1
|
Korkus J, Sałata P, Thompson SA, Paluch E, Bania J, Wałecka-Zacharska E. The role of cydB gene in the biofilm formation by Campylobacter jejuni. Sci Rep 2024; 14:26574. [PMID: 39496766 PMCID: PMC11535028 DOI: 10.1038/s41598-024-77556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Campylobacter jejuni is a major cause of food- and water-borne bacterial infections in humans. A key factor helping bacteria to survive adverse environmental conditions is biofilm formation ability. Nonetheless, the molecular basis underlying biofilm formation by C. jejuni remains poorly understood. Around thirty genes involved in the regulation and dynamics of C. jejuni biofilm formation have been described so far. We applied random transposon mutagenesis to identify new biofilm-associated genes in C. jejuni strain 81-176. Of 1350 mutants, twenty-four had a decreased ability to produce biofilm compared to the wild-type strain. Some mutants contained insertions in genes previously reported to affect the biofilm formation process. The majority of identified genes encoded hypothetical proteins. In the library of EZ-Tn5 insertion mutants, we found the cydB gene associated with respiration that was not previously linked with biofilm formation in Campylobacter. To study the involvement of the cydB gene in biofilm formation, we constructed a non-marked deletion cydB mutant together with a complemented mutant. We found that the cydB deletion-mutant formed a weaker biofilm of loosely organized structure and lower volume than the parent strain. In the present study, we demonstrated the role of the cydB gene in biofilm formation by C. jejuni.
Collapse
Affiliation(s)
- Jakub Korkus
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Patrycja Sałata
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Stuart A Thompson
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, GA, Augusta, USA
| | - Emil Paluch
- Department of Microbiology Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
2
|
Septama AW, Tasfiyati AN, Rahmi EP, Jantan I, Dewi RT, Jaisi A. Antibacterial, bacteriolytic, and antibiofilm activities of the essential oil of temu giring ( Curcuma heyneana Val.) against foodborne pathogens. FOOD SCI TECHNOL INT 2024; 30:660-670. [PMID: 37218156 DOI: 10.1177/10820132231178060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Foodborne pathogens may cause foodborne illness, which is among the major health problems worldwide. Since the therapeutic options for the treatment of the disease are becoming limited as a result of antibacterial resistance, there is an increasing interest to search for new alternatives of antibacterial. Bioactive essential oils from Curcuma sp become potential sources of novel antibacterial substances. The antibacterial activity of Curcuma heyneana essential oil (CHEO) was evaluated against Escherichia coli, Salmonella typhi, Shigella sonnei, and Bacillus cereus. The principal constituents of CHEO are ar-turmerone, β-turmerone, α-zingiberene, α-terpinolene, 1,8-cineole, and camphor. CHEO exhibited the strongest antibacterial activity against E. coli with a MIC of 3.9 µg/mL, which is comparable to that of tetracycline. The combination of CHEO (0.97 µg/mL) and tetracycline (0.48 µg/mL) produced a synergistic effect with a FICI of 0.37. Time-kill assay confirmed that CHEO enhanced the activity of tetracycline. The mixture disrupted membrane permeability of E. coli and induced cell death. CHEO at MIC of 3.9 and 6.8 µg/mL significantly reduced the formation of biofilm in E. coli. The findings suggest that CHEO has the potential to be an alternative source of antibacterial agents against foodborne pathogens, particularly E. coli.
Collapse
Affiliation(s)
- Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Banten, Indonesia
| | - Aprilia Nur Tasfiyati
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Banten, Indonesia
| | - Eldiza Puji Rahmi
- Pharmacy Program, Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Rizna Triana Dewi
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Banten, Indonesia
| | - Amit Jaisi
- School of Pharmacy, Walailak University, Thasala, Thailand
| |
Collapse
|
3
|
Korkus J, Sałata P, Thompson SA, Paluch E, Bania J, Wałecka-Zacharska E. The role of cydB gene in the biofilm formation by Campylobacter jejuni. RESEARCH SQUARE 2024:rs.3.rs-4342718. [PMID: 39315276 PMCID: PMC11419190 DOI: 10.21203/rs.3.rs-4342718/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Campylobacter jejuni is a major cause of food- and water-borne bacterial infections in humans. A key factor helping bacteria to survive adverse environmental conditions is biofilm formation ability. Nonetheless, the molecular basis underlying biofilm formation by C. jejuni remains poorly understood. Around thirty genes involved in the regulation and dynamics of C. jejuni biofilm formation have been described so far. We applied random transposon mutagenesis to identify new biofilm-associated genes in C. jejuni strain 81-176. Of 1350 mutants, twenty-four had a decreased ability to produce biofilm compared to the wild-type strain. Some mutants contained insertions in genes previously reported to affect the biofilm formation process. The majority of identified genes encoded hypothetical proteins. In the library of EZ-Tn5 insertion mutants, we found the cydB gene associated with respiration that was not previously linked with biofilm formation in Campylobacter. To study the involvement of the cydB gene in biofilm formation, we constructed a non-marked deletion cydB mutant together with a complemented mutant. We found that the cydB deletion-mutant formed a weaker biofilm of loosely organized structure and lower volume than the parent strain. In the present study, we demonstrated the role of the cydB gene in biofilm formation by C. jejuni.
Collapse
Affiliation(s)
- Jakub Korkus
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Patrycja Sałata
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Stuart A. Thompson
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia Augusta University, Augusta, GA USA
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
4
|
Santosaningsih D, Mulyastuti Y, Poejiani S, Putri RF, Dewi L, Arifani H, Ni’mah YL, Baktir A. The Biofilm Inhibition Properties of Glucosamine Gold Nanoparticles in Combination with Meropenem against Pseudomonas aeruginosa on the Endotracheal Tube: A Model of Biofilm-Related Ventilator-Associated Pneumonia. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1604. [PMID: 38612117 PMCID: PMC11012399 DOI: 10.3390/ma17071604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Biofilm-related infections play a significant role in the development and persistence of ventilator-associated pneumonia. Pseudomonas aeruginosa (P. aeruginosa) frequently causes biofilm-related infections associated with ventilator tubing. Glucosamine gold nanoparticles (AuNPs) may exhibit antibiofilm properties; however, more studies, including combinatorial therapy with antibiotics, are needed to explore their potential applications in clinical settings. This study aims to investigate the biofilm inhibition properties of glucosamine AuNPs in combination with meropenem against P. aeruginosa ATCC 9027 on the endotracheal tube. A biofilm inhibition assay of glucosamine AuNPs at 0.02 mg/mL, both singly and in combination with meropenem at 1 mg/mL, was carried out against P. aeruginosa ATCC 9027 on an endotracheal tube using the tissue culture plate method. Scanning electron microscopy was performed for visualization. Glucosamine AuNPs at 0.02 mg/mL combined with meropenem at 1 mg/mL showed greater biofilm inhibition (72%) on the endotracheal tube than glucosamine nanoparticles at 0.02 mg/mL alone (26%) (p = 0.001). The scanning electron microscopic visualization revealed that the untreated P. aeruginosa biofilm was denser than the glucosamine nanoparticles-treated biofilm, whether combined with meropenem or using glucosamine nanoparticles alone. The combination of glucosamine AuNPs and meropenem may have the synergistic effect of inhibiting biofilm production of P. aeruginosa on the endotracheal tubes of patients with mechanical ventilation. Conducting additional experiments to explore the impact of combining glucosamine-coated gold nanoparticles (AuNPs) with meropenem on the inhibition of biofilm production by clinical P. aeruginosa isolates would be beneficial.
Collapse
Affiliation(s)
- Dewi Santosaningsih
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang 65142, Indonesia; (Y.M.); (S.P.)
- Department of Clinical Microbiology, Dr. Saiful Anwar Hospital, Malang 65112, Indonesia
| | - Yuanita Mulyastuti
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang 65142, Indonesia; (Y.M.); (S.P.)
| | - Soeyati Poejiani
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang 65142, Indonesia; (Y.M.); (S.P.)
| | - Rilia F. Putri
- Magister of Chemistry Study Program, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Liliana Dewi
- School of Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65142, Indonesia; (L.D.); (H.A.)
| | - Hisanifa Arifani
- School of Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65142, Indonesia; (L.D.); (H.A.)
| | - Yatim L. Ni’mah
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia;
| | - Afaf Baktir
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
5
|
Louvado A, Coelho FJRC, Palma M, Magnoni LJ, Silva-Brito F, Ozório ROA, Cleary DFR, Viegas I, Gomes NCM. Study of the influence of tributyrin-supplemented diets on the gut bacterial communities of rainbow trout (Oncorhynchus mykiss). Sci Rep 2024; 14:5645. [PMID: 38454011 PMCID: PMC10920674 DOI: 10.1038/s41598-024-55660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Dietary supplementation with triglyceride tributyrin (TBT), a butyrate precursor, has been associated with beneficial effects on fish health and improvements in the ability of carnivorous fish to tolerate higher levels of plant-based protein. In this study, we aimed to investigate the effects of a plant-based diet supplemented with TBT on the structural diversity and putative function of the digesta-associated bacterial communities of rainbow trout (Oncorhynchus mykiss). In addition to this, we also assessed the response of fish gut digestive enzyme activities and chyme metabolic profile in response to TBT supplementation. Our results indicated that TBT had no significant effects on the overall fish gut bacterial communities, digestive enzyme activities or metabolic profile when compared with non-supplemented controls. However, a more in-depth analysis into the most abundant taxa showed that diets at the highest TBT concentrations (0.2% and 0.4%) selectively inhibited members of the Enterobacterales order and reduced the relative abundance of a bacterial population related to Klebsiella pneumoniae, a potential fish pathogen. Furthermore, the predicted functional analysis of the bacterial communities indicated that increased levels of TBT were associated with depleted KEGG pathways related to pathogenesis. The specific effects of TBT on gut bacterial communities observed here are intriguing and encourage further studies to investigate the potential of this triglyceride to promote pathogen suppression in the fish gut environment, namely in the context of aquaculture.
Collapse
Affiliation(s)
- A Louvado
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - F J R C Coelho
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Palma
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - L J Magnoni
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| | - F Silva-Brito
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - R O A Ozório
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - D F R Cleary
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - I Viegas
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - N C M Gomes
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
6
|
Vohra M, Kour A, Kalia NP, Kumar M, Sharma S, Jaglan S, Kamath N, Sharma S. A comprehensive review of genomics, transcriptomics, proteomics, and metabolomic insights into the differentiation of Pseudomonas aeruginosa from the planktonic to biofilm state: A multi-omics approach. Int J Biol Macromol 2024; 257:128563. [PMID: 38070800 DOI: 10.1016/j.ijbiomac.2023.128563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Biofilm formation by Pseudomonas aeruginosa is primarily responsible for chronic wound and lung infections in humans. These infections are persistent owing to the biofilm's high tolerance to antimicrobials and constantly changing environmental factors. Understanding the mechanism governing biofilm formation can help to develop therapeutics explicitly directed against the molecular markers responsible for this process. After numerous years of research, many genes responsible for both in vitro and in vivo biofilm development remain unidentified. However, there is no "all in one" complete in vivo or in vitro biofilm model. Recent findings imply that the shift from planktonic bacteria to biofilms is a complicated and interrelated differentiation process. Research on the applications of omics technologies in P. aeruginosa biofilm development is ongoing, and these approaches hold great promise for expanding our knowledge of the mechanisms of biofilm formation. This review discusses the different factors that affect biofilm formation and compares P. aeruginosa biofilm formation using the omics approaches targeting essential biological macromolecules, such as DNA, RNA, Protein, and metabolome. Furthermore, we have outlined the application of currently available omics tools, such as genomics, proteomics, metabolomics, transcriptomics, and integrated multi-omics methodologies, to understand the differential gene expression (biofilm vs. planktonic bacteria) of P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Mustafa Vohra
- Department of Medical Laboratory Science, Lovely Professional University, Punjab 144411, India; Department of Microbiology, Shri Vinoba Bhave Civil Hospital, Silvassa 396230, India
| | - Avleen Kour
- Department of Medical Laboratory Science, Lovely Professional University, Punjab 144411, India
| | - Nitin Pal Kalia
- Department of Biological Sciences (Pharmacology & Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Manoj Kumar
- Maternal and Child Health Program, Research Department, Sidra Medicine, Doha 122104, Qatar
| | - Sarika Sharma
- Department of Sponsored Research, Division of Research & Development, Lovely Professional University, India
| | - Sundeep Jaglan
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180016, J&K, India
| | - Narayan Kamath
- Department of Microbiology, Shri Vinoba Bhave Civil Hospital, Silvassa 396230, India; Department of Microbiology, NAMO Medical Education and Research Institute, Silvassa 396230, India
| | - Sandeep Sharma
- Department of Medical Laboratory Science, Lovely Professional University, Punjab 144411, India.
| |
Collapse
|
7
|
Savelyeva IO, Zhdanova KA, Gradova MA, Gradov OV, Bragina NA. Cationic Porphyrins as Antimicrobial and Antiviral Agents in Photodynamic Therapy. Curr Issues Mol Biol 2023; 45:9793-9822. [PMID: 38132458 PMCID: PMC10741785 DOI: 10.3390/cimb45120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Antimicrobial photodynamic therapy (APDT) has received a great deal of attention due to its unique ability to kill all currently known classes of microorganisms. To date, infectious diseases caused by bacteria and viruses are one of the main sources of high mortality, mass epidemics and global pandemics among humans. Every year, the emergence of three to four previously unknown species of viruses dangerous to humans is recorded, totaling more than 2/3 of all newly discovered human pathogens. The emergence of bacteria with multidrug resistance leads to the rapid obsolescence of antibiotics and the need to create new types of antibiotics. From this point of view, photodynamic inactivation of viruses and bacteria is of particular interest. This review summarizes the most relevant mechanisms of antiviral and antibacterial action of APDT, molecular targets and correlation between the structure of cationic porphyrins and their photodynamic activity.
Collapse
Affiliation(s)
- Inga O. Savelyeva
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (K.A.Z.); (N.A.B.)
| | - Kseniya A. Zhdanova
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (K.A.Z.); (N.A.B.)
| | - Margarita A. Gradova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow 119991, Russia;
| | - Oleg V. Gradov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow 119991, Russia;
| | - Natal’ya A. Bragina
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (K.A.Z.); (N.A.B.)
| |
Collapse
|
8
|
El-Sapagh S, El-Shenody R, Pereira L, Elshobary M. Unveiling the Potential of Algal Extracts as Promising Antibacterial and Antibiofilm Agents against Multidrug-Resistant Pseudomonas aeruginosa: In Vitro and In Silico Studies including Molecular Docking. PLANTS (BASEL, SWITZERLAND) 2023; 12:3324. [PMID: 37765485 PMCID: PMC10537748 DOI: 10.3390/plants12183324] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Multidrug-resistant Pseudomonas aeruginosa poses a global challenge due to its virulence and biofilm-forming ability, leading to persistent infections. This study had a dual focus: first, it aimed to investigate the biofilm activity and antibiotic resistance profiles of Pseudomonas aeruginosa isolates obtained from a fish-rearing farm. Second, it explored the potential of algal extracts as effective antibacterial and antibiofilm agents. The study analyzed 23 isolates of P. aeruginosa from the farm, assessing antibiotic resistance and biofilm formation. The antimicrobial and antibiofilm activities of two algal extracts, Arthrospira platensis (cyanobacteria) acetone extract (AAE) and Polysiphonia scopulorum (Rhodophyta) methanol extract (PME), were tested individually and combined (COE). The effects on biofilm-related gene expression were examined. AAE, PME, and COE were evaluated for antimicrobial and antibiofilm properties. Biofilm-related gene expression was measured and the extracts were analyzed for physicochemical properties and toxicity. Most P. aeruginosa isolates (86.9%) were antibiotic-resistant and formed biofilms. AAE, PME, and COE displayed promising antibacterial and antibiofilm effects, with COE being particularly effective. COE reduced a key biofilm-related gene expression. The fatty acid content (56% in AAE and 34% in PME) correlated with the effects. Specific compounds, such as phytol, bromophenol, and dihydroxy benzaldehyde, contributed to the activities. The extracts showed favorable characteristics and interactions with FabZ protein amino acids. This study suggests the potential of algal extracts as antibacterial and antibiofilm agents against drug-resistant infections. Further exploration in clinical applications is warranted.
Collapse
Affiliation(s)
- Shimaa El-Sapagh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta 31527, Egypt; (S.E.-S.); (R.E.-S.)
| | - Rania El-Shenody
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta 31527, Egypt; (S.E.-S.); (R.E.-S.)
| | - Leonel Pereira
- Department of Life Sciences, University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, 3000-456 Coimbra, Portugal;
| | - Mostafa Elshobary
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta 31527, Egypt; (S.E.-S.); (R.E.-S.)
| |
Collapse
|
9
|
Multi-dimensional experimental and computational exploration of metabolism pinpoints complex probiotic interactions. Metab Eng 2023; 76:120-132. [PMID: 36720400 DOI: 10.1016/j.ymben.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/13/2022] [Accepted: 01/21/2023] [Indexed: 01/29/2023]
Abstract
Multi-strain probiotics are widely regarded as effective products for improving gut microbiota stability and host health, providing advantages over single-strain probiotics. However, in general, it is unclear to what extent different strains would cooperate or compete for resources, and how the establishment of a common biofilm microenvironment could influence their interactions. In this work, we develop an integrative experimental and computational approach to comprehensively assess the metabolic functionality and interactions of probiotics across growth conditions. Our approach combines co-culture assays with genome-scale modelling of metabolism and multivariate data analysis, thus exploiting complementary data- and knowledge-driven systems biology techniques. To show the advantages of the proposed approach, we apply it to the study of the interactions between two widely used probiotic strains of Lactobacillus reuteri and Saccharomyces boulardii, characterising their production potential for compounds that can be beneficial to human health. Our results show that these strains can establish a mixed cooperative-antagonistic interaction best explained by competition for shared resources, with an increased individual exchange but an often decreased net production of amino acids and short-chain fatty acids. Overall, our work provides a strategy that can be used to explore microbial metabolic fingerprints of biotechnological interest, capable of capturing multifaceted equilibria even in simple microbial consortia.
Collapse
|
10
|
Urquhart CG, Pinheiro TDR, da Silva JLG, Leal DBR, Burgo TAL, Iglesias BA, Santos RCV. Antimicrobial activity of water-soluble tetra-cationic porphyrins on Pseudomonas aeruginosa. Photodiagnosis Photodyn Ther 2022; 42:103266. [PMID: 36587859 DOI: 10.1016/j.pdpdt.2022.103266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
This manuscript presents the cytotoxicity, antimicrobial activity, antibiofilm preliminary properties, and associated therapy with commercial drugs using water-soluble tetra-cationic porphyrins against Pseudomonas aeruginosa. Two commercial tetra-cationic porphyrins were tested against a standard strain of P. aeruginosa 01 (PA01) in antibacterial activity assays under dark conditions and irradiated with white light for 120 min. Porphyrin 4-H2TMePor showed better antimicrobial activity and was chosen for further tests. Increased minimum inhibitory concentration was observed in the presence of reactive oxygen species, suggesting that photooxidation was mediated by the singlet oxygen production. In the time-kill curve assay, 4-H2TMePor inhibited bacterial growth in 90 min of irradiation. The checkerboard assay revealed synergistic interactions. Biofilms of the standard PA01 strain and three clinical isolates were formed. The biofilm destruction assay was more efficient for PA01, significantly reducing the biofilm biomass formed compared to the positive control. The associated treatment to destroy the biofilm potentiated a significant decrease in the biofilm biomass compared to the positive control. The photosensitizer did not damage human keratinocytes or mouse fibroblasts in the cytotoxicity assays, demonstrating the safety of using 4-H2TMePor. Atomic force microscopy indicated lower adhesion force, higher cell wall deformation, and higher dissipation energy in the treated control compared to untreated PA01. Given our findings, it is evident that water-soluble tetra-cationic porphyrins have excellent antimicrobial and a preliminary antibiofilm activity against Gram-negative bacteria, proving to be a potential photosensitizer for clinical use.
Collapse
Affiliation(s)
- Carolina Gonzalez Urquhart
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia (LAPEMICRO), Universidade Federal de Santa Maria, RS, Brazil
| | - Ticiane da Rosa Pinheiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia (LAPEMICRO), Universidade Federal de Santa Maria, RS, Brazil
| | - Jean Lucas Gutknecht da Silva
- Laboratório de Imunologia Experimental e Aplicada (LABIBIO), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Daniela Bitencourt Rosa Leal
- Laboratório de Imunologia Experimental e Aplicada (LABIBIO), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Thiago Augusto Lima Burgo
- Department of Chemistry and Environmental Sciences, Ibilce, Sao Paulo State University (Unesp), R. Cristovao Colombo, 2265, S. J. Rio Preto, SP 15014-100, Brazil
| | - Bernardo Almeida Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos (LBMP), Departamento de Química, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Roberto Christ Vianna Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia (LAPEMICRO), Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Díaz-Pérez SP, Solis CS, López-Bucio JS, Valdez Alarcón JJ, Villegas J, Reyes-De la Cruz H, Campos-Garcia J. Pathogenesis in Pseudomonas aeruginosa PAO1 Biofilm-Associated Is Dependent on the Pyoverdine and Pyocyanin Siderophores by Quorum Sensing Modulation. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02095-5. [PMID: 35948833 DOI: 10.1007/s00248-022-02095-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogenic bacterium for humans, animals, and plants, through producing different molecular factors such as biofilm, siderophores, and other virulence factors which favor bacterial establishment and infection in the host. In P. aeruginosa PAO1, the production of these factors is regulated by the bacterial quorum sensing (QS) mechanisms. From them, siderophores are involved in iron acquisition, transport, and homeostasis. They are also considered some of the main virulence factors in P. aeruginosa; however, detailed mechanisms to induce bacterial pathogenesis are poorly understood. In this work, through reverse genetics, we evaluated the function of bacterial pathogenesis in the pvd cluster genes, which are required for synthesizing the siderophore pyoverdine (PVD). Single pvdI, pvdJ, pvdL, and double mutant strains were analyzed, and contrary to expected, the pvdL and pvdI mutations increased the concentration of PVD and other phenazines, such as pyocyanin (PYO) and phenazine-1-carboxylic acid (PCA) and also an increased biofilm production and morphology depending on the autoinducer 2-alkyl-4-quinolone (PQS) and the QS molecules acyl-homoserine lactones. Consequently, in the in vivo pathogenicity model of Caenorhabditis elegans, the mutations in pvdI, pvdJ, and pvdL increased the survival of the worms exposed to supernatants or biofilms of the bacterial cultures. However, the double mutant pvdI/pvdJ increased its toxicity in agreeing with the biofilm production, PVD, PYO, and PCA. The findings indicate that the mutations in pvd genes encode non-ribosomal peptide synthetases impacted the biofilm's structure, but suppressively also of the phenazines, confirming that the siderophores contribute to the bacterial establishment and pathogenicity of P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Sharel Pamela Díaz-Pérez
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. U-3, Ciudad Universitaria, CP. 58030, Morelia, Michoacán, México
| | - Christian Said Solis
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. U-3, Ciudad Universitaria, CP. 58030, Morelia, Michoacán, México
| | - Jesús Salvador López-Bucio
- Laboratorio de Control Traduccional, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Juan J Valdez Alarcón
- Centro de Estudios Multidisciplinarios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán, México
| | - Javier Villegas
- Laboratorio de Interacción Suelo, Planta, Microorganismo, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Homero Reyes-De la Cruz
- Laboratorio de Control Traduccional, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Jesús Campos-Garcia
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. U-3, Ciudad Universitaria, CP. 58030, Morelia, Michoacán, México.
| |
Collapse
|
12
|
Naoun AA, Raphael I, Forsthuber TG. Immunoregulation via Cell Density and Quorum Sensing-like Mechanisms: An Underexplored Emerging Field with Potential Translational Implications. Cells 2022; 11:cells11152442. [PMID: 35954285 PMCID: PMC9368058 DOI: 10.3390/cells11152442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing (QS) was historically described as a mechanism by which bacteria detect and optimize their population density via gene regulation based on dynamic environmental cues. Recently, it was proposed that QS or similar mechanisms may have broader applications across different species and cell types. Indeed, emerging evidence shows that the mammalian immune system can also elicit coordinated responses on a population level to regulate cell density and function, thus suggesting that QS-like mechanisms may also be a beneficial trait of the immune system. In this review, we explore and discuss potential QS-like mechanisms deployed by the immune system to coordinate cellular-level responses, such as T cell responses mediated via the common gamma chain (γc) receptor cytokines and the aryl hydrocarbon receptors (AhRs). We present evidence regarding a novel role of QS as a multifunctional mechanism coordinating CD4+ and CD8+ T cell behavior during steady state and in response to infection, inflammatory diseases, and cancer. Successful clinical therapies such as adoptive cell transfer for cancer treatment may be re-evaluated to harness the effects of the QS mechanism(s) and enhance treatment responsiveness. Moreover, we discuss how signaling threshold perturbations through QS-like mediators may result in disturbances of the complex crosstalk between immune cell populations, undesired T cell responses, and induction of autoimmune pathology. Finally, we discuss the potential therapeutic role of modulating immune-system-related QS as a promising avenue to treat human diseases.
Collapse
Affiliation(s)
- Adrian A. Naoun
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Itay Raphael
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15217, USA
- Correspondence: (I.R.); (T.G.F.)
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Correspondence: (I.R.); (T.G.F.)
| |
Collapse
|
13
|
Guo M, Tan S, Zhu J, Sun A, Du P, Liu X. Genes Involved in Biofilm Matrix Formation of the Food Spoiler Pseudomonas fluorescens PF07. Front Microbiol 2022; 13:881043. [PMID: 35733961 PMCID: PMC9207406 DOI: 10.3389/fmicb.2022.881043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The extracellular matrix is essential for the biofilm formation of food spoilers. Pseudomonas fluorescens PF07 is a previous isolate from spoiled marine fish; however, the genes involved in the extracellular matrix formation of PF07 biofilms remain poorly defined. In this study, PF07 formed a wrinkled macrocolony biofilm through the high production of extracellular matrix. The genes involved in biofilm matrix formation and regulation were screened and identified by RNA-seq-dependent transcriptomic analysis and gene knock-out analysis. The macrocolony biofilms of PF07 grown for 5 days (PF07_5d) were compared with those grown for 1 day (PF07_1d). A total of 1,403 genes were significantly differentially expressed during biofilm formation. These mainly include the genes related to biofilm matrix proteins, polysaccharides, rhamnolipids, secretion system, biofilm regulation, and metabolism. Among them, functional amyloid genes fapABCDE were highly upregulated in the mature biofilm, and the operon fapA-E had a –24/–12 promoter dependent on the sigma factor RpoN. Moreover, the RNA-seq analyses of the rpoN mutant, compared with PF07, revealed 159 genes were differentially expressed in the macrocolony biofilms, and fapA-E genes were positively regulated by RpoN. In addition, the deletion mutants of fapC, rpoN, and brfA (a novel gene coding for an RpoN-dependent transcriptional regulator) were defective in forming mature macrocolony biofilms, solid surface-associated (SSA) biofilms, and pellicles, and they showed significantly reduced biofilm matrices. The fap genes were significantly downregulated in ΔbrfA, as in ΔrpoN. These findings suggest that the functional amyloid Fap is the main component of PF07 biofilm matrices, and RpoN may directly regulate the transcription of fap genes, in conjunction with BrfA. These genes may serve as potential molecular targets for screening new anti-biofilm agents or for biofilm detection in food environments.
Collapse
Affiliation(s)
- Miao Guo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Siqi Tan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Aihua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Peng Du
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiaoxiang Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaoxiang Liu,
| |
Collapse
|
14
|
Bai W, Liu Q, Chang H, Liu Q, Gao C, Bai Y, Zhou H, Shi S. Metabolomics reveals the renoprotective effect of n-butanol extract and amygdalin extract from Amygdalus mongolica in rats with renal fibrosis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:556-564. [PMID: 34278886 DOI: 10.1080/21691401.2021.1952212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Renal fibrosis (RF) is a pathological process of progression from chronic kidney disease to end-stage renal disease. Amygdalus mongolica is a traditional Chinese medicine, and our previous studies demonstrated that the n-butanol extract (BUT) and amygdalin extract (AMY) from its seeds can prevent RF. However, the underlying mechanism remains unclear. The present study investigated the exact mechanism of the protective effect of A. mongolica on RF. A renal fibrosis rat model was induced with unilateral ureteral obstruction. Biochemical indicators were measured and combined with histopathology of renal tissue to evaluate the anti-RF effects. A serum metabonomic method was used to clarify the changes in the metabolic profile. The tubulointerstitial damage and fibrosis were significantly improved and metabolic perturbations were restored after treatment with BUT and AMY. Thirty-eight metabolites associated with RF progression and related to the regulation of arginine and proline metabolism, nicotinate and nicotinamide metabolism, and histidine metabolism were identified. They were restored to levels similar to those in controls after treatment. Moreover, no significant differences in efficacy were observed between the BUT and AMY groups. This study reveals and compares the potential mechanisms of the renoprotective effects after treatment with BUT and AMY from a metabolomic perspective.
Collapse
Affiliation(s)
- Wanfu Bai
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Qing Liu
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Quanli Liu
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Chen Gao
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Yingchun Bai
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Hongbing Zhou
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Songli Shi
- Department of Pharmacy, Baotou Medical College, Baotou, China
| |
Collapse
|
15
|
Martínez-Alcantar L, Orozco G, Díaz-Pérez AL, Villegas J, Reyes-De la Cruz H, García-Pineda E, Campos-García J. Participation of Acyl-Coenzyme A Synthetase FadD4 of Pseudomonas aeruginosa PAO1 in Acyclic Terpene/Fatty Acid Assimilation and Virulence by Lipid A Modification. Front Microbiol 2021; 12:785112. [PMID: 34867927 PMCID: PMC8637051 DOI: 10.3389/fmicb.2021.785112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
The pathogenic bacterium Pseudomonas aeruginosa possesses high metabolic versatility, with its effectiveness to cause infections likely due to its well-regulated genetic content. P. aeruginosa PAO1 has at least six fadD paralogous genes, which have been implicated in fatty acid (FA) degradation and pathogenicity. In this study, we used mutagenesis and a functional approach in P. aeruginosa PAO1 to determine the roles of the fadD4 gene in acyclic terpene (AT) and FA assimilation and on pathogenicity. The results indicate that fadD4 encodes a terpenoyl-CoA synthetase utilized for AT and FA assimilation. Additionally, mutations in fadD paralogs led to the modification of the quorum-sensing las/rhl systems, as well as the content of virulence factors pyocyanin, biofilm, rhamnolipids, lipopolysaccharides (LPS), and polyhydroxyalkanoates. In a Caenorhabditis elegans in vivo pathogenicity model, culture supernatants from the 24-h-grown fadD4 single mutant increased lethality compared to the PAO1 wild-type (WT) strain; however, the double mutants fadD1/fadD2, fadD1/fadD4, and fadD2/fadD4 and single mutant fadD2 increased worm survival. A correlation analysis indicated an interaction between worm death by the PAO1 strain, the fadD4 mutation, and the virulence factor LPS. Fatty acid methyl ester (FAME) analysis of LPS revealed that a proportion of the LPS and FA on lipid A were modified by the fadD4 mutation, suggesting that FadD4 is also involved in the synthesis/degradation and modification of the lipid A component of LPS. LPS isolated from the fadD4 mutant and double mutants fadD1/fadD4 and fadD2/fadD4 showed a differential behavior to induce an increase in body temperature in rats injected with LPS compared to the WT strain or from the fadD1 and fadD2 mutants. In agreement, LPS isolated from the fadD4 mutant and double mutants fadD1/fadD2 and fadD2/fadD4 increased the induction of IL-8 in rat sera, but IL1-β cytokine levels decreased in the double mutants fadD1/fadD2 and fadD1/fadD4. The results indicate that the fadD genes are implicated in the degree of pathogenicity of P. aeruginosa PAO1 induced by LPS-lipid A, suggesting that FadD4 contributes to the removal of acyl-linked FA from LPS, rendering modification in its immunogenic response associated to Toll-like receptor TLR4. The genetic redundancy of fadD is important for bacterial adaptability and pathogenicity over the host.
Collapse
Affiliation(s)
- Lorena Martínez-Alcantar
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Gabriela Orozco
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Alma Laura Díaz-Pérez
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Javier Villegas
- Laboratorio de Interacción Suelo, Planta, Microorganismo, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Homero Reyes-De la Cruz
- Laboratorio de Control Traduccional, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ernesto García-Pineda
- Laboratorio de Bioquímica y Biología Molecular, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Jesús Campos-García
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
16
|
Zhang L, Wen B, Bao M, Cheng Y, Mahmood T, Yang W, Chen Q, Lv L, Li L, Yi J, Xie N, Lu C, Tan Y. Andrographolide Sulfonate Is a Promising Treatment to Combat Methicillin-resistant Staphylococcus aureus and Its Biofilms. Front Pharmacol 2021; 12:720685. [PMID: 34603031 PMCID: PMC8481920 DOI: 10.3389/fphar.2021.720685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/29/2021] [Indexed: 01/04/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a drug-resistant pathogen threatening human health and safety. Biofilms are an important cause of its drug resistance and pathogenicity. Inhibition and elimination of biofilms is an important strategy for the treatment of MRSA infection. Andrographolide sulfonate (AS) is an active component of the traditional herbal medicine Andrographis paniculata. This study aims to explore the inhibitory effect and corresponding mechanisms of AS on MRSA and its biofilms. Three doses of AS (6.25, 12.5, and 25 mg/ml) were introduced to MRSA with biofilms. In vitro antibacterial testing and morphological observation were used to confirm the inhibitory effect of AS on MRSA with biofilms. Real-time PCR and metabonomics were used to explore the underlying mechanisms of the effect by studying the expression of biofilm-related genes and endogenous metabolites. AS displayed significant anti-MRSA activity, and its minimum inhibitory concentration was 50 μg/ml. Also, AS inhibited biofilms and improved biofilm permeability. The mechanisms are mediated by the inhibition of the expression of genes, such as quorum sensing system regulatory genes (agrD and sarA), microbial surface components–recognizing adhesion matrix genes (clfA and fnbB), intercellular adhesion genes (icaA, icaD, and PIA), and a gene related to cellular eDNA release (cidA), and the downregulation of five biofilm-related metabolites, including anthranilic acid, D-lactic acid, kynurenine, L-homocitrulline, and sebacic acid. This study provided valuable evidence for the activity of AS against MRSA and its biofilms and extended the methods to combat MRSA infection.
Collapse
Affiliation(s)
- Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Bo Wen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mei Bao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Yungchi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Weifeng Yang
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Lang Lv
- Qingfeng Pharmaceutical Co. Ltd., Ganzhou, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianfeng Yi
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Ning Xie
- Qingfeng Pharmaceutical Co. Ltd., Ganzhou, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Astrada A, Nakagami G, Minematsu T, Goto T, Kitamura A, Mugita Y, Sanada H. Concurrent validity of biofilm detection by wound blotting on hard-to-heal wounds. J Wound Care 2021; 30:S4-S13. [PMID: 33856931 DOI: 10.12968/jowc.2021.30.sup4.s4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Wound biofilms delay healing of hard-to-heal wounds. Convenient biofilm identification tools for clinical settings are currently not available, hindering biofilm-based wound management. Wound blotting with biofilm staining is a potential tool for biofilm detection, owing to its convenience. Although predictive validity of wound blotting has been established, it is necessary to confirm its concurrent validity. Furthermore, current staining systems employing ruthenium red have some disadvantages for clinical use. This study aimed to evaluate the usability of alcian blue as a substitute for ruthenium red. METHOD Both in vitro and in vivo clinical samples were used to investigate validity and usability. RESULTS The in vitro study showed that proteins and extracellular DNA in biofilms did not affect staining ability of ruthenium red and alcian blue in the detection of biofilms. In the in vivo study, using a wound biofilm model with Pseudomonas aeruginosa, the staining sensitivity of ruthenium red was 88.9% and 100% for alcian blue, with correlation coefficients of signal intensities with native polyacrylamide gel electrophoresis (PAGE) of r=0.67 (p=0.035) and r=0.67 (p=0.036) for ruthenium red and alcian blue, respectively. Results from clinical samples were r=0.75 (p=0.001) for ruthenium red and r=0.77 (p<0.001) for alcian blue. The sensitivities of wound blotting staining by ruthenium red and alcian blue were very high and had a good correlation with native PAGE analysis. CONCLUSION Because the alcian blue procedure is more convenient than the ruthenium red procedure, wound blotting with alcian blue staining would be a promising tool to guide clinicians in delivering biofilm-based wound management.
Collapse
Affiliation(s)
- Adam Astrada
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeo Minematsu
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Skincare Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taichi Goto
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, US
| | - Aya Kitamura
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuko Mugita
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Gil-Gil T, Ochoa-Sánchez LE, Baquero F, Martínez JL. Antibiotic resistance: Time of synthesis in a post-genomic age. Comput Struct Biotechnol J 2021; 19:3110-3124. [PMID: 34141134 PMCID: PMC8181582 DOI: 10.1016/j.csbj.2021.05.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
Antibiotic resistance has been highlighted by international organizations, including World Health Organization, World Bank and United Nations, as one of the most relevant global health problems. Classical approaches to study this problem have focused in infected humans, mainly at hospitals. Nevertheless, antibiotic resistance can expand through different ecosystems and geographical allocations, hence constituting a One-Health, Global-Health problem, requiring specific integrative analytic tools. Antibiotic resistance evolution and transmission are multilayer, hierarchically organized processes with several elements (from genes to the whole microbiome) involved. However, their study has been traditionally gene-centric, each element independently studied. The development of robust-economically affordable whole genome sequencing approaches, as well as other -omic techniques as transcriptomics and proteomics, is changing this panorama. These technologies allow the description of a system, either a cell or a microbiome as a whole, overcoming the problems associated with gene-centric approaches. We are currently at the time of combining the information derived from -omic studies to have a more holistic view of the evolution and spread of antibiotic resistance. This synthesis process requires the accurate integration of -omic information into computational models that serve to analyse the causes and the consequences of acquiring AR, fed by curated databases capable of identifying the elements involved in the acquisition of resistance. In this review, we analyse the capacities and drawbacks of the tools that are currently in use for the global analysis of AR, aiming to identify the more useful targets for effective corrective interventions.
Collapse
Affiliation(s)
- Teresa Gil-Gil
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain
| | | | - Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
- CIBER en Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain
| | | |
Collapse
|
19
|
Nain Z, Mansur FJ, Syed SB, Islam MA, Azakami H, Islam MR, Karim MM. Inhibition of biofilm formation, quorum sensing and other virulence factors in Pseudomonas aeruginosa by polyphenols of Gynura procumbens leaves. J Biomol Struct Dyn 2021; 40:5357-5371. [PMID: 33403919 DOI: 10.1080/07391102.2020.1870563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quorum sensing (QS) enables virulence factors in bacteria for biofilm formation and pathogenic invasion. Therefore, quorum quenching (QQ), disruption of QS circuit, becomes an alternative antimicrobial therapy. In this study, leaf extract of Gynura procumbens (GP) was used to inhibit biofilm and virulent factors in Pseudomonas aeruginosa. The extract inhibited the biofilm production (p ≤ 0.05) in P. aeruginosa strains MZ2F and MZ4A. The minimum biofilm eradication concentration (MBEC) was recorded at 250 and 500 μg/ml while total activity was found at 288 and 144 ml/g, respectively. Moreover, a significant reduction of virulence factors (p ≤ 0.05) at sub-MBEC without affecting the growth implies the QQ action of the extract. The bioactive fractions were rich in polyphenols and tentatively identified as quercetin and myricetin (Rf=0.53-0.60). Furthermore, we employed computational methods to validate our findings and their interactions with QS receptors (LasR and RhlR). Interestingly, docking studies have also shown that quercetin and myricetin are the promising anti-QS agents out of 31 GP compounds. Notably, their binding affinity ranged between -9.77 and -10.52 kcal/mol for both QS receptors, with controls ranging from -5.40 to -8.97 kcal/mol. Besides, ΔG of quercetin and myricetin with LasR was -71.56 and -74.88 kcal/mol, respectively. Moreover, compounds were suitable drug candidates with stable binding interactions. Therefore, the anti-QS activity of GP leaves and the identified polyphenols can be used in developing QQ-based therapeutics. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Fariha Jasin Mansur
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Shifath Bin Syed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md Ariful Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Hiroyuki Azakami
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Md Rezuanul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Mohammad Minnatul Karim
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| |
Collapse
|
20
|
Patel N, Swavey S, Robinson J. A Cationic Porphyrin, ZnPor, Disassembles Pseudomonas aeruginosa Biofilm Matrix, Kills Cells Directly, and Enhances Antibiotic Activity of Tobramycin. Antibiotics (Basel) 2020; 9:E875. [PMID: 33291344 PMCID: PMC7762324 DOI: 10.3390/antibiotics9120875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/28/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
One of the greatest threats to human health is the rise in antibiotic-resistant bacterial infections. Pseudomonas aeruginosa (PsA) is an "opportunistic" pathogen known to cause life-threatening infections in immunocompromised individuals and is the most common pathogen in adults with cystic fibrosis (CF). We report here a cationic zinc (II) porphyrin, ZnPor, that effectively kills planktonic and biofilm-associated cells of PsA. In standard tests against 16-18 h-old biofilms, concentrations as low as 16 µg/mL resulted in the extensive disruption and detachment of the matrix. The pre-treatment of biofilms for 30 min with ZnPor at minimum inhibitory concentration (MIC) levels (4 µg/mL) substantially enhanced the ability of tobramycin (Tobra) to kill biofilm-associated cells. We demonstrate the rapid uptake and accumulation of ZnPor in planktonic cells even in dedicated heme-uptake system mutants (ΔPhu, ΔHas, and the double mutant). Furthermore, uptake was unaffected by the ionophore carbonyl cyanide m-chlorophenyl hydrazine (CCCP). Cells pre-exposed to ZnPor took up the cell-impermeant dye SYTOXTM Green in a concentration-dependent manner. The accumulation of ZnPor did not result in cell lysis, nor did the cells develop resistance. Taken together, these properties make ZnPor a promising candidate for treating multi-drug-resistant infections, including persistent, antibiotic-resistant biofilms.
Collapse
Affiliation(s)
- Neha Patel
- Department of Biology, University of Dayton, Dayton, OH 45469, USA;
| | - Shawn Swavey
- Department of Chemistry, University of Dayton, Dayton, OH 45469, USA;
| | - Jayne Robinson
- Department of Biology, University of Dayton, Dayton, OH 45469, USA;
- Integrated Science and Engineering Center, University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
21
|
Effect of temperature and surfactant on biomass growth and higher-alcohol production during syngas fermentation by Clostridium carboxidivorans P7. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00344-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractHexanol–butanol–ethanol fermentation from syngas by Clostridium carboxidivorans P7 is a promising route for biofuel production. However, bacterial agglomeration in the culture of 37 °C severely hampers the accumulation of biomass and products. To investigate the effect of culture temperature on biomass growth and higher-alcohol production, C. carboxidivorans P7 was cultivated at both constant and two-step temperatures in the range from 25 to 37 °C. Meanwhile, Tween-80 and saponin were screened out from eight surfactants to alleviate agglomeration at 37 °C. The results showed that enhanced higher-alcohol production was contributed mainly by the application of two-step temperature culture rather than the addition of anti-agglomeration surfactants. Furthermore, comparative transcriptome revealed that although 37 °C promoted high expression of genes involved in the Wood–Ljungdahl pathway, genes encoding enzymes catalyzing acyl-condensation reactions associated with higher-alcohol production were highly expressed at 25 °C. This study gained greater insight into temperature-effect mechanism on syngas fermentation by C. carboxidivorans P7.
Collapse
|
22
|
Chung WY, Zhu Y, Mahamad Maifiah MH, Shivashekaregowda NKH, Wong EH, Abdul Rahim N. Novel antimicrobial development using genome-scale metabolic model of Gram-negative pathogens: a review. J Antibiot (Tokyo) 2020; 74:95-104. [PMID: 32901119 DOI: 10.1038/s41429-020-00366-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
Antimicrobial resistance (AMR) threatens the effective prevention and treatment of a wide range of infections. Governments around the world are beginning to devote effort for innovative treatment development to treat these resistant bacteria. Systems biology methods have been applied extensively to provide valuable insights into metabolic processes at system level. Genome-scale metabolic models serve as platforms for constraint-based computational techniques which aid in novel drug discovery. Tools for automated reconstruction of metabolic models have been developed to support system level metabolic analysis. We discuss features of such software platforms for potential users to best fit their purpose of research. In this work, we focus to review the development of genome-scale metabolic models of Gram-negative pathogens and also metabolic network approach for identification of antimicrobial drugs targets.
Collapse
Affiliation(s)
- Wan Yean Chung
- School of Pharmacy, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Melbourne, 3800, VIC, Australia
| | - Mohd Hafidz Mahamad Maifiah
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), 53100, Jalan Gombak, Selangor, Malaysia
| | - Naveen Kumar Hawala Shivashekaregowda
- Center for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia.
| | | |
Collapse
|
23
|
Cardinali-Rezende J, Di Genova A, Nahat RATPS, Steinbüchel A, Sagot MF, Costa RS, Oliveira HC, Taciro MK, Silva LF, Gomez JGC. The relevance of enzyme specificity for coenzymes and the presence of 6-phosphogluconate dehydrogenase for polyhydroxyalkanoates production in the metabolism of Pseudomonas sp. LFM046. Int J Biol Macromol 2020; 163:240-250. [PMID: 32622773 DOI: 10.1016/j.ijbiomac.2020.06.226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/14/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022]
Abstract
Reconstruction of genome-based metabolic model is a useful approach for the assessment of metabolic pathways, genes and proteins involved in the environmental fitness capabilities or pathogenic potential as well as for biotechnological processes development. Pseudomonas sp. LFM046 was selected as a good polyhydroxyalkanoates (PHA) producer from carbohydrates and plant oils. Its complete genome sequence and metabolic model were obtained. Analysis revealed that the gnd gene, encoding 6-phosphogluconate dehydrogenase, is absent in Pseudomonas sp. LFM046 genome. In order to improve the knowledge about LFM046 metabolism, the coenzyme specificities of different enzymes was evaluated. Furthermore, the heterologous expression of gnd genes from Pseudomonas putida KT2440 (NAD+ dependent) and Escherichia coli MG1655 (NADP+ dependent) in LFM046 was carried out and provoke a delay on cell growth and a reduction in PHA yield, respectively. The results indicate that the adjustment in cyclic Entner-Doudoroff pathway may be an interesting strategy for it and other bacteria to simultaneously meet divergent cell needs during cultivation phases of growth and PHA production.
Collapse
Affiliation(s)
- Juliana Cardinali-Rezende
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil; Westfalische Wilhelms-Universitat Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany.
| | - Alex Di Genova
- ERABLE Team, Inria Grenoble Rhône-Alpes, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rafael A T P S Nahat
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Alexander Steinbüchel
- Westfalische Wilhelms-Universitat Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany; Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marie-France Sagot
- ERABLE Team, Inria Grenoble Rhône-Alpes, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rafael S Costa
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; REQUIMTE/LAQV, Department of Chemistry, Faculty of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Henrique C Oliveira
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Marilda K Taciro
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Luiziana F Silva
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - José Gregório C Gomez
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil.
| |
Collapse
|
24
|
Banzhaf M, Resendis-Antonio O, Zepeda-Mendoza ML. Uncovering the Dynamic Mechanisms of the Pseudomonas Aeruginosa Quorum Sensing and Virulence Networks Using Boolean Modelling. IEEE Trans Nanobioscience 2020; 19:394-402. [DOI: 10.1109/tnb.2020.2977820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Obata O, Salar-Garcia MJ, Greenman J, Kurt H, Chandran K, Ieropoulos I. Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 258:109992. [PMID: 31929046 PMCID: PMC7001104 DOI: 10.1016/j.jenvman.2019.109992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 05/20/2023]
Abstract
The Microbial fuel cell (MFC) technology harnesses the potential of some naturally occurring bacteria for electricity generation. Digested sludge is commonly used as the inoculum to initiate the process. There are, however, health hazards and practical issues associated with the use of digested sludge depending on its origin as well as the location for system deployment. This work reports the development of an efficient electroactive bacterial community within ceramic-based MFCs fed with human urine in the absence of sludge inoculum. The results show the development of a uniform bacterial community with power output levels equal to or higher than those generated from MFCs inoculated with sludge. In this case, the power generation begins within 2 days of the experimental set-up, compared to about 5 days in some sludge-inoculated MFCs, thus significantly reducing the start-up time. The metagenomics analysis of the successfully formed electroactive biofilm (EAB) shows significant shifts between the microbial ecology of the feeding material (fresh urine) and the developed anodic biofilm. A total of 21 bacteria genera were detected in the urine feedstock whilst up to 35 different genera were recorded in the developed biofilm. Members of Pseudomonas (18%) and Anaerolineaceae (17%) dominate the bacterial community of the fresh urine feed while members of Burkholderiaceae (up to 50%) and Tissierella (up to 29%) dominate the anodic EAB. These results highlight a significant shift in the bacterial community of the feedstock towards a selection and adaptation required for the various electrochemical reactions essential for survival through power generation.
Collapse
Affiliation(s)
- Oluwatosin Obata
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK.
| | - Maria J Salar-Garcia
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK; Biological, Biomedical and Analytical Sciences, University of the West of England, BS16 1QY, UK
| | - Halil Kurt
- Department of Earth and Environmental Engineering, Columbia University, NY, USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, NY, USA
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK.
| |
Collapse
|
26
|
Li Y, Xia H, Bai F, Song X, Zhuang L, Xu H, Zhang X, Zhang X, Qiao M. PA5001 gene involves in swimming motility and biofilm formation in Pseudomonas aeruginosa. Microb Pathog 2020; 144:103982. [PMID: 32105802 DOI: 10.1016/j.micpath.2020.103982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
Pseudomonas aeruginosa is a nosocomial human pathogen causing infections in immunocompromised patients. To explore new genes involved in P. aeruginosa swimming motility, Mu transposon mutagenesis library was screened for isolates with altered swimming motility. Eleven nonmobile mutants were identified. Sequence analysis shows the nonmobile phenotype of one isolate was attributed to the inactivation of PA5001 gene. PA5001 knockout mutant based on the PAK lab strain also displayed comparable phenotypes suggesting the universal gene function regardless of strain. Exotic PA5001 gene fragment provided on expressing plasmid was capable of storing nonmobile phenotype of PA5001 mutant, suggesting the functional involvement of PA5001 gene on bacterial swimming. Impact of PA5001 inactivation on biofilm formation was examined, as adhesion and interaction during biofilm formation is highly dependent of bacterial mobility. The result shows that normal architecture of biofilm was disrupted in the mutant. Complementing by exotic PA5001 gene fragment resulted in the restoration of biofilm phenotype. Our results provide evidences suggesting the functional participation of PA5001 gene in bacterial mobility and biofilm formation. The critical function by PA5001 in bacterial motility and biofilm might serve as hint for the novel target for the treatment of chronic infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Yingli Li
- College of Life Sciences, Nankai University, Tianjin, 300071, China; School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Huiming Xia
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Fang Bai
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xuyang Song
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Luning Zhuang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Haijin Xu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiuming Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiuming Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mingqiang Qiao
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
27
|
Rojony R, Martin M, Campeau A, Wozniak JM, Gonzalez DJ, Jaiswal P, Danelishvili L, Bermudez LE. Quantitative analysis of Mycobacterium avium subsp . hominissuis proteome in response to antibiotics and during exposure to different environmental conditions. Clin Proteomics 2019; 16:39. [PMID: 31749666 PMCID: PMC6852889 DOI: 10.1186/s12014-019-9260-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/04/2019] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium avium subsp. hominissuis (MAH) belongs to the clinically important non-tuberculous mycobacterial group that infects immunocompromised patients and individuals with underling lung conditions. The need for prolonged therapy is a major challenge of MAH treatment, influencing the development of persistent and drug-resistant infections. The reason why bactericidal drugs take several months to eliminate MAH is unknown. To investigate MAH proteome remodeling under aerobic, anaerobic and biofilm conditions (as it is encountered in patient lungs) and identify metabolic changes potentially associated with bacterial persistent state, we performed the relative protein quantitative analysis using Tandem Mass Tag Mass Spectrometry sequencing. MAH was exposed to amikacin (4 μg/ml) and clarithromycin (16 μg/ml) under aerobic, anaerobic or biofilm condition for 24 h and the response was compared with bacterial proteomics of the corresponding conditions. Overall, 4000 proteins were identified out of 5313 MAH proteome of across all experimental groups. Numerous sets of de novo synthesized proteins belonging to metabolic pathways not evidenced in aerobic condition were found commonly enriched in both anaerobic and biofilm conditions, including pantothenate and CoA biosynthesis, glycerolipid metabolism, nitrogen metabolism and chloroalkene degradation, known to be associated with bacterial tolerance in M. tuberculosis. The common pathways observed in anaerobic and biofilm conditions following drug treatments were peptidoglycan biosynthesis, glycerophospholipid metabolism and protein export. The LprB lipoprotein, highly synthesized in MAH biofilms during drug treatments and shown to be essential for M. tuberculosis virulence and survival in vivo, was selected and overexpressed in MAH. Results demonstrate that LprB is secreted in MAH biofilms and the overexpression clone is more tolerant to antimicrobials than the wild-type strain. Our study identified promising metabolic pathways that can be targeted to prevent the bacterial tolerance mechanism and, subsequently, reduce the length of MAH therapy.
Collapse
Affiliation(s)
- Rajoana Rojony
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, USA
| | - Matthew Martin
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, USA
| | - Anaamika Campeau
- Department of Pharmacology, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, USA
| | - Jacob M. Wozniak
- Department of Pharmacology, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, USA
| | - David J. Gonzalez
- Department of Pharmacology, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, USA
| | - L. Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, USA
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, USA
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, USA
| |
Collapse
|
28
|
Liao JX, Li KH, Wang JP, Deng JR, Liu QG, Chang CQ. RNA-seq analysis provides insights into cold stress responses of Xanthomonas citri pv. citri. BMC Genomics 2019; 20:807. [PMID: 31694530 PMCID: PMC6833247 DOI: 10.1186/s12864-019-6193-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 10/15/2019] [Indexed: 11/17/2022] Open
Abstract
Background Xanthomonas citri pv. citri (Xcc) is a citrus canker causing Gram-negative bacteria. Currently, little is known about the biological and molecular responses of Xcc to low temperatures. Results Results depicted that low temperature significantly reduced growth and increased biofilm formation and unsaturated fatty acid (UFA) ratio in Xcc. At low temperature Xcc formed branching structured motility. Global transcriptome analysis revealed that low temperature modulates multiple signaling networks and essential cellular processes such as carbon, nitrogen and fatty acid metabolism in Xcc. Differential expression of genes associated with type IV pilus system and pathogenesis are important cellular adaptive responses of Xcc to cold stress. Conclusions Study provides clear insights into biological characteristics and genome-wide transcriptional analysis based molecular mechanism of Xcc in response to low temperature.
Collapse
Affiliation(s)
- Jin-Xing Liao
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China
| | - Kai-Huai Li
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China
| | - Jin-Pei Wang
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China
| | - Jia-Ru Deng
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China
| | - Qiong-Guang Liu
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China
| | - Chang-Qing Chang
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China. .,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
29
|
Conceptual Model of Biofilm Antibiotic Tolerance That Integrates Phenomena of Diffusion, Metabolism, Gene Expression, and Physiology. J Bacteriol 2019; 201:JB.00307-19. [PMID: 31501280 DOI: 10.1128/jb.00307-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/28/2019] [Indexed: 01/14/2023] Open
Abstract
Transcriptomic, metabolomic, physiological, and computational modeling approaches were integrated to gain insight into the mechanisms of antibiotic tolerance in an in vitro biofilm system. Pseudomonas aeruginosa biofilms were grown in drip flow reactors on a medium composed to mimic the exudate from a chronic wound. After 4 days, the biofilm was 114 μm thick with 9.45 log10 CFU cm-2 These biofilms exhibited tolerance, relative to exponential-phase planktonic cells, to subsequent treatment with ciprofloxacin. The specific growth rate of the biofilm was estimated via elemental balances to be approximately 0.37 h-1 and with a reaction-diffusion model to be 0.32 h-1, or one-third of the maximum specific growth rate for planktonic cells. Global analysis of gene expression indicated lower transcription of ribosomal genes and genes for other anabolic functions in biofilms than in exponential-phase planktonic cells and revealed the induction of multiple stress responses in biofilm cells, including those associated with growth arrest, zinc limitation, hypoxia, and acyl-homoserine lactone quorum sensing. Metabolic pathways for phenazine biosynthesis and denitrification were transcriptionally activated in biofilms. A customized reaction-diffusion model predicted that steep oxygen concentration gradients will form when these biofilms are thicker than about 40 μm. Mutant strains that were deficient in Psl polysaccharide synthesis, the stringent response, the stationary-phase response, and the membrane stress response exhibited increased ciprofloxacin susceptibility when cultured in biofilms. These results support a sequence of phenomena leading to biofilm antibiotic tolerance, involving oxygen limitation, electron acceptor starvation and growth arrest, induction of associated stress responses, and differentiation into protected cell states.IMPORTANCE Bacteria in biofilms are protected from killing by antibiotics, and this reduced susceptibility contributes to the persistence of infections such as those in the cystic fibrosis lung and chronic wounds. A generalized conceptual model of biofilm antimicrobial tolerance with the following mechanistic steps is proposed: (i) establishment of concentration gradients in metabolic substrates and products; (ii) active biological responses to these changes in the local chemical microenvironment; (iii) entry of biofilm cells into a spectrum of states involving alternative metabolisms, stress responses, slow growth, cessation of growth, or dormancy (all prior to antibiotic treatment); (iv) adaptive responses to antibiotic exposure; and (v) reduced susceptibility of microbial cells to antimicrobial challenges in some of the physiological states accessed through these changes.
Collapse
|
30
|
Antioxidant and Quorum Quenching Activity against Pseudomonas aeruginosa SU-18 of some Edible Fruit Juices. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
31
|
Werner BG, Wu JY, Goddard JM. Antimicrobial and antifouling polymeric coating mitigates persistence of Pseudomonas aeruginosa biofilm. BIOFOULING 2019; 35:785-795. [PMID: 31550928 DOI: 10.1080/08927014.2019.1660774] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/30/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Food wasted due to food spoilage remains a global challenge to the environmental sustainability and security of food supply. In food manufacturing, post-processing contamination of food can occur due to persistent bacterial biofilms, which can be resistant to conventional cleaning and sanitization. The objective was to characterize the efficacy of a polymeric coating in reducing Pseudomonas aeruginosa biofilm establishment and facilitating its removal. Viable cell density of a 48 h biofilm was reduced by 2.10 log cfu cm-2 on the coated surface, compared to native polypropylene. Confocal laser scanning and electron microscopy indicated reductions in mature biofilm viability and thickness on the coated material. The antifouling coating improved cleanability, with ∼2.5 log cfu cm-2 of viable cells remaining after 105 min cleaning by water at 65 °C, compared to 4.5 log cfu cm-2 remaining on native polypropylene. Such coatings may reduce the persistence of biofilms in food processing environments, in support of reducing food spoilage and waste.
Collapse
Affiliation(s)
- Brenda G Werner
- Department of Food Science, Cornell University , Ithaca , NY , USA
| | - Julia Y Wu
- Department of Food Science, Cornell University , Ithaca , NY , USA
| | - Julie M Goddard
- Department of Food Science, Cornell University , Ithaca , NY , USA
| |
Collapse
|
32
|
El-Helow ER, Atalla RG, Sabra WA, Lotfy WA. Kinetic studies on the expression of alginate and extracellular proteins by Pseudomonas aeruginosa FRD1 and PAO1. J GEN APPL MICROBIOL 2019; 66:15-23. [PMID: 31366850 DOI: 10.2323/jgam.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pseudomonas aeruginosa is characterized by its capability to produce extracellular virulence proteins and to establish biofilm-based infections that do not respond easily to conventional treatments. However, the physiological conditions that decrease the fitness of such a persistent pathogen would assist the host to defend itself and reduce the infection prevalence. Therefore, developing treatments against P. aeruginosa requires a quantitative understanding of the relationship between bacterial growth kinetics and secretion of alginate and proteins, in addition to the ecological factors that control their synthesis. For this purpose, we examined various environmental factors that affect the specific product yield coefficients (expressed as g product/OD600) of alginate and extracellular proteins using a mucoid (FRD1) and a non-mucoid (PAO1) clinical isolate of P. aeruginosa, respectively. The results suggested magnesium sulfate, trace elements and hydrogen peroxide as significant variables that positively affect alginate synthesis by the FRD1 cells. However, the production of extracellular proteins by PAO1 was negatively affected by the concentration of ferrous sulfate. For understanding the kinetics of expressing alginate and extracellular proteins by the cells, a well-controlled 5 L tank bioreactor was used. The results suggested that under the bioreactor controlled conditions, both alginate and extracellular proteins are expressed parallel to biomass increase in the cells of P. aeruginosa.
Collapse
Affiliation(s)
- Ehab R El-Helow
- Department of Botany and Microbiology, Faculty of Science, Alexandria University
| | - Ramy G Atalla
- Department of Botany and Microbiology, Faculty of Science, Alexandria University
| | - Wael A Sabra
- Department of Botany and Microbiology, Faculty of Science, Alexandria University
| | - Walid A Lotfy
- Microbiology Department, Faculty of Dentistry, Pharos University in Alexandria
| |
Collapse
|
33
|
Skopelja-Gardner S, Theprungsirikul J, Lewis KA, Hammond JH, Carlson KM, Hazlett HF, Nymon A, Nguyen D, Berwin BL, Hogan DA, Rigby WFC. Regulation of Pseudomonas aeruginosa-Mediated Neutrophil Extracellular Traps. Front Immunol 2019; 10:1670. [PMID: 31379861 PMCID: PMC6657737 DOI: 10.3389/fimmu.2019.01670] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is the most prevalent opportunistic pathogen in the airways of cystic fibrosis (CF) patients. The pulmonary disorder is characterized by recurrent microbial infections and an exaggerated host inflammatory immune response led primarily by influx of neutrophils. Under these conditions, chronic colonization with P. aeruginosa is associated with diminished pulmonary function and increased morbidity and mortality. P. aeruginosa has a wide array of genetic mechanisms that facilitate its persistent colonization of the airway despite extensive innate host immune responses. Loss of function mutations in the quorum sensing regulatory gene lasR have been shown to confer survival advantage and a more pathogenic character to P. aeruginosa in CF patients. However, the strategies used by LasR-deficient P. aeruginosa to modulate neutrophil-mediated bactericidal functions are unknown. We sought to understand the role of LasR in P. aeruginosa-mediated neutrophil extracellular trap (NET) formation, an important anti-microbial mechanism deployed by neutrophils, the first-line responder in the infected airway. We observe mechanistic and phenotypic differences between NETs triggered by LasR-sufficient and LasR-deficient P. aeruginosa strains. We uncover that LasR-deficient P. aeruginosa strains fail to induce robust NET formation in both human and murine neutrophils, independently of bacterial motility or LPS expression. LasR does not mediate NET release via downstream quorum sensing signaling pathways but rather via transcriptional regulation of virulence factors, including, but not restricted to, LasB elastase and LasA protease. Finally, our studies uncover the differential requirements for NADPH oxidase in NET formation triggered by different P. aeruginosa strains.
Collapse
Affiliation(s)
- Sladjana Skopelja-Gardner
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Jomkuan Theprungsirikul
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kimberley A Lewis
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - John H Hammond
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kyrsten M Carlson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Haley F Hazlett
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Amanda Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Dao Nguyen
- Department of Microbiology and Immunology, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Brent L Berwin
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - William F C Rigby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States.,Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
34
|
Ieropoulos I, Obata O, Pasternak G, Greenman J. Fate of three bioluminescent pathogenic bacteria fed through a cascade of urine microbial fuel cells. J Ind Microbiol Biotechnol 2019; 46:587-599. [PMID: 30796542 PMCID: PMC6510811 DOI: 10.1007/s10295-019-02153-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/12/2019] [Indexed: 12/27/2022]
Abstract
Microbial fuel cell (MFC) technology is currently gaining recognition as one of the most promising bioenergy technologies of the future. One aspect of this technology that has received little attention is the disinfection of effluents and the fate of pathogenic organisms that find their way into the waste stream. In this study, three independent trials were carried out to evaluate the fate of three bioluminescent pathogenic bacteria (Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa and Staphylococcus aureus) introduced into the anodic chamber of a urine-fed cascade of 9 MFCs with matured, electroactive biofilms. These are common examples of enteric human pathogens, which could contaminate urine or waste streams. The results showed that the average power generation in the closed circuit cascade reached 754 ± 16 µW, with an average pathogen log-fold reduction of 6.24 ± 0.63 compared to 2.01 ± 0.26 for the open circuit cascade for all three pathogens. The results suggest that the bio-electrochemical reactions associated with electricity generation were the primary driving force for the inactivation of the introduced pathogens. These findings show that pathogenic organisms introduced into waste streams could be inactivated by the power-generating process within the MFC cascade system, thereby preventing propagation and thus rendering the effluent safer for possible reuse.
Collapse
Affiliation(s)
- Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY, UK.
| | - Oluwatosin Obata
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY, UK.
| | - Grzegorz Pasternak
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY, UK
- Faculty of Chemistry Wroclaw, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wrocław, Poland
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, University of the West of England, Bristol, BS16 1QY, UK
| |
Collapse
|
35
|
Mizdal CR, Stefanello ST, Nogara PA, Antunes Soares FA, de Lourenço Marques L, de Campos MMA. Molecular docking, and anti-biofilm activity of gold-complexed sulfonamides on Pseudomonas aeruginosa. Microb Pathog 2018; 125:393-400. [DOI: 10.1016/j.micpath.2018.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023]
|
36
|
Pseudomonas aeruginosa gshA Mutant Is Defective in Biofilm Formation, Swarming, and Pyocyanin Production. mSphere 2018; 3:3/2/e00155-18. [PMID: 29669887 PMCID: PMC5907650 DOI: 10.1128/msphere.00155-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium that can cause severe opportunistic infections, including many hospital-acquired infections. It is also a major cause of infections in patients with cystic fibrosis. P. aeruginosa is intrinsically resistant to a number of drugs and is capable of forming biofilms that are difficult to eradicate with antibiotics. The number of drug-resistant strains is also increasing, making treatment of P. aeruginosa infections very difficult. Thus, there is an urgent need to understand how P. aeruginosa causes disease in order to find novel ways to treat infections. We show that the principal redox buffer, glutathione (GSH), is involved in intrinsic resistance to the fosfomycin and rifampin antibiotics. We further demonstrate that GSH plays a role in P. aeruginosa disease and infection, since a mutant lacking GSH has less biofilm formation, is less able to swarm, and produces less pyocyanin, a pigment associated with infection. Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium that can cause severe opportunistic infections. The principal redox buffer employed by this organism is glutathione (GSH). To assess the role of GSH in the virulence of P. aeruginosa, a number of analyses were performed using a mutant strain deficient in gshA, which does not produce GSH. The mutant strain exhibited a growth delay in minimal medium compared to the wild-type strain. Furthermore, the gshA mutant was defective in biofilm and persister cell formation and in swimming and swarming motility and produced reduced levels of pyocyanin, a key virulence factor. Finally, the gshA mutant strain demonstrated increased sensitivity to methyl viologen (a redox cycling agent) as well as the thiol-reactive antibiotics fosfomycin and rifampin. Taken together, these data suggest a key role for GSH in the virulence of P. aeruginosa. IMPORTANCEPseudomonas aeruginosa is a ubiquitous bacterium that can cause severe opportunistic infections, including many hospital-acquired infections. It is also a major cause of infections in patients with cystic fibrosis. P. aeruginosa is intrinsically resistant to a number of drugs and is capable of forming biofilms that are difficult to eradicate with antibiotics. The number of drug-resistant strains is also increasing, making treatment of P. aeruginosa infections very difficult. Thus, there is an urgent need to understand how P. aeruginosa causes disease in order to find novel ways to treat infections. We show that the principal redox buffer, glutathione (GSH), is involved in intrinsic resistance to the fosfomycin and rifampin antibiotics. We further demonstrate that GSH plays a role in P. aeruginosa disease and infection, since a mutant lacking GSH has less biofilm formation, is less able to swarm, and produces less pyocyanin, a pigment associated with infection.
Collapse
|
37
|
Zhu Y, Czauderna T, Zhao J, Klapperstueck M, Maifiah MHM, Han ML, Lu J, Sommer B, Velkov T, Lithgow T, Song J, Schreiber F, Li J. Genome-scale metabolic modeling of responses to polymyxins in Pseudomonas aeruginosa. Gigascience 2018; 7:4931736. [PMID: 29688451 PMCID: PMC6333913 DOI: 10.1093/gigascience/giy021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/19/2018] [Accepted: 02/22/2018] [Indexed: 01/06/2023] Open
Abstract
Background Pseudomonas aeruginosa often causes multidrug-resistant infections in immunocompromised patients, and polymyxins are often used as the last-line therapy. Alarmingly, resistance to polymyxins has been increasingly reported worldwide recently. To rescue this last-resort class of antibiotics, it is necessary to systematically understand how P. aeruginosa alters its metabolism in response to polymyxin treatment, thereby facilitating the development of effective therapies. To this end, a genome-scale metabolic model (GSMM) was used to analyze bacterial metabolic changes at the systems level. Findings A high-quality GSMM iPAO1 was constructed for P. aeruginosa PAO1 for antimicrobial pharmacological research. Model iPAO1 encompasses an additional periplasmic compartment and contains 3022 metabolites, 4265 reactions, and 1458 genes in total. Growth prediction on 190 carbon and 95 nitrogen sources achieved an accuracy of 89.1%, outperforming all reported P. aeruginosa models. Notably, prediction of the essential genes for growth achieved a high accuracy of 87.9%. Metabolic simulation showed that lipid A modifications associated with polymyxin resistance exert a limited impact on bacterial growth and metabolism but remarkably change the physiochemical properties of the outer membrane. Modeling with transcriptomics constraints revealed a broad range of metabolic responses to polymyxin treatment, including reduced biomass synthesis, upregulated amino acid catabolism, induced flux through the tricarboxylic acid cycle, and increased redox turnover. Conclusions Overall, iPAO1 represents the most comprehensive GSMM constructed to date for Pseudomonas. It provides a powerful systems pharmacology platform for the elucidation of complex killing mechanisms of antibiotics.
Collapse
Affiliation(s)
- Yan Zhu
- Monash Biomedicine Discovery Institute, Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia
| | - Tobias Czauderna
- Faculty of Information Technology, Monash University, Melbourne 3800, Australia
| | - Jinxin Zhao
- Monash Biomedicine Discovery Institute, Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia
| | | | | | - Mei-Ling Han
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia
| | - Jing Lu
- Monash Institute of Cognitive and Clinical Neurosciences, Department of Anatomy and development biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia
| | - Björn Sommer
- Department of Computer and Information Science, University of Konstanz, Konstanz 78457, Germany
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne 3010, Australia
| | - Trevor Lithgow
- Monash Biomedicine Discovery Institute, Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia
| | - Jiangning Song
- Monash Biomedicine Discovery Institute, Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia
| | - Falk Schreiber
- Faculty of Information Technology, Monash University, Melbourne 3800, Australia
- Department of Computer and Information Science, University of Konstanz, Konstanz 78457, Germany
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia
| |
Collapse
|
38
|
The Microbial Endocrinology of Pseudomonas aeruginosa: Inflammatory and Immune Perspectives. Arch Immunol Ther Exp (Warsz) 2018. [PMID: 29541797 DOI: 10.1007/s00005-018-0510-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pseudomonas aeruginosa is a major pathogen responsible for both acute and chronic infection. Known as a colonising pathogen of the cystic fibrosis (CF) lung, it is implicated in other settings such as bronchiectasis. It has the ability to cause acute disseminated or localised infection particularly in the immunocompromised. Human hormones have been highlighted as potential regulators of bacterial virulence through crosstalk between analogous "quorum sensing" (QS) systems present in the bacteria that respond to mammalian hormones. Pseudomonas aeruginosa is known to utilise interconnected QS systems to coordinate its virulence and evade various aspects of the host immune system activated in response to infection. Several human hormones demonstrate an influence on P. aeruginosa growth and virulence. This inter-kingdom signalling, termed "microbial endocrinology" has important implications for host-microbe interaction during infection and, potentially opens up novel avenues for therapeutic intervention. This phenomenon, supported by the existence of sexual dichotomies in both microbial infection and chronic lung diseases such as CF is potentially explained by sex hormones and their influence on the infective process. This review summarises our current understanding of the microbial endocrinology of P. aeruginosa, including its endogenous QS systems and their intersection with human endocrinology, pathogenesis of infection and the host immune system.
Collapse
|
39
|
Vatan A, Saltoglu N, Yemisen M, Balkan II, Surme S, Demiray T, Mete B, Tabak F. Association between biofilm and multi/extensive drug resistance in diabetic foot infection. Int J Clin Pract 2018; 72:e13060. [PMID: 29381248 DOI: 10.1111/ijcp.13060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/22/2017] [Indexed: 12/23/2022] Open
Abstract
PURPOSE We aimed to determine significant risk factors for biofilm production and to investigate the association between antimicrobial resistance profile and biofilm formation in the bacterial isolates obtained from patients with diabetic foot infection (DFI). METHODS Demographic, clinical, laboratory and outcome data of 165 patients, prospectively recorded and followed between January 2008 and December 2015 by a multidisciplinary committee, were analysed. Standard microbiological methods were adopted. Risk factors associated with biofilm were determined by univariate and multivariate analyses. RESULTS The overall rate of biofilm production among 339 wound isolates was 34%. The biofilm production rate was significantly higher in Gram-negative micro-organisms (39%) in comparison with Gram positives (21%) (P = .01). A. baumannii presented the highest biofilm production (62%), followed by P. aeruginosa (52%) and Klebsiella spp. (40%). On univariate analysis, significant factors associated with biofilm were antibiotic use within last 3 months (OR:2.94, CI: 1.5-5.75, P = .002), recurrent DFI within last 6 months (OR:2.35, CI: 1.23-4.53, P = .01), hospitalisation within last 3 months due to ipsilateral recurrent DFI (OR:2.44, CI: 1.06-5.58, P = .03), presence of amputation history (OR: 2.20, CI: 1.14-4.24, P = .01), multidrug-resistant (MDR) micro-organism (OR: 7.76, CI: 4.53-13.35, P<.001) and extensively drug-resistant (XDR) micro-organism (OR:11.33, CI:4.97-26.55, P<.001). Multivariate regression analysis revealed two variables to be significant factors associated with biofilm: MDR micro-organism (OR: 3.63, CI: 1.58-8.33, P = .002) and XDR micro-organism (OR:4.06, CI: 1.25-13.1, P = .01). CONCLUSIONS Multi/extensive drug resistance and previous recurrent DFIs were significantly associated with biofilm formation in patients with diabetic foot.
Collapse
Affiliation(s)
- Aslı Vatan
- Cerrahpasa Medical Faculty, Infectious Diseases and Clinical Microbiology, Istanbul University, Istanbul, Turkey
| | - Nese Saltoglu
- Cerrahpasa Medical Faculty, Infectious Diseases and Clinical Microbiology, Istanbul University, Istanbul, Turkey
| | - Mucahit Yemisen
- Cerrahpasa Medical Faculty, Infectious Diseases and Clinical Microbiology, Istanbul University, Istanbul, Turkey
| | - Ilker Inanc Balkan
- Cerrahpasa Medical Faculty, Infectious Diseases and Clinical Microbiology, Istanbul University, Istanbul, Turkey
| | - Serkan Surme
- Cerrahpasa Medical Faculty, Infectious Diseases and Clinical Microbiology, Istanbul University, Istanbul, Turkey
| | - Tayfur Demiray
- Sakarya University Medical Faculty, Microbiology, Sakarya, Turkey
| | - Birgul Mete
- Cerrahpasa Medical Faculty, Infectious Diseases and Clinical Microbiology, Istanbul University, Istanbul, Turkey
| | - Fehmi Tabak
- Cerrahpasa Medical Faculty, Infectious Diseases and Clinical Microbiology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
40
|
Hua R, Xia Y, Wu W, Yan J, Yang M. Whole transcriptome analysis reveals potential novel mechanisms of low-level linezolid resistance in Enterococcus faecalis. Gene 2018; 647:143-149. [DOI: 10.1016/j.gene.2018.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 11/26/2022]
|
41
|
Vaikundamoorthy R, Rajendran R, Selvaraju A, Moorthy K, Perumal S. Development of thermostable amylase enzyme from Bacillus cereus for potential antibiofilm activity. Bioorg Chem 2018; 77:494-506. [PMID: 29454827 DOI: 10.1016/j.bioorg.2018.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/05/2018] [Accepted: 02/10/2018] [Indexed: 12/13/2022]
Abstract
The marine bacterial strain Bacillus cereus was used to produce amylase enzyme and has excellent alkali-stable and thermostable enzymatic activity. The combined effects of pH, temperature and incubation time on amylase activity were studied using response surface methodology. The amylase enzyme activity was also determined in the presence of various metal ions, chelating agents, detergents and the results showed that the maximum enzyme activity was observed in the presence of calcium chloride (96.1%), EDTA (63.4%) and surf excel (90.6%). The amylase enzyme exhibited excellent antibiofilm activity against marine derived biofilm forming bacteria Pseudomonas aeruginosa and Staphylococcus aureus in microtiter plate assay and congo red assay. Light and confocal laser scanning microscopic (CLSM) analysis were also used to confirm the potential biofilm activity of amylase enzyme. The CLSM analysis showed the inhibition of complete biofilm formation on amylase enzyme treated glass surface. Further in vivo toxicity analysis of amylase enzyme was determined against marine organisms Dioithona rigida and Artemia salina. The results showed that there is no morphological changes were observed due to the minimal toxicity of amylase enzyme. Overall these findings suggested that marine bacterial derived amylase enzyme could be developed as potential antibiofilm agent.
Collapse
Affiliation(s)
- Ramalingam Vaikundamoorthy
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Rajaram Rajendran
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| | - Ananth Selvaraju
- Marine Planktonology and Aquaculture Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Kaviyarasan Moorthy
- Marine Planktonology and Aquaculture Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Santhanam Perumal
- Marine Planktonology and Aquaculture Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
42
|
Vanillic acid from Actinidia deliciosa impedes virulence in Serratia marcescens by affecting S-layer, flagellin and fatty acid biosynthesis proteins. Sci Rep 2017; 7:16328. [PMID: 29180790 PMCID: PMC5703977 DOI: 10.1038/s41598-017-16507-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/08/2017] [Indexed: 11/27/2022] Open
Abstract
Serratia marcescens is one of the important nosocomial pathogens which rely on quorum sensing (QS) to regulate the production of biofilm and several virulence factors. Hence, blocking of QS has become a promising approach to quench the virulence of S. marcescens. For the first time, QS inhibitory (QSI) and antibiofilm potential of Actinidia deliciosa have been explored against S. marcescens clinical isolate (CI). A. deliciosa pulp extract significantly inhibited the virulence and biofilm production without any deleterious effect on the growth. Vanillic acid was identified as an active lead responsible for the QSI activity. Addition of vanillic acid to the growth medium significantly affected the QS regulated production of biofilm and virulence factors in a concentration dependent mode in S. marcescens CI, ATCC 14756 and MG1. Furthermore vanillic acid increased the survival of Caenorhabditis elegans upon S. marcescens infection. Proteomic analysis and mass spectrometric identification of differentially expressed proteins revealed the ability of vanillic acid to modulate the expression of proteins involved in S-layers, histidine, flagellin and fatty acid production. QSI potential of the vanillic acid observed in the current study paves the way for exploring it as a potential therapeutic candidate to treat S. marcescens infections.
Collapse
|
43
|
Ribaudo N, Li X, Davis B, Wood TK, Huang ZJ. A Genome-Scale Modeling Approach to Quantify Biofilm Component Growth of Salmonella Typhimurium. J Food Sci 2016; 82:154-166. [PMID: 27992644 DOI: 10.1111/1750-3841.13565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Salmonella typhimurium (S. typhimurium) is an extremely dangerous foodborne bacterium that infects both animal and human subjects, causing fatal diseases around the world. Salmonella's robust virulence, antibiotic-resistant nature, and capacity to survive under harsh conditions are largely due to its ability to form resilient biofilms. Multiple genome-scale metabolic models have been developed to study the complex and diverse nature of this organism's metabolism; however, none of these models fully integrated the reactions and mechanisms required to study the influence of biofilm formation. This work developed a systems-level approach to study the adjustment of intracellular metabolism of S. typhimurium during biofilm formation. The most advanced metabolic reconstruction currently available, STM_v1.0, was 1st extended to include the formation of the extracellular biofilm matrix. Flux balance analysis was then employed to study the influence of biofilm formation on cellular growth rate and the production rates of biofilm components. With biofilm formation present, biomass growth was examined under nutrient rich and nutrient deficient conditions, resulting in overall growth rates of 0.8675 and 0.6238 h-1 respectively. Investigation of intracellular flux variation during biofilm formation resulted in the elucidation of 32 crucial reactions, and associated genes, whose fluxes most significantly adapt during the physiological response. Experimental data were found in the literature to validate the importance of these genes for the biofilm formation of S. typhimurium. This preliminary investigation on the adjustment of intracellular metabolism of S. typhimurium during biofilm formation will serve as a platform to generate hypotheses for further experimental study on the biofilm formation of this virulent bacterium.
Collapse
Affiliation(s)
- Nicholas Ribaudo
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| | - Xianhua Li
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| | - Brett Davis
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| | - Thomas K Wood
- Depts. of Chemical Engineering and Biochemistry and Molecular Biology, Pennsylvania State Univ, Univ. Park, 16802, PA, U.S.A
| | - Zuyi Jacky Huang
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| |
Collapse
|