicrobial peptides in Chiroptera. Front Immunol 2023; 14:1250229. [PMID: 37822944 PMCID: PMC10562630 DOI: 10.3389/fimmu.2023.1250229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
High viral tolerance coupled with an extraordinary regulation of the immune response makes bats a great model to study host-pathogen evolution. Although many immune-related gene gains and losses have been previously reported in bats, important gene families such as antimicrobial peptides (AMPs) remain understudied. We built an exhaustive bioinformatic pipeline targeting the major gene families of defensins and cathelicidins to explore AMP diversity and analyze their evolution and distribution across six bat families. A combination of manual and automated procedures identified 29 AMP families across queried species, with α-, β-defensins, and cathelicidins representing around 10% of AMP diversity. Gene duplications were inferred in both α-defensins, which were absent in five species, and three β-defensin gene subfamilies, but cathelicidins did not show significant shifts in gene family size and were absent in Anoura caudifer and the pteropodids. Based on lineage-specific gains and losses, we propose diet and diet-related microbiome evolution may determine the evolution of α- and β-defensins gene families and subfamilies. These results highlight the importance of building species-specific libraries for genome annotation in non-model organisms and shed light on possible drivers responsible for the rapid evolution of AMPs. By focusing on these understudied defenses, we provide a robust framework for explaining bat responses to pathogens.
Collapse
Affiliation(s)
| | - Diana Moreno-Santillán
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Graham M. Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Nicole S. Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Nicolette Sipperly
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Alexis M. Brown
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Katherine R. Martin
- Department of Biology, University of Central Florida, Orlando, FL, United States
| | - Gregory M. Poterewicz
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Marisa C. W. Lim
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Amy L. Russell
- Department of Biology, Grand Valley State University, Allendale, MI, United States
| | - Marianne S. Moore
- College of Science and Mathematics, University of the Virgin Islands, St. Thomas, VI, United States
| | - Matthew G. Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Angelique P. Corthals
- Department of Sciences, John Jay College of Criminal Justice, New York, NY, United States
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Liliana M. Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
5
|
Kazachenka A, Loong JH, Attig J, Young GR, Ganguli P, Devonshire G, Grehan N, Ciccarelli FD, Fitzgerald RC, Kassiotis G. The transcriptional landscape of endogenous retroelements delineates esophageal adenocarcinoma subtypes. NAR Cancer 2023; 5:zcad040. [PMID: 37502711 PMCID: PMC10370457 DOI: 10.1093/narcan/zcad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Most cancer types exhibit aberrant transcriptional activity, including derepression of retrotransposable elements (RTEs). However, the degree, specificity and potential consequences of RTE transcriptional activation may differ substantially among cancer types and subtypes. Representing one extreme of the spectrum, we characterize the transcriptional activity of RTEs in cohorts of esophageal adenocarcinoma (EAC) and its precursor Barrett's esophagus (BE) from the OCCAMS (Oesophageal Cancer Clinical and Molecular Stratification) consortium, and from TCGA (The Cancer Genome Atlas). We found exceptionally high RTE inclusion in the EAC transcriptome, driven primarily by transcription of genes incorporating intronic or adjacent RTEs, rather than by autonomous RTE transcription. Nevertheless, numerous chimeric transcripts straddling RTEs and genes, and transcripts from stand-alone RTEs, particularly KLF5- and SOX9-controlled HERVH proviruses, were overexpressed specifically in EAC. Notably, incomplete mRNA splicing and EAC-characteristic intronic RTE inclusion was mirrored by relative loss of the respective fully-spliced, functional mRNA isoforms, consistent with compromised cellular fitness. Defective RNA splicing was linked with strong transcriptional activation of a HERVH provirus on Chr Xp22.32 and defined EAC subtypes with distinct molecular features and prognosis. Our study defines distinguishable RTE transcriptional profiles of EAC, reflecting distinct underlying processes and prognosis, thus providing a framework for targeted studies.
Collapse
Affiliation(s)
| | - Jane Hc Loong
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | - Jan Attig
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | - George R Young
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, UK
| | - Piyali Ganguli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Ginny Devonshire
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Nicola Grehan
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge, UK
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Rebecca C Fitzgerald
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge, UK
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
6
|
Grandchamp A, Kühl L, Lebherz M, Brüggemann K, Parsch J, Bornberg-Bauer E. Population genomics reveals mechanisms and dynamics of de novo expressed open reading frame emergence in Drosophila melanogaster. Genome Res 2023; 33:872-890. [PMID: 37442576 PMCID: PMC10519401 DOI: 10.1101/gr.277482.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/06/2023] [Indexed: 07/15/2023]
Abstract
Novel genes are essential for evolutionary innovations and differ substantially even between closely related species. Recently, multiple studies across many taxa showed that some novel genes arise de novo, that is, from previously noncoding DNA. To characterize the underlying mutations that allowed de novo gene emergence and their order of occurrence, homologous regions must be detected within noncoding sequences in closely related sister genomes. So far, most studies do not detect noncoding homologs of de novo genes because of incomplete assemblies and annotations, and long evolutionary distances separating genomes. Here, we overcome these issues by searching for de novo expressed open reading frames (neORFs), the not-yet fixed precursors of de novo genes that emerged within a single species. We sequenced and assembled genomes with long-read technology and the corresponding transcriptomes from inbred lines of Drosophila melanogaster, derived from seven geographically diverse populations. We found line-specific neORFs in abundance but few neORFs shared by lines, suggesting a rapid turnover. Gain and loss of transcription is more frequent than the creation of ORFs, for example, by forming new start and stop codons. Consequently, the gain of ORFs becomes rate limiting and is frequently the initial step in neORFs emergence. Furthermore, transposable elements (TEs) are major drivers for intragenomic duplications of neORFs, yet TE insertions are less important for the emergence of neORFs. However, highly mutable genomic regions around TEs provide new features that enable gene birth. In conclusion, neORFs have a high birth-death rate, are rapidly purged, but surviving neORFs spread neutrally through populations and within genomes.
Collapse
Affiliation(s)
- Anna Grandchamp
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Lucas Kühl
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Marie Lebherz
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Kathrin Brüggemann
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Munich, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
- Max Planck Institute for Biology Tübingen, Department of Protein Evolution, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Klein J, Allister AB, Schmidt G, Otto A, Heinecke K, Bax-Knoche J, Beger C, Becker S, Bartels S, Ripperger T, Bohne J, Dörk T, Schlegelberger B, Hofmann W, Steinemann D. A Novel Alu Element Insertion in ATM Induces Exon Skipping in Suspected HBOC Patients. Hum Mutat 2023. [DOI: 10.1155/2023/6623515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The vast majority of patients at risk of hereditary breast and/or ovarian cancer (HBOC) syndrome remain without a molecular diagnosis after routine genetic testing. One type of genomic alteration that is commonly missed by diagnostic pipelines is mobile element insertions (MEIs). Here, we reanalyzed multigene panel data from suspected HBOC patients using the MEI detection tool Mobster. A novel Alu element insertion in ATM intron 54 (ATM:c.8010+30_8010+31insAluYa5) was identified as a potential contributing factor in seven patients. Transcript analysis of patient-derived RNA from three heterozygous carriers revealed exon 54 skipping in 38% of total ATM transcripts. To manifest the direct association between the Alu element insertion and the aberrant splice pattern, HEK293T and MCF7 cells were transfected with wild-type or Alu element-carrying minigene constructs. On average, 77% of plasmid-derived transcripts lacked exon 54 in the presence of the Alu element insertion compared to only 4.7% of transcripts expressed by the wild-type minigene. These results strongly suggest ATM:c.8010+30_8010+31insAluYa5 as the main driver of ATM exon 54 skipping. Since this exon loss is predicted to cause a frameshift and a premature stop codon, mutant transcripts are unlikely to translate into functional proteins. Based on its estimated frequency of up to 0.05% in control populations, we propose to consider ATM:c.8010+30_8010+31insAluYa5 in suspected HBOC patients and to clarify its role in carcinogenesis through future epidemiological and functional analyses. Generally, the implementation of MEI detection tools in diagnostic sequencing pipelines could increase the diagnostic yield, as MEIs are likely underestimated contributors to genetic diseases.
Collapse
Affiliation(s)
- Janin Klein
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Annette Otto
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Kai Heinecke
- MVZ Labor Krone GbR, Bad Salzuflen, Bielefeld, Germany
| | | | - Carmela Beger
- MVZ Labor Krone GbR, Bad Salzuflen, Bielefeld, Germany
| | - Sarah Becker
- MVZ Labor Krone GbR, Bad Salzuflen, Bielefeld, Germany
| | - Stephan Bartels
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jens Bohne
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Thilo Dörk
- Department of Gynaecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | | | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Scheuren M, Möhner J, Zischler H. R-loop landscape in mature human sperm: Regulatory and evolutionary implications. Front Genet 2023; 14:1069871. [PMID: 37139234 PMCID: PMC10149866 DOI: 10.3389/fgene.2023.1069871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
R-loops are three-stranded nucleic acid structures consisting of an RNA:DNA hybrid and a displaced DNA strand. While R-loops pose a potential threat to genome integrity, they constitute 5% of the human genome. The role of R-loops in transcriptional regulation, DNA replication, and chromatin signature is becoming increasingly clear. R-loops are associated with various histone modifications, suggesting that they may modulate chromatin accessibility. To potentially harness transcription-coupled repair mechanisms in the germline, nearly the entire genome is expressed during the early stages of male gametogenesis in mammals, providing ample opportunity for the formation of a transcriptome-dependent R-loop landscape in male germ cells. In this study, our data demonstrated the presence of R-loops in fully mature human and bonobo sperm heads and their partial correspondence to transcribed regions and chromatin structure, which is massively reorganized from mainly histone to mainly protamine-packed chromatin in mature sperm. The sperm R-loop landscape resembles characteristic patterns of somatic cells. Surprisingly, we detected R-loops in both residual histone and protamine-packed chromatin and localize them to still-active retroposons, ALUs and SINE-VNTR-ALUs (SVAs), the latter has recently arisen in hominoid primates. We detected both evolutionarily conserved and species-specific localizations. Comparing our DNA-RNA immunoprecipitation (DRIP) data with published DNA methylation and histone chromatin immunoprecipitation (ChIP) data, we hypothesize that R-loops epigenetically reduce methylation of SVAs. Strikingly, we observe a strong influence of R-loops on the transcriptomes of zygotes from early developmental stages before zygotic genome activation. Overall, these findings suggest that chromatin accessibility influenced by R-loops may represent a system of inherited gene regulation.
Collapse
|
9
|
Chi C, He J, Du Z, Zheng Y, D’Alessandro E, Chen C, Moawad AS, Asare E, Song C, Wang X. Two Retrotransposon Elements in Intron of Porcine BMPR1B Is Associated with Phenotypic Variation. Life (Basel) 2022; 12:life12101650. [PMID: 36295085 PMCID: PMC9604734 DOI: 10.3390/life12101650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
It has been established that through binding to bone morphogenetic proteins (BMPs), bone morphogenetic protein receptor I B (BMPR1B) can mediate transforming growth factor β (TGF-β) signal transduction, and is involved in the regulation of several biological processes, such as bone and muscle formation and homeostasis, as well as folliculogenesis. Also known as FecB, BMPR1B has been reported as the major gene for sheep prolificacy. A number of previous studies have analyzed the relationship between single nucleotide polymorphisms (SNPs) in this gene and its related performance. In recent years, with the illustration of the effect of retrotransposon insertion on the expression of the proximal genes or phenotypic variation, retrotransposon insertion polymorphisms (RIPs) have been used as a novel type of molecular marker in the evaluation of evolution, population structure and breeding of plant and domestic animals. In this study, the RIPs in porcine BMPR1B gene were excavated, and thereafter verified using a comparative genome and polymerase chain reaction (PCR). The potential effects of phenotype, gene expression and functions related to RIPs were also explored. The results showed that 13 distinct RIPs were identified in introns of porcine BMPR1B. Among these, only BMPR1B-SINE-RIP9 and BMPR1B-LINE-RIP13 displayed a close relationship with the growth traits of Large White pigs. Moreover, the total number of BMPR1B-SINE+/+-RIP9 individuals born was found to be significantly higher than that of SINE−/− (p < 0.05). These two RIPs showed an obvious distribution pattern among Chinese indigenous breeds and Western commercial breeds. The expression of BMPR1B in ovaries of adult BMPR1B-SINE+/+-RIP9 Sushan pigs was found to be significantly higher in comparison to those of BMPR1B-SINE−/−-RIP9 (p < 0.05). SINE insertion of BMPR1B-SINE-RIP9 and LINE insertion of BMPR1B-LINE-RIP13 were observed to significantly increase the activity of Octamer binding transcription factor 4 (OCT4) minipromoter in CHO and C2C12 cells (p < 0.01). Therefore, these two RIPs could serve as useful molecular markers for modulating the growth or reproductive traits in assisted selection of pig breeding, while the mechanisms of the insertion function should be studied further.
Collapse
Affiliation(s)
- Chenglin Chi
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
| | - Jia He
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhanyu Du
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
| | - Yao Zheng
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
| | - Enrico D’Alessandro
- Department of Veterinary Science, Division of Animal Production, University of Messina, 98168 Messina, Italy
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
| | - Ali Shoaib Moawad
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Emmanuel Asare
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel./Fax: +86-013511768881
| |
Collapse
|
10
|
Kim WR, Park EG, Lee YJ, Bae WH, Lee DH, Kim HS. Integration of TE Induces Cancer Specific Alternative Splicing Events. Int J Mol Sci 2022; 23:10918. [PMID: 36142830 PMCID: PMC9502224 DOI: 10.3390/ijms231810918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing of messenger RNA (mRNA) precursors contributes to genetic diversity by generating structurally and functionally distinct transcripts. In a disease state, alternative splicing promotes incidence and development of several cancer types through regulation of cancer-related biological processes. Transposable elements (TEs), having the genetic ability to jump to other regions of the genome, can bring about alternative splicing events in cancer. TEs can integrate into the genome, mostly in the intronic regions, and induce cancer-specific alternative splicing by adjusting various mechanisms, such as exonization, providing splicing donor/acceptor sites, alternative regulatory sequences or stop codons, and driving exon disruption or epigenetic regulation. Moreover, TEs can produce microRNAs (miRNAs) that control the proportion of transcripts by repressing translation or stimulating the degradation of transcripts at the post-transcriptional level. Notably, TE insertion creates a cancer-friendly environment by controlling the overall process of gene expression before and after transcription in cancer cells. This review emphasizes the correlative interaction between alternative splicing by TE integration and cancer-associated biological processes, suggesting a macroscopic mechanism controlling alternative splicing by TE insertion in cancer.
Collapse
Affiliation(s)
- Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
11
|
Meta-Analysis Suggests That Intron Retention Can Affect Quantification of Transposable Elements from RNA-Seq Data. BIOLOGY 2022; 11:biology11060826. [PMID: 35741347 PMCID: PMC9220773 DOI: 10.3390/biology11060826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 02/08/2023]
Abstract
Simple Summary Transposable elements (TEs) are repetitive sequences comprising more than one third of the human genome with the original ability to change their location within the genome. Owing to their repetitive nature, the quantification of TEs results often challenging. RNA-seq is a useful tool for genome-wide TEs quantification, nevertheless it also presents technical issues, including low reads mappability and erroneous quantification derived from the transcription of TEs fragments embedded in canonical transcripts. Fragments derived from TEs are found within the introns of most genes, which led to the hypothesis that intron retention (IR) can affect the unbiased quantification of TEs expression. Performing meta-analysis of public RNA-seq datasets, here we observe that IR can indeed impact the quantification of TEs by increasing the number of reads mapped on intronic TE copies. Our work highlights a correlation between IR and TEs expression measurement by RNA-seq that should be taken into account to achieve reliable TEs quantification, especially in samples characterized by extensive IR, because differential IR might be confused with differential TEs expression. Abstract Transposable elements (TEs), also known as “jumping genes”, are repetitive sequences with the capability of changing their location within the genome. They are key players in many different biological processes in health and disease. Therefore, a reliable quantification of their expression as transcriptional units is crucial to distinguish between their independent expression and the transcription of their sequences as part of canonical transcripts. TEs quantification faces difficulties of different types, the most important one being low reads mappability due to their repetitive nature preventing an unambiguous mapping of reads originating from their sequences. A large fraction of TEs fragments localizes within introns, which led to the hypothesis that intron retention (IR) can be an additional source of bias, potentially affecting accurate TEs quantification. IR occurs when introns, normally removed from the mature transcript by the splicing machinery, are maintained in mature transcripts. IR is a widespread mechanism affecting many different genes with cell type-specific patterns. We hypothesized that, in an RNA-seq experiment, reads derived from retained introns can introduce a bias in the detection of overlapping, independent TEs RNA expression. In this study we performed meta-analysis using public RNA-seq data from lymphoblastoid cell lines and show that IR can impact TEs quantification using established tools with default parameters. Reads mapped on intronic TEs were indeed associated to the expression of TEs and influence their correct quantification as independent transcriptional units. We confirmed these results using additional independent datasets, demonstrating that this bias does not appear in samples where IR is not present and that differential TEs expression does not impact on IR quantification. We concluded that IR causes the over-quantification of intronic TEs and differential IR might be confused with differential TEs expression. Our results should be taken into account for a correct quantification of TEs expression from RNA-seq data, especially in samples in which IR is abundant.
Collapse
|
12
|
Niu Y, Teng X, Zhou H, Shi Y, Li Y, Tang Y, Zhang P, Luo H, Kang Q, Xu T, He S. Characterizing mobile element insertions in 5675 genomes. Nucleic Acids Res 2022; 50:2493-2508. [PMID: 35212372 PMCID: PMC8934628 DOI: 10.1093/nar/gkac128] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/30/2022] Open
Abstract
Mobile element insertions (MEIs) are a major class of structural variants (SVs) and have been linked to many human genetic disorders, including hemophilia, neurofibromatosis, and various cancers. However, human MEI resources from large-scale genome sequencing are still lacking compared to those for SNPs and SVs. Here, we report a comprehensive map of 36 699 non-reference MEIs constructed from 5675 genomes, comprising 2998 Chinese samples (∼26.2×, NyuWa) and 2677 samples from the 1000 Genomes Project (∼7.4×, 1KGP). We discovered that LINE-1 insertions were highly enriched in centromere regions, implying the role of chromosome context in retroelement insertion. After functional annotation, we estimated that MEIs are responsible for about 9.3% of all protein-truncating events per genome. Finally, we built a companion database named HMEID for public use. This resource represents the latest and largest genomewide study on MEIs and will have broad utility for exploration of human MEI findings.
Collapse
Affiliation(s)
- Yiwei Niu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyi Teng
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yirong Shi
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Li
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiheng Tang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huaxia Luo
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan Kang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Colonna Romano N, Fanti L. Transposable Elements: Major Players in Shaping Genomic and Evolutionary Patterns. Cells 2022; 11:cells11061048. [PMID: 35326499 PMCID: PMC8947103 DOI: 10.3390/cells11061048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Transposable elements (TEs) are ubiquitous genetic elements, able to jump from one location of the genome to another, in all organisms. For this reason, on the one hand, TEs can induce deleterious mutations, causing dysfunction, disease and even lethality in individuals. On the other hand, TEs can increase genetic variability, making populations better equipped to respond adaptively to environmental change. To counteract the deleterious effects of TEs, organisms have evolved strategies to avoid their activation. However, their mobilization does occur. Usually, TEs are maintained silent through several mechanisms, but they can be reactivated during certain developmental windows. Moreover, TEs can become de-repressed because of drastic changes in the external environment. Here, we describe the ‘double life’ of TEs, being both ‘parasites’ and ‘symbionts’ of the genome. We also argue that the transposition of TEs contributes to two important evolutionary processes: the temporal dynamic of evolution and the induction of genetic variability. Finally, we discuss how the interplay between two TE-dependent phenomena, insertional mutagenesis and epigenetic plasticity, plays a role in the process of evolution.
Collapse
|
14
|
Pradhan RK, Ramakrishna W. Transposons: Unexpected players in cancer. Gene 2022; 808:145975. [PMID: 34592349 DOI: 10.1016/j.gene.2021.145975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Transposons are repetitive DNA sequences encompassing about half of the human genome. They play a vital role in genome stability maintenance and contribute to genomic diversity and evolution. Their activity is regulated by various mechanisms considering the deleterious effects of these mobile elements. Various genetic risk factors and environmental stress conditions affect the regulatory pathways causing alteration of transposon expression. Our knowledge of the biological role of transposons is limited especially in various types of cancers. Retrotransposons of different types (LTR-retrotransposons, LINEs and SINEs) regulate a plethora of genes that have a role in cell reprogramming, tumor suppression, cell cycle, apoptosis, cell adhesion and migration, and DNA repair. The regulatory mechanisms of transposons, their deregulation and different mechanisms underlying transposon-mediated carcinogenesis in humans focusing on the three most prevalent types, lung, breast and colorectal cancers, were reviewed. The modes of regulation employed include alternative splicing, deletion, insertion, duplication in genes and promoters resulting in upregulation, downregulation or silencing of genes.
Collapse
|
15
|
Ben Amara W, Quesneville H, Khemakhem MM. A Genomic Survey of Mayetiola destructor Mobilome Provides New Insights into the Evolutionary History of Transposable Elements in the Cecidomyiid Midges. PLoS One 2021; 16:e0257996. [PMID: 34634072 PMCID: PMC8504770 DOI: 10.1371/journal.pone.0257996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 09/16/2021] [Indexed: 11/19/2022] Open
Abstract
The availability of the Whole-Genome Sequence of the wheat pest Mayetiola destructor offers the opportunity to investigate the Transposable Elements (TEs) content and their relationship with the genes involved in the insect virulence. In this study, de novo annotation carried out using REPET pipeline showed that TEs occupy approximately 16% of the genome and are represented by 1038 lineages. Class II elements were the most frequent and most TEs were inactive due to the deletions they have accumulated. The analyses of TEs ages revealed a first burst at 20% of divergence from present that mobilized many TE families including mostly Tc1/mariner and Gypsy superfamilies and a second burst at 2% of divergence, which involved mainly the class II elements suggesting new TEs invasions. Additionally, 86 TEs insertions involving recently transposed elements were identified. Among them, several MITEs and Gypsy retrotransposons were inserted in the vicinity of SSGP and chemosensory genes. The findings represent a valuable resource for more in-depth investigation of the TE impact onto M. destructor genome and their possible influence on the expression of the virulence and chemosensory genes and consequently the behavior of this pest towards its host plants.
Collapse
Affiliation(s)
- Wiem Ben Amara
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hadi Quesneville
- INRAE, URGI, Université Paris-Saclay, Versailles, France
- INRAE, BioinfOmics, Plant Bioinformatics Facility, Université Paris-Saclay, Versailles, France
| | - Maha Mezghani Khemakhem
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
- * E-mail:
| |
Collapse
|
16
|
Gruhl F, Janich P, Kaessmann H, Gatfield D. Circular RNA repertoires are associated with evolutionarily young transposable elements. eLife 2021; 10:67991. [PMID: 34542406 PMCID: PMC8516420 DOI: 10.7554/elife.67991] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/19/2021] [Indexed: 12/29/2022] Open
Abstract
Circular RNAs (circRNAs) are found across eukaryotes and can function in post-transcriptional gene regulation. Their biogenesis through a circle-forming backsplicing reaction is facilitated by reverse-complementary repetitive sequences promoting pre-mRNA folding. Orthologous genes from which circRNAs arise, overall contain more strongly conserved splice sites and exons than other genes, yet it remains unclear to what extent this conservation reflects purifying selection acting on the circRNAs themselves. Our analyses of circRNA repertoires from five species representing three mammalian lineages (marsupials, eutherians: rodents, primates) reveal that surprisingly few circRNAs arise from orthologous exonic loci across all species. Even the circRNAs from orthologous loci are associated with young, recently active and species-specific transposable elements, rather than with common, ancient transposon integration events. These observations suggest that many circRNAs emerged convergently during evolution - as a byproduct of splicing in orthologs prone to transposon insertion. Overall, our findings argue against widespread functional circRNA conservation.
Collapse
Affiliation(s)
- Franziska Gruhl
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Peggy Janich
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Krebsforschung Schweiz, Bern, Switzerland
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Wahba L, Hansen L, Fire AZ. An essential role for the piRNA pathway in regulating the ribosomal RNA pool in C. elegans. Dev Cell 2021; 56:2295-2312.e6. [PMID: 34388368 PMCID: PMC8387450 DOI: 10.1016/j.devcel.2021.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/11/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are RNA effectors with key roles in maintaining genome integrity and promoting fertility in metazoans. In Caenorhabditis elegans loss of piRNAs leads to a transgenerational sterility phenotype. The plethora of piRNAs and their ability to silence transcripts with imperfect complementarity have raised several (non-exclusive) models for the underlying drivers of sterility. Here, we report the extranuclear and transferable nature of the sterility driver, its suppression via mutations disrupting the endogenous RNAi and poly-uridylation machinery, and copy-number amplification at the ribosomal DNA locus. In piRNA-deficient animals, several small interfering RNA (siRNA) populations become increasingly overabundant in the generations preceding loss of germline function, including ribosomal siRNAs (risiRNAs). A concomitant increase in uridylated sense rRNA fragments suggests that poly-uridylation may potentiate RNAi-mediated gene silencing of rRNAs. We conclude that loss of the piRNA machinery allows for unchecked amplification of siRNA populations, originating from abundant highly structured RNAs, to deleterious levels.
Collapse
Affiliation(s)
- Lamia Wahba
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Loren Hansen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Watkins WS, Feusier JE, Thomas J, Goubert C, Mallick S, Jorde LB. The Simons Genome Diversity Project: A Global Analysis of Mobile Element Diversity. Genome Biol Evol 2021; 12:779-794. [PMID: 32359137 PMCID: PMC7290288 DOI: 10.1093/gbe/evaa086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
Ongoing retrotransposition of Alu, LINE-1, and SINE–VNTR–Alu elements generates diversity and variation among human populations. Previous analyses investigating the population genetics of mobile element insertions (MEIs) have been limited by population ascertainment bias or by relatively small numbers of populations and low sequencing coverage. Here, we use 296 individuals representing 142 global populations from the Simons Genome Diversity Project (SGDP) to discover and characterize MEI diversity from deeply sequenced whole-genome data. We report 5,742 MEIs not originally reported by the 1000 Genomes Project and show that high sampling diversity leads to a 4- to 7-fold increase in MEI discovery rates over the original 1000 Genomes Project data. As a result of negative selection, nonreference polymorphic MEIs are underrepresented within genes, and MEIs within genes are often found in the transcriptional orientation opposite that of the gene. Globally, 80% of Alu subfamilies predate the expansion of modern humans from Africa. Polymorphic MEIs show heterozygosity gradients that decrease from Africa to Eurasia to the Americas, and the number of MEIs found uniquely in a single individual are also distributed in this general pattern. The maximum fraction of MEI diversity partitioned among the seven major SGDP population groups (FST) is 7.4%, similar to, but slightly lower than, previous estimates and likely attributable to the diverse sampling strategy of the SGDP. Finally, we utilize these MEIs to extrapolate the primary Native American shared ancestry component to back to Asia and provide new evidence from genome-wide identical-by-descent genetic markers that add additional support for a southeastern Siberian origin for most Native Americans.
Collapse
Affiliation(s)
| | | | - Jainy Thomas
- Department of Human Genetics, University of Utah
| | - Clement Goubert
- Department of Molecular Biology and Genetics, Cornell University
| | - Swapon Mallick
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah
| |
Collapse
|
19
|
Judd J, Sanderson H, Feschotte C. Evolution of mouse circadian enhancers from transposable elements. Genome Biol 2021; 22:193. [PMID: 34187518 PMCID: PMC8240256 DOI: 10.1186/s13059-021-02409-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Transposable elements are increasingly recognized as a source of cis-regulatory variation. Previous studies have revealed that transposons are often bound by transcription factors and some have been co-opted into functional enhancers regulating host gene expression. However, the process by which transposons mature into complex regulatory elements, like enhancers, remains poorly understood. To investigate this process, we examined the contribution of transposons to the cis-regulatory network controlling circadian gene expression in the mouse liver, a well-characterized network serving an important physiological function. RESULTS ChIP-seq analyses reveal that transposons and other repeats contribute ~ 14% of the binding sites for core circadian regulators (CRs) including BMAL1, CLOCK, PER1/2, and CRY1/2, in the mouse liver. RSINE1, an abundant murine-specific SINE, is the only transposon family enriched for CR binding sites across all datasets. Sequence analyses and reporter assays reveal that the circadian regulatory activity of RSINE1 stems from the presence of imperfect CR binding motifs in the ancestral RSINE1 sequence. These motifs matured into canonical motifs through point mutations after transposition. Furthermore, maturation occurred preferentially within elements inserted in the proximity of ancestral CR binding sites. RSINE1 also acquired motifs that recruit nuclear receptors known to cooperate with CRs to regulate circadian gene expression specifically in the liver. CONCLUSIONS Our results suggest that the birth of enhancers from transposons is predicated both by the sequence of the transposon and by the cis-regulatory landscape surrounding their genomic integration site.
Collapse
Affiliation(s)
- Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Hayley Sanderson
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
20
|
Chen C, D'Alessandro E, Murani E, Zheng Y, Giosa D, Yang N, Wang X, Gao B, Li K, Wimmers K, Song C. SINE jumping contributes to large-scale polymorphisms in the pig genomes. Mob DNA 2021; 12:17. [PMID: 34183049 PMCID: PMC8240389 DOI: 10.1186/s13100-021-00246-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Molecular markers based on retrotransposon insertion polymorphisms (RIPs) have been developed and are widely used in plants and animals. Short interspersed nuclear elements (SINEs) exert wide impacts on gene activity and even on phenotypes. However, SINE RIP profiles in livestock remain largely unknown, and not be revealed in pigs. RESULTS Our data revealed that SINEA1 displayed the most polymorphic insertions (22.5 % intragenic and 26.5 % intergenic), followed by SINEA2 (10.5 % intragenic and 9 % intergenic) and SINEA3 (12.5 % intragenic and 5.0 % intergenic). We developed a genome-wide SINE RIP mining protocol and obtained a large number of SINE RIPs (36,284), with over 80 % accuracy and an even distribution in chromosomes (14.5/Mb), and 74.34 % of SINE RIPs generated by SINEA1 element. Over 65 % of pig SINE RIPs overlap with genes, most of them (> 95 %) are in introns. Overall, about one forth (23.09 %) of the total genes contain SINE RIPs. Significant biases of SINE RIPs in the transcripts of protein coding genes were observed. Nearly half of the RIPs are common in these pig breeds. Sixteen SINE RIPs were applied for population genetic analysis in 23 pig breeds, the phylogeny tree and cluster analysis were generally consistent with the geographical distributions of native pig breeds in China. CONCLUSIONS Our analysis revealed that SINEA1-3 elements, particularly SINEA1, are high polymorphic across different pig breeds, and generate large-scale structural variations in the pig genomes. And over 35,000 SINE RIP markers were obtained. These data indicate that young SINE elements play important roles in creating new genetic variations and shaping the evolution of pig genome, and also provide strong evidences to support the great potential of SINE RIPs as genetic markers, which can be used for population genetic analysis and quantitative trait locus (QTL) mapping in pig.
Collapse
Affiliation(s)
- Cai Chen
- College of Animal Science & Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Enrico D'Alessandro
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy
| | - Eduard Murani
- Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Yao Zheng
- College of Animal Science & Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Domenico Giosa
- Department of Clinical and Experimental Medicine, University Hospital of Messina, 98125, Messina, Italy
| | - Naisu Yang
- College of Animal Science & Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Kui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China.
| |
Collapse
|
21
|
Almojil D, Bourgeois Y, Falis M, Hariyani I, Wilcox J, Boissinot S. The Structural, Functional and Evolutionary Impact of Transposable Elements in Eukaryotes. Genes (Basel) 2021; 12:genes12060918. [PMID: 34203645 PMCID: PMC8232201 DOI: 10.3390/genes12060918] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are nearly ubiquitous in eukaryotes. The increase in genomic data, as well as progress in genome annotation and molecular biology techniques, have revealed the vast number of ways mobile elements have impacted the evolution of eukaryotes. In addition to being the main cause of difference in haploid genome size, TEs have affected the overall organization of genomes by accumulating preferentially in some genomic regions, by causing structural rearrangements or by modifying the recombination rate. Although the vast majority of insertions is neutral or deleterious, TEs have been an important source of evolutionary novelties and have played a determinant role in the evolution of fundamental biological processes. TEs have been recruited in the regulation of host genes and are implicated in the evolution of regulatory networks. They have also served as a source of protein-coding sequences or even entire genes. The impact of TEs on eukaryotic evolution is only now being fully appreciated and the role they may play in a number of biological processes, such as speciation and adaptation, remains to be deciphered.
Collapse
Affiliation(s)
- Dareen Almojil
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Yann Bourgeois
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK;
| | - Marcin Falis
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Imtiyaz Hariyani
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Justin Wilcox
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Stéphane Boissinot
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Correspondence:
| |
Collapse
|
22
|
Correa M, Lerat E, Birmelé E, Samson F, Bouillon B, Normand K, Rizzon C. The Transposable Element Environment of Human Genes Differs According to Their Duplication Status and Essentiality. Genome Biol Evol 2021; 13:6273345. [PMID: 33973013 PMCID: PMC8155550 DOI: 10.1093/gbe/evab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) are major components of eukaryotic genomes and represent approximately 45% of the human genome. TEs can be important sources of novelty in genomes and there is increasing evidence that TEs contribute to the evolution of gene regulation in mammals. Gene duplication is an evolutionary mechanism that also provides new genetic material and opportunities to acquire new functions. To investigate how duplicated genes are maintained in genomes, here, we explored the TE environment of duplicated and singleton genes. We found that singleton genes have more short-interspersed nuclear elements and DNA transposons in their vicinity than duplicated genes, whereas long-interspersed nuclear elements and long-terminal repeat retrotransposons have accumulated more near duplicated genes. We also discovered that this result is highly associated with the degree of essentiality of the genes with an unexpected accumulation of short-interspersed nuclear elements and DNA transposons around the more-essential genes. Our results underline the importance of taking into account the TE environment of genes to better understand how duplicated genes are maintained in genomes.
Collapse
Affiliation(s)
- Margot Correa
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Emmanuelle Lerat
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Etienne Birmelé
- Laboratoire MAP5 UMR 8145, Université de Paris, Paris, France
| | - Franck Samson
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Bérengère Bouillon
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Kévin Normand
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Carène Rizzon
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| |
Collapse
|
23
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that propagate within genomes. Through diverse invasion strategies, TEs have come to occupy a substantial fraction of nearly all eukaryotic genomes, and they represent a major source of genetic variation and novelty. Here we review the defining features of each major group of eukaryotic TEs and explore their evolutionary origins and relationships. We discuss how the unique biology of different TEs influences their propagation and distribution within and across genomes. Environmental and genetic factors acting at the level of the host species further modulate the activity, diversification, and fate of TEs, producing the dramatic variation in TE content observed across eukaryotes. We argue that cataloging TE diversity and dissecting the idiosyncratic behavior of individual elements are crucial to expanding our comprehension of their impact on the biology of genomes and the evolution of species.
Collapse
Affiliation(s)
- Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| |
Collapse
|
24
|
Linker SB, Randolph-Moore L, Kottilil K, Qiu F, Jaeger BN, Barron J, Gage FH. Identification of bona fide B2 SINE retrotransposon transcription through single-nucleus RNA-seq of the mouse hippocampus. Genome Res 2020; 30:1643-1654. [PMID: 33122305 PMCID: PMC7605253 DOI: 10.1101/gr.262196.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
Currently, researchers rely on generalized methods to quantify transposable element (TE) RNA expression, such as RT-qPCR and RNA-seq, that do not distinguish between TEs expressed from their own promoter (bona fide) and TEs that are transcribed from a neighboring gene promoter such as within an intron or exon. This distinction is important owing to the differing functional roles of TEs depending on whether they are independently transcribed. Here we report a simple strategy to examine bona fide TE expression, termed BonaFide-TEseq. This approach can be used with any template-switch based library such as Smart-seq2 or the single-cell 5' gene expression kit from 10x, extending its utility to single-cell RNA-sequencing. This approach does not require TE-specific enrichment, enabling the simultaneous examination of TEs and protein-coding genes. We show that TEs identified through BonaFide-TEseq are expressed from their own promoter, rather than captured as internal products of genes. We reveal the utility of BonaFide-TEseq in the analysis of single-cell data and show that short-interspersed nuclear elements (SINEs) show cell type-specific expression profiles in the mouse hippocampus. We further show that, in response to a brief exposure of home-cage mice to a novel stimulus, SINEs are activated in dentate granule neurons in a time course that is similar to that of protein-coding immediate early genes. This work provides a simple alternative approach to assess bona fide TE transcription at single-cell resolution and provides a proof-of-concept using this method to identify SINE activation in a context that is relevant for normal learning and memory.
Collapse
Affiliation(s)
- Sara B Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Lynne Randolph-Moore
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Kalyani Kottilil
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Fan Qiu
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Baptiste N Jaeger
- Laboratory of Neural Plasticity, Faculty of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Jerika Barron
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California 94143, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
25
|
Zamai L. Unveiling Human Non-Random Genome Editing Mechanisms Activated in Response to Chronic Environmental Changes: I. Where Might These Mechanisms Come from and What Might They Have Led To? Cells 2020; 9:E2362. [PMID: 33121045 PMCID: PMC7693803 DOI: 10.3390/cells9112362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
This article challenges the notion of the randomness of mutations in eukaryotic cells by unveiling stress-induced human non-random genome editing mechanisms. To account for the existence of such mechanisms, I have developed molecular concepts of the cell environment and cell environmental stressors and, making use of a large quantity of published data, hypothesised the origin of some crucial biological leaps along the evolutionary path of life on Earth under the pressure of natural selection, in particular, (1) virus-cell mating as a primordial form of sexual recombination and symbiosis; (2) Lamarckian CRISPR-Cas systems; (3) eukaryotic gene development; (4) antiviral activity of retrotransposon-guided mutagenic enzymes; and finally, (5) the exaptation of antiviral mutagenic mechanisms to stress-induced genome editing mechanisms directed at "hyper-transcribed" endogenous genes. Genes transcribed at their maximum rate (hyper-transcribed), yet still unable to meet new chronic environmental demands generated by "pollution", are inadequate and generate more and more intronic retrotransposon transcripts. In this scenario, RNA-guided mutagenic enzymes (e.g., Apolipoprotein B mRNA editing catalytic polypeptide-like enzymes, APOBECs), which have been shown to bind to retrotransposon RNA-repetitive sequences, would be surgically targeted by intronic retrotransposons on opened chromatin regions of the same "hyper-transcribed" genes. RNA-guided mutagenic enzymes may therefore "Lamarkianly" generate single nucleotide polymorphisms (SNP) and gene copy number variations (CNV), as well as transposon transposition and chromosomal translocations in the restricted areas of hyper-functional and inadequate genes, leaving intact the rest of the genome. CNV and SNP of hyper-transcribed genes may allow cells to surgically explore a new fitness scenario, which increases their adaptability to stressful environmental conditions. Like the mechanisms of immunoglobulin somatic hypermutation, non-random genome editing mechanisms may generate several cell mutants, and those codifying for the most environmentally adequate proteins would have a survival advantage and would therefore be Darwinianly selected. Non-random genome editing mechanisms represent tools of evolvability leading to organismal adaptation including transgenerational non-Mendelian gene transmission or to death of environmentally inadequate genomes. They are a link between environmental changes and biological novelty and plasticity, finally providing a molecular basis to reconcile gene-centred and "ecological" views of evolution.
Collapse
Affiliation(s)
- Loris Zamai
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; ; Tel./Fax: +39-0722-304-319
- National Institute for Nuclear Physics (INFN)-Gran Sasso National Laboratory (LNGS), 67100 Assergi, L’Aquila, Italy
| |
Collapse
|
26
|
Gardner EJ, Prigmore E, Gallone G, Danecek P, Samocha KE, Handsaker J, Gerety SS, Ironfield H, Short PJ, Sifrim A, Singh T, Chandler KE, Clement E, Lachlan KL, Prescott K, Rosser E, FitzPatrick DR, Firth HV, Hurles ME. Contribution of retrotransposition to developmental disorders. Nat Commun 2019; 10:4630. [PMID: 31604926 PMCID: PMC6789007 DOI: 10.1038/s41467-019-12520-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 09/11/2019] [Indexed: 02/08/2023] Open
Abstract
Mobile genetic Elements (MEs) are segments of DNA which can copy themselves and other transcribed sequences through the process of retrotransposition (RT). In humans several disorders have been attributed to RT, but the role of RT in severe developmental disorders (DD) has not yet been explored. Here we identify RT-derived events in 9738 exome sequenced trios with DD-affected probands. We ascertain 9 de novo MEs, 4 of which are likely causative of the patient's symptoms (0.04%), as well as 2 de novo gene retroduplications. Beyond identifying likely diagnostic RT events, we estimate genome-wide germline ME mutation rate and selective constraint and demonstrate that coding RT events have signatures of purifying selection equivalent to those of truncating mutations. Overall, our analysis represents a comprehensive interrogation of the impact of retrotransposition on protein coding genes and a framework for future evolutionary and disease studies.
Collapse
Affiliation(s)
- Eugene J Gardner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, CB10 1SA, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, CB10 1SA, UK
| | - Giuseppe Gallone
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, CB10 1SA, UK
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, CB10 1SA, UK
| | - Kaitlin E Samocha
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, CB10 1SA, UK
| | - Juliet Handsaker
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, CB10 1SA, UK
| | - Sebastian S Gerety
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, CB10 1SA, UK
| | - Holly Ironfield
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, CB10 1SA, UK
| | - Patrick J Short
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, CB10 1SA, UK
| | - Alejandro Sifrim
- Department of Human Genetics, KU Leuven, Herestraat 49, Box 602, Leuven, B-3000, Belgium
| | - Tarjinder Singh
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, CB10 1SA, UK
| | - Kate E Chandler
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, Greater, Manchester, M13 9WL, UK
| | - Emma Clement
- Department of Clinical Genetics, North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Trust, Holborn, London, WC1N 3JH, UK
| | - Katherine L Lachlan
- Wessex Clinical Genetics Service, Southampton University Hospitals NHS Foundation Trust, Princess Anne Hospital, Southampton, SO16 5YA, UK.,Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, SO17 1BJ, UK
| | - Katrina Prescott
- Clinical Genetics Department, Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, LS7 4SA, UK
| | - Elisabeth Rosser
- Department of Clinical Genetics, North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Trust, Holborn, London, WC1N 3JH, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, WGH, Edinburgh, EH4 2SP, UK
| | - Helen V Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, CB10 1SA, UK.,East Anglian Medical Genetics Service, Box 134, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Matthew E Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, CB10 1SA, UK.
| |
Collapse
|
27
|
Payer LM, Steranka JP, Ardeljan D, Walker J, Fitzgerald KC, Calabresi PA, Cooper TA, Burns KH. Alu insertion variants alter mRNA splicing. Nucleic Acids Res 2019; 47:421-431. [PMID: 30418605 PMCID: PMC6326789 DOI: 10.1093/nar/gky1086] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/20/2018] [Indexed: 12/23/2022] Open
Abstract
RNA splicing is a highly regulated process dependent on sequences near splice sites. Insertions of Alu retrotransposons can disrupt splice sites or bind splicing regulators. We hypothesized that some common inherited polymorphic Alu insertions are responsible for splicing QTLs (sQTL). We focused on intronic Alu variants mapping within 100 bp of an alternatively used exon and screened for those that alter splicing. We identify five loci, 21.7% of those assayed, where the polymorphic Alu alters splicing. While in most cases the Alu promotes exon skipping, at one locus the Alu increases exon inclusion. Of particular interest is an Alu polymorphism in the CD58 gene. Reduced CD58 expression is associated with risk for developing multiple sclerosis. We show that the Alu insertion promotes skipping of CD58 exon 3 and results in a frameshifted transcript, indicating that the Alu may be the causative variant for increased MS risk at this locus. Using RT-PCR analysis at the endogenous locus, we confirm that the Alu variant is a sQTL for CD58. In summary, altered splicing efficiency is a common functional consequence of Alu polymorphisms including at least one instance where the variant is implicated in disease risk. This work broadens our understanding of splicing regulatory sequences around exons.
Collapse
Affiliation(s)
- Lindsay M Payer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jared P Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel Ardeljan
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - JaNiece Walker
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas A Cooper
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
28
|
Gagnier L, Belancio VP, Mager DL. Mouse germ line mutations due to retrotransposon insertions. Mob DNA 2019; 10:15. [PMID: 31011371 PMCID: PMC6466679 DOI: 10.1186/s13100-019-0157-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
Transposable element (TE) insertions are responsible for a significant fraction of spontaneous germ line mutations reported in inbred mouse strains. This major contribution of TEs to the mutational landscape in mouse contrasts with the situation in human, where their relative contribution as germ line insertional mutagens is much lower. In this focussed review, we provide comprehensive lists of TE-induced mouse mutations, discuss the different TE types involved in these insertional mutations and elaborate on particularly interesting cases. We also discuss differences and similarities between the mutational role of TEs in mice and humans.
Collapse
Affiliation(s)
- Liane Gagnier
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Dixie L. Mager
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| |
Collapse
|
29
|
Sultana T, van Essen D, Siol O, Bailly-Bechet M, Philippe C, Zine El Aabidine A, Pioger L, Nigumann P, Saccani S, Andrau JC, Gilbert N, Cristofari G. The Landscape of L1 Retrotransposons in the Human Genome Is Shaped by Pre-insertion Sequence Biases and Post-insertion Selection. Mol Cell 2019; 74:555-570.e7. [PMID: 30956044 DOI: 10.1016/j.molcel.2019.02.036] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/28/2019] [Accepted: 02/25/2019] [Indexed: 01/10/2023]
Abstract
L1 retrotransposons are transposable elements and major contributors of genetic variation in humans. Where L1 integrates into the genome can directly impact human evolution and disease. Here, we experimentally induced L1 retrotransposition in cells and mapped integration sites at nucleotide resolution. At local scales, L1 integration is mostly restricted by genome sequence biases and the specificity of the L1 machinery. At regional scales, L1 shows a broad capacity for integration into all chromatin states, in contrast to other known mobile genetic elements. However, integration is influenced by the replication timing of target regions, suggesting a link to host DNA replication. The distribution of new L1 integrations differs from those of preexisting L1 copies, which are significantly reshaped by natural selection. Our findings reveal that the L1 machinery has evolved to efficiently target all genomic regions and underline a predominant role for post-integrative processes on the distribution of endogenous L1 elements.
Collapse
Affiliation(s)
- Tania Sultana
- Université Côte d'Azur, Inserm, CNRS, IRCAN, Nice, France
| | | | - Oliver Siol
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | | | | | - Amal Zine El Aabidine
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Léo Pioger
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Pilvi Nigumann
- Université Côte d'Azur, Inserm, CNRS, IRCAN, Nice, France
| | - Simona Saccani
- Université Côte d'Azur, Inserm, CNRS, IRCAN, Nice, France
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Nicolas Gilbert
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France; Institut de Médecine Régénératrice et de Biothérapie, Inserm U1183, CHU Montpellier, Montpellier, France
| | | |
Collapse
|
30
|
Pirogov SA, Maksimenko OG, Georgiev PG. Transposable Elements in the Evolution of Gene Regulatory Networks. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Philippsen GS, DeMarco R. Impact of transposable elements in the architecture of genes of the human parasite Schistosoma mansoni. Mol Biochem Parasitol 2018; 228:27-31. [PMID: 30597185 DOI: 10.1016/j.molbiopara.2018.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/06/2018] [Accepted: 12/27/2018] [Indexed: 01/26/2023]
Abstract
The parasites belonging to the genus Schistosoma are agents of schistosomiasis, a disease estimated as affecting 235 million people in the world. To better understand the structure of Schistosoma mansoni genome, transposable elements (TEs) distribution and impact on gene structures were investigated. Our analyses indicated a differential distribution of TEs throughout the gene structure. Introns located at the 5' end of the genes are less prone to display TEs and introns lacking TEs tend to be shorter. Therefore, this could be one of the factors explaining previous data showing that S. mansoni displays shorter introns near the 5' end of the genes. Identification of six genes harboring TEs in their coding region suggests a positive contribution for the evolution of proteome repertory of S. mansoni. Taken together, our data suggest significant contributions of TEs to the architecture of genes from S. mansoni.
Collapse
Affiliation(s)
- Gisele S Philippsen
- Universidade Federal do Paraná, Jandaia do Sul, Dr. Maximiano street, n. 426, Paraná, Brazil.
| | - Ricardo DeMarco
- Departamento de Física e Ciência Interdisciplinar, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
32
|
Manee MM, Jackson J, Bergman CM. Conserved Noncoding Elements Influence the Transposable Element Landscape in Drosophila. Genome Biol Evol 2018; 10:1533-1545. [PMID: 29850787 PMCID: PMC6007792 DOI: 10.1093/gbe/evy104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Highly conserved noncoding elements (CNEs) constitute a significant proportion of the genomes of multicellular eukaryotes. The function of most CNEs remains elusive, but growing evidence indicates they are under some form of purifying selection. Noncoding regions in many species also harbor large numbers of transposable element (TE) insertions, which are typically lineage specific and depleted in exons because of their deleterious effects on gene function or expression. However, it is currently unknown whether the landscape of TE insertions in noncoding regions is random or influenced by purifying selection on CNEs. Here, we combine comparative and population genomic data in Drosophila melanogaster to show that the abundance of TE insertions in intronic and intergenic CNEs is reduced relative to random expectation, supporting the idea that selective constraints on CNEs eliminate a proportion of TE insertions in noncoding regions. However, we find no evidence for differences in the allele frequency spectra for polymorphic TE insertions in CNEs versus those in unconstrained spacer regions, suggesting that the distribution of fitness effects acting on observable TE insertions is similar across different functional compartments in noncoding DNA. Our results provide evidence that selective constraints on CNEs contribute to shaping the landscape of TE insertion in eukaryotic genomes, and provide further evidence that CNEs are indeed functionally constrained and not simply mutational cold spots.
Collapse
Affiliation(s)
- Manee M Manee
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.,National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Center of Excellence for Genomics (CEG), King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - John Jackson
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Casey M Bergman
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.,Department of Genetics, University of Georgia, Athens, GA.,Institute of Bioinformatics, University of Georgia, Athens, GA
| |
Collapse
|
33
|
Human Endogenous Retrovirus-K HML-2 integration within RASGRF2 is associated with intravenous drug abuse and modulates transcription in a cell-line model. Proc Natl Acad Sci U S A 2018; 115:10434-10439. [PMID: 30249655 DOI: 10.1073/pnas.1811940115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HERV-K HML-2 (HK2) has been proliferating in the germ line of humans at least as recently as 250,000 years ago, with some integrations that remain polymorphic in the modern human population. One of the solitary HK2 LTR polymorphic integrations lies between exons 17 and 18 of RASGRF2, a gene that affects dopaminergic activity and is thus related to addiction. Here we show that this antisense HK2 integration (namely RASGRF2-int) is found more frequently in persons who inject drugs compared with the general population. In a Greek HIV-1-positive population (n = 202), we found RASGRF2-int 2.5 times (14 versus 6%) more frequently in patients infected through i.v. drug use compared with other transmission route controls (P = 0.03). Independently, in a United Kingdom-based hepatitis C virus-positive population (n = 184), we found RASGRF2-int 3.6 times (34 versus 9.5%) more frequently in patients infected during chronic drug abuse compared with controls (P < 0.001). We then tested whether RASGRF2-int could be mechanistically responsible for this association by modulating transcription of RASGRF2 We show that the CRISPR/Cas9-mediated insertion of HK2 in HEK293 cells in the exact RASGRF2 intronic position found in the population resulted in significant transcriptional and phenotypic changes. We also explored mechanistic features of other intronic HK2 integrations and show that HK2 LTRs can be responsible for generation of cis-natural antisense transcripts, which could interfere with the transcription of nearby genes. Our findings suggest that RASGRF2-int is a strong candidate for dopaminergic manipulation, and emphasize the importance of accurate mapping of neglected HERV polymorphisms in human genomic studies.
Collapse
|
34
|
Attig J, Agostini F, Gooding C, Chakrabarti AM, Singh A, Haberman N, Zagalak JA, Emmett W, Smith CWJ, Luscombe NM, Ule J. Heteromeric RNP Assembly at LINEs Controls Lineage-Specific RNA Processing. Cell 2018; 174:1067-1081.e17. [PMID: 30078707 PMCID: PMC6108849 DOI: 10.1016/j.cell.2018.07.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 04/23/2018] [Accepted: 07/01/2018] [Indexed: 12/30/2022]
Abstract
Long mammalian introns make it challenging for the RNA processing machinery to identify exons accurately. We find that LINE-derived sequences (LINEs) contribute to this selection by recruiting dozens of RNA-binding proteins (RBPs) to introns. This includes MATR3, which promotes binding of PTBP1 to multivalent binding sites within LINEs. Both RBPs repress splicing and 3' end processing within and around LINEs. Notably, repressive RBPs preferentially bind to evolutionarily young LINEs, which are located far from exons. These RBPs insulate the LINEs and the surrounding intronic regions from RNA processing. Upon evolutionary divergence, changes in RNA motifs within LINEs lead to gradual loss of their insulation. Hence, older LINEs are located closer to exons, are a common source of tissue-specific exons, and increasingly bind to RBPs that enhance RNA processing. Thus, LINEs are hubs for the assembly of repressive RBPs and also contribute to the evolution of new, lineage-specific transcripts in mammals. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Jan Attig
- The Francis Crick Institute, Midland Road 1, Kings Cross, London NW1 1AT, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | - Federico Agostini
- The Francis Crick Institute, Midland Road 1, Kings Cross, London NW1 1AT, UK
| | - Clare Gooding
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Anob M Chakrabarti
- The Francis Crick Institute, Midland Road 1, Kings Cross, London NW1 1AT, UK; Department of Genetics, Environment and Evolution, UCL Genetics Institute, Gower Street, London WC1E 6BT, UK
| | - Aarti Singh
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Nejc Haberman
- The Francis Crick Institute, Midland Road 1, Kings Cross, London NW1 1AT, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Julian A Zagalak
- The Francis Crick Institute, Midland Road 1, Kings Cross, London NW1 1AT, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Warren Emmett
- The Francis Crick Institute, Midland Road 1, Kings Cross, London NW1 1AT, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Genetics, Environment and Evolution, UCL Genetics Institute, Gower Street, London WC1E 6BT, UK
| | - Christopher W J Smith
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, Midland Road 1, Kings Cross, London NW1 1AT, UK; Department of Genetics, Environment and Evolution, UCL Genetics Institute, Gower Street, London WC1E 6BT, UK; Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Jernej Ule
- The Francis Crick Institute, Midland Road 1, Kings Cross, London NW1 1AT, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
35
|
Platt RN, Vandewege MW, Ray DA. Mammalian transposable elements and their impacts on genome evolution. Chromosome Res 2018; 26:25-43. [PMID: 29392473 PMCID: PMC5857283 DOI: 10.1007/s10577-017-9570-z] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/12/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022]
Abstract
Transposable elements (TEs) are genetic elements with the ability to mobilize and replicate themselves in a genome. Mammalian genomes are dominated by TEs, which can reach copy numbers in the hundreds of thousands. As a result, TEs have had significant impacts on mammalian evolution. Here we summarize the current understanding of TE content in mammal genomes and find that, with a few exceptions, most fall within a predictable range of observations. First, one third to one half of the genome is derived from TEs. Second, most mammalian genomes are dominated by LINE and SINE retrotransposons, more limited LTR retrotransposons, and minimal DNA transposon accumulation. Third, most mammal genome contains at least one family of actively accumulating retrotransposon. Finally, horizontal transfer of TEs among lineages is rare. TE exaptation events are being recognized with increasing frequency. Despite these beneficial aspects of TE content and activity, the majority of TE insertions are neutral or deleterious. To limit the deleterious effects of TE proliferation, the genome has evolved several defense mechanisms that act at the epigenetic, transcriptional, and post-transcriptional levels. The interaction between TEs and these defense mechanisms has led to an evolutionary arms race where TEs are suppressed, evolve to escape suppression, then are suppressed again as the defense mechanisms undergo compensatory change. The result is complex and constantly evolving interactions between TEs and host genomes.
Collapse
Affiliation(s)
- Roy N Platt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
| | | | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
36
|
Liu WH, Tsai ZTY, Tsai HK. Comparative genomic analyses highlight the contribution of pseudogenized protein-coding genes to human lincRNAs. BMC Genomics 2017; 18:786. [PMID: 29037146 PMCID: PMC5644071 DOI: 10.1186/s12864-017-4156-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/02/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The regulatory roles of long intergenic noncoding RNAs (lincRNAs) in humans have been revealed through the use of advanced sequencing technology. Recently, three possible scenarios of lincRNA origins have been proposed: de novo origination from intergenic regions, duplication from other long noncoding RNAs, and pseudogenization from protein-coding genes. The first two scenarios are largely studied and supported, yet few studies focused on the evolution from pseudogenized protein-coding sequence to lincRNA. Due to the non-mutually exclusive nature of these three scenarios and the need of systematic investigation of lincRNA origination, we conducted a comparative genomics study to investigate the evolution of human lincRNAs. RESULTS Combining with syntenic analysis and stringent Blastn e-value cutoff, we found that the majority of lincRNAs are aligned to intergenic regions of other species. Interestingly, 193 human lincRNAs could have protein-coding orthologs in at least two of nine vertebrates. Transposable elements in these conserved regions in human genome are much less than expectation. Moreover, 19% of these lincRNAs have overlaps with or are close to pseudogenes in the human genome. CONCLUSIONS We suggest that a notable portion of lincRNAs could be derived from pseudogenized protein-coding genes. Furthermore, based on our computational analysis, we hypothesize that a subset of these lincRNAs could have potential to regulate their paralogs by functioning as competing endogenous RNAs. Our results provide evolutionary evidence of the relationship between human lincRNAs and protein-coding genes.
Collapse
Affiliation(s)
- Wan-Hsin Liu
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Zing Tsung-Yeh Tsai
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan.,Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
37
|
Abstract
Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs) are the largest family of transcriptional regulators in higher vertebrates. Characterized by an N-terminal KRAB domain and a C-terminal array of DNA-binding zinc fingers, they participate, together with their co-factor KAP1 (also known as TRIM28), in repression of sequences derived from transposable elements (TEs). Until recently, KRAB-ZFP/KAP1-mediated repression of TEs was thought to lead to irreversible silencing, and the evolutionary selection of KRAB-ZFPs was considered to be just the host component of an arms race against TEs. However, recent advances indicate that KRAB-ZFPs and their TE targets also partner up to establish species-specific regulatory networks. Here, we provide an overview of the KRAB-ZFP gene family, highlighting how its evolutionary history is linked to that of TEs, and how KRAB-ZFPs influence multiple aspects of development and physiology.
Collapse
Affiliation(s)
- Gabriela Ecco
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station19, 1015 Lausanne, Switzerland
| | - Michael Imbeault
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station19, 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station19, 1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Linker SB, Marchetto MC, Narvaiza I, Denli AM, Gage FH. Examining non-LTR retrotransposons in the context of the evolving primate brain. BMC Biol 2017; 15:68. [PMID: 28800766 PMCID: PMC5554003 DOI: 10.1186/s12915-017-0409-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Researchers have long sought to understand the genetic basis of the cognitive differences between primates, with particular focus on the human brain. Although all mutational types have worked in concert with evolutionary forces to generate the current human brain, in this review we will explore the impact of mobile elements, specifically non-LTR retrotransposons. Non-LTR retrotransposons have contributed coding and regulatory sequences to the genome throughout evolution. During primate evolution there have been multiple waves of LINE retrotransposition as well as the birth of new mobile elements such as the SINEs Alu and SVA and we will explore what kinds of impacts these may have had on the evolving human brain.
Collapse
Affiliation(s)
- Sara B Linker
- Salk Institute for Biological Studies, La Jolla, CA, 92037-1002, USA
| | - Maria C Marchetto
- Salk Institute for Biological Studies, La Jolla, CA, 92037-1002, USA
| | - Iñigo Narvaiza
- Salk Institute for Biological Studies, La Jolla, CA, 92037-1002, USA
| | - Ahmet M Denli
- Salk Institute for Biological Studies, La Jolla, CA, 92037-1002, USA
| | - Fred H Gage
- Salk Institute for Biological Studies, La Jolla, CA, 92037-1002, USA.
| |
Collapse
|
39
|
Anwar SL, Wulaningsih W, Lehmann U. Transposable Elements in Human Cancer: Causes and Consequences of Deregulation. Int J Mol Sci 2017; 18:E974. [PMID: 28471386 PMCID: PMC5454887 DOI: 10.3390/ijms18050974] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 01/04/2023] Open
Abstract
Transposable elements (TEs) comprise nearly half of the human genome and play an essential role in the maintenance of genomic stability, chromosomal architecture, and transcriptional regulation. TEs are repetitive sequences consisting of RNA transposons, DNA transposons, and endogenous retroviruses that can invade the human genome with a substantial contribution in human evolution and genomic diversity. TEs are therefore firmly regulated from early embryonic development and during the entire course of human life by epigenetic mechanisms, in particular DNA methylation and histone modifications. The deregulation of TEs has been reported in some developmental diseases, as well as for different types of human cancers. To date, the role of TEs, the mechanisms underlying TE reactivation, and the interplay with DNA methylation in human cancers remain largely unexplained. We reviewed the loss of epigenetic regulation and subsequent genomic instability, chromosomal aberrations, transcriptional deregulation, oncogenic activation, and aberrations of non-coding RNAs as the potential mechanisms underlying TE deregulation in human cancers.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- Division of Surgical Oncology, Department of Surgery Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover 30625, Germany.
- PILAR (Philippine and Indonesian Scholar) Research and Education, 20 Station Road, Cambridge CB1 2JD, UK.
| | - Wahyu Wulaningsih
- PILAR (Philippine and Indonesian Scholar) Research and Education, 20 Station Road, Cambridge CB1 2JD, UK.
- MRC (Medical Research Council) Unit for Lifelong Health and Ageing, University College London, London WC1B 5JU, UK.
- Division of Haematology/Oncology, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Ulrich Lehmann
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover 30625, Germany.
| |
Collapse
|
40
|
Identification of Alternative Variants and Insertion of the Novel Polymorphic AluYl17 in TSEN54 Gene during Primate Evolution. Int J Genomics 2016; 2016:1679574. [PMID: 28083540 PMCID: PMC5204098 DOI: 10.1155/2016/1679574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/30/2016] [Indexed: 11/24/2022] Open
Abstract
TSEN54 encodes a subunit of the tRNA-splicing endonuclease complex, which catalyzes the identification and cleavage of introns from precursor tRNAs. Previously, we identified an AluSx-derived alternative transcript in TSEN54 of cynomolgus monkey. Reverse transcription-polymerase chain reaction (RT-PCR) amplification and TSEN54 sequence analysis of primate and human samples identified five novel alternative transcripts, including the AluSx exonized transcript. Additionally, we performed comparative expression analysis via RT-qPCR in various cynomolgus, rhesus monkey, and human tissues. RT-qPCR amplification revealed differential expression patterns. Furthermore, genomic PCR amplification and sequencing of primate and human DNA samples revealed that AluSx elements were integrated in human and all of the primate samples tested. Intriguingly, in langur genomic DNA, an additional AluY element was inserted into AluSx of intron eight of TSEN54. The new AluY element showed polymorphic insertion. Using standardized nomenclature for Alu repeats, the polymorphic AluY of the langur TSEN54 was designated as being of the AluYl17 subfamily. Our results suggest that integration of the AluSx element in TSEN54 contributed to diversity in transcripts and induced lineage- or species-specific evolutionary events such as alternative splicing and polymorphic insertion during primate evolution.
Collapse
|
41
|
Abascal F, Corvelo A, Cruz F, Villanueva-Cañas JL, Vlasova A, Marcet-Houben M, Martínez-Cruz B, Cheng JY, Prieto P, Quesada V, Quilez J, Li G, García F, Rubio-Camarillo M, Frias L, Ribeca P, Capella-Gutiérrez S, Rodríguez JM, Câmara F, Lowy E, Cozzuto L, Erb I, Tress ML, Rodriguez-Ales JL, Ruiz-Orera J, Reverter F, Casas-Marce M, Soriano L, Arango JR, Derdak S, Galán B, Blanc J, Gut M, Lorente-Galdos B, Andrés-Nieto M, López-Otín C, Valencia A, Gut I, García JL, Guigó R, Murphy WJ, Ruiz-Herrera A, Marques-Bonet T, Roma G, Notredame C, Mailund T, Albà MM, Gabaldón T, Alioto T, Godoy JA. Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx. Genome Biol 2016; 17:251. [PMID: 27964752 PMCID: PMC5155386 DOI: 10.1186/s13059-016-1090-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Genomic studies of endangered species provide insights into their evolution and demographic history, reveal patterns of genomic erosion that might limit their viability, and offer tools for their effective conservation. The Iberian lynx (Lynx pardinus) is the most endangered felid and a unique example of a species on the brink of extinction. RESULTS We generate the first annotated draft of the Iberian lynx genome and carry out genome-based analyses of lynx demography, evolution, and population genetics. We identify a series of severe population bottlenecks in the history of the Iberian lynx that predate its known demographic decline during the 20th century and have greatly impacted its genome evolution. We observe drastically reduced rates of weak-to-strong substitutions associated with GC-biased gene conversion and increased rates of fixation of transposable elements. We also find multiple signatures of genetic erosion in the two remnant Iberian lynx populations, including a high frequency of potentially deleterious variants and substitutions, as well as the lowest genome-wide genetic diversity reported so far in any species. CONCLUSIONS The genomic features observed in the Iberian lynx genome may hamper short- and long-term viability through reduced fitness and adaptive potential. The knowledge and resources developed in this study will boost the research on felid evolution and conservation genomics and will benefit the ongoing conservation and management of this emblematic species.
Collapse
Affiliation(s)
- Federico Abascal
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - André Corvelo
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Department of Integrative Ecology, Doñana Biological Station (EBD), Spanish National Research Council (CSIC), C/ Americo Vespucio, s/n, 41092, Sevilla, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - José L Villanueva-Cañas
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Anna Vlasova
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Marina Marcet-Houben
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Begoña Martínez-Cruz
- Department of Integrative Ecology, Doñana Biological Station (EBD), Spanish National Research Council (CSIC), C/ Americo Vespucio, s/n, 41092, Sevilla, Spain
| | - Jade Yu Cheng
- Bioinformatics Research Centre, Aarhus University, C.F. Møllers Allé 8, 8000, Aarhus, Denmark
| | - Pablo Prieto
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Víctor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Javier Quilez
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003, Barcelona, Spain
| | - Gang Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Francisca García
- Servei de Cultius Cel.lulars (SCC, SCAC), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miriam Rubio-Camarillo
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Leonor Frias
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Paolo Ribeca
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Salvador Capella-Gutiérrez
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - José M Rodríguez
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
- National Bioinformatics Institute (INB), Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Francisco Câmara
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ernesto Lowy
- Bioinformatics Core Facility, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Luca Cozzuto
- Bioinformatics Core Facility, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ionas Erb
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Michael L Tress
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Jose L Rodriguez-Ales
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Jorge Ruiz-Orera
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ferran Reverter
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Mireia Casas-Marce
- Department of Integrative Ecology, Doñana Biological Station (EBD), Spanish National Research Council (CSIC), C/ Americo Vespucio, s/n, 41092, Sevilla, Spain
| | - Laura Soriano
- Department of Integrative Ecology, Doñana Biological Station (EBD), Spanish National Research Council (CSIC), C/ Americo Vespucio, s/n, 41092, Sevilla, Spain
| | - Javier R Arango
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Sophia Derdak
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Beatriz Galán
- Department of Environmental Biology, Center for Biological Research (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Julie Blanc
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Belen Lorente-Galdos
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003, Barcelona, Spain
| | - Marta Andrés-Nieto
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Alfonso Valencia
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
- National Bioinformatics Institute (INB), Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - José L García
- Department of Environmental Biology, Center for Biological Research (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Roderic Guigó
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
- Computational Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Aurora Ruiz-Herrera
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
- Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Tomas Marques-Bonet
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Guglielmo Roma
- Bioinformatics Core Facility, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Cedric Notredame
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, C.F. Møllers Allé 8, 8000, Aarhus, Denmark
| | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - José A Godoy
- Department of Integrative Ecology, Doñana Biological Station (EBD), Spanish National Research Council (CSIC), C/ Americo Vespucio, s/n, 41092, Sevilla, Spain.
| |
Collapse
|
42
|
Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 2016; 18:71-86. [PMID: 27867194 DOI: 10.1038/nrg.2016.139] [Citation(s) in RCA: 827] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transposable elements (TEs) are a prolific source of tightly regulated, biochemically active non-coding elements, such as transcription factor-binding sites and non-coding RNAs. Many recent studies reinvigorate the idea that these elements are pervasively co-opted for the regulation of host genes. We argue that the inherent genetic properties of TEs and the conflicting relationships with their hosts facilitate their recruitment for regulatory functions in diverse genomes. We review recent findings supporting the long-standing hypothesis that the waves of TE invasions endured by organisms for eons have catalysed the evolution of gene-regulatory networks. We also discuss the challenges of dissecting and interpreting the phenotypic effect of regulatory activities encoded by TEs in health and disease.
Collapse
Affiliation(s)
- Edward B Chuong
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84103, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84103, USA
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84103, USA
| |
Collapse
|
43
|
Distribution patterns and impact of transposable elements in genes of green algae. Gene 2016; 594:151-159. [PMID: 27614292 DOI: 10.1016/j.gene.2016.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022]
Abstract
Transposable elements (TEs) are DNA sequences able to transpose in the host genome, a remarkable feature that enables them to influence evolutive trajectories of species. An investigation about the TE distribution and TE impact in different gene regions of the green algae species Chlamydomonas reinhardtii and Volvox carteri was performed. Our results indicate that TEs are very scarce near introns boundaries, suggesting that insertions in this region are negatively selected. This contrasts with previous results showing enrichment of tandem repeats in introns boundaries and suggests that different evolutionary forces are acting in these different classes of repeats. Despite the relatively low abundance of TEs in the genome of green algae when compared to mammals, the proportion of poly(A) sites derived from TEs found in C. reinhardtii was similar to that described in human and mice. This fact, associated with the enrichment of TEs in gene 5' and 3' flanks of C. reinhardtii, opens up the possibility that TEs may have considerably contributed for gene regulatory sequences evolution in this species. Moreover, it was possible identify several instances of TE exonization for C. reinhardtii, with a particularly interesting case from a gene coding for Condensin II, a protein involved in the maintenance of chromosomal structure, where the addition of a transposomal PHD finger may contribute to binding specificity of this protein. Taken together, our results suggest that the low abundance of TEs in green algae genomes is correlated with a strict negative selection process, combined with the retention of copies that contribute positively with gene structures.
Collapse
|
44
|
Campos-Sánchez R, Cremona MA, Pini A, Chiaromonte F, Makova KD. Integration and Fixation Preferences of Human and Mouse Endogenous Retroviruses Uncovered with Functional Data Analysis. PLoS Comput Biol 2016; 12:e1004956. [PMID: 27309962 PMCID: PMC4911145 DOI: 10.1371/journal.pcbi.1004956] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/29/2016] [Indexed: 01/24/2023] Open
Abstract
Endogenous retroviruses (ERVs), the remnants of retroviral infections in the germ line, occupy ~8% and ~10% of the human and mouse genomes, respectively, and affect their structure, evolution, and function. Yet we still have a limited understanding of how the genomic landscape influences integration and fixation of ERVs. Here we conducted a genome-wide study of the most recently active ERVs in the human and mouse genome. We investigated 826 fixed and 1,065 in vitro HERV-Ks in human, and 1,624 fixed and 242 polymorphic ETns, as well as 3,964 fixed and 1,986 polymorphic IAPs, in mouse. We quantitated >40 human and mouse genomic features (e.g., non-B DNA structure, recombination rates, and histone modifications) in ±32 kb of these ERVs' integration sites and in control regions, and analyzed them using Functional Data Analysis (FDA) methodology. In one of the first applications of FDA in genomics, we identified genomic scales and locations at which these features display their influence, and how they work in concert, to provide signals essential for integration and fixation of ERVs. The investigation of ERVs of different evolutionary ages (young in vitro and polymorphic ERVs, older fixed ERVs) allowed us to disentangle integration vs. fixation preferences. As a result of these analyses, we built a comprehensive model explaining the uneven distribution of ERVs along the genome. We found that ERVs integrate in late-replicating AT-rich regions with abundant microsatellites, mirror repeats, and repressive histone marks. Regions favoring fixation are depleted of genes and evolutionarily conserved elements, and have low recombination rates, reflecting the effects of purifying selection and ectopic recombination removing ERVs from the genome. In addition to providing these biological insights, our study demonstrates the power of exploiting multiple scales and localization with FDA. These powerful techniques are expected to be applicable to many other genomic investigations.
Collapse
Affiliation(s)
- Rebeca Campos-Sánchez
- Genetics Graduate Program, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
| | - Marzia A. Cremona
- MOX—Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milano, Italy
- Department of Statistics, Penn State University, University Park, Pennsylvania, United States of America
| | - Alessia Pini
- MOX—Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milano, Italy
| | - Francesca Chiaromonte
- Department of Statistics, Penn State University, University Park, Pennsylvania, United States of America
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
| | - Kateryna D. Makova
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
45
|
Abstract
Over 40% of mammalian genomes comprise the products of reverse transcription. Among such retrotransposed sequences are those characterized by the presence of long terminal repeats (LTRs), including the endogenous retroviruses (ERVs), which are inherited genetic elements closely resembling the proviruses formed following exogenous retrovirus infection. Sequences derived from ERVs make up at least 8 to 10% of the human and mouse genomes and range from ancient sequences that predate mammalian divergence to elements that are currently still active. In this chapter we describe the discovery, classification and origins of ERVs in mammals and consider cellular mechanisms that have evolved to control their expression. We also discuss the negative effects of ERVs as agents of genetic disease and cancer and review examples of ERV protein domestication to serve host functions, as in placental development. Finally, we address growing evidence that the gene regulatory potential of ERV LTRs has been exploited multiple times during evolution to regulate genes and gene networks. Thus, although recently endogenized retroviral elements are often pathogenic, those that survive the forces of negative selection become neutral components of the host genome or can be harnessed to serve beneficial roles.
Collapse
|
46
|
Salem MSZ. Pathogenetics. An introductory review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2015.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
47
|
Dhivya S, Premkumar K. Nomadic genetic elements contribute to oncogenic translocations: Implications in carcinogenesis. Crit Rev Oncol Hematol 2015; 98:81-93. [PMID: 26548742 DOI: 10.1016/j.critrevonc.2015.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022] Open
Abstract
Chromosomal translocations as molecular signatures have been reported in various malignancies but, the mechanism behind which is largely unknown. Swapping of chromosomal fragments occurs by induction of double strand breaks (DSBs), most of which were initially assumed de novo. However, decoding of human genome proved that transposable elements (TE) might have profound influence on genome integrity. TEs are highly conserved mobile genetic elements that generate DSBs, subsequently resulting in large chromosomal rearrangements. Previously TE insertions were thought to be harmless, but recently gains attention due to the origin of spectrum of post-insertional genomic alterations and subsequent transcriptional alterations leading to development of deleterious effects mainly carcinogenesis. Though the existing knowledge on the cancer-associated TE dynamics is very primitive, exploration of underlying mechanism promises better therapeutic strategies for cancer. Thus, this review focuses on the prevalence of TE in the genome, associated genomic instability upon transposition activation and impact on tumorigenesis.
Collapse
Affiliation(s)
- Sridaran Dhivya
- Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Kumpati Premkumar
- Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
48
|
Fu A, Jacobs DI, Zhu Y. Epigenome-wide analysis of piRNAs in gene-specific DNA methylation. RNA Biol 2015; 11:1301-12. [PMID: 25590657 DOI: 10.1080/15476286.2014.996091] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) have long been associated with the silencing of transposable elements (TEs). However, over 20,000 unique species of piRNAs mapped to the human genome are more than the relatively few presumably required to regulate the known human transposon classes. Here, we present the results of the first genome-wide effort to study the effects of piRNAs on gene specific DNA methylation. We found that exon-derived piRNAs consist almost universally of species with 10 or fewer genomic copies, whereas piRNAs existing in high copies originate predominately from intronic and intergenic regions. Genome-wide methylation profiling following transfection of human somatic cells with piRNA mimics revealed methylation changes at numerous genic loci in single copy piRNA-transfected cells. Moreover, genomic regions directly adjacent to differentially methylated CpG sites were enriched for sequence matches to the transfected piRNAs. These findings suggest that a subset of single copy piRNAs may be able to induce DNA methylation at non-TE genic loci, a process that may be mediated in part by direct binding to either genomic DNA or nascent mRNA near target CpG sites.
Collapse
Affiliation(s)
- Alan Fu
- a Yale University School of Public Health ; New Haven , CT USA
| | | | | |
Collapse
|
49
|
Nxf1 natural variant E610G is a semi-dominant suppressor of IAP-induced RNA processing defects. PLoS Genet 2015; 11:e1005123. [PMID: 25835743 PMCID: PMC4383553 DOI: 10.1371/journal.pgen.1005123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/03/2015] [Indexed: 12/13/2022] Open
Abstract
Endogenous retroviruses and retrotransposons contribute functional genetic variation in animal genomes. In mice, Intracisternal A Particles (IAPs) are a frequent source of both new mutations and polymorphism across laboratory strains. Intronic IAPs can induce alternative RNA processing choices, including alternative splicing. We previously showed IAP I∆1 subfamily insertional mutations are suppressed by a wild-derived allele of the major mRNA export factor, Nxf1. Here we show that a wider diversity of IAP insertions present in the mouse reference sequence induce insertion-dependent alternative processing that is suppressed by Nxf1CAST alleles. These insertions typically show more modest gene expression changes than de novo mutations, suggesting selection or attenuation. Genome-wide splicing-sensitive microarrays and gene-focused assays confirm specificity of Nxf1 genetic modifier activity for IAP insertion alleles. Strikingly, CRISPR/Cas9-mediated genome editing demonstrates that a single amino acid substitution in Nxf1, E610G, is sufficient to recreate a quantitative genetic modifier in a co-isogenic background.
Collapse
|
50
|
Formal genetic maps. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2015. [DOI: 10.1016/j.ejmhg.2014.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|