1
|
Hyrien O, Guilbaud G, Krude T. The double life of mammalian DNA replication origins. Genes Dev 2025; 39:304-324. [PMID: 39904559 PMCID: PMC11874978 DOI: 10.1101/gad.352227.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Mammalian DNA replication origins have been historically difficult to identify and their determinants are still unresolved. Here, we first review methods developed over the last decades to map replication initiation sites either directly via initiation intermediates or indirectly via determining replication fork directionality profiles. We also discuss the factors that may specify these sites as replication initiation sites. Second, we address the controversy that has emerged from these results over whether origins are narrowly defined and localized to specific sites or are more dispersed and organized into broad zones. Ample evidence in favor of both scenarios currently creates an impression of unresolved confusion in the field. We attempt to formulate a synthesis of both models and to reconcile discrepant findings. It is evident that not only one approach is sufficient in isolation but that the combination of several is instrumental toward understanding initiation sites in mammalian genomes. We argue that an aggregation of several individual and often inefficient initiation sites into larger initiation zones and the existence of efficient unidirectional initiation sites and fork stalling at the borders of initiation zones can reconcile the different observations.
Collapse
Affiliation(s)
- Olivier Hyrien
- Département de Biologie, École Normale Supérieure, Université Paris Science and Letters, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Biologie de l'Ecole Normale Superieure, 75005 Paris, France
| | - Guillaume Guilbaud
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| |
Collapse
|
2
|
Genome-wide measurement of DNA replication fork directionality and quantification of DNA replication initiation and termination with Okazaki fragment sequencing. Nat Protoc 2023; 18:1260-1295. [PMID: 36653528 DOI: 10.1038/s41596-022-00793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/09/2022] [Indexed: 01/19/2023]
Abstract
Studying the dynamics of genome replication in mammalian cells has been historically challenging. To reveal the location of replication initiation and termination in the human genome, we developed Okazaki fragment sequencing (OK-seq), a quantitative approach based on the isolation and strand-specific sequencing of Okazaki fragments, the lagging strand replication intermediates. OK-seq quantitates the proportion of leftward- and rightward-oriented forks at every genomic locus and reveals the location and efficiency of replication initiation and termination events. Here we provide the detailed experimental procedures for performing OK-seq in unperturbed cultured human cells and budding yeast and the bioinformatics pipelines for data processing and computation of replication fork directionality. Furthermore, we present the analytical approach based on a hidden Markov model, which allows automated detection of ascending, descending and flat replication fork directionality segments revealing the zones of replication initiation, termination and unidirectional fork movement across the entire genome. These tools are essential for the accurate interpretation of human and yeast replication programs. The experiments and the data processing can be accomplished within six days. Besides revealing the genome replication program in fine detail, OK-seq has been instrumental in numerous studies unravelling mechanisms of genome stability, epigenome maintenance and genome evolution.
Collapse
|
3
|
Guilbaud G, Murat P, Wilkes HS, Lerner LK, Sale JE, Krude T. Determination of human DNA replication origin position and efficiency reveals principles of initiation zone organisation. Nucleic Acids Res 2022; 50:7436-7450. [PMID: 35801867 PMCID: PMC9303276 DOI: 10.1093/nar/gkac555] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/16/2022] Open
Abstract
Replication of the human genome initiates within broad zones of ∼150 kb. The extent to which firing of individual DNA replication origins within initiation zones is spatially stochastic or localised at defined sites remains a matter of debate. A thorough characterisation of the dynamic activation of origins within initiation zones is hampered by the lack of a high-resolution map of both their position and efficiency. To address this shortcoming, we describe a modification of initiation site sequencing (ini-seq), based on density substitution. Newly replicated DNA is rendered 'heavy-light' (HL) by incorporation of BrdUTP while unreplicated DNA remains 'light-light' (LL). Replicated HL-DNA is separated from unreplicated LL-DNA by equilibrium density gradient centrifugation, then both fractions are subjected to massive parallel sequencing. This allows precise mapping of 23,905 replication origins simultaneously with an assignment of a replication initiation efficiency score to each. We show that origin firing within early initiation zones is not randomly distributed. Rather, origins are arranged hierarchically with a set of very highly efficient origins marking zone boundaries. We propose that these origins explain much of the early firing activity arising within initiation zones, helping to unify the concept of replication initiation zones with the identification of discrete replication origin sites.
Collapse
Affiliation(s)
- Guillaume Guilbaud
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Pierre Murat
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Helen S Wilkes
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Leticia Koch Lerner
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Julian E Sale
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
4
|
Theulot B, Lacroix L, Arbona JM, Millot GA, Jean E, Cruaud C, Pellet J, Proux F, Hennion M, Engelen S, Lemainque A, Audit B, Hyrien O, Le Tallec B. Genome-wide mapping of individual replication fork velocities using nanopore sequencing. Nat Commun 2022; 13:3295. [PMID: 35676270 PMCID: PMC9177527 DOI: 10.1038/s41467-022-31012-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
Little is known about replication fork velocity variations along eukaryotic genomes, since reference techniques to determine fork speed either provide no sequence information or suffer from low throughput. Here we present NanoForkSpeed, a nanopore sequencing-based method to map and extract the velocity of individual forks detected as tracks of the thymidine analogue bromodeoxyuridine incorporated during a brief pulse-labelling of asynchronously growing cells. NanoForkSpeed retrieves previous Saccharomyces cerevisiae mean fork speed estimates (≈2 kb/min) in the BT1 strain exhibiting highly efficient bromodeoxyuridine incorporation and wild-type growth, and precisely quantifies speed changes in cells with altered replisome progression or exposed to hydroxyurea. The positioning of >125,000 fork velocities provides a genome-wide map of fork progression based on individual fork rates, showing a uniform fork speed across yeast chromosomes except for a marked slowdown at known pausing sites.
Collapse
Affiliation(s)
- Bertrand Theulot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, F-75005, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Laurent Lacroix
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, F-75005, Paris, France.
| | - Jean-Michel Arbona
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, INSERM, U1293, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364, Lyon, France
| | - Gael A Millot
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Etienne Jean
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, F-75005, Paris, France
| | - Corinne Cruaud
- Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Jade Pellet
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, F-75005, Paris, France
| | - Florence Proux
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, F-75005, Paris, France
| | - Magali Hennion
- Université Paris Cité, Epigenetics and Cell Fate, UMR7216, CNRS, Paris, 75013, France
| | - Stefan Engelen
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Arnaud Lemainque
- Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Benjamin Audit
- ENSL, CNRS, Laboratoire de physique, F-69342, Lyon, France
| | - Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, F-75005, Paris, France.
| | - Benoît Le Tallec
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, F-75005, Paris, France.
| |
Collapse
|
5
|
Organization of DNA Replication Origin Firing in Xenopus Egg Extracts: The Role of Intra-S Checkpoint. Genes (Basel) 2021; 12:genes12081224. [PMID: 34440398 PMCID: PMC8394201 DOI: 10.3390/genes12081224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
During cell division, the duplication of the genome starts at multiple positions called replication origins. Origin firing requires the interaction of rate-limiting factors with potential origins during the S(ynthesis)-phase of the cell cycle. Origins fire as synchronous clusters which is proposed to be regulated by the intra-S checkpoint. By modelling the unchallenged, the checkpoint-inhibited and the checkpoint protein Chk1 over-expressed replication pattern of single DNA molecules from Xenopus sperm chromatin replicated in egg extracts, we demonstrate that the quantitative modelling of data requires: (1) a segmentation of the genome into regions of low and high probability of origin firing; (2) that regions with high probability of origin firing escape intra-S checkpoint regulation and (3) the variability of the rate of DNA synthesis close to replication forks is a necessary ingredient that should be taken in to account in order to describe the dynamic of replication origin firing. This model implies that the observed origin clustering emerges from the apparent synchrony of origin firing in regions with high probability of origin firing and challenge the assumption that the intra-S checkpoint is the main regulator of origin clustering.
Collapse
|
6
|
Kirstein N, Buschle A, Wu X, Krebs S, Blum H, Kremmer E, Vorberg IM, Hammerschmidt W, Lacroix L, Hyrien O, Audit B, Schepers A. Human ORC/MCM density is low in active genes and correlates with replication time but does not delimit initiation zones. eLife 2021; 10:62161. [PMID: 33683199 PMCID: PMC7993996 DOI: 10.7554/elife.62161] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic DNA replication initiates during S phase from origins that have been licensed in the preceding G1 phase. Here, we compare ChIP-seq profiles of the licensing factors Orc2, Orc3, Mcm3, and Mcm7 with gene expression, replication timing, and fork directionality profiles obtained by RNA-seq, Repli-seq, and OK-seq. Both, the origin recognition complex (ORC) and the minichromosome maintenance complex (MCM) are significantly and homogeneously depleted from transcribed genes, enriched at gene promoters, and more abundant in early- than in late-replicating domains. Surprisingly, after controlling these variables, no difference in ORC/MCM density is detected between initiation zones, termination zones, unidirectionally replicating regions, and randomly replicating regions. Therefore, ORC/MCM density correlates with replication timing but does not solely regulate the probability of replication initiation. Interestingly, H4K20me3, a histone modification proposed to facilitate late origin licensing, was enriched in late-replicating initiation zones and gene deserts of stochastic replication fork direction. We discuss potential mechanisms specifying when and where replication initiates in human cells.
Collapse
Affiliation(s)
- Nina Kirstein
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Munich, Germany
| | - Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Xia Wu
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians Universität (LMU) München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians Universität (LMU) München, Munich, Germany
| | - Elisabeth Kremmer
- Institute for Molecular Immunology, Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Ina M Vorberg
- German Center for Neurodegenerative Diseases (DZNE e.V.), Bonn, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Laurent Lacroix
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Olivier Hyrien
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Benjamin Audit
- Univ Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, 69342 Lyon, France
| | - Aloys Schepers
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Munich, Germany
| |
Collapse
|
7
|
Damasceno JD, Marques CA, Beraldi D, Crouch K, Lapsley C, Obonaga R, Tosi LR, McCulloch R. Genome duplication in Leishmania major relies on persistent subtelomeric DNA replication. eLife 2020; 9:58030. [PMID: 32897188 PMCID: PMC7511235 DOI: 10.7554/elife.58030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
DNA replication is needed to duplicate a cell’s genome in S phase and segregate it during cell division. Previous work in Leishmania detected DNA replication initiation at just a single region in each chromosome, an organisation predicted to be insufficient for complete genome duplication within S phase. Here, we show that acetylated histone H3 (AcH3), base J and a kinetochore factor co-localise in each chromosome at only a single locus, which corresponds with previously mapped DNA replication initiation regions and is demarcated by localised G/T skew and G4 patterns. In addition, we describe previously undetected subtelomeric DNA replication in G2/M and G1-phase-enriched cells. Finally, we show that subtelomeric DNA replication, unlike chromosome-internal DNA replication, is sensitive to hydroxyurea and dependent on 9-1-1 activity. These findings indicate that Leishmania’s genome duplication programme employs subtelomeric DNA replication initiation, possibly extending beyond S phase, to support predominantly chromosome-internal DNA replication initiation within S phase.
Collapse
Affiliation(s)
- Jeziel Dener Damasceno
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Catarina A Marques
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Dario Beraldi
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Ricardo Obonaga
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Ro Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| |
Collapse
|
8
|
Wu X, Kabalane H, Kahli M, Petryk N, Laperrousaz B, Jaszczyszyn Y, Drillon G, Nicolini FE, Perot G, Robert A, Fund C, Chibon F, Xia R, Wiels J, Argoul F, Maguer-Satta V, Arneodo A, Audit B, Hyrien O. Developmental and cancer-associated plasticity of DNA replication preferentially targets GC-poor, lowly expressed and late-replicating regions. Nucleic Acids Res 2019; 46:10157-10172. [PMID: 30189101 PMCID: PMC6212843 DOI: 10.1093/nar/gky797] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023] Open
Abstract
The spatiotemporal program of metazoan DNA replication is regulated during development and altered in cancers. We have generated novel OK-seq, Repli-seq and RNA-seq data to compare the DNA replication and gene expression programs of twelve cancer and non-cancer human cell types. Changes in replication fork directionality (RFD) determined by OK-seq are widespread but more frequent within GC-poor isochores and largely disconnected from transcription changes. Cancer cell RFD profiles cluster with non-cancer cells of similar developmental origin but not with different cancer types. Importantly, recurrent RFD changes are detected in specific tumour progression pathways. Using a model for establishment and early progression of chronic myeloid leukemia (CML), we identify 1027 replication initiation zones (IZs) that progressively change efficiency during long-term expression of the BCR-ABL1 oncogene, being twice more often downregulated than upregulated. Prolonged expression of BCR-ABL1 results in targeting of new IZs and accentuation of previous efficiency changes. Targeted IZs are predominantly located in GC-poor, late replicating gene deserts and frequently silenced in late CML. Prolonged expression of BCR-ABL1 results in massive deletion of GC-poor, late replicating DNA sequences enriched in origin silencing events. We conclude that BCR-ABL1 expression progressively affects replication and stability of GC-poor, late-replicating regions during CML progression.
Collapse
Affiliation(s)
- Xia Wu
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France.,Physics Department, East China Normal University, Shanghai, China
| | - Hadi Kabalane
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Malik Kahli
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Nataliya Petryk
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Bastien Laperrousaz
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France.,CNRS UMR5286, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F- 69008 Lyon, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Guenola Drillon
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Frank-Emmanuel Nicolini
- CNRS UMR5286, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F- 69008 Lyon, France.,Centre Léon Bérard, F-69008 Lyon, France
| | - Gaëlle Perot
- INSERM U1218, Institut Bergonié, F-33000 Bordeaux, France
| | - Aude Robert
- UMR 8126, Université Paris-Sud Paris-Saclay, CNRS, Institut Gustave Roussy, Villejuif, France
| | - Cédric Fund
- École Normale Supérieure, PSL Research University, CNRS, Inserm, IBENS, Plateforme Génomique, 75005 Paris, France
| | | | - Ruohong Xia
- Physics Department, East China Normal University, Shanghai, China
| | - Joëlle Wiels
- UMR 8126, Université Paris-Sud Paris-Saclay, CNRS, Institut Gustave Roussy, Villejuif, France
| | - Françoise Argoul
- LOMA, Université de Bordeaux, CNRS, UMR 5798, F-33405 Talence, France
| | - Véronique Maguer-Satta
- CNRS UMR5286, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F- 69008 Lyon, France
| | - Alain Arneodo
- LOMA, Université de Bordeaux, CNRS, UMR 5798, F-33405 Talence, France
| | - Benjamin Audit
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Olivier Hyrien
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| |
Collapse
|
9
|
Bazarova A, Nieduszynski CA, Akerman I, Burroughs NJ. Bayesian inference of origin firing time distributions, origin interference and licencing probabilities from Next Generation Sequencing data. Nucleic Acids Res 2019; 47:2229-2243. [PMID: 30859196 PMCID: PMC6412128 DOI: 10.1093/nar/gkz094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/27/2019] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
DNA replication is a stochastic process with replication forks emanating from multiple replication origins. The origins must be licenced in G1, and the replisome activated at licenced origins in order to generate bi-directional replication forks in S-phase. Differential firing times lead to origin interference, where a replication fork from an origin can replicate through and inactivate neighbouring origins (origin obscuring). We developed a Bayesian algorithm to characterize origin firing statistics from Okazaki fragment (OF) sequencing data. Our algorithm infers the distributions of firing times and the licencing probabilities for three consecutive origins. We demonstrate that our algorithm can distinguish partial origin licencing and origin obscuring in OF sequencing data from Saccharomyces cerevisiae and human cell types. We used our method to analyse the decreased origin efficiency under loss of Rat1 activity in S. cerevisiae, demonstrating that both reduced licencing and increased obscuring contribute. Moreover, we show that robust analysis is possible using only local data (across three neighbouring origins), and analysis of the whole chromosome is not required. Our algorithm utilizes an approximate likelihood and a reversible jump sampling technique, a methodology that can be extended to analysis of other mechanistic processes measurable through Next Generation Sequencing data.
Collapse
Affiliation(s)
- Alina Bazarova
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Ildem Akerman
- Institute of Metabolism and Systems Research, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Nigel J Burroughs
- Mathematics Institute and Zeeman Institute (SBIDER), University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
10
|
Seplyarskiy VB, Akkuratov EE, Akkuratova N, Andrianova MA, Nikolaev SI, Bazykin GA, Adameyko I, Sunyaev SR. Error-prone bypass of DNA lesions during lagging-strand replication is a common source of germline and cancer mutations. Nat Genet 2019; 51:36-41. [PMID: 30510240 PMCID: PMC6317876 DOI: 10.1038/s41588-018-0285-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
Studies in experimental systems have identified a multitude of mutational mechanisms including DNA replication infidelity and DNA damage followed by inefficient repair or replicative bypass. However, the relative contributions of these mechanisms to human germline mutation remain unknown. Here, we show that error-prone damage bypass on the lagging strand plays a major role in human mutagenesis. Transcription-coupled DNA repair removes lesions on the transcribed strand; lesions on the non-transcribed strand are preferentially converted into mutations. In human polymorphism we detect a striking similarity between mutation types predominant on the non-transcribed strand and on the strand lagging during replication. Moreover, damage-induced mutations in cancers accumulate asymmetrically with respect to the direction of replication, suggesting that DNA lesions are resolved asymmetrically. We experimentally demonstrate that replication delay greatly attenuates the mutagenic effect of ultraviolet irradiation, confirming that replication converts DNA damage into mutations. We estimate that at least 10% of human mutations arise due to DNA damage.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Evgeny E Akkuratov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Natalia Akkuratova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Sergey I Nikolaev
- Inserm U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Department of Dermatology and Venereology, Université Paris 7, St. Louis Hospital, Paris, France
| | - Georgii A Bazykin
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Shamil R Sunyaev
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Petryk N, Dalby M, Wenger A, Stromme CB, Strandsby A, Andersson R, Groth A. MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 2018; 361:1389-1392. [PMID: 30115746 DOI: 10.1126/science.aau0294] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022]
Abstract
During genome replication, parental histones are recycled to newly replicated DNA with their posttranslational modifications (PTMs). Whether sister chromatids inherit modified histones evenly remains unknown. We measured histone PTM partition to sister chromatids in embryonic stem cells. We found that parental histones H3-H4 segregate to both daughter DNA strands with a weak leading-strand bias, skewing partition at topologically associating domain (TAD) borders and enhancers proximal to replication initiation zones. Segregation of parental histones to the leading strand increased markedly in cells with histone-binding mutations in MCM2, part of the replicative helicase, exacerbating histone PTM sister chromatid asymmetry. This work reveals how histones are inherited to sister chromatids and identifies a mechanism by which the replication machinery ensures symmetric cell division.
Collapse
Affiliation(s)
- Nataliya Petryk
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maria Dalby
- The Bioinformatics Centre, Department of Biology, Faculty of Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alice Wenger
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Caroline B Stromme
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anne Strandsby
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Robin Andersson
- The Bioinformatics Centre, Department of Biology, Faculty of Science, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark. .,Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
12
|
Arbona JM, Goldar A, Hyrien O, Arneodo A, Audit B. The eukaryotic bell-shaped temporal rate of DNA replication origin firing emanates from a balance between origin activation and passivation. eLife 2018; 7:35192. [PMID: 29856315 PMCID: PMC6033540 DOI: 10.7554/elife.35192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/31/2018] [Indexed: 01/22/2023] Open
Abstract
The time-dependent rate I(t) of origin firing per length of unreplicated DNA presents a universal bell shape in eukaryotes that has been interpreted as the result of a complex time-evolving interaction between origins and limiting firing factors. Here, we show that a normal diffusion of replication fork components towards localized potential replication origins (p-oris) can more simply account for the I(t) universal bell shape, as a consequence of a competition between the origin firing time and the time needed to replicate DNA separating two neighboring p-oris. We predict the I(t) maximal value to be the product of the replication fork speed with the squared p-ori density. We show that this relation is robustly observed in simulations and in experimental data for several eukaryotes. Our work underlines that fork-component recycling and potential origins localization are sufficient spatial ingredients to explain the universality of DNA replication kinetics. Before a cell can divide, it must duplicate its DNA. In eukaryotes – organisms such as animals and fungi, which store their DNA in the cell’s nucleus – DNA replication starts at specific sites in the genome called replication origins. At each origin sits a protein complex that will activate when it randomly captures an activating protein that diffuses within the nucleus. Once a replication origin activates or “fires”, the complex then splits into two new complexes that move away from each other as they duplicate the DNA. If an active complex collides with an inactive one at another origin, the latter is inactivated – a phenomenon known as origin passivation. When two active complexes meet, they release the activating proteins, which diffuse away and eventually activate other origins in unreplicated DNA. The number of origins that activate each minute divided by the length of unreplicated DNA is referred to as the “rate of origin firing”. In all eukaryotes, this rate – also known as I(t) – follows the same pattern. First, it increases until more than half of the DNA is duplicated. Then it decreases until everything is duplicated. This means that, if plotted out, the graph of origin firing rate would always be a bell-shaped curve, even for organisms with genomes of different sizes that have different numbers of origins. The reason for this universal shape remained unclear. Scientists had tried to create numerical simulations that model the rate of origin firing. However, for these simulations to reproduce the bell-shape curve, a number of untested assumptions had to be made about how DNA replication takes place. In addition, these models ignored the fact that it takes time to replicate the DNA between origins. To take this time into account, Arbona et al. instead decided to model the replication origins as discrete and distinct entities. This way of building the mathematical model succeeded in reproducing the universal bell curve shape without additional assumptions. With this simulation, the balance between origin activation and passivation is enough to achieve the observed pattern. The new model also predicts that the maximum rate of origin firing is determined by the speed of DNA replication and the density of origins in the genome. Arbona et al. verified this prediction in yeast, fly, frog and human cells – organisms with different sized genomes that take between 20 minutes and 8 hours to replicate their DNA. Lastly, the prediction also held true in yeast treated with hydroxyurea, an anticancer drug that slows DNA replication. A better understanding of DNA replication can help scientists to understand how this process is perturbed in cancers and how drugs that target DNA replication can treat these diseases. Future work will explore how the 3D organization of the genome affects the diffusion of activating proteins within the cell nucleus.
Collapse
Affiliation(s)
- Jean-Michel Arbona
- Laboratoire de Physique, Université de Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | | | - Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Alain Arneodo
- LOMA, Univ de Bordeaux, CNRS, UMR 5798, Talence, France
| | - Benjamin Audit
- Laboratoire de Physique, Université de Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| |
Collapse
|
13
|
Michieletto D, Orlandini E, Marenduzzo D. Epigenetic Transitions and Knotted Solitons in Stretched Chromatin. Sci Rep 2017; 7:14642. [PMID: 29116102 PMCID: PMC5676697 DOI: 10.1038/s41598-017-13916-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/29/2017] [Indexed: 11/29/2022] Open
Abstract
The spreading and regulation of epigenetic marks on chromosomes is crucial to establish and maintain cellular identity. Nonetheless, the dynamic mechanism leading to the establishment and maintenance of tissue-specific, epigenetic pattern is still poorly understood. In this work we propose, and investigate in silico, a possible experimental strategy to illuminate the interplay between 3D chromatin structure and epigenetic dynamics. We consider a set-up where a reconstituted chromatin fibre is stretched at its two ends (e.g., by laser tweezers), while epigenetic enzymes (writers) and chromatin-binding proteins (readers) are flooded into the system. We show that, by tuning the stretching force and the binding affinity of the readers for chromatin, the fibre undergoes a sharp transition between a stretched, epigenetically disordered, state and a crumpled, epigenetically coherent, one. We further investigate the case in which a knot is tied along the chromatin fibre, and find that the knotted segment enhances local epigenetic order, giving rise to "epigenetic solitons" which travel and diffuse along chromatin. Our results point to an intriguing coupling between 3D chromatin topology and epigenetic dynamics, which may be investigated via single molecule experiments.
Collapse
Affiliation(s)
- D Michieletto
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - E Orlandini
- Dipartimento di Fisica e Astronomia and Sezione INFN, Universitá di Padova, Via Marzolo 8, Padova, 35131, Italy
| | - D Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| |
Collapse
|
14
|
Andrianova MA, Bazykin GA, Nikolaev SI, Seplyarskiy VB. Human mismatch repair system balances mutation rates between strands by removing more mismatches from the lagging strand. Genome Res 2017; 27:1336-1343. [PMID: 28512192 PMCID: PMC5538550 DOI: 10.1101/gr.219915.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/09/2017] [Indexed: 12/13/2022]
Abstract
Mismatch repair (MMR) is one of the main systems maintaining fidelity of replication. Differences in correction of errors produced during replication of the leading and the lagging DNA strands were reported in yeast and in human cancers, but the causes of these differences remain unclear. Here, we analyze data on human cancers with somatic mutations in two of the major DNA polymerases, delta and epsilon, that replicate the genome. We show that these cancers demonstrate a substantial asymmetry of the mutations between the leading and the lagging strands. The direction of this asymmetry is the opposite between cancers with mutated polymerases delta and epsilon, consistent with the role of these polymerases in replication of the lagging and the leading strands in human cells, respectively. Moreover, the direction of strand asymmetry observed in cancers with mutated polymerase delta is similar to that observed in MMR-deficient cancers. Together, these data indicate that polymerase delta (possibly together with polymerase alpha) contributes more mismatches during replication than its leading-strand counterpart, polymerase epsilon; that most of these mismatches are repaired by the MMR system; and that MMR repairs about three times more mismatches produced in cells during lagging strand replication compared with the leading strand.
Collapse
Affiliation(s)
- Maria A Andrianova
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Lomonosov Moscow State University, Moscow 119234, Russia
| | - Georgii A Bazykin
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Skolkovo Institute of Science and Technology, Skolkovo 143026, Russia
| | - Sergey I Nikolaev
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, 1211 Geneva, Switzerland
| | - Vladimir B Seplyarskiy
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Boulos RE, Tremblay N, Arneodo A, Borgnat P, Audit B. Multi-scale structural community organisation of the human genome. BMC Bioinformatics 2017; 18:209. [PMID: 28399820 PMCID: PMC5387268 DOI: 10.1186/s12859-017-1616-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/28/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Structural interaction frequency matrices between all genome loci are now experimentally achievable thanks to high-throughput chromosome conformation capture technologies. This ensues a new methodological challenge for computational biology which consists in objectively extracting from these data the structural motifs characteristic of genome organisation. RESULTS We deployed the fast multi-scale community mining algorithm based on spectral graph wavelets to characterise the networks of intra-chromosomal interactions in human cell lines. We observed that there exist structural domains of all sizes up to chromosome length and demonstrated that the set of structural communities forms a hierarchy of chromosome segments. Hence, at all scales, chromosome folding predominantly involves interactions between neighbouring sites rather than the formation of links between distant loci. CONCLUSIONS Multi-scale structural decomposition of human chromosomes provides an original framework to question structural organisation and its relationship to functional regulation across the scales. By construction the proposed methodology is independent of the precise assembly of the reference genome and is thus directly applicable to genomes whose assembly is not fully determined.
Collapse
Affiliation(s)
- Rasha E Boulos
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342, Lyon, France.,Present address: Montpellier Cancer Institute (ICM), Montpellier Cancer Research Institute (IRCM) Inserm U1194, University of Montpellier, Montpellier, France
| | - Nicolas Tremblay
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342, Lyon, France.,Present address: CNRS, GIPSA-lab, Grenoble, France
| | - Alain Arneodo
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342, Lyon, France.,Present address: LOMA, Université de Bordeaux, CNRS, UMR 5798, 51 Cours de le Libération, Talence, 33405, France
| | - Pierre Borgnat
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342, Lyon, France
| | - Benjamin Audit
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342, Lyon, France.
| |
Collapse
|
16
|
Seplyarskiy VB, Andrianova MA, Bazykin GA. APOBEC3A/B-induced mutagenesis is responsible for 20% of heritable mutations in the TpCpW context. Genome Res 2016; 27:175-184. [PMID: 27940951 PMCID: PMC5287224 DOI: 10.1101/gr.210336.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022]
Abstract
APOBEC3A/B cytidine deaminase is responsible for the majority of cancerous mutations in a large fraction of cancer samples. However, its role in heritable mutagenesis remains very poorly understood. Recent studies have demonstrated that both in yeast and in human cancerous cells, most APOBEC3A/B-induced mutations occur on the lagging strand during replication and on the nontemplate strand of transcribed regions. Here, we use data on rare human polymorphisms, interspecies divergence, and de novo mutations to study germline mutagenesis and to analyze mutations at nucleotide contexts prone to attack by APOBEC3A/B. We show that such mutations occur preferentially on the lagging strand and on nontemplate strands of transcribed regions. Moreover, we demonstrate that APOBEC3A/B-like mutations tend to produce strand-coordinated clusters, which are also biased toward the lagging strand. Finally, we show that the mutation rate is increased 3' of C→G mutations to a greater extent than 3' of C→T mutations, suggesting pervasive trans-lesion bypass of the APOBEC3A/B-induced damage. Our study demonstrates that 20% of C→T and C→G mutations in the TpCpW context-where W denotes A or T, segregating as polymorphisms in human population-or 1.4% of all heritable mutations are attributable to APOBEC3A/B activity.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Maria A Andrianova
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Pirogov Russian National Research Medical University, Moscow 117997, Russia.,Lomonosov Moscow State University, Moscow 119234, Russia
| | - Georgii A Bazykin
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Pirogov Russian National Research Medical University, Moscow 117997, Russia.,Lomonosov Moscow State University, Moscow 119234, Russia.,Skolkovo Institute of Science and Technology, Skolkovo 143026, Russia
| |
Collapse
|
17
|
Langley AR, Gräf S, Smith JC, Krude T. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq). Nucleic Acids Res 2016; 44:10230-10247. [PMID: 27587586 PMCID: PMC5137433 DOI: 10.1093/nar/gkw760] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 12/25/2022] Open
Abstract
Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq.
Collapse
Affiliation(s)
- Alexander R Langley
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK
| | - James C Smith
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
18
|
Drillon G, Audit B, Argoul F, Arneodo A. Evidence of selection for an accessible nucleosomal array in human. BMC Genomics 2016; 17:526. [PMID: 27472913 PMCID: PMC4966569 DOI: 10.1186/s12864-016-2880-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/04/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recently, a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix has been used to reveal some enrichment of nucleosome-inhibiting energy barriers (NIEBs) nearby ubiquitous human "master" replication origins. Here we use this model to predict the existence of about 1.6 millions NIEBs over the 22 human autosomes. RESULTS We show that these high energy barriers of mean size 153 bp correspond to nucleosome-depleted regions (NDRs) in vitro, as expected, but also in vivo. On either side of these NIEBs, we observe, in vivo and in vitro, a similar compacted nucleosome ordering, suggesting an absence of chromatin remodeling. This nucleosomal ordering strongly correlates with oscillations of the GC content as well as with the interspecies and intraspecies mutation profiles along these regions. Comparison of these divergence rates reveals the existence of both positive and negative selections linked to nucleosome positioning around these intrinsic NDRs. Overall, these NIEBs and neighboring nucleosomes cover 37.5 % of the human genome where nucleosome occupancy is stably encoded in the DNA sequence. These 1 kb-sized regions of intrinsic nucleosome positioning are equally found in GC-rich and GC-poor isochores, in early and late replicating regions, in intergenic and genic regions but not at gene promoters. CONCLUSION The source of selection pressure on the NIEBs has yet to be resolved in future work. One possible scenario is that these widely distributed chromatin patterns have been selected in human to impair the condensation of the nucleosomal array into the 30 nm chromatin fiber, so as to facilitate the epigenetic regulation of nuclear functions in a cell-type-specific manner.
Collapse
Affiliation(s)
- Guénola Drillon
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, Lyon, F-69342 France
| | - Benjamin Audit
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, Lyon, F-69342 France
| | - Françoise Argoul
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, Lyon, F-69342 France
- LOMA, Université de Bordeaux, CNRS, UMR 5798, 51 Cours de le Libération, Talence, F-33405 France
| | - Alain Arneodo
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, Lyon, F-69342 France
- LOMA, Université de Bordeaux, CNRS, UMR 5798, 51 Cours de le Libération, Talence, F-33405 France
| |
Collapse
|
19
|
Kenigsberg E, Yehuda Y, Marjavaara L, Keszthelyi A, Chabes A, Tanay A, Simon I. The mutation spectrum in genomic late replication domains shapes mammalian GC content. Nucleic Acids Res 2016; 44:4222-32. [PMID: 27085808 PMCID: PMC4872117 DOI: 10.1093/nar/gkw268] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/10/2016] [Accepted: 03/30/2016] [Indexed: 11/14/2022] Open
Abstract
Genome sequence compositions and epigenetic organizations are correlated extensively across multiple length scales. Replication dynamics, in particular, is highly correlated with GC content. We combine genome-wide time of replication (ToR) data, topological domains maps and detailed functional epigenetic annotations to study the correlations between replication timing and GC content at multiple scales. We find that the decrease in genomic GC content at large scale late replicating regions can be explained by mutation bias favoring A/T nucleotide, without selection or biased gene conversion. Quantification of the free dNTP pool during the cell cycle is consistent with a mechanism involving replication-coupled mutation spectrum that favors AT nucleotides at late S-phase. We suggest that mammalian GC content composition is shaped by independent forces, globally modulating mutation bias and locally selecting on functional element. Deconvoluting these forces and analyzing them on their native scales is important for proper characterization of complex genomic correlations.
Collapse
Affiliation(s)
- Ephraim Kenigsberg
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Yehuda
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrea Keszthelyi
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
20
|
Petryk N, Kahli M, d'Aubenton-Carafa Y, Jaszczyszyn Y, Shen Y, Silvain M, Thermes C, Chen CL, Hyrien O. Replication landscape of the human genome. Nat Commun 2016; 7:10208. [PMID: 26751768 PMCID: PMC4729899 DOI: 10.1038/ncomms10208] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022] Open
Abstract
Despite intense investigation, human replication origins and termini remain elusive. Existing data have shown strong discrepancies. Here we sequenced highly purified Okazaki fragments from two cell types and, for the first time, quantitated replication fork directionality and delineated initiation and termination zones genome-wide. Replication initiates stochastically, primarily within non-transcribed, broad (up to 150 kb) zones that often abut transcribed genes, and terminates dispersively between them. Replication fork progression is significantly co-oriented with the transcription. Initiation and termination zones are frequently contiguous, sometimes separated by regions of unidirectional replication. Initiation zones are enriched in open chromatin and enhancer marks, even when not flanked by genes, and often border ‘topologically associating domains' (TADs). Initiation zones are enriched in origin recognition complex (ORC)-binding sites and better align to origins previously mapped using bubble-trap than λ-exonuclease. This novel panorama of replication reveals how chromatin and transcription modulate the initiation process to create cell-type-specific replication programs. The physical origin and termination sites of DNA replication in human cells have remained elusive. Here the authors use Okazaki fragment sequencing to reveal global replication patterns and show how chromatin and transcription modulate the process.
Collapse
Affiliation(s)
- Nataliya Petryk
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Malik Kahli
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France
| | - Yves d'Aubenton-Carafa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Yimin Shen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Maud Silvain
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Claude Thermes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Chun-Long Chen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Olivier Hyrien
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France
| |
Collapse
|
21
|
Seplyarskiy VB, Soldatov RA, Popadin KY, Antonarakis SE, Bazykin GA, Nikolaev SI. APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication. Genome Res 2016; 26:174-82. [PMID: 26755635 PMCID: PMC4728370 DOI: 10.1101/gr.197046.115] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/10/2015] [Indexed: 12/31/2022]
Abstract
APOBEC3A and APOBEC3B, cytidine deaminases of the APOBEC family, are among the main factors causing mutations in human cancers. APOBEC deaminates cytosines in single-stranded DNA (ssDNA). A fraction of the APOBEC-induced mutations occur as clusters ("kataegis") in single-stranded DNA produced during repair of double-stranded breaks (DSBs). However, the properties of the remaining 87% of nonclustered APOBEC-induced mutations, the source and the genomic distribution of the ssDNA where they occur, are largely unknown. By analyzing genomic and exomic cancer databases, we show that >33% of dispersed APOBEC-induced mutations occur on the lagging strand during DNA replication, thus unraveling the major source of ssDNA targeted by APOBEC in cancer. Although methylated cytosine is generally more mutation-prone than nonmethylated cytosine, we report that methylation reduces the rate of APOBEC-induced mutations by a factor of roughly two. Finally, we show that in cancers with extensive APOBEC-induced mutagenesis, there is almost no increase in mutation rates in late replicating regions (contrary to other cancers). Because late-replicating regions are depleted in exons, this results in a 1.3-fold higher fraction of mutations residing within exons in such cancers. This study provides novel insight into the APOBEC-induced mutagenesis and describes the peculiarity of the mutational processes in cancers with the signature of APOBEC-induced mutations.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia, 127051; Lomonosov Moscow State University, Moscow, Russia, 119991; Pirogov Russian National Research Medical University, Moscow, Russia, 117997
| | - Ruslan A Soldatov
- Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia, 127051; Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Konstantin Y Popadin
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, 1211 Geneva, Switzerland
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, 1211 Geneva, Switzerland
| | - Georgii A Bazykin
- Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia, 127051; Lomonosov Moscow State University, Moscow, Russia, 119991; Pirogov Russian National Research Medical University, Moscow, Russia, 117997
| | - Sergey I Nikolaev
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, 1211 Geneva, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
22
|
Seplyarskiy VB, Bazykin GA, Soldatov RA. Polymerase ζ Activity Is Linked to Replication Timing in Humans: Evidence from Mutational Signatures. Mol Biol Evol 2015; 32:3158-72. [PMID: 26376651 DOI: 10.1093/molbev/msv184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Replication timing is an important determinant of germline mutation patterns, with a higher rate of point mutations in late replicating regions. Mechanisms underlying this association remain elusive. One of the suggested explanations is the activity of error-prone DNA polymerases in late-replicating regions. Polymerase zeta (pol ζ), an essential error-prone polymerase biased toward transversions, also has a tendency to produce dinucleotide mutations (DNMs), complex mutational events that simultaneously affect two adjacent nucleotides. Experimental studies have shown that pol ζ is strongly biased toward GC→AA/TT DNMs. Using primate divergence data, we show that the GC→AA/TT pol ζ mutational signature is the most frequent among DNMs, and its rate exceeds the mean rate of other DNM types by a factor of approximately 10. Unlike the overall rate of DNMs, the pol ζ signature drastically increases with the replication time in the human genome. Finally, the pol ζ signature is enriched in transcribed regions, and there is a strong prevalence of GC→TT over GC→AA DNMs on the nontemplate strand, indicating association with transcription. A recurrently occurring GC→TT DNM in HRAS and SOD1 genes causes the Costello syndrome and amyotrophic lateral sclerosis correspondently; we observe an approximately 1 kb long mutation hotspot enriched by transversions near these DNMs in both cases, suggesting a link between these diseases and pol ζ activity. This study uncovers the genomic preferences of pol ζ, shedding light on a novel cause of mutational heterogeneity along the genome.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- Institute of Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia Pirogov Russian National Research Medical University, Moscow, Russia
| | - Georgii A Bazykin
- Institute of Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ruslan A Soldatov
- Institute of Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
23
|
Boulos RE, Drillon G, Argoul F, Arneodo A, Audit B. Structural organization of human replication timing domains. FEBS Lett 2015; 589:2944-57. [PMID: 25912651 DOI: 10.1016/j.febslet.2015.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
Recent analysis of genome-wide epigenetic modification data, mean replication timing (MRT) profiles and chromosome conformation data in mammals have provided increasing evidence that flexibility in replication origin usage is regulated locally by the epigenetic landscape and over larger genomic distances by the 3D chromatin architecture. Here, we review the recent results establishing some link between replication domains and chromatin structural domains in pluripotent and various differentiated cell types in human. We reconcile the originally proposed dichotomic picture of early and late constant timing regions that replicate by multiple rather synchronous origins in separated nuclear compartments of open and closed chromatins, with the U-shaped MRT domains bordered by "master" replication origins specified by a localized (∼200-300 kb) zone of open and transcriptionally active chromatin from which a replication wave likely initiates and propagates toward the domain center via a cascade of origin firing. We discuss the relationships between these MRT domains, topologically associated domains and lamina-associated domains. This review sheds a new light on the epigenetically regulated global chromatin reorganization that underlies the loss of pluripotency and the determination of differentiation properties.
Collapse
Affiliation(s)
- Rasha E Boulos
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Guénola Drillon
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Françoise Argoul
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Alain Arneodo
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Benjamin Audit
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France.
| |
Collapse
|
24
|
Urban JM, Foulk MS, Casella C, Gerbi SA. The hunt for origins of DNA replication in multicellular eukaryotes. F1000PRIME REPORTS 2015; 7:30. [PMID: 25926981 PMCID: PMC4371235 DOI: 10.12703/p7-30] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Origins of DNA replication (ORIs) occur at defined regions in the genome. Although DNA sequence defines the position of ORIs in budding yeast, the factors for ORI specification remain elusive in metazoa. Several methods have been used recently to map ORIs in metazoan genomes with the hope that features for ORI specification might emerge. These methods are reviewed here with analysis of their advantages and shortcomings. The various factors that may influence ORI selection for initiation of DNA replication are discussed.
Collapse
Affiliation(s)
- John M. Urban
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
| | - Michael S. Foulk
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
- Department of Biology, Mercyhurst University501 East 38th Street, Erie, PA 16546USA
| | - Cinzia Casella
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
- Institute for Molecular Medicine, University of Southern DenmarkJB Winsloews Vej 25, 5000 Odense CDenmark
| | - Susan A. Gerbi
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
| |
Collapse
|
25
|
Drillon G, Audit B, Argoul F, Arneodo A. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064102. [PMID: 25563930 DOI: 10.1088/0953-8984/27/6/064102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
As the elementary building block of eukaryotic chromatin, the nucleosome is at the heart of the compromise between the necessity of compacting DNA in the cell nucleus and the required accessibility to regulatory proteins. The recent availability of genome-wide experimental maps of nucleosome positions for many different organisms and cell types has provided an unprecedented opportunity to elucidate to what extent the DNA sequence conditions the primary structure of chromatin and in turn participates in the chromatin-mediated regulation of nuclear functions, such as gene expression and DNA replication. In this study, we use in vivo and in vitro genome-wide nucleosome occupancy data together with the set of nucleosome-free regions (NFRs) predicted by a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix, to investigate the role of intrinsic nucleosome occupancy in the regulation of the replication spatio-temporal programme in human. We focus our analysis on the so-called replication U/N-domains that were shown to cover about half of the human genome in the germline (skew-N domains) as well as in embryonic stem cells, somatic and HeLa cells (mean replication timing U-domains). The 'master' origins of replication (MaOris) that border these megabase-sized U/N-domains were found to be specified by a few hundred kb wide regions that are hyper-sensitive to DNase I cleavage, hypomethylated, and enriched in epigenetic marks involved in transcription regulation, the hallmarks of localized open chromatin structures. Here we show that replication U/N-domain borders that are conserved in all considered cell lines have an environment highly enriched in nucleosome-excluding-energy barriers, suggesting that these ubiquitous MaOris have been selected during evolution. In contrast, MaOris that are cell-type-specific are mainly regulated epigenetically and are no longer favoured by a local abundance of intrinsic NFRs encoded in the DNA sequence. At the smaller few hundred bp scale of gene promoters, CpG-rich promoters of housekeeping genes found nearby ubiquitous MaOris as well as CpG-poor promoters of tissue-specific genes found nearby cell-type-specific MaOris, both correspond to in vivo NFRs that are not coded as nucleosome-excluding-energy barriers. Whereas the former promoters are likely to correspond to high occupancy transcription factor binding regions, the latter are an illustration that gene regulation in human is typically cell-type-specific.
Collapse
Affiliation(s)
- Guénola Drillon
- Université de Lyon, F-69000 Lyon, France. Laboratoire de Physique, CNRS UMR 5672, École Normale Supérieure de Lyon, F-69007 Lyon, France
| | | | | | | |
Collapse
|
26
|
Embryonic stem cell specific "master" replication origins at the heart of the loss of pluripotency. PLoS Comput Biol 2015; 11:e1003969. [PMID: 25658386 PMCID: PMC4319821 DOI: 10.1371/journal.pcbi.1003969] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 10/06/2014] [Indexed: 11/29/2022] Open
Abstract
Epigenetic regulation of the replication program during mammalian cell differentiation remains poorly understood. We performed an integrative analysis of eleven genome-wide epigenetic profiles at 100 kb resolution of Mean Replication Timing (MRT) data in six human cell lines. Compared to the organization in four chromatin states shared by the five somatic cell lines, embryonic stem cell (ESC) line H1 displays (i) a gene-poor but highly dynamic chromatin state (EC4) associated to histone variant H2AZ rather than a HP1-associated heterochromatin state (C4) and (ii) a mid-S accessible chromatin state with bivalent gene marks instead of a polycomb-repressed heterochromatin state. Plastic MRT regions (≲ 20% of the genome) are predominantly localized at the borders of U-shaped timing domains. Whereas somatic-specific U-domain borders are gene-dense GC-rich regions, 31.6% of H1-specific U-domain borders are early EC4 regions enriched in pluripotency transcription factors NANOG and OCT4 despite being GC poor and gene deserts. Silencing of these ESC-specific “master” replication initiation zones during differentiation corresponds to a loss of H2AZ and an enrichment in H3K9me3 mark characteristic of late replicating C4 heterochromatin. These results shed a new light on the epigenetically regulated global chromatin reorganization that underlies the loss of pluripotency and lineage commitment. During development, embryonic stem cell (ESC) enter a program of cell differentiation eventually leading to all the necessary differentiated cell types. Understanding the mechanisms responsible for the underlying modifications of the gene expression program is of fundamental importance, as it will likely have strong impact on the development of regenerative medicine. We show that besides some epigenetic regulation, ubiquitous master replication origins at replication timing U-domain borders shared by 6 human cell types are transcriptionally active open chromatin regions specified by a local enrichment in nucleosome free regions encoded in the DNA sequence suggesting that they have been selected during evolution. In contrast, ESC specific master replication origins bear a unique epigenetic signature (enrichment in CTCF, H2AZ, NANOG, OCT4, …) likely contributing to maintain ESC chromatin in a highly dynamic and accessible state that is refractory to polycomb and HP1 heterochromatin spreading. These ESC specific master origins thus appear as key genomic regions where epigenetic control of chromatin organization is at play to maintain pluripotency of stem cell lineages and to guide lineage commitment to somatic cell types.
Collapse
|
27
|
Hyrien O. Peaks cloaked in the mist: the landscape of mammalian replication origins. J Cell Biol 2015; 208:147-60. [PMID: 25601401 PMCID: PMC4298691 DOI: 10.1083/jcb.201407004] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/16/2014] [Indexed: 12/23/2022] Open
Abstract
Replication of mammalian genomes starts at sites termed replication origins, which historically have been difficult to locate as a result of large genome sizes, limited power of genetic identification schemes, and rareness and fragility of initiation intermediates. However, origins are now mapped by the thousands using microarrays and sequencing techniques. Independent studies show modest concordance, suggesting that mammalian origins can form at any DNA sequence but are suppressed by read-through transcription or that they can overlap the 5' end or even the entire gene. These results require a critical reevaluation of whether origins form at specific DNA elements and/or epigenetic signals or require no such determinants.
Collapse
Affiliation(s)
- Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique UMR8197 and Institut National de la Santé et de la Recherche Médicale U1024, 75005 Paris, France
| |
Collapse
|
28
|
Topologically associating domains are stable units of replication-timing regulation. Nature 2015; 515:402-5. [PMID: 25409831 PMCID: PMC4251741 DOI: 10.1038/nature13986] [Citation(s) in RCA: 608] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/22/2014] [Indexed: 02/06/2023]
Abstract
Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program. In mammals, replication timing is cell-type-specific with at least half the genome switching replication timing during development, primarily in units of 400-800 kilobases ('replication domains'), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements. Early and late replication correlate, respectively, with open and closed three-dimensional chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, late replication correlates with lamina-associated domains (LADs). Recent Hi-C mapping has unveiled substructure within chromatin compartments called topologically associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to replication domains. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure. Here we localize boundaries of replication domains to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, replication domain boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure replication domain boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type-specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell-type-specific sub-nuclear compartmentalization and replication timing with developmentally stable structural domains and offer a unified model for large-scale chromosome structure and function.
Collapse
|
29
|
Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, Sandstrom R, Ma Z, Davis C, Pope BD, Shen Y, Pervouchine DD, Djebali S, Thurman RE, Kaul R, Rynes E, Kirilusha A, Marinov GK, Williams BA, Trout D, Amrhein H, Fisher-Aylor K, Antoshechkin I, DeSalvo G, See LH, Fastuca M, Drenkow J, Zaleski C, Dobin A, Prieto P, Lagarde J, Bussotti G, Tanzer A, Denas O, Li K, Bender MA, Zhang M, Byron R, Groudine MT, McCleary D, Pham L, Ye Z, Kuan S, Edsall L, Wu YC, Rasmussen MD, Bansal MS, Kellis M, Keller CA, Morrissey CS, Mishra T, Jain D, Dogan N, Harris RS, Cayting P, Kawli T, Boyle AP, Euskirchen G, Kundaje A, Lin S, Lin Y, Jansen C, Malladi VS, Cline MS, Erickson DT, Kirkup VM, Learned K, Sloan CA, Rosenbloom KR, Lacerda de Sousa B, Beal K, Pignatelli M, Flicek P, Lian J, Kahveci T, Lee D, Kent WJ, Ramalho Santos M, Herrero J, Notredame C, Johnson A, Vong S, Lee K, Bates D, Neri F, Diegel M, Canfield T, Sabo PJ, Wilken MS, Reh TA, Giste E, Shafer A, Kutyavin T, Haugen E, Dunn D, Reynolds AP, Neph S, Humbert R, Hansen RS, De Bruijn M, Selleri L, Rudensky A, Josefowicz S, Samstein R, Eichler EE, Orkin SH, Levasseur D, Papayannopoulou T, Chang KH, Skoultchi A, Gosh S, Disteche C, Treuting P, Wang Y, Weiss MJ, Blobel GA, Cao X, Zhong S, Wang T, Good PJ, Lowdon RF, Adams LB, Zhou XQ, Pazin MJ, Feingold EA, Wold B, Taylor J, Mortazavi A, Weissman SM, Stamatoyannopoulos JA, Snyder MP, Guigo R, Gingeras TR, Gilbert DM, Hardison RC, Beer MA, Ren B. A comparative encyclopedia of DNA elements in the mouse genome. Nature 2015; 515:355-64. [PMID: 25409824 PMCID: PMC4266106 DOI: 10.1038/nature13992] [Citation(s) in RCA: 1232] [Impact Index Per Article: 123.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 10/24/2014] [Indexed: 12/11/2022]
Abstract
The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.
Collapse
Affiliation(s)
- Feng Yue
- 1] Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA. [2] Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | - Yong Cheng
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Alessandra Breschi
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain
| | - Jeff Vierstra
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Weisheng Wu
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tyrone Ryba
- Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Richard Sandstrom
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Zhihai Ma
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Carrie Davis
- Functional Genomics, Cold Spring Harbor Laboratory, Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Benjamin D Pope
- Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Yin Shen
- Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Dmitri D Pervouchine
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain
| | - Sarah Djebali
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain
| | - Robert E Thurman
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Rajinder Kaul
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Eric Rynes
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Anthony Kirilusha
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Georgi K Marinov
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Brian A Williams
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Diane Trout
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Henry Amrhein
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Katherine Fisher-Aylor
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Igor Antoshechkin
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Gilberto DeSalvo
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Lei-Hoon See
- Functional Genomics, Cold Spring Harbor Laboratory, Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Meagan Fastuca
- Functional Genomics, Cold Spring Harbor Laboratory, Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Jorg Drenkow
- Functional Genomics, Cold Spring Harbor Laboratory, Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Chris Zaleski
- Functional Genomics, Cold Spring Harbor Laboratory, Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Alex Dobin
- Functional Genomics, Cold Spring Harbor Laboratory, Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Pablo Prieto
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain
| | - Julien Lagarde
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain
| | - Giovanni Bussotti
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain
| | - Andrea Tanzer
- 1] Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain. [2] Department of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Waehringerstrasse 17/3/303, A-1090 Vienna, Austria
| | - Olgert Denas
- Departments of Biology and Mathematics and Computer Science, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road NE, Atlanta, Georgia 30322, USA
| | - Kanwei Li
- Departments of Biology and Mathematics and Computer Science, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road NE, Atlanta, Georgia 30322, USA
| | - M A Bender
- 1] Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA. [2] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Miaohua Zhang
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Rachel Byron
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Mark T Groudine
- 1] Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. [2] Department of Radiation Oncology, University of Washington, Seattle, Washington 98195, USA
| | - David McCleary
- Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Long Pham
- Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zhen Ye
- Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Samantha Kuan
- Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Lee Edsall
- Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Yi-Chieh Wu
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Matthew D Rasmussen
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Mukul S Bansal
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Manolis Kellis
- 1] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Cheryl A Keller
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christapher S Morrissey
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tejaswini Mishra
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Deepti Jain
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nergiz Dogan
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Robert S Harris
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip Cayting
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Trupti Kawli
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Alan P Boyle
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Ghia Euskirchen
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Shin Lin
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Yiing Lin
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Camden Jansen
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, USA
| | - Venkat S Malladi
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Melissa S Cline
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California 95064, USA
| | - Drew T Erickson
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Vanessa M Kirkup
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California 95064, USA
| | - Katrina Learned
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California 95064, USA
| | - Cricket A Sloan
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Kate R Rosenbloom
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California 95064, USA
| | - Beatriz Lacerda de Sousa
- Departments of Obstetrics/Gynecology and Pathology, and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California 94143, USA
| | - Kathryn Beal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Miguel Pignatelli
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jin Lian
- Yale University, Department of Genetics, PO Box 208005, 333 Cedar Street, New Haven, Connecticut 06520-8005, USA
| | - Tamer Kahveci
- Computer &Information Sciences &Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Dongwon Lee
- McKusick-Nathans Institute of Genetic Medicine and Department of Biomedical Engineering, Johns Hopkins University, 733 N. Broadway, BRB 573 Baltimore, Maryland 21205, USA
| | - W James Kent
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California 95064, USA
| | - Miguel Ramalho Santos
- Departments of Obstetrics/Gynecology and Pathology, and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California 94143, USA
| | - Javier Herrero
- 1] European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Cedric Notredame
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain
| | - Audra Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Shinny Vong
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Kristen Lee
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Daniel Bates
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Fidencio Neri
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Morgan Diegel
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Theresa Canfield
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Peter J Sabo
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Matthew S Wilken
- Department of Biological Structure, University of Washington, HSB I-516, 1959 NE Pacific Street, Seattle, Washington 98195, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, HSB I-516, 1959 NE Pacific Street, Seattle, Washington 98195, USA
| | - Erika Giste
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Anthony Shafer
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Tanya Kutyavin
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Eric Haugen
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Douglas Dunn
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Alex P Reynolds
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Shane Neph
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Richard Humbert
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - R Scott Hansen
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Marella De Bruijn
- MRC Molecular Haemotology Unit, University of Oxford, Oxford OX3 9DS, UK
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Alexander Rudensky
- HHMI and Ludwig Center at Memorial Sloan Kettering Cancer Center, Immunology Program, Memorial Sloan Kettering Cancer Canter, New York, New York 10065, USA
| | - Steven Josefowicz
- HHMI and Ludwig Center at Memorial Sloan Kettering Cancer Center, Immunology Program, Memorial Sloan Kettering Cancer Canter, New York, New York 10065, USA
| | - Robert Samstein
- HHMI and Ludwig Center at Memorial Sloan Kettering Cancer Center, Immunology Program, Memorial Sloan Kettering Cancer Canter, New York, New York 10065, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Stuart H Orkin
- Dana Farber Cancer Institute, Harvard Medical School, Cambridge, Massachusetts 02138, USA
| | - Dana Levasseur
- University of Iowa Carver College of Medicine, Department of Internal Medicine, Iowa City, Iowa 52242, USA
| | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Kai-Hsin Chang
- University of Iowa Carver College of Medicine, Department of Internal Medicine, Iowa City, Iowa 52242, USA
| | - Arthur Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Srikanta Gosh
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Christine Disteche
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Piper Treuting
- Department of Comparative Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Yanli Wang
- Bioinformatics and Genomics program, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Mitchell J Weiss
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Gerd A Blobel
- 1] Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA. [2] Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xiaoyi Cao
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Peter J Good
- NHGRI, National Institutes of Health, 5635 Fishers Lane, Bethesda, Maryland 20892-9307, USA
| | - Rebecca F Lowdon
- NHGRI, National Institutes of Health, 5635 Fishers Lane, Bethesda, Maryland 20892-9307, USA
| | - Leslie B Adams
- NHGRI, National Institutes of Health, 5635 Fishers Lane, Bethesda, Maryland 20892-9307, USA
| | - Xiao-Qiao Zhou
- NHGRI, National Institutes of Health, 5635 Fishers Lane, Bethesda, Maryland 20892-9307, USA
| | - Michael J Pazin
- NHGRI, National Institutes of Health, 5635 Fishers Lane, Bethesda, Maryland 20892-9307, USA
| | - Elise A Feingold
- NHGRI, National Institutes of Health, 5635 Fishers Lane, Bethesda, Maryland 20892-9307, USA
| | - Barbara Wold
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - James Taylor
- Departments of Biology and Mathematics and Computer Science, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road NE, Atlanta, Georgia 30322, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, USA
| | - Sherman M Weissman
- Yale University, Department of Genetics, PO Box 208005, 333 Cedar Street, New Haven, Connecticut 06520-8005, USA
| | | | - Michael P Snyder
- Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA
| | - Roderic Guigo
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain
| | - Thomas R Gingeras
- Functional Genomics, Cold Spring Harbor Laboratory, Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - David M Gilbert
- Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael A Beer
- McKusick-Nathans Institute of Genetic Medicine and Department of Biomedical Engineering, Johns Hopkins University, 733 N. Broadway, BRB 573 Baltimore, Maryland 21205, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | |
Collapse
|
30
|
Besnard E, Desprat R, Ryan M, Kahli M, Aladjem MI, Lemaitre JM. Best practices for mapping replication origins in eukaryotic chromosomes. ACTA ACUST UNITED AC 2014; 64:22.18.1-13. [PMID: 25181303 DOI: 10.1002/0471143030.cb2218s64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Understanding the regulatory principles ensuring complete DNA replication in each cell division is critical for deciphering the mechanisms that maintain genomic stability. Recent advances in genome sequencing technology facilitated complete mapping of DNA replication sites and helped move the field from observing replication patterns at a handful of single loci to analyzing replication patterns genome-wide. These advances address issues, such as the relationship between replication initiation events, transcription, and chromatin modifications, and identify potential replication origin consensus sequences. This unit summarizes the technological and fundamental aspects of replication profiling and briefly discusses novel insights emerging from mining large datasets, published in the last 3 years, and also describes DNA replication dynamics on a whole-genome scale.
Collapse
Affiliation(s)
- Emilie Besnard
- Laboratory of Genome Plasticity and Aging, Institute of Functional Genomics, CNRS UMR5203, INSERM U661, UMI, Montpellier, France
| | | | | | | | | | | |
Collapse
|
31
|
Zaghloul L, Drillon G, Boulos RE, Argoul F, Thermes C, Arneodo A, Audit B. Large replication skew domains delimit GC-poor gene deserts in human. Comput Biol Chem 2014; 53 Pt A:153-65. [PMID: 25224847 DOI: 10.1016/j.compbiolchem.2014.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 01/25/2023]
Abstract
Besides their large-scale organization in isochores, mammalian genomes display megabase-sized regions, spanning both genes and intergenes, where the strand nucleotide composition asymmetry decreases linearly, possibly due to replication activity. These so-called skew-N domains cover about a third of the human genome and are bordered by two skew upward jumps that were hypothesized to compose a subset of "master" replication origins active in the germline. Skew-N domains were shown to exhibit a particular gene organization. Genes with CpG-rich promoters likely expressed in the germline are over represented near the master replication origins, with large genes being co-oriented with replication fork progression, which suggests some coordination of replication and transcription. In this study, we describe another skew structure that covers ∼13% of the human genome and that is bordered by putative master replication origins similar to the ones flanking skew-N domains. These skew-split-N domains have a shape reminiscent of a N, but split in half, leaving in the center a region of null skew whose length increases with domain size. These central regions (median size ∼860 kb) have a homogeneous composition, i.e. both a null and constant skew and a constant and low GC content. They correspond to heterochromatin gene deserts found in low-GC isochores with an average gene density of 0.81 promoters/Mb as compared to 7.73 promoters/Mb genome wide. The analysis of epigenetic marks and replication timing data confirms that, in these late replicating heterochomatic regions, the initiation of replication is likely to be random. This contrasts with the transcriptionally active euchromatin state found around the bordering well positioned master replication origins. Altogether skew-N domains and skew-split-N domains cover about 50% of the human genome.
Collapse
Affiliation(s)
- Lamia Zaghloul
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Guénola Drillon
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Rasha E Boulos
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Françoise Argoul
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Claude Thermes
- Centre de Génétique Moléculaire, CNRS UPR 3404, Gif-sur-Yvette, France
| | - Alain Arneodo
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Benjamin Audit
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France.
| |
Collapse
|
32
|
Temporal and spatial regulation of eukaryotic DNA replication: From regulated initiation to genome-scale timing program. Semin Cell Dev Biol 2014; 30:110-20. [DOI: 10.1016/j.semcdb.2014.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/04/2014] [Indexed: 11/23/2022]
|
33
|
The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells. PLoS Genet 2014; 10:e1004282. [PMID: 24785686 PMCID: PMC4006723 DOI: 10.1371/journal.pgen.1004282] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/18/2014] [Indexed: 11/19/2022] Open
Abstract
The duplication of mammalian genomes is under the control of a spatiotemporal program that orchestrates the positioning and the timing of firing of replication origins. The molecular mechanisms coordinating the activation of about predicted origins remain poorly understood, partly due to the intrinsic rarity of replication bubbles, making it difficult to purify short nascent strands (SNS). The precise identification of origins based on the high-throughput sequencing of SNS constitutes a new methodological challenge. We propose a new statistical method with a controlled resolution, adapted to the detection of replication origins from SNS data. We detected an average of 80,000 replication origins in different cell lines. To evaluate the consistency between different protocols, we compared SNS detections with bubble trapping detections. This comparison demonstrated a good agreement between genome-wide methods, with 65% of SNS-detected origins validated by bubble trapping, and 44% of bubble trapping origins validated by SNS origins, when compared at the same resolution. We investigated the interplay between the spatial and the temporal programs of replication at fine scales. We show that most of the origins detected in regions replicated in early S phase are shared by all the cell lines investigated whereas cell-type-specific origins tend to be replicated in late S phase. We shed a new light on the key role of CpG islands, by showing that 80% of the origins associated with CGIs are constitutive. Our results further show that at least 76% of CGIs are origins of replication. The analysis of associations with chromatin marks at different timing of cell division revealed new potential epigenetic regulators driving the spatiotemporal activity of replication origins. We highlight the potential role of H4K20me1 and H3K27me3, the coupling of which is correlated with increased efficiency of replication origins, clearly identifying those marks as potential key regulators of replication origins. Replication is the mechanism by which genomes are duplicated into two exact copies. Genomic stability is under the control of a spatiotemporal program that orchestrates both the positioning and the timing of firing of about 50,000 replication starting points, also called replication origins. Replication bubbles found at origins have been very difficult to map due to their short lifespan. Moreover, with the flood of data characterizing new sequencing technologies, the precise statistical analysis of replication data has become an additional challenge. We propose a new method to map replication origins on the human genome, and we assess the reliability of our finding using experimental validation and comparison with origins maps obtained by bubble trapping. This fine mapping then allowed us to identify potential regulators of the replication dynamics. Our study highlights the key role of CpG Islands and identifies new potential epigenetic regulators (methylation of lysine 4 on histone H4, and tri-methylation of lysine 27 on histone H3) whose coupling is correlated with an increase in the efficiency of replication origins, suggesting those marks as potential key regulators of replication. Overall, our study defines new potentially important pathways that might regulate the sequential firing of origins during genome duplication.
Collapse
|
34
|
Gindin Y, Valenzuela MS, Aladjem MI, Meltzer PS, Bilke S. A chromatin structure-based model accurately predicts DNA replication timing in human cells. Mol Syst Biol 2014; 10:722. [PMID: 24682507 PMCID: PMC4017678 DOI: 10.1002/msb.134859] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The metazoan genome is replicated in precise cell lineage‐specific temporal order. However, the mechanism controlling this orchestrated process is poorly understood as no molecular mechanisms have been identified that actively regulate the firing sequence of genome replication. Here, we develop a mechanistic model of genome replication capable of predicting, with accuracy rivaling experimental repeats, observed empirical replication timing program in humans. In our model, replication is initiated in an uncoordinated (time‐stochastic) manner at well‐defined sites. The model contains, in addition to the choice of the genomic landmark that localizes initiation, only a single adjustable parameter of direct biological relevance: the number of replication forks. We find that DNase‐hypersensitive sites are optimal and independent determinants of DNA replication initiation. We demonstrate that the DNA replication timing program in human cells is a robust emergent phenomenon that, by its very nature, does not require a regulatory mechanism determining a proper replication initiation firing sequence.
Collapse
Affiliation(s)
- Yevgeniy Gindin
- Genetics Branch Center for Cancer Research, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
35
|
Baker A, Bechhoefer J. Inferring the spatiotemporal DNA replication program from noisy data. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032703. [PMID: 24730871 DOI: 10.1103/physreve.89.032703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 06/03/2023]
Abstract
We generalize a stochastic model of DNA replication to the case where replication-origin-initiation rates vary locally along the genome and with time. Using this generalized model, we address the inverse problem of inferring initiation rates from experimental data concerning replication in cell populations. Previous work based on curve fitting depended on arbitrarily chosen functional forms for the initiation rate, with free parameters that were constrained by the data. We introduce a nonparametric method of inference that is based on Gaussian process regression. The method replaces specific assumptions about the functional form of the initiation rate with more general prior expectations about the smoothness of variation of this rate, along the genome and in time. Using this inference method, we recover, with high precision, simulated replication schemes from noisy data that are typical of current experiments.
Collapse
Affiliation(s)
- A Baker
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - J Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
36
|
Hawkins M, Retkute R, Müller CA, Saner N, Tanaka TU, de Moura APS, Nieduszynski CA. High-resolution replication profiles define the stochastic nature of genome replication initiation and termination. Cell Rep 2013; 5:1132-41. [PMID: 24210825 PMCID: PMC3898788 DOI: 10.1016/j.celrep.2013.10.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/18/2013] [Accepted: 10/07/2013] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic genome replication is stochastic, and each cell uses a different cohort of replication origins. We demonstrate that interpreting high-resolution Saccharomyces cerevisiae genome replication data with a mathematical model allows quantification of the stochastic nature of genome replication, including the efficiency of each origin and the distribution of termination events. Single-cell measurements support the inferred values for stochastic origin activation time. A strain, in which three origins were inactivated, confirmed that the distribution of termination events is primarily dictated by the stochastic activation time of origins. Cell-to-cell variability in origin activity ensures that termination events are widely distributed across virtually the whole genome. We propose that the heterogeneity in origin usage contributes to genome stability by limiting potentially deleterious events from accumulating at particular loci. Deep sequencing reveals a high-resolution view of genome replication dynamics Genome-wide modeling and single-cell imaging reveal stochastic origin activity Origin activity determines the location of replication termination events Termination events are widely distributed across the whole genome
Collapse
Affiliation(s)
- Michelle Hawkins
- Centre for Genetics and Genomics, School of Life Sciences, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | | | | | | | |
Collapse
|
37
|
Julienne H, Zoufir A, Audit B, Arneodo A. Human genome replication proceeds through four chromatin states. PLoS Comput Biol 2013; 9:e1003233. [PMID: 24130466 PMCID: PMC3794905 DOI: 10.1371/journal.pcbi.1003233] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/06/2013] [Indexed: 12/26/2022] Open
Abstract
Advances in genomic studies have led to significant progress in understanding the epigenetically controlled interplay between chromatin structure and nuclear functions. Epigenetic modifications were shown to play a key role in transcription regulation and genome activity during development and differentiation or in response to the environment. Paradoxically, the molecular mechanisms that regulate the initiation and the maintenance of the spatio-temporal replication program in higher eukaryotes, and in particular their links to epigenetic modifications, still remain elusive. By integrative analysis of the genome-wide distributions of thirteen epigenetic marks in the human cell line K562, at the 100 kb resolution of corresponding mean replication timing (MRT) data, we identify four major groups of chromatin marks with shared features. These states have different MRT, namely from early to late replicating, replication proceeds though a transcriptionally active euchromatin state (C1), a repressive type of chromatin (C2) associated with polycomb complexes, a silent state (C3) not enriched in any available marks, and a gene poor HP1-associated heterochromatin state (C4). When mapping these chromatin states inside the megabase-sized U-domains (U-shaped MRT profile) covering about 50% of the human genome, we reveal that the associated replication fork polarity gradient corresponds to a directional path across the four chromatin states, from C1 at U-domains borders followed by C2, C3 and C4 at centers. Analysis of the other genome half is consistent with early and late replication loci occurring in separate compartments, the former correspond to gene-rich, high-GC domains of intermingled chromatin states C1 and C2, whereas the latter correspond to gene-poor, low-GC domains of alternating chromatin states C3 and C4 or long C4 domains. This new segmentation sheds a new light on the epigenetic regulation of the spatio-temporal replication program in human and provides a framework for further studies in different cell types, in both health and disease. Previous studies revealed spatially coherent and biological-meaningful chromatin mark combinations in human cells. Here, we analyze thirteen epigenetic mark maps in the human cell line K562 at 100 kb resolution of MRT data. The complexity of epigenetic data is reduced to four chromatin states that display remarkable similarities with those reported in fly, worm and plants. These states have different MRT: (C1) is transcriptionally active, early replicating, enriched in CTCF; (C2) is Polycomb repressed, mid-S replicating; (C3) lacks of marks and replicates late and (C4) is a late-replicating gene-poor HP1 repressed heterochromatin state. When mapping these states inside the 876 replication U-domains of K562, the replication fork polarity gradient observed in these U-domains comes along with a remarkable epigenetic organization from C1 at U-domain borders to C2, C3 and ultimately C4 at centers. The remaining genome half displays early replicating, gene rich and high GC domains of intermingled C1 and C2 states segregating from late replicating, gene poor and low GC domains of concatenated C3 and/or C4 states. This constitutes the first evidence of epigenetic compartmentalization of the human genome into replication domains likely corresponding to autonomous units in the 3D chromatin architecture.
Collapse
Affiliation(s)
- Hanna Julienne
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Azedine Zoufir
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Benjamin Audit
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| | - Alain Arneodo
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
38
|
Hyrien O, Rappailles A, Guilbaud G, Baker A, Chen CL, Goldar A, Petryk N, Kahli M, Ma E, d'Aubenton-Carafa Y, Audit B, Thermes C, Arneodo A. From simple bacterial and archaeal replicons to replication N/U-domains. J Mol Biol 2013; 425:4673-89. [PMID: 24095859 DOI: 10.1016/j.jmb.2013.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/15/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
The Replicon Theory proposed 50 years ago has proven to apply for replicons of the three domains of life. Here, we review our knowledge of genome organization into single and multiple replicons in bacteria, archaea and eukarya. Bacterial and archaeal replicator/initiator systems are quite specific and efficient, whereas eukaryotic replicons show degenerate specificity and efficiency, allowing for complex regulation of origin firing time. We expand on recent evidence that ~50% of the human genome is organized as ~1,500 megabase-sized replication domains with a characteristic parabolic (U-shaped) replication timing profile and linear (N-shaped) gradient of replication fork polarity. These N/U-domains correspond to self-interacting segments of the chromatin fiber bordered by open chromatin zones and replicate by cascades of origin firing initiating at their borders and propagating to their center, possibly by fork-stimulated initiation. The conserved occurrence of this replication pattern in the germline of mammals has resulted over evolutionary times in the formation of megabase-sized domains with an N-shaped nucleotide compositional skew profile due to replication-associated mutational asymmetries. Overall, these results reveal an evolutionarily conserved but developmentally plastic organization of replication that is driving mammalian genome evolution.
Collapse
Affiliation(s)
- Olivier Hyrien
- Ecole Normale Supérieure, IBENS UMR8197 U1024, Paris 75005, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Boulos RE, Arneodo A, Jensen P, Audit B. Revealing long-range interconnected hubs in human chromatin interaction data using graph theory. PHYSICAL REVIEW LETTERS 2013; 111:118102. [PMID: 24074120 DOI: 10.1103/physrevlett.111.118102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Indexed: 06/02/2023]
Abstract
We use graph theory to analyze chromatin interaction (Hi-C) data in the human genome. We show that a key functional feature of the genome--"master" replication origins--corresponds to DNA loci of maximal network centrality. These loci form a set of interconnected hubs both within chromosomes and between different chromosomes. Our results open the way to a fruitful use of graph theory concepts to decipher DNA structural organization in relation to genome functions such as replication and transcription. This quantitative information should prove useful to discriminate between possible polymer models of nuclear organization.
Collapse
Affiliation(s)
- R E Boulos
- Université de Lyon, F-69000 Lyon, France and Laboratoire de Physique, ENS de Lyon, CNRS UMR5672, F-69007 Lyon, France
| | | | | | | |
Collapse
|
40
|
Hu M, Deng K, Qin Z, Liu JS. Understanding spatial organizations of chromosomes via statistical analysis of Hi-C data. QUANTITATIVE BIOLOGY 2013; 1:156-174. [PMID: 26124977 DOI: 10.1007/s40484-013-0016-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Understanding how chromosomes fold provides insights into the transcription regulation, hence, the functional state of the cell. Using the next generation sequencing technology, the recently developed Hi-C approach enables a global view of spatial chromatin organization in the nucleus, which substantially expands our knowledge about genome organization and function. However, due to multiple layers of biases, noises and uncertainties buried in the protocol of Hi-C experiments, analyzing and interpreting Hi-C data poses great challenges, and requires novel statistical methods to be developed. This article provides an overview of recent Hi-C studies and their impacts on biomedical research, describes major challenges in statistical analysis of Hi-C data, and discusses some perspectives for future research.
Collapse
Affiliation(s)
- Ming Hu
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA
| | - Ke Deng
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA ; Mathematical Sciences Center, Tsinghua University, Beijing 100084, China
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Jun S Liu
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
41
|
Julienne H, Zoufir A, Audit B, Arneodo A. Epigenetic regulation of the human genome: coherence between promoter activity and large-scale chromatin environment. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.832706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Evertts AG, Coller HA. Back to the origin: reconsidering replication, transcription, epigenetics, and cell cycle control. Genes Cancer 2013; 3:678-96. [PMID: 23634256 DOI: 10.1177/1947601912474891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In bacteria, replication is a carefully orchestrated event that unfolds the same way for each bacterium and each cell division. The process of DNA replication in bacteria optimizes cell growth and coordinates high levels of simultaneous replication and transcription. In metazoans, the organization of replication is more enigmatic. The lack of a specific sequence that defines origins of replication has, until recently, severely limited our ability to define the organizing principles of DNA replication. This question is of particular importance as emerging data suggest that replication stress is an important contributor to inherited genetic damage and the genomic instability in tumors. We consider here the replication program in several different organisms including recent genome-wide analyses of replication origins in humans. We review recent studies on the role of cytosine methylation in replication origins, the role of transcriptional looping and gene gating in DNA replication, and the role of chromatin's 3-dimensional structure in DNA replication. We use these new findings to consider several questions surrounding DNA replication in metazoans: How are origins selected? What is the relationship between replication and transcription? How do checkpoints inhibit origin firing? Why are there early and late firing origins? We then discuss whether oncogenes promote cancer through a role in DNA replication and whether errors in DNA replication are important contributors to the genomic alterations and gene fusion events observed in cancer. We conclude with some important areas for future experimentation.
Collapse
|
43
|
Pope BD, Gilbert DM. The replication domain model: regulating replicon firing in the context of large-scale chromosome architecture. J Mol Biol 2013; 425:4690-5. [PMID: 23603017 DOI: 10.1016/j.jmb.2013.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/09/2013] [Accepted: 04/15/2013] [Indexed: 01/12/2023]
Abstract
The "Replicon Theory" of Jacob, Brenner, and Cuzin has reliably served as the paradigm for regulating the sites where individual replicons initiate replication. Concurrent with the replicon model was Taylor's demonstration that plant and animal chromosomes replicate segmentally in a defined temporal sequence, via cytologically defined units too large to be accounted for by a single replicon. Instead, there seemed to be a program to choreograph when chromosome units replicate during S phase, executed by initiation at clusters of individual replicons within each segment. Here, we summarize recent molecular evidence for the existence of such units, now known as "replication domains", and discuss how the organization of large chromosomes into structural units has added additional layers of regulation to the original replicon model.
Collapse
Affiliation(s)
- Benjamin D Pope
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
| | | |
Collapse
|
44
|
Chambers EV, Bickmore WA, Semple CA. Divergence of mammalian higher order chromatin structure is associated with developmental loci. PLoS Comput Biol 2013; 9:e1003017. [PMID: 23592965 PMCID: PMC3617018 DOI: 10.1371/journal.pcbi.1003017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/18/2013] [Indexed: 02/03/2023] Open
Abstract
Several recent studies have examined different aspects of mammalian higher order chromatin structure - replication timing, lamina association and Hi-C inter-locus interactions - and have suggested that most of these features of genome organisation are conserved over evolution. However, the extent of evolutionary divergence in higher order structure has not been rigorously measured across the mammalian genome, and until now little has been known about the characteristics of any divergent loci present. Here, we generate a dataset combining multiple measurements of chromatin structure and organisation over many embryonic cell types for both human and mouse that, for the first time, allows a comprehensive assessment of the extent of structural divergence between mammalian genomes. Comparison of orthologous regions confirms that all measurable facets of higher order structure are conserved between human and mouse, across the vast majority of the detectably orthologous genome. This broad similarity is observed in spite of many loci possessing cell type specific structures. However, we also identify hundreds of regions (from 100 Kb to 2.7 Mb in size) showing consistent evidence of divergence between these species, constituting at least 10% of the orthologous mammalian genome and encompassing many hundreds of human and mouse genes. These regions show unusual shifts in human GC content, are unevenly distributed across both genomes, and are enriched in human subtelomeric regions. Divergent regions are also relatively enriched for genes showing divergent expression patterns between human and mouse ES cells, implying these regions cause divergent regulation. Particular divergent loci are strikingly enriched in genes implicated in vertebrate development, suggesting important roles for structural divergence in the evolution of mammalian developmental programmes. These data suggest that, though relatively rare in the mammalian genome, divergence in higher order chromatin structure has played important roles during evolution.
Collapse
Affiliation(s)
- Emily V. Chambers
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Colin A. Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Audit B, Zaghloul L, Baker A, Arneodo A, Chen CL, d'Aubenton-Carafa Y, Thermes C. Megabase replication domains along the human genome: relation to chromatin structure and genome organisation. Subcell Biochem 2013; 61:57-80. [PMID: 23150246 DOI: 10.1007/978-94-007-4525-4_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In higher eukaryotes, the absence of specific sequence motifs, marking the origins of replication has been a serious hindrance to the understanding of (i) the mechanisms that regulate the spatio-temporal replication program, and (ii) the links between origins activation, chromatin structure and transcription. In this chapter, we review the partitioning of the human genome into megabased-size replication domains delineated as N-shaped motifs in the strand compositional asymmetry profiles. They collectively span 28.3% of the genome and are bordered by more than 1,000 putative replication origins. We recapitulate the comparison of this partition of the human genome with high-resolution experimental data that confirms that replication domain borders are likely to be preferential replication initiation zones in the germline. In addition, we highlight the specific distribution of experimental and numerical chromatin marks along replication domains. Domain borders correspond to particular open chromatin regions, possibly encoded in the DNA sequence, and around which replication and transcription are highly coordinated. These regions also present a high evolutionary breakpoint density, suggesting that susceptibility to breakage might be linked to local open chromatin fiber state. Altogether, this chapter presents a compartmentalization of the human genome into replication domains that are landmarks of the human genome organization and are likely to play a key role in genome dynamics during evolution and in pathological situations.
Collapse
|
46
|
Audit B, Baker A, Chen CL, Rappailles A, Guilbaud G, Julienne H, Goldar A, d'Aubenton-Carafa Y, Hyrien O, Thermes C, Arneodo A. Multiscale analysis of genome-wide replication timing profiles using a wavelet-based signal-processing algorithm. Nat Protoc 2012; 8:98-110. [PMID: 23237832 DOI: 10.1038/nprot.2012.145] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this protocol, we describe the use of the LastWave open-source signal-processing command language (http://perso.ens-lyon.fr/benjamin.audit/LastWave/) for analyzing cellular DNA replication timing profiles. LastWave makes use of a multiscale, wavelet-based signal-processing algorithm that is based on a rigorous theoretical analysis linking timing profiles to fundamental features of the cell's DNA replication program, such as the average replication fork polarity and the difference between replication origin density and termination site density. We describe the flow of signal-processing operations to obtain interactive visual analyses of DNA replication timing profiles. We focus on procedures for exploring the space-scale map of apparent replication speeds to detect peaks in the replication timing profiles that represent preferential replication initiation zones, and for delimiting U-shaped domains in the replication timing profile. In comparison with the generally adopted approach that involves genome segmentation into regions of constant timing separated by timing transition regions, the present protocol enables the recognition of more complex patterns of the spatio-temporal replication program and has a broader range of applications. Completing the full procedure should not take more than 1 h, although learning the basics of the program can take a few hours and achieving full proficiency in the use of the software may take days.
Collapse
|
47
|
Systematic determination of replication activity type highlights interconnections between replication, chromatin structure and nuclear localization. PLoS One 2012; 7:e48986. [PMID: 23145042 PMCID: PMC3492150 DOI: 10.1371/journal.pone.0048986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 10/03/2012] [Indexed: 12/12/2022] Open
Abstract
DNA replication is a highly regulated process, with each genomic locus replicating at a distinct time of replication (ToR). Advances in ToR measurement technology enabled several genome-wide profiling studies that revealed tight associations between ToR and general genomic features and a remarkable ToR conservation in mammals. Genome wide studies further showed that at the hundreds kb-to-megabase scale the genome can be divided into constant ToR regions (CTRs) in which the replication process propagates at a faster pace due to the activation of multiple origins and temporal transition regions (TTRs) in which the replication process propagates at a slower pace. We developed a computational tool that assigns a ToR to every measured locus and determines its replication activity type (CTR versus TTR). Our algorithm, ARTO (Analysis of Replication Timing and Organization), uses signal processing methods to fit a constant piece-wise linear curve to the measured raw data. We tested our algorithm and provide performance and usability results. A Matlab implementation of ARTO is available at http://bioinfo.cs.technion.ac.il/people/zohar/ARTO/. Applying our algorithm to ToR data measured in multiple mouse and human samples allowed precise genome-wide ToR determination and replication activity type characterization. Analysis of the results highlighted the plasticity of the replication program. For example, we observed significant ToR differences in 10–25% of the genome when comparing different tissue types. Our analyses also provide evidence for activity type differences in up to 30% of the probes. Integration of the ToR data with multiple aspects of chromosome organization characteristics suggests that ToR plays a role in shaping the regional chromatin structure. Namely, repressive chromatin marks, are associated with late ToR both in TTRs and CTRs. Finally, characterization of the differences between TTRs and CTRs, with matching ToR, revealed that TTRs are associated with compact chromatin and are located significantly closer to the nuclear envelope. Supplementary material is available. Raw and processed data were deposited in Geo (GSE17236).
Collapse
|
48
|
Baker A, Julienne H, Chen CL, Audit B, d'Aubenton-Carafa Y, Thermes C, Arneodo A. Linking the DNA strand asymmetry to the spatio-temporal replication program. I. About the role of the replication fork polarity in genome evolution. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:92. [PMID: 23001787 DOI: 10.1140/epje/i2012-12092-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/08/2012] [Accepted: 08/21/2012] [Indexed: 06/01/2023]
Abstract
Two key cellular processes, namely transcription and replication, require the opening of the DNA double helix and act differently on the two DNA strands, generating different mutational patterns (mutational asymmetry) that may result, after long evolutionary time, in different nucleotide compositions on the two DNA strands (compositional asymmetry). We elaborate on the simplest model of neutral substitution rates that takes into account the strand asymmetries generated by the transcription and replication processes. Using perturbation theory, we then solve the time evolution of the DNA composition under strand-asymmetric substitution rates. In our minimal model, the compositional and substitutional asymmetries are predicted to decompose into a transcription- and a replication-associated components. The transcription-associated asymmetry increases in magnitude with transcription rate and changes sign with gene orientation while the replication-associated asymmetry is proportional to the replication fork polarity. These results are confirmed experimentally in the human genome, using substitution rates obtained by aligning the human and chimpanzee genomes using macaca and orangutan as outgroups, and replication fork polarity determined in the HeLa cell line as estimated from the derivative of the mean replication timing. When further investigating the dynamics of compositional skew evolution, we show that it is not at equilibrium yet and that its evolution is an extremely slow process with characteristic time scales of several hundred Myrs.
Collapse
Affiliation(s)
- A Baker
- Université de Lyon, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Retkute R, Nieduszynski CA, de Moura A. Mathematical modeling of genome replication. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031916. [PMID: 23030953 PMCID: PMC3671344 DOI: 10.1103/physreve.86.031916] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 08/15/2012] [Indexed: 06/01/2023]
Abstract
Eukaryotic DNA replication is initiated from multiple sites on the chromosome, but little is known about the global and local regulation of replication. We present a mathematical model for the spatial dynamics of DNA replication, which offers insight into the kinetics of replication in different types of organisms. Most biological experiments involve average quantities over large cell populations (typically >10(7) cells) and therefore can mask the cell-to-cell variability present in the system. Although the model is formulated in terms of a population of cells, using mathematical analysis we show that one can obtain signatures of stochasticity in individual cells from averaged quantities. This work generalizes the result by Retkute et al. [Phys. Rev. Lett. 107, 068103 (2011)] to a broader set of parameter regimes.
Collapse
Affiliation(s)
- Renata Retkute
- Centre for Genetics and Genomics, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | | | |
Collapse
|
50
|
Moindrot B, Audit B, Klous P, Baker A, Thermes C, de Laat W, Bouvet P, Mongelard F, Arneodo A. 3D chromatin conformation correlates with replication timing and is conserved in resting cells. Nucleic Acids Res 2012; 40:9470-81. [PMID: 22879376 PMCID: PMC3479194 DOI: 10.1093/nar/gks736] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although chromatin folding is known to be of functional importance to control the gene expression program, less is known regarding its interplay with DNA replication. Here, using Circular Chromatin Conformation Capture combined with high-throughput sequencing, we identified megabase-sized self-interacting domains in the nucleus of a human lymphoblastoid cell line, as well as in cycling and resting peripheral blood mononuclear cells (PBMC). Strikingly, the boundaries of those domains coincide with early-initiation zones in every cell types. Preferential interactions have been observed between the consecutive early-initiation zones, but also between those separated by several tens of megabases. Thus, the 3D conformation of chromatin is strongly correlated with the replication timing along the whole chromosome. We furthermore provide direct clues that, in addition to the timing value per se, the shape of the timing profile at a given locus defines its set of genomic contacts. As this timing-related scheme of chromatin organization exists in lymphoblastoid cells, resting and cycling PBMC, this indicates that it is maintained several weeks or months after the previous S-phase. Lastly, our work highlights that the major chromatin changes accompanying PBMC entry into cell cycle occur while keeping largely unchanged the long-range chromatin contacts.
Collapse
Affiliation(s)
- Benoit Moindrot
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, CNRS, F-69007 Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|