1
|
Kaneko T, Boulanger-Weill J, Isabella AJ, Moens CB. Position-independent functional refinement within the vagus motor topographic map. Cell Rep 2024; 43:114740. [PMID: 39325616 DOI: 10.1016/j.celrep.2024.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Motor neurons in the central nervous system often lie in a continuous topographic map, where neurons that innervate different body parts are spatially intermingled. This is the case for the efferent neurons of the vagus nerve, which innervate diverse muscle and organ targets in the head and viscera for brain-body communication. It remains elusive how neighboring motor neurons with different fixed peripheral axon targets develop the separate somatodendritic (input) connectivity they need to generate spatially precise body control. Here, we show that vagus motor neurons in the zebrafish indeed generate spatially appropriate peripheral responses to focal sensory stimulation even when they are transplanted into ectopic positions within the topographic map, indicating that circuit refinement occurs after the establishment of coarse topography. Refinement depends on motor neuron synaptic transmission, suggesting that an experience-dependent periphery-to-brain feedback mechanism establishes specific input connectivity among intermingled motor populations.
Collapse
Affiliation(s)
- Takuya Kaneko
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
2
|
D’Gama PP, Jeong I, Nygård AM, Trinh AT, Yaksi E, Jurisch-Yaksi N. Ciliogenesis defects after neurulation impact brain development and neuronal activity in larval zebrafish. iScience 2024; 27:110078. [PMID: 38868197 PMCID: PMC11167523 DOI: 10.1016/j.isci.2024.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/06/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
Cilia are slender, hair-like structures extending from cell surfaces and playing essential roles in diverse physiological processes. Within the nervous system, primary cilia contribute to signaling and sensory perception, while motile cilia facilitate cerebrospinal fluid flow. Here, we investigated the impact of ciliary loss on neural circuit development using a zebrafish line displaying ciliogenesis defects. We found that cilia defects after neurulation affect neurogenesis and brain morphology, especially in the cerebellum, and lead to altered gene expression profiles. Using whole brain calcium imaging, we measured reduced light-evoked and spontaneous neuronal activity in all brain regions. By shedding light on the intricate role of cilia in neural circuit formation and function in the zebrafish, our work highlights their evolutionary conserved role in the brain and sets the stage for future analysis of ciliopathy models.
Collapse
Affiliation(s)
- Percival P. D’Gama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Andreas Moe Nygård
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Anh-Tuan Trinh
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
- Koç University Research Center for Translational Medicine, Koç University School of Medicine, Davutpaşa Caddesi, No:4, Topkapı 34010, Istanbul, Turkey
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| |
Collapse
|
3
|
Ingram S, Chisholm KI, Wang F, De Koninck Y, Denk F, Goodwin GL. Assessing spontaneous sensory neuron activity using in vivo calcium imaging. Pain 2024; 165:1131-1141. [PMID: 38112748 PMCID: PMC11017743 DOI: 10.1097/j.pain.0000000000003116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/01/2023] [Accepted: 09/23/2023] [Indexed: 12/21/2023]
Abstract
ABSTRACT Heightened spontaneous activity in sensory neurons is often reported in individuals living with chronic pain. It is possible to study this activity in rodents using electrophysiology, but these experiments require great skill and can be prone to bias. Here, we have examined whether in vivo calcium imaging with GCaMP6s can be used as an alternative approach. We show that spontaneously active calcium transients can be visualised in the fourth lumbar dorsal root ganglion (L4 DRG) through in vivo imaging in a mouse model of inflammatory pain. Application of lidocaine to the nerve, between the inflamed site and the DRG, silenced spontaneous firing and revealed the true baseline level of calcium for spontaneously active neurons. We used these data to train a machine learning algorithm to predict when a neuron is spontaneously active. We show that our algorithm is accurate in 2 different models of pain: intraplantar complete Freund adjuvant and antigen-induced arthritis, with accuracies of 90.0% ±1.2 and 85.9% ±2.1, respectively, assessed against visual inspection by an experienced observer. The algorithm can also detect neuronal activity in imaging experiments generated in a different laboratory using a different microscope configuration (accuracy = 94.0% ±2.2). We conclude that in vivo calcium imaging can be used to assess spontaneous activity in sensory neurons and provide a Google Colaboratory Notebook to allow anyone easy access to our novel analysis tool, for the assessment of spontaneous neuronal activity in their own imaging setups.
Collapse
Affiliation(s)
- Sonia Ingram
- Sonia Ingram, Data Scientist, Contract Researcher for King's College London, London, United Kingdom
| | - Kim I. Chisholm
- Pain Centre Versus Arthritis, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Feng Wang
- CERVO Brain Research Centre, Québec Mental Health Institute, Quebec City, QC, Canada
- Faculty of Dentistry, Laval University, Quebec, Canada
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec Mental Health Institute, Quebec City, QC, Canada
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - George L. Goodwin
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
4
|
Bandet MV, Winship IR. Aberrant cortical activity, functional connectivity, and neural assembly architecture after photothrombotic stroke in mice. eLife 2024; 12:RP90080. [PMID: 38687189 PMCID: PMC11060715 DOI: 10.7554/elife.90080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Despite substantial progress in mapping the trajectory of network plasticity resulting from focal ischemic stroke, the extent and nature of changes in neuronal excitability and activity within the peri-infarct cortex of mice remains poorly defined. Most of the available data have been acquired from anesthetized animals, acute tissue slices, or infer changes in excitability from immunoassays on extracted tissue, and thus may not reflect cortical activity dynamics in the intact cortex of an awake animal. Here, in vivo two-photon calcium imaging in awake, behaving mice was used to longitudinally track cortical activity, network functional connectivity, and neural assembly architecture for 2 months following photothrombotic stroke targeting the forelimb somatosensory cortex. Sensorimotor recovery was tracked over the weeks following stroke, allowing us to relate network changes to behavior. Our data revealed spatially restricted but long-lasting alterations in somatosensory neural network function and connectivity. Specifically, we demonstrate significant and long-lasting disruptions in neural assembly architecture concurrent with a deficit in functional connectivity between individual neurons. Reductions in neuronal spiking in peri-infarct cortex were transient but predictive of impairment in skilled locomotion measured in the tapered beam task. Notably, altered neural networks were highly localized, with assembly architecture and neural connectivity relatively unaltered a short distance from the peri-infarct cortex, even in regions within 'remapped' forelimb functional representations identified using mesoscale imaging with anaesthetized preparations 8 weeks after stroke. Thus, using longitudinal two-photon microscopy in awake animals, these data show a complex spatiotemporal relationship between peri-infarct neuronal network function and behavioral recovery. Moreover, the data highlight an apparent disconnect between dramatic functional remapping identified using strong sensory stimulation in anaesthetized mice compared to more subtle and spatially restricted changes in individual neuron and local network function in awake mice during stroke recovery.
Collapse
Affiliation(s)
- Mischa Vance Bandet
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Neurochemical Research Unit, University of AlbertaEdmontonCanada
- Department of Psychiatry, University of AlbertaEdmontonCanada
| | - Ian Robert Winship
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Neurochemical Research Unit, University of AlbertaEdmontonCanada
- Department of Psychiatry, University of AlbertaEdmontonCanada
| |
Collapse
|
5
|
Carbonero D, Noueihed J, Kramer MA, White JA. Non-Negative Matrix Factorization for Analyzing State Dependent Neuronal Network Dynamics in Calcium Recordings. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.11.561797. [PMID: 37905071 PMCID: PMC10614735 DOI: 10.1101/2023.10.11.561797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Calcium imaging allows recording from hundreds of neurons in vivo with the ability to resolve single cell activity. Evaluating and analyzing neuronal responses, while also considering all dimensions of the data set to make specific conclusions, is extremely difficult. Often, descriptive statistics are used to analyze these forms of data. These analyses, however, remove variance by averaging the responses of single neurons across recording sessions, or across combinations of neurons, to create single quantitative metrics, losing the temporal dynamics of neuronal activity, and their responses relative to each other. Dimensionally Reduction (DR) methods serve as a good foundation for these analyses because they reduce the dimensions of the data into components, while still maintaining the variance. Non-negative Matrix Factorization (NMF) is an especially promising DR analysis method for analyzing activity recorded in calcium imaging because of its mathematical constraints, which include positivity and linearity. We adapt NMF for our analyses and compare its performance to alternative dimensionality reduction methods on both artificial and in vivo data. We find that NMF is well-suited for analyzing calcium imaging recordings, accurately capturing the underlying dynamics of the data, and outperforming alternative methods in common use.
Collapse
Affiliation(s)
- Daniel Carbonero
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America
- Neurophotonics Center, Boston University, Boston, Massachusetts, United States of America
| | - Jad Noueihed
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America
- Neurophotonics Center, Boston University, Boston, Massachusetts, United States of America
| | - Mark A. Kramer
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America
| | - John A. White
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America
- Neurophotonics Center, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Kaneko T, Boulanger-Weill J, Isabella AJ, Moens CB. Position-independent functional refinement within the vagus motor topographic map. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557289. [PMID: 37745606 PMCID: PMC10515832 DOI: 10.1101/2023.09.11.557289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Motor neurons in the central nervous system often lie in a continuous topographic map, where neurons that innervate different body parts are spatially intermingled. This is the case for the efferent neurons of the vagus nerve, which innervate diverse muscle and organ targets in the head and viscera for brain-body communication. It remains elusive how neighboring motor neurons with different fixed peripheral axon targets develop the separate somatodendritic (input) connectivity they need to generate spatially precise body control. Here we show that vagus motor neurons in the zebrafish indeed generate spatially appropriate peripheral responses to focal sensory stimulation even when they are transplanted into ectopic positions within the topographic map, indicating that circuit refinement occurs after the establishment of coarse topography. Refinement depends on motor neuron synaptic transmission, suggesting that an experience-dependent periphery-to-brain feedback mechanism establishes specific input connectivity amongst intermingled motor populations.
Collapse
Affiliation(s)
- Takuya Kaneko
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Lead contact
| |
Collapse
|
7
|
Gedeon JY, Pineda-Farias JB, Gold MS. In-Vivo Calcium Imaging of Sensory Neurons in the Rat Trigeminal Ganglion. J Vis Exp 2024:10.3791/65978. [PMID: 38407223 PMCID: PMC11139451 DOI: 10.3791/65978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Genetically encoded calcium indicators (GECIs) enable imaging techniques to monitor changes in intracellular calcium in targeted cell populations. Their large signal-to-noise ratio makes GECIs a powerful tool for detecting stimulus-evoked activity in sensory neurons. GECIs facilitate population-level analysis of stimulus encoding with the number of neurons that can be studied simultaneously. This population encoding is most appropriately done in vivo. Dorsal root ganglia (DRG), which house the soma of sensory neurons innervating somatic and visceral structures below the neck, are used most extensively for in vivo imaging because these structures are accessed relatively easily. More recently, this technique was used in mice to study sensory neurons in the trigeminal ganglion (TG) that innervate oral and craniofacial structures. There are many reasons to study TG in addition to DRG, including the long list of pain syndromes specific to oral and craniofacial structures that appear to reflect changes in sensory neuron activity, such as trigeminal neuralgia. Mice are used most extensively in the study of DRG and TG neurons because of the availability of genetic tools. However, with differences in size, ease of handling, and potentially important species differences, there are reasons to study rat rather than mouse TG neurons. Thus, we developed an approach for imaging rat TG neurons in vivo. We injected neonatal pups (p2) intraperitoneally with an AAV encoding GCaMP6s, resulting in >90% infection of both TG and DRG neurons. TG was visualized in the adult following craniotomy and decortication, and changes in GCaMP6s fluorescence were monitored in TG neurons following stimulation of mandibular and maxillary regions of the face. We confirmed that increases in fluorescence were stimulus-evoked with peripheral nerve block. While this approach has many potential uses, we are using it to characterize the subpopulation(s) of TG neurons changed following peripheral nerve injury.
Collapse
Affiliation(s)
- Jeremy Y Gedeon
- Center for Neuroscience at the University of Pittsburgh; Department of Neurobiology, University of Pittsburgh School of Medicine; Pittsburgh Center for Pain Research, University of Pittsburgh
| | - Jorge Baruch Pineda-Farias
- Department of Neurobiology, University of Pittsburgh School of Medicine; Pittsburgh Center for Pain Research, University of Pittsburgh
| | - Michael S Gold
- Department of Neurobiology, University of Pittsburgh School of Medicine; Pittsburgh Center for Pain Research, University of Pittsburgh;
| |
Collapse
|
8
|
Tung A, Sperry MM, Clawson W, Pavuluri A, Bulatao S, Yue M, Flores RM, Pai VP, McMillen P, Kuchling F, Levin M. Embryos assist morphogenesis of others through calcium and ATP signaling mechanisms in collective teratogen resistance. Nat Commun 2024; 15:535. [PMID: 38233424 PMCID: PMC10794468 DOI: 10.1038/s41467-023-44522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
Information for organismal patterning can come from a variety of sources. We investigate the possibility that instructive influences for normal embryonic development are provided not only at the level of cells within the embryo, but also via interactions between embryos. To explore this, we challenge groups of embryos with disruptors of normal development while varying group size. Here, we show that Xenopus laevis embryos are much more sensitive to a diverse set of chemical and molecular-biological perturbations when allowed to develop alone or in small groups, than in large groups. Keeping per-embryo exposure constant, we find that increasing the number of exposed embryos in a cohort increases the rate of survival while incidence of defects decreases. This inter-embryo assistance effect is mediated by short-range diffusible signals and involves the P2 ATP receptor. Our data and computational model emphasize that morphogenesis is a collective phenomenon not only at the level of cells, but also of whole bodies, and that cohort size is a crucial variable in studies of ecotoxicology, teratogenesis, and developmental plasticity.
Collapse
Affiliation(s)
- Angela Tung
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Megan M Sperry
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Wesley Clawson
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Ananya Pavuluri
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Sydney Bulatao
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michelle Yue
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Ramses Martinez Flores
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Vaibhav P Pai
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Patrick McMillen
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Franz Kuchling
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Uribe-Arias A, Rozenblat R, Vinepinsky E, Marachlian E, Kulkarni A, Zada D, Privat M, Topsakalian D, Charpy S, Candat V, Nourin S, Appelbaum L, Sumbre G. Radial astrocyte synchronization modulates the visual system during behavioral-state transitions. Neuron 2023; 111:4040-4057.e6. [PMID: 37863038 PMCID: PMC10783638 DOI: 10.1016/j.neuron.2023.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Glial cells support the function of neurons. Recent evidence shows that astrocytes are also involved in brain computations. To explore whether and how their excitable nature affects brain computations and motor behaviors, we used two-photon Ca2+ imaging of zebrafish larvae expressing GCaMP in both neurons and radial astrocytes (RAs). We found that in the optic tectum, RAs synchronize their Ca2+ transients immediately after the end of an escape behavior. Using optogenetics, ablations, and a genetically encoded norepinephrine sensor, we observed that RA synchronous Ca2+ events are mediated by the locus coeruleus (LC)-norepinephrine circuit. RA synchronization did not induce direct excitation or inhibition of tectal neurons. Nevertheless, it modulated the direction selectivity and the long-distance functional correlations among neurons. This mechanism supports freezing behavior following a switch to an alerted state. These results show that LC-mediated neuro-glial interactions modulate the visual system during transitions between behavioral states.
Collapse
Affiliation(s)
- Alejandro Uribe-Arias
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Rotem Rozenblat
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Ehud Vinepinsky
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Emiliano Marachlian
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Anirudh Kulkarni
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - David Zada
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Martin Privat
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Diego Topsakalian
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sarah Charpy
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Virginie Candat
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sarah Nourin
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Lior Appelbaum
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Germán Sumbre
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| |
Collapse
|
10
|
Lloyd E, Privat M, Sumbre G, Duboué ER, Keene AC. A protocol for whole-brain Ca 2+ imaging in Astyanax mexicanus, a model of comparative evolution. STAR Protoc 2023; 4:102517. [PMID: 37742184 PMCID: PMC10520939 DOI: 10.1016/j.xpro.2023.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 09/26/2023] Open
Abstract
In this protocol, we describe a comparative approach to study the evolution of brain function in the Mexican tetra, Astyanax mexicanus. We developed surface fish and two independent populations of cavefish with pan-neuronal expression of the Ca2+ sensor GCaMP6s. We describe a methodology to prepare samples and image activity across the optic tectum and olfactory bulb.
Collapse
Affiliation(s)
- Evan Lloyd
- Department of Biology, Texas A&M University, College Station, TX 77840, USA.
| | - Martin Privat
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - German Sumbre
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Erik R Duboué
- Harriet Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77840, USA.
| |
Collapse
|
11
|
Viejo G, Levenstein D, Skromne Carrasco S, Mehrotra D, Mahallati S, Vite GR, Denny H, Sjulson L, Battaglia FP, Peyrache A. Pynapple, a toolbox for data analysis in neuroscience. eLife 2023; 12:RP85786. [PMID: 37843985 PMCID: PMC10578930 DOI: 10.7554/elife.85786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Datasets collected in neuroscientific studies are of ever-growing complexity, often combining high-dimensional time series data from multiple data acquisition modalities. Handling and manipulating these various data streams in an adequate programming environment is crucial to ensure reliable analysis, and to facilitate sharing of reproducible analysis pipelines. Here, we present Pynapple, the PYthon Neural Analysis Package, a lightweight python package designed to process a broad range of time-resolved data in systems neuroscience. The core feature of this package is a small number of versatile objects that support the manipulation of any data streams and task parameters. The package includes a set of methods to read common data formats and allows users to easily write their own. The resulting code is easy to read and write, avoids low-level data processing and other error-prone steps, and is open source. Libraries for higher-level analyses are developed within the Pynapple framework but are contained within a collaborative repository of specialized and continuously updated analysis routines. This provides flexibility while ensuring long-term stability of the core package. In conclusion, Pynapple provides a common framework for data analysis in neuroscience.
Collapse
Affiliation(s)
- Guillaume Viejo
- Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Flatiron Institute, Center for Computational NeuroscienceNew YorkUnited States
| | - Daniel Levenstein
- Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- MILA – Quebec IA InstituteMontrealCanada
| | | | - Dhruv Mehrotra
- Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Sara Mahallati
- Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Gilberto R Vite
- Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Henry Denny
- Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Lucas Sjulson
- Departments of Psychiatry and Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Francesco P Battaglia
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenNetherlands
| | - Adrien Peyrache
- Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| |
Collapse
|
12
|
Davidson AM, Kaushik S, Hige T. Dopamine-Dependent Plasticity Is Heterogeneously Expressed by Presynaptic Calcium Activity across Individual Boutons of the Drosophila Mushroom Body. eNeuro 2023; 10:ENEURO.0275-23.2023. [PMID: 37848287 PMCID: PMC10616905 DOI: 10.1523/eneuro.0275-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023] Open
Abstract
The Drosophila mushroom body (MB) is an important model system for studying the synaptic mechanisms of associative learning. In this system, coincidence of odor-evoked calcium influx and dopaminergic input in the presynaptic terminals of Kenyon cells (KCs), the principal neurons of the MB, triggers long-term depression (LTD), which plays a critical role in olfactory learning. However, it is controversial whether such synaptic plasticity is accompanied by a corresponding decrease in odor-evoked calcium activity in the KC presynaptic terminals. Here, we address this question by inducing LTD by pairing odor presentation with optogenetic activation of dopaminergic neurons (DANs). This allows us to rigorously compare the changes at the presynaptic and postsynaptic sites in the same conditions. By imaging presynaptic acetylcholine release in the condition where LTD is reliably observed in the postsynaptic calcium signals, we show that neurotransmitter release from KCs is depressed selectively in the MB compartments innervated by activated DANs, demonstrating the presynaptic nature of LTD. However, total odor-evoked calcium activity of the KC axon bundles does not show concurrent depression. We further conduct calcium imaging in individual presynaptic boutons and uncover the highly heterogeneous nature of calcium plasticity. Namely, only a subset of boutons, which are strongly activated by associated odors, undergo calcium activity depression, while weakly responding boutons show potentiation. Thus, our results suggest an unexpected nonlinear relationship between presynaptic calcium influx and the results of plasticity, challenging the simple view of cooperative actions of presynaptic calcium and dopaminergic input.
Collapse
Affiliation(s)
- Andrew M Davidson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Shivam Kaushik
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Toshihide Hige
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
13
|
Hanafusa Y, Shiraishi A, Hattori F. Machine learning discriminates P2X7-mediated intracellular calcium sparks in human-induced pluripotent stem cell-derived neural stem cells. Sci Rep 2023; 13:12673. [PMID: 37542080 PMCID: PMC10403609 DOI: 10.1038/s41598-023-39846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Adenosine triphosphate (ATP) is an extracellular signaling molecule that mainly affects the pathophysiological situation in the body and can be sensed by purinergic receptors, including ionotropic P2X7. Neuronal stem cells (NSCs) remain in adult neuronal tissues and can contribute to physiological processes via activation by evoked pathophysiological situations. In this study, we revealed that human-induced pluripotent stem cell-derived NSCs (iNSCs) have ATP-sensing ability primarily via the purinergic and ionotropic receptor P2X7. Next, to develop a machine learning (ML)-based screening system for food-derived neuronal effective substances and their effective doses, we collected ATP-triggered calcium responses of iNSCs pretreated with several substances and doses. Finally, we discovered that ML was performed using composite images, each containing nine waveform images, to achieve a better ML model (MLM) with higher precision. Our MLM can correctly sort subtle unidentified changes in waveforms produced by pretreated iNSCs with each substance and/or dose into the positive group, with common mRNA expression changes belonging to the gene ontology signatures.
Collapse
Affiliation(s)
- Yuki Hanafusa
- Innovative Regenerative Medicine, Graduate School of Medicine, Kansai Medical University, Osaka, Japan
- Group Quality Assurance Division, Safety Science Institute, Suntory Holdings Ltd., Tokyo, Japan
| | - Akira Shiraishi
- Division of Integrative Biomolecular Function, Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Fumiyuki Hattori
- Innovative Regenerative Medicine, Graduate School of Medicine, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
14
|
Moore JL, Bhaskar D, Gao F, Matte-Martone C, Du S, Lathrop E, Ganesan S, Shao L, Norris R, Campamà Sanz N, Annusver K, Kasper M, Cox A, Hendry C, Rieck B, Krishnaswamy S, Greco V. Cell cycle controls long-range calcium signaling in the regenerating epidermis. J Cell Biol 2023; 222:e202302095. [PMID: 37102999 PMCID: PMC10140546 DOI: 10.1083/jcb.202302095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023] Open
Abstract
Skin homeostasis is maintained by stem cells, which must communicate to balance their regenerative behaviors. Yet, how adult stem cells signal across regenerative tissue remains unknown due to challenges in studying signaling dynamics in live mice. We combined live imaging in the mouse basal stem cell layer with machine learning tools to analyze patterns of Ca2+ signaling. We show that basal cells display dynamic intercellular Ca2+ signaling among local neighborhoods. We find that these Ca2+ signals are coordinated across thousands of cells and that this coordination is an emergent property of the stem cell layer. We demonstrate that G2 cells are required to initiate normal levels of Ca2+ signaling, while connexin43 connects basal cells to orchestrate tissue-wide coordination of Ca2+ signaling. Lastly, we find that Ca2+ signaling drives cell cycle progression, revealing a communication feedback loop. This work provides resolution into how stem cells at different cell cycle stages coordinate tissue-wide signaling during epidermal regeneration.
Collapse
Affiliation(s)
- Jessica L. Moore
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Dhananjay Bhaskar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Feng Gao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Shuangshuang Du
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth Lathrop
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Smirthy Ganesan
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Lin Shao
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Rachael Norris
- Department of Cell Biology, UConn Health, Farmington, CT, USA
| | - Nil Campamà Sanz
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Andy Cox
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hendry
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Bastian Rieck
- Helmholtz Pioneer Campus, Helmholtz Munich, Neuherberg, Germany
| | - Smita Krishnaswamy
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
- Applied Mathematics Program, Yale University, New Haven, CT, USA
- Program for Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Valentina Greco
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
15
|
McArthur KL, Tovar VM, Griffin-Baldwin E, Tovar BD, Astad EK. Early development of respiratory motor circuits in larval zebrafish (Danio rerio). J Comp Neurol 2023; 531:838-852. [PMID: 36881713 PMCID: PMC10081962 DOI: 10.1002/cne.25467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
Rhythm-generating circuits in the vertebrate hindbrain form synaptic connections with cranial and spinal motor neurons, to generate coordinated, patterned respiratory behaviors. Zebrafish provide a uniquely tractable model system to investigate the earliest stages in respiratory motor circuit development in vivo. In larval zebrafish, respiratory behaviors are carried out by muscles innervated by cranial motor neurons-including the facial branchiomotor neurons (FBMNs), which innervate muscles that move the jaw, buccal cavity, and operculum. However, it is unclear when FBMNs first receive functional synaptic input from respiratory pattern-generating neurons, and how the functional output of the respiratory motor circuit changes across larval development. In the current study, we used behavior and calcium imaging to determine how early FBMNs receive functional synaptic inputs from respiratory pattern-generating networks in larval zebrafish. Zebrafish exhibited patterned operculum movements by 3 days postfertilization (dpf), though this behavior became more consistent at 4 and 5 dpf. Also by 3dpf, FBMNs fell into two distinct categories ("rhythmic" and "nonrhythmic"), based on patterns of neural activity. These two neuron categories were arranged differently along the dorsoventral axis, demonstrating that FBMNs have already established dorsoventral topography by 3 dpf. Finally, operculum movements were coordinated with pectoral fin movements at 3 dpf, indicating that the operculum behavioral pattern was driven by synaptic input. Taken together, this evidence suggests that FBMNs begin to receive initial synaptic input from a functional respiratory central pattern generator at or prior to 3 dpf. Future studies will use this model to study mechanisms of normal and abnormal respiratory circuit development.
Collapse
Affiliation(s)
| | | | | | - Bria D. Tovar
- Biology Department, Southwestern University, Georgetown, TX 78626
| | - Emma K. Astad
- Biology Department, Southwestern University, Georgetown, TX 78626
| |
Collapse
|
16
|
Parmentier T, LaMarre J, Lalonde J. Evaluation of Neurotoxicity With Human Pluripotent Stem Cell-Derived Cerebral Organoids. Curr Protoc 2023; 3:e744. [PMID: 37068185 DOI: 10.1002/cpz1.744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
The recent development of human cerebral organoids provides an invaluable in vitro model of human brain development to assess the toxicity of natural or man-made toxic substances. By recapitulating key aspects of early human neurodevelopment, investigators can evaluate with this three-dimensional (3D) model the effect of certain compounds on the formation of neuronal networks and their electrophysiological properties with more physiological relevance than neurons grown in monolayers and in cultures composed of a unique cell type. This promising potential has contributed to the development of a large number of diverse protocols to generate human cerebral organoids, making interlaboratory comparisons of results difficult. Based on a previously published protocol to generate human cortical organoids (herein called cerebral organoids), we detail several approaches to evaluate the effect of chemicals on neurogenesis, apoptosis, and neuronal function when exogenously applied to cultured specimens. Here, we take as an example 4-aminopyridine, a potassium channel blocker that modulates the activity of neurons and neurogenesis, and describe a simple and cost-effective way to test the impact of this agent on cerebral organoids derived from human induced pluripotent stem cells. We also provide tested protocols to evaluate neurogenesis in cerebral organoids with ethynyl deoxyuridine labeling and neuronal activity with live calcium imaging and microelectrode arrays. Together, these protocols should facilitate the implementation of cerebral organoid technologies in laboratories wishing to evaluate the effects of specific compounds or conditions on the development and function of human neurons with only basic cell culture equipment. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of human cerebral organoids from pluripotent stem cells Support Protocol 1: Human pluripotent stem cell culture Basic Protocol 2: Evaluation of neurogenesis in cerebral organoids with ethynyl deoxyuridine labeling Basic Protocol 3: Calcium imaging in cerebral organoids Basic Protocol 4: Electrophysiological evaluation of cerebral organoids with microelectrode arrays Support Protocol 2: Immunostaining of cerebral organoids.
Collapse
Affiliation(s)
- Thomas Parmentier
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Current address: Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
17
|
Benisty H, Song A, Mishne G, Charles AS. Review of data processing of functional optical microscopy for neuroscience. NEUROPHOTONICS 2022; 9:041402. [PMID: 35937186 PMCID: PMC9351186 DOI: 10.1117/1.nph.9.4.041402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/15/2022] [Indexed: 05/04/2023]
Abstract
Functional optical imaging in neuroscience is rapidly growing with the development of optical systems and fluorescence indicators. To realize the potential of these massive spatiotemporal datasets for relating neuronal activity to behavior and stimuli and uncovering local circuits in the brain, accurate automated processing is increasingly essential. We cover recent computational developments in the full data processing pipeline of functional optical microscopy for neuroscience data and discuss ongoing and emerging challenges.
Collapse
Affiliation(s)
- Hadas Benisty
- Yale Neuroscience, New Haven, Connecticut, United States
| | - Alexander Song
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Gal Mishne
- UC San Diego, Halıcığlu Data Science Institute, Department of Electrical and Computer Engineering and the Neurosciences Graduate Program, La Jolla, California, United States
| | - Adam S. Charles
- Johns Hopkins University, Kavli Neuroscience Discovery Institute, Center for Imaging Science, Department of Biomedical Engineering, Department of Neuroscience, and Mathematical Institute for Data Science, Baltimore, Maryland, United States
| |
Collapse
|
18
|
Lloyd E, McDole B, Privat M, Jaggard JB, Duboué ER, Sumbre G, Keene AC. Blind cavefish retain functional connectivity in the tectum despite loss of retinal input. Curr Biol 2022; 32:3720-3730.e3. [PMID: 35926509 DOI: 10.1016/j.cub.2022.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Sensory systems display remarkable plasticity and are under strong evolutionary selection. The Mexican cavefish, Astyanax mexicanus, consists of eyed river-dwelling surface populations and multiple independent cave populations that have converged on eye loss, providing the opportunity to examine the evolution of sensory circuits in response to environmental perturbation. Functional analysis across multiple transgenic populations expressing GCaMP6s showed that functional connectivity of the optic tectum largely did not differ between populations, except for the selective loss of negatively correlated activity within the cavefish tectum, suggesting positively correlated neural activity is resistant to an evolved loss of input from the retina. Furthermore, analysis of surface-cave hybrid fish reveals that changes in the tectum are genetically distinct from those encoding eye loss. Together, these findings uncover the independent evolution of multiple components of the visual system and establish the use of functional imaging in A. mexicanus to study neural circuit evolution.
Collapse
Affiliation(s)
- Evan Lloyd
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA; Harriet Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Brittnee McDole
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Martin Privat
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - James B Jaggard
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erik R Duboué
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - German Sumbre
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
19
|
Koukouli F, Montmerle M, Aguirre A, De Brito Van Velze M, Peixoto J, Choudhary V, Varilh M, Julio-Kalajzic F, Allene C, Mendéz P, Zerlaut Y, Marsicano G, Schlüter OM, Rebola N, Bacci A, Lourenço J. Visual-area-specific tonic modulation of GABA release by endocannabinoids sets the activity and coordination of neocortical principal neurons. Cell Rep 2022; 40:111202. [PMID: 36001978 PMCID: PMC9433882 DOI: 10.1016/j.celrep.2022.111202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/24/2022] [Accepted: 07/21/2022] [Indexed: 12/01/2022] Open
Abstract
Perisomatic inhibition of pyramidal neurons (PNs) coordinates cortical network activity during sensory processing, and this role is mainly attributed to parvalbumin-expressing basket cells (BCs). However, cannabinoid receptor type 1 (CB1)-expressing interneurons are also BCs, but the connectivity and function of these elusive but prominent neocortical inhibitory neurons are unclear. We find that their connectivity pattern is visual area specific. Persistently active CB1 signaling suppresses GABA release from CB1 BCs in the medial secondary visual cortex (V2M), but not in the primary visual cortex (V1). Accordingly, in vivo, tonic CB1 signaling is responsible for higher but less coordinated PN activity in the V2M than in the V1. These differential firing dynamics in the V1 and V2M can be captured by a computational network model that incorporates visual-area-specific properties. Our results indicate a differential CB1-mediated mechanism controlling PN activity, suggesting an alternative connectivity scheme of a specific GABAergic circuit in different cortical areas. CB1+ basket cells exhibit visual-area-specific morphology and connectivity patterns Tonic CB1 signaling underlies high pyramidal neurons (PN) activity in V2M but not V1 Tonic CB1 signaling differentially modulates PN-correlated activity in V1 and V2M Numerical simulations capture specific CB1-dependent firing dynamics of V1 and V2M
Collapse
Affiliation(s)
- Fani Koukouli
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Martin Montmerle
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Andrea Aguirre
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Jérémy Peixoto
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Vikash Choudhary
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Marjorie Varilh
- INSERM, U1215 NeuroCentre Magendie, University of Bordeaux, 33077 Bordeaux, France
| | | | - Camille Allene
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Yann Zerlaut
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, University of Bordeaux, 33077 Bordeaux, France
| | - Oliver M Schlüter
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nelson Rebola
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Alberto Bacci
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France.
| | - Joana Lourenço
- ICM - Institut du Cerveau, Sorbonne Université, INSERM, CNRS, Paris, France.
| |
Collapse
|
20
|
Warm D, Bassetti D, Schroer J, Luhmann HJ, Sinning A. Spontaneous Activity Predicts Survival of Developing Cortical Neurons. Front Cell Dev Biol 2022; 10:937761. [PMID: 36035995 PMCID: PMC9399774 DOI: 10.3389/fcell.2022.937761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Spontaneous activity plays a crucial role in brain development by coordinating the integration of immature neurons into emerging cortical networks. High levels and complex patterns of spontaneous activity are generally associated with low rates of apoptosis in the cortex. However, whether spontaneous activity patterns directly encode for survival of individual cortical neurons during development remains an open question. Here, we longitudinally investigated spontaneous activity and apoptosis in developing cortical cultures, combining extracellular electrophysiology with calcium imaging. These experiments demonstrated that the early occurrence of calcium transients was strongly linked to neuronal survival. Silent neurons exhibited a higher probability of cell death, whereas high frequency spiking and burst behavior were almost exclusively detected in surviving neurons. In local neuronal clusters, activity of neighboring neurons exerted a pro-survival effect, whereas on the functional level, networks with a high modular topology were associated with lower cell death rates. Using machine learning algorithms, cell fate of individual neurons was predictable through the integration of spontaneous activity features. Our results indicate that high frequency spiking activity constrains apoptosis in single neurons through sustained calcium rises and thereby consolidates networks in which a high modular topology is reached during early development.
Collapse
|
21
|
Moroni M, Brondi M, Fellin T, Panzeri S. SmaRT2P: a software for generating and processing smart line recording trajectories for population two-photon calcium imaging. Brain Inform 2022; 9:18. [PMID: 35927517 PMCID: PMC9352634 DOI: 10.1186/s40708-022-00166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Two-photon fluorescence calcium imaging allows recording the activity of large neural populations with subcellular spatial resolution, but it is typically characterized by low signal-to-noise ratio (SNR) and poor accuracy in detecting single or few action potentials when large number of neurons are imaged. We recently showed that implementing a smart line scanning approach using trajectories that optimally sample the regions of interest increases both the SNR fluorescence signals and the accuracy of single spike detection in population imaging in vivo. However, smart line scanning requires highly specialised software to design recording trajectories, interface with acquisition hardware, and efficiently process acquired data. Furthermore, smart line scanning needs optimized strategies to cope with movement artefacts and neuropil contamination. Here, we develop and validate SmaRT2P, an open-source, user-friendly and easy-to-interface Matlab-based software environment to perform optimized smart line scanning in two-photon calcium imaging experiments. SmaRT2P is designed to interface with popular acquisition software (e.g., ScanImage) and implements novel strategies to detect motion artefacts, estimate neuropil contamination, and minimize their impact on functional signals extracted from neuronal population imaging. SmaRT2P is structured in a modular way to allow flexibility in the processing pipeline, requiring minimal user intervention in parameter setting. The use of SmaRT2P for smart line scanning has the potential to facilitate the functional investigation of large neuronal populations with increased SNR and accuracy in detecting the discharge of single and few action potentials.
Collapse
Affiliation(s)
- Monica Moroni
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems, UniTn, Istituto Italiano Di Tecnologia, 38068, Rovereto, Italy.
| | - Marco Brondi
- Optical Approaches to Brain Function Laboratory, Istituto Italiano Di Tecnologia, 16163, Genoa, Italy.,Department of Biomedical Sciences-UNIPD, Università Degli Studi Di Padova, 35121, Padua, Italy.,Padova Neuroscience Center (PNC), Università Degli Studi Di Padova, 35129, Padua, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano Di Tecnologia, 16163, Genoa, Italy
| | - Stefano Panzeri
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems, UniTn, Istituto Italiano Di Tecnologia, 38068, Rovereto, Italy. .,Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251, Hamburg, Germany.
| |
Collapse
|
22
|
Computational Methods for Neuron Segmentation in Two-Photon Calcium Imaging Data: A Survey. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calcium imaging has rapidly become a methodology of choice for real-time in vivo neuron analysis. Its application to large sets of data requires automated tools to annotate and segment cells, allowing scalable image segmentation under reproducible criteria. In this paper, we review and summarize the most recent methods for computational segmentation of calcium imaging. The contributions of the paper are three-fold: we provide an overview of the main algorithms taxonomized in three categories (signal processing, matrix factorization and machine learning-based approaches), we highlight the main advantages and disadvantages of each category and we provide a summary of the performance of the methods that have been tested on public benchmarks (with links to the public code when available).
Collapse
|
23
|
Mellor NG, Graham ES, Unsworth CP. Critical Spatial-Temporal Dynamics and Prominent Shape Collapse of Calcium Waves Observed in Human hNT Astrocytes in Vitro. Front Physiol 2022; 13:808730. [PMID: 35784870 PMCID: PMC9247335 DOI: 10.3389/fphys.2022.808730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/31/2022] [Indexed: 11/27/2022] Open
Abstract
Networks of neurons are typically studied in the field of Criticality. However, the study of astrocyte networks in the brain has been recently lauded to be of equal importance to that of the neural networks. To date criticality assessments have only been performed on networks astrocytes from healthy rats, and astrocytes from cultured dissociated resections of intractable epilepsy. This work, for the first time, presents studies of the critical dynamics and shape collapse of calcium waves observed in cultures of healthy human astrocyte networks in vitro, derived from the human hNT cell line. In this article, we demonstrate that avalanches of spontaneous calcium waves display strong critical dynamics, including power-laws in both the size and duration distributions. In addition, the temporal profiles of avalanches displayed self-similarity, leading to shape collapse of the temporal profiles. These findings are significant as they suggest that cultured networks of healthy human hNT astrocytes self-organize to a critical point, implying that healthy astrocytic networks operate at a critical point to process and transmit information. Furthermore, this work can serve as a point of reference to which other astrocyte criticality studies can be compared.
Collapse
Affiliation(s)
- Nicholas G. Mellor
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
- *Correspondence: Nicholas G. Mellor,
| | - E. Scott Graham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Charles P. Unsworth
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Mahadevan AS, Long BL, Hu CW, Ryan DT, Grandel NE, Britton GL, Bustos M, Gonzalez Porras MA, Stojkova K, Ligeralde A, Son H, Shannonhouse J, Robinson JT, Warmflash A, Brey EM, Kim YS, Qutub AA. cytoNet: Spatiotemporal network analysis of cell communities. PLoS Comput Biol 2022; 18:e1009846. [PMID: 35696439 PMCID: PMC9191702 DOI: 10.1371/journal.pcbi.1009846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
We introduce cytoNet, a cloud-based tool to characterize cell populations from microscopy images. cytoNet quantifies spatial topology and functional relationships in cell communities using principles of network science. Capturing multicellular dynamics through graph features, cytoNet also evaluates the effect of cell-cell interactions on individual cell phenotypes. We demonstrate cytoNet’s capabilities in four case studies: 1) characterizing the temporal dynamics of neural progenitor cell communities during neural differentiation, 2) identifying communities of pain-sensing neurons in vivo, 3) capturing the effect of cell community on endothelial cell morphology, and 4) investigating the effect of laminin α4 on perivascular niches in adipose tissue. The analytical framework introduced here can be used to study the dynamics of complex cell communities in a quantitative manner, leading to a deeper understanding of environmental effects on cellular behavior. The versatile, cloud-based format of cytoNet makes the image analysis framework accessible to researchers across domains.
Collapse
Affiliation(s)
- Arun S. Mahadevan
- Department of Bioengineering, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Byron L. Long
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America
- Department of Computer Science, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Chenyue W. Hu
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - David T. Ryan
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Nicolas E. Grandel
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, Texas, United States of America
| | - George L. Britton
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, Texas, United States of America
| | - Marisol Bustos
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Maria A. Gonzalez Porras
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Katerina Stojkova
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Andrew Ligeralde
- Biophysics Graduate Program, University of California, Berkeley, California, United States of America
| | - Hyeonwi Son
- Department of Oral & Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - John Shannonhouse
- Department of Oral & Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jacob T. Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, United States of America
| | - Aryeh Warmflash
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Eric M. Brey
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America
- UTSA–UT Health Joint Graduate Group in Biomedical Engineering, San Antonio, Texas, United States of America
| | - Yu Shin Kim
- Department of Oral & Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- UTSA–UT Health Joint Graduate Group in Biomedical Engineering, San Antonio, Texas, United States of America
- Programs in Integrated Biomedical Sciences, Translational Sciences, Radiological Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Amina A. Qutub
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America
- UTSA–UT Health Joint Graduate Group in Biomedical Engineering, San Antonio, Texas, United States of America
- UTSA AI MATRIX Consortium, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Marolt U, Paradiž Leitgeb E, Pohorec V, Lipovšek S, Venglovecz V, Gál E, Ébert A, Menyhárt I, Potrč S, Gosak M, Dolenšek J, Stožer A. Calcium imaging in intact mouse acinar cells in acute pancreas tissue slices. PLoS One 2022; 17:e0268644. [PMID: 35657915 PMCID: PMC9165796 DOI: 10.1371/journal.pone.0268644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
The physiology and pathophysiology of the exocrine pancreas are in close connection to changes in intra-cellular Ca2+ concentration. Most of our knowledge is based on in vitro experiments on acinar cells or acini enzymatically isolated from their surroundings, which can alter their structure, physiology, and limit our understanding. Due to these limitations, the acute pancreas tissue slice technique was introduced almost two decades ago as a complementary approach to assess the morphology and physiology of both the endocrine and exocrine pancreas in a more conserved in situ setting. In this study, we extend previous work to functional multicellular calcium imaging on acinar cells in tissue slices. The viability and morphological characteristics of acinar cells within the tissue slice were assessed using the LIVE/DEAD assay, transmission electron microscopy, and immunofluorescence imaging. The main aim of our study was to characterize the responses of acinar cells to stimulation with acetylcholine and compare them with responses to cerulein in pancreatic tissue slices, with special emphasis on inter-cellular and inter-acinar heterogeneity and coupling. To this end, calcium imaging was performed employing confocal microscopy during stimulation with a wide range of acetylcholine concentrations and selected concentrations of cerulein. We show that various calcium oscillation parameters depend monotonically on the stimulus concentration and that the activity is rather well synchronized within acini, but not between acini. The acute pancreas tissue slice represents a viable and reliable experimental approach for the evaluation of both intra- and inter-cellular signaling characteristics of acinar cell calcium dynamics. It can be utilized to assess many cells simultaneously with a high spatiotemporal resolution, thus providing an efficient and high-yield platform for future studies of normal acinar cell biology, pathophysiology, and screening pharmacological substances.
Collapse
Affiliation(s)
- Urška Marolt
- Clinical department for abdominal and general surgery, University Medical Centre Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Saška Lipovšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Attila Ébert
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - István Menyhárt
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Stojan Potrč
- Clinical department for abdominal and general surgery, University Medical Centre Maribor, Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| |
Collapse
|
26
|
Genetic and Neurological Deficiencies in the Visual System of mct8 Mutant Zebrafish. Int J Mol Sci 2022; 23:ijms23052464. [PMID: 35269606 PMCID: PMC8910067 DOI: 10.3390/ijms23052464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 01/27/2023] Open
Abstract
Thyroid hormones (THs; T3 and T4) enter cells using specific transporters and regulate development and metabolism. Mutation in the TH transporter monocarboxylate transporter 8 (MCT8, SLC16A2) is associated with brain hypothyroidism and neurological impairment. We established mct8 mutant (mct8-/-) zebrafish as a model for MCT8 deficiency, which causes endocrinological, neurological, and behavioral alterations. Here, we profiled the transcriptome of mct8-/- larvae. Among hundreds of differentially expressed genes, the expression of a cluster of vision-related genes was distinct. Specifically, the expression of the opsin 1 medium wave sensitive 2 (opn1mw2) decreased in two mct8 mutants: mct8-/- and mct8-25bp-/- larvae, and under pharmacological inhibition of TH production. Optokinetic reflex (OKR) assays showed a reduction in the number of conjugated eye movements, and live imaging of genetically encoded Ca2+ indicator revealed altered neuronal activity in the pretectum area of mct8-25bp-/- larvae. These results imply that MCT8 and THs regulate the development of the visual system and suggest a mechanism to the deficiencies observed in the visual system of MCT8-deficiency patients.
Collapse
|
27
|
To deconvolve, or not to deconvolve: Inferences of neuronal activities using calcium imaging data. J Neurosci Methods 2022; 366:109431. [PMID: 34856319 DOI: 10.1016/j.jneumeth.2021.109431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND With the increasing popularity of calcium imaging in neuroscience research, choosing the right methods to analyze calcium imaging data is critical to address various scientific questions. Unlike spike trains measured using electrodes, fluorescence intensity traces provide an indirect and noisy measurement of the underlying neuronal activities. The observed calcium traces are either analyzed directly or deconvolved to spike trains to infer neuronal activities. When both approaches are applicable, it is unclear whether deconvolving calcium traces is a necessary step. METHODS In this article, we compare the performance of using calcium traces or their deconvolved spike trains for three common analyses: clustering, principal component analysis (PCA), and population decoding. RESULTS We found that (1) the two approaches lead to diverging results; (2) estimated spike trains, when smoothed or binned appropriately, usually lead to satisfactory performances, such as more accurate estimation of cluster membership; (3) although estimate spike train produce results more similar to true spike data than trace data, we found that the PCA results from trace data might better reflect the underlying neuronal ensembles (clusters); and (4) for both approaches, decobability can be improved by using denoising or smoothing methods. COMPARISON WITH EXISTING METHODS Our simulations and applications to real data suggest that estimated spike data outperform trace data in cluster analysis and give comparable results for population decoding. In addition, the decobability of estimated spike data can be slightly better than that of calcium trace data with appropriate filtering / smoothing methods. CONCLUSION We conclude that spike detection might be a useful pre-processing step for certain problems such as clustering; however, the continuous nature of calcium imaging data provides a natural smoothness that might be helpful for problems such as dimensional reduction.
Collapse
|
28
|
Duchemin A, Privat M, Sumbre G. Fourier Motion Processing in the Optic Tectum and Pretectum of the Zebrafish Larva. Front Neural Circuits 2022; 15:814128. [PMID: 35069128 PMCID: PMC8777272 DOI: 10.3389/fncir.2021.814128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
In the presence of moving visual stimuli, the majority of animals follow the Fourier motion energy (luminance), independently of other stimulus features (edges, contrast, etc.). While the behavioral response to Fourier motion has been studied in the past, how Fourier motion is represented and processed by sensory brain areas remains elusive. Here, we investigated how visual moving stimuli with or without the first Fourier component (square-wave signal or missing fundamental signal) are represented in the main visual regions of the zebrafish brain. First, we monitored the larva's optokinetic response (OKR) induced by square-wave and missing fundamental signals. Then, we used two-photon microscopy and GCaMP6f zebrafish larvae to monitor neuronal circuit dynamics in the optic tectum and the pretectum. We observed that both the optic tectum and the pretectum circuits responded to the square-wave gratings. However, only the pretectum responded specifically to the direction of the missing-fundamental signal. In addition, a group of neurons in the pretectum responded to the direction of the behavioral output (OKR), independently of the type of stimulus presented. Our results suggest that the optic tectum responds to the different features of the stimulus (e.g., contrast, spatial frequency, direction, etc.), but does not respond to the direction of motion if the motion information is not coherent (e.g., the luminance and the edges and contrast in the missing-fundamental signal). On the other hand, the pretectum mainly responds to the motion of the stimulus based on the Fourier energy.
Collapse
|
29
|
Franco LM, Yaksi E. Experience-dependent plasticity modulates ongoing activity in the antennal lobe and enhances odor representations. Cell Rep 2021; 37:110165. [PMID: 34965425 PMCID: PMC8739562 DOI: 10.1016/j.celrep.2021.110165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/10/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022] Open
Abstract
Ongoing neural activity has been observed across several brain regions and is thought to reflect the internal state of the brain. Yet, it is important to understand how ongoing neural activity interacts with sensory experience and shapes sensory representations. Here, we show that the projection neurons of the fruit fly antennal lobe exhibit spatiotemporally organized ongoing activity. After repeated exposure to odors, we observe a gradual and cumulative decrease in the amplitude and number of calcium events occurring in the absence of odor stimulation, as well as a reorganization of correlations between olfactory glomeruli. Accompanying these plastic changes, we find that repeated odor experience decreases trial-to-trial variability and enhances the specificity of odor representations. Our results reveal an odor-experience-dependent modulation of ongoing and sensory-evoked activity at peripheral levels of the fruit fly olfactory system. The fruit fly antennal lobe exhibits spatiotemporally organized ongoing activity Repeated odor experience decreases the amplitude and number of ongoing calcium events Odor experience enhances the robustness and the specificity of odor representations Representations of different odors become more dissimilar upon repeated exposure
Collapse
Affiliation(s)
- Luis M Franco
- Neuroelectronics Research Flanders (NERF), KU Leuven, Leuven 3001, Belgium; VIB Center for the Biology of Disease, KU Leuven, Leuven 3000, Belgium; Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Emre Yaksi
- Neuroelectronics Research Flanders (NERF), KU Leuven, Leuven 3001, Belgium; Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim 7030, Norway.
| |
Collapse
|
30
|
Zada D, Sela Y, Matosevich N, Monsonego A, Lerer-Goldshtein T, Nir Y, Appelbaum L. Parp1 promotes sleep, which enhances DNA repair in neurons. Mol Cell 2021; 81:4979-4993.e7. [PMID: 34798058 PMCID: PMC8688325 DOI: 10.1016/j.molcel.2021.10.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
The characteristics of the sleep drivers and the mechanisms through which sleep relieves the cellular homeostatic pressure are unclear. In flies, zebrafish, mice, and humans, DNA damage levels increase during wakefulness and decrease during sleep. Here, we show that 6 h of consolidated sleep is sufficient to reduce DNA damage in the zebrafish dorsal pallium. Induction of DNA damage by neuronal activity and mutagens triggered sleep and DNA repair. The activity of the DNA damage response (DDR) proteins Rad52 and Ku80 increased during sleep, and chromosome dynamics enhanced Rad52 activity. The activity of the DDR initiator poly(ADP-ribose) polymerase 1 (Parp1) increased following sleep deprivation. In both larva zebrafish and adult mice, Parp1 promoted sleep. Inhibition of Parp1 activity reduced sleep-dependent chromosome dynamics and repair. These results demonstrate that DNA damage is a homeostatic driver for sleep, and Parp1 pathways can sense this cellular pressure and facilitate sleep and repair activity.
Collapse
Affiliation(s)
- David Zada
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yaniv Sela
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Noa Matosevich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Adir Monsonego
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
31
|
O'Donovan B, Neugornet A, Neogi R, Xia M, Ortinski P. Cocaine experience induces functional adaptations in astrocytes: Implications for synaptic plasticity in the nucleus accumbens shell. Addict Biol 2021; 26:e13042. [PMID: 33864336 DOI: 10.1111/adb.13042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 11/24/2022]
Abstract
Astrocytes have become established as an important regulator of neuronal activity in the brain. Accumulating literature demonstrates that cocaine self-administration in rodent models induces structural changes within astrocytes that may influence their interaction with the surrounding neurons. Here, we provide evidence that cocaine impacts astrocytes at the functional level and alters neuronal sensitivity to astrocyte-derived glutamate. We report that a 14-day period of short access to cocaine (2 h/day) decreases spontaneous astrocytic Ca2+ transients and precipitates changes in astrocyte network activity in the nucleus accumbens shell. This is accompanied by increased prevalence of slow inward currents, a physiological marker of neuronal activation by astrocytic glutamate, in a subset of medium spiny neurons. Within, but not outside, of this subset, we observe an increase in duration and frequency of N-methyl-D-aspartate (NMDA) receptor-mediated synaptic events. Additionally, we find that the link between synaptic NMDA receptor plasticity and neuron sensitivity to astrocytic glutamate is maintained independent of drug exposure and is observed in both cocaine and saline control animals. Imaging analyses of neuronal Ca2+ activity show no effect of cocaine self-administration on individual cells or on neuronal network activity in brain slices. Therefore, our data indicate that cocaine self-administration promotes astrocyte-specific functional changes that can be linked to increased glutamate-mediated coupling with principal neurons in the nucleus accumbens. Such coupling may be spatially restricted as it does not result in a broad impact on network structure of local neuronal circuits.
Collapse
Affiliation(s)
- Bernadette O'Donovan
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
| | - Austin Neugornet
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
| | - Richik Neogi
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
- Integrated Biomedical Sciences University of Kentucky Lexington Kentucky USA
| | - Mengfan Xia
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
| | - Pavel Ortinski
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
| |
Collapse
|
32
|
Hotz AL, Jamali A, Rieser NN, Niklaus S, Aydin E, Myren‐Svelstad S, Lalla L, Jurisch‐Yaksi N, Yaksi E, Neuhauss SCF. Loss of glutamate transporter eaat2a leads to aberrant neuronal excitability, recurrent epileptic seizures, and basal hypoactivity. Glia 2021; 70:196-214. [PMID: 34716961 PMCID: PMC9297858 DOI: 10.1002/glia.24106] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022]
Abstract
Astroglial excitatory amino acid transporter 2 (EAAT2, GLT‐1, and SLC1A2) regulates the duration and extent of neuronal excitation by removing glutamate from the synaptic cleft. Hence, an impairment in EAAT2 function could lead to an imbalanced brain network excitability. Here, we investigated the functional alterations of neuronal and astroglial networks associated with the loss of function in the astroglia predominant eaat2a gene in zebrafish. We observed that eaat2a−/− mutant zebrafish larvae display recurrent spontaneous and light‐induced seizures in neurons and astroglia, which coincide with an abrupt increase in extracellular glutamate levels. In stark contrast to this hyperexcitability, basal neuronal and astroglial activity was surprisingly reduced in eaat2a−/− mutant animals, which manifested in decreased overall locomotion. Our results reveal an essential and mechanistic contribution of EAAT2a in balancing brain excitability, and its direct link to epileptic seizures.
Collapse
Affiliation(s)
- Adriana L. Hotz
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Life Science Zürich Graduate School ‐ NeuroscienceUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Ahmed Jamali
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Nicolas N. Rieser
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Life Science Zürich Graduate School ‐ NeuroscienceUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Stephanie Niklaus
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Present address:
EraCal TherapeuticsSchlierenSwitzerland
| | - Ecem Aydin
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Sverre Myren‐Svelstad
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olav's University HospitalTrondheimNorway
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Laetitia Lalla
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Nathalie Jurisch‐Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olav's University HospitalTrondheimNorway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | | |
Collapse
|
33
|
Manohar K, Gare S, Chel S, Dhyani V, Giri L. Quantitative Confocal Microscopy for Grouping of Dose-Response Data: Deciphering Calcium Sequestration and Subsequent Cell Death in the Presence of Excess Norepinephrine. SLAS Technol 2021; 26:454-467. [PMID: 34353144 DOI: 10.1177/24726303211019394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fluorescent calcium (Ca2+) imaging is one of the preferred methods to record cellular activity during in vitro preclinical studies, high-content drug screening, and toxicity analysis. Visualization and analysis for dose-response data obtained using high-resolution imaging remain challenging, due to the inherent heterogeneity present in the Ca2+ spiking. To address this challenge, we propose measurement of cytosolic Ca2+ ions using spinning-disk confocal microscopy and machine learning-based analytics that is scalable. First, we implemented uniform manifold approximation and projection (UMAP) for visualizing the multivariate time-series dataset in the two-dimensional (2D) plane using Python. The dataset was obtained through live imaging experiments with norepinephrine-induced Ca2+ oscillation in HeLa cells for a large range of doses. Second, we demonstrate that the proposed framework can be used to depict the grouping of the spiking pattern for lower and higher drug doses. To the best of our knowledge, this is the first attempt at UMAP visualization of the time-series dose response and identification of the Ca2+ signature during lytic death. Such quantitative microscopy can be used as a component of a high-throughput data analysis workflow for toxicity analysis.
Collapse
Affiliation(s)
- Kuruba Manohar
- Department of BioTechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Suman Gare
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Soumita Chel
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Vaibhav Dhyani
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Lopamudra Giri
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
34
|
Rupasinghe A, Francis N, Liu J, Bowen Z, Kanold PO, Babadi B. Direct extraction of signal and noise correlations from two-photon calcium imaging of ensemble neuronal activity. eLife 2021; 10:68046. [PMID: 34180397 PMCID: PMC8354639 DOI: 10.7554/elife.68046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022] Open
Abstract
Neuronal activity correlations are key to understanding how populations of neurons collectively encode information. While two-photon calcium imaging has created a unique opportunity to record the activity of large populations of neurons, existing methods for inferring correlations from these data face several challenges. First, the observations of spiking activity produced by two-photon imaging are temporally blurred and noisy. Secondly, even if the spiking data were perfectly recovered via deconvolution, inferring network-level features from binary spiking data is a challenging task due to the non-linear relation of neuronal spiking to endogenous and exogenous inputs. In this work, we propose a methodology to explicitly model and directly estimate signal and noise correlations from two-photon fluorescence observations, without requiring intermediate spike deconvolution. We provide theoretical guarantees on the performance of the proposed estimator and demonstrate its utility through applications to simulated and experimentally recorded data from the mouse auditory cortex.
Collapse
Affiliation(s)
- Anuththara Rupasinghe
- Department of Electrical and Computer Engineering, University of Maryland, College Park, United States
| | - Nikolas Francis
- The Institute for Systems Research, University of Maryland, College Park, United States.,Department of Biology, University of Maryland, College Park, United States
| | - Ji Liu
- The Institute for Systems Research, University of Maryland, College Park, United States.,Department of Biology, University of Maryland, College Park, United States
| | - Zac Bowen
- The Institute for Systems Research, University of Maryland, College Park, United States.,Department of Biology, University of Maryland, College Park, United States
| | - Patrick O Kanold
- The Institute for Systems Research, University of Maryland, College Park, United States.,Department of Biology, University of Maryland, College Park, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
| | - Behtash Babadi
- Department of Electrical and Computer Engineering, University of Maryland, College Park, United States
| |
Collapse
|
35
|
Yang SJ, Del Bonis-O'Donnell JT, Beyene AG, Landry MP. Near-infrared catecholamine nanosensors for high spatiotemporal dopamine imaging. Nat Protoc 2021; 16:3026-3048. [PMID: 34021297 PMCID: PMC10505477 DOI: 10.1038/s41596-021-00530-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/02/2021] [Indexed: 11/08/2022]
Abstract
Dopamine neuromodulation of neural synapses is a process implicated in a number of critical brain functions and diseases. Development of protocols to visualize this dynamic neurochemical process is essential to understanding how dopamine modulates brain function. We have developed a non-genetically encoded, near-IR (nIR) catecholamine nanosensor (nIRCat) capable of identifying ~2-µm dopamine release hotspots in dorsal striatal brain slices. nIRCat is readily synthesized through sonication of single walled carbon nanotubes with DNA oligos, can be readily introduced into both genetically tractable and intractable organisms and is compatible with a number of dopamine receptor agonists and antagonists. Here we describe the synthesis, characterization and implementation of nIRCat in acute mouse brain slices. We demonstrate how nIRCat can be used to image electrically or optogenetically stimulated dopamine release, and how these procedures can be leveraged to study the effects of dopamine receptor pharmacology. In addition, we provide suggestions for building or adapting wide-field microscopy to be compatible with nIRCat nIR fluorescence imaging. We discuss strategies for analyzing nIR video data to identify dopamine release hotspots and quantify their kinetics. This protocol can be adapted and implemented for imaging other neuromodulators by using probes of this class and can be used in a broad range of species without genetic manipulation. The synthesis and characterization protocols for nIRCat take ~5 h, and the preparation and fluorescence imaging of live brain slices by using nIRCats require ~6 h.
Collapse
Affiliation(s)
- Sarah J Yang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | | | - Abraham G Beyene
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute (IGI), Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
36
|
Kazwiny Y, Pedrosa J, Zhang Z, Boesmans W, D'hooge J, Vanden Berghe P. Extracting neuronal activity signals from microscopy recordings of contractile tissue using B-spline Explicit Active Surfaces (BEAS) cell tracking. Sci Rep 2021; 11:10937. [PMID: 34035411 PMCID: PMC8149687 DOI: 10.1038/s41598-021-90448-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/06/2021] [Indexed: 01/13/2023] Open
Abstract
Ca2+ imaging is a widely used microscopy technique to simultaneously study cellular activity in multiple cells. The desired information consists of cell-specific time series of pixel intensity values, in which the fluorescence intensity represents cellular activity. For static scenes, cellular signal extraction is straightforward, however multiple analysis challenges are present in recordings of contractile tissues, like those of the enteric nervous system (ENS). This layer of critical neurons, embedded within the muscle layers of the gut wall, shows optical overlap between neighboring neurons, intensity changes due to cell activity, and constant movement. These challenges reduce the applicability of classical segmentation techniques and traditional stack alignment and regions-of-interest (ROIs) selection workflows. Therefore, a signal extraction method capable of dealing with moving cells and is insensitive to large intensity changes in consecutive frames is needed. Here we propose a b-spline active contour method to delineate and track neuronal cell bodies based on local and global energy terms. We develop both a single as well as a double-contour approach. The latter takes advantage of the appearance of GCaMP expressing cells, and tracks the nucleus' boundaries together with the cytoplasmic contour, providing a stable delineation of neighboring, overlapping cells despite movement and intensity changes. The tracked contours can also serve as landmarks to relocate additional and manually-selected ROIs. This improves the total yield of efficacious cell tracking and allows signal extraction from other cell compartments like neuronal processes. Compared to manual delineation and other segmentation methods, the proposed method can track cells during large tissue deformations and high-intensity changes such as during neuronal firing events, while preserving the shape of the extracted Ca2+ signal. The analysis package represents a significant improvement to available Ca2+ imaging analysis workflows for ENS recordings and other systems where movement challenges traditional Ca2+ signal extraction workflows.
Collapse
Affiliation(s)
- Youcef Kazwiny
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven (KU Leuven), Leuven, Belgium
| | - João Pedrosa
- Laboratory of Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, University of Leuven (KU Leuven), Leuven, Belgium
- Institute for Systems and Computer Engineering, Technology and Science, INESC TEC, Porto, Portugal
| | - Zhiqing Zhang
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven (KU Leuven), Leuven, Belgium
| | - Werend Boesmans
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Jan D'hooge
- Laboratory of Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven (KU Leuven), Leuven, Belgium.
| |
Collapse
|
37
|
Neugornet A, O'Donovan B, Ortinski PI. Comparative Effects of Event Detection Methods on the Analysis and Interpretation of Ca 2+ Imaging Data. Front Neurosci 2021; 15:620869. [PMID: 33841076 PMCID: PMC8032960 DOI: 10.3389/fnins.2021.620869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/25/2021] [Indexed: 01/04/2023] Open
Abstract
Calcium imaging has gained substantial popularity as a tool to profile the activity of multiple simultaneously active cells at high spatiotemporal resolution. Among the diverse approaches to processing of Ca2+ imaging data is an often subjective decision of how to quantify baseline fluorescence or F 0. We examine the effect of popular F 0 determination methods on the interpretation of neuronal and astrocyte activity in a single dataset of rats trained to self-administer intravenous infusions of cocaine and compare them with an F 0-independent wavelet ridgewalking event detection approach. We find that the choice of the processing method has a profound impact on the interpretation of widefield imaging results. All of the dF/F 0 thresholding methods tended to introduce spurious events and fragment individual transients, leading to smaller calculated event durations and larger event frequencies. Analysis of simulated datasets confirmed these observations and indicated substantial intermethod variability as to the events classified as significant. Additionally, most dF/F 0 methods on their own were unable to adequately account for bleaching of fluorescence, although the F 0 smooth approach and the wavelet ridgewalking algorithm both did so. In general, the choice of the processing method led to dramatically different quantitative and sometimes opposing qualitative interpretations of the effects of cocaine self-administration both at the level of individual cells and at the level of cell networks. Significantly different distributions of event duration, amplitude, frequency, and network measures were found across the majority of dF/F 0 approaches. The wavelet ridgewalking algorithm broadly outperformed dF/F 0-based methods for both neuron and astrocyte recordings. These results indicate the need for heightened awareness of the limitations and tendencies associated with decisions to use particular Ca2+ image processing pipelines. Both quantification and interpretation of the effects of experimental manipulations are strongly sensitive to such decisions.
Collapse
Affiliation(s)
- Austin Neugornet
- Department of Neuroscience, School of Medicine, University of Kentucky, Lexington, KY, United States
| | - Bernadette O'Donovan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Pavel Ivanovich Ortinski
- Department of Neuroscience, School of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
38
|
Golan M, Boulanger-Weill J, Pinot A, Fontanaud P, Faucherre A, Gajbhiye DS, Hollander-Cohen L, Fiordelisio-Coll T, Martin AO, Mollard P. Synaptic communication mediates the assembly of a self-organizing circuit that controls reproduction. SCIENCE ADVANCES 2021; 7:eabc8475. [PMID: 33608269 PMCID: PMC7895442 DOI: 10.1126/sciadv.abc8475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Migration of gonadotropin-releasing hormone (GnRH) neurons from their birthplace in the nasal placode to their hypothalamic destination is critical for vertebrate reproduction and species persistence. While their migration mode as individual GnRH neurons has been extensively studied, the role of GnRH-GnRH cell communication during migration remains largely unexplored. Here, we show in awake zebrafish larvae that migrating GnRH neurons pause at the nasal-forebrain junction and form clusters that act as interhemisphere neuronal ensembles. Within the ensembles, GnRH neurons create an isolated, spontaneously active circuit that is internally wired through monosynaptic glutamatergic synapses into which newborn GnRH neurons integrate before entering the brain. This initial phase of integration drives a phenotypic switch, which is essential for GnRH neurons to properly migrate toward their hypothalamic destination. Together, these experiments reveal a critical step for reproduction, which depends on synaptic communication between migrating GnRH neurons.
Collapse
Affiliation(s)
- M Golan
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France.
- Institute of Animal Science, Agricultural Research Organization, P.O. Box 15159, Rishon Letziyon, 7505101, Israel
| | - J Boulanger-Weill
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - A Pinot
- BioCampus Montpellier, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| | - P Fontanaud
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France
- BioCampus Montpellier, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| | - A Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France
| | - D S Gajbhiye
- Institute of Animal Science, Agricultural Research Organization, P.O. Box 15159, Rishon Letziyon, 7505101, Israel
| | - L Hollander-Cohen
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - T Fiordelisio-Coll
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, México
| | - A O Martin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France
| | - P Mollard
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France.
- BioCampus Montpellier, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| |
Collapse
|
39
|
Meneghetti N, Dedola F, Gavryusev V, Sancataldo G, Turrini L, de Vito G, Tiso N, Vanzi F, Carpaneto J, Cutrone A, Pavone FS, Micera S, Mazzoni A. Direct activation of zebrafish neurons by ultrasonic stimulation revealed by whole CNS calcium imaging. J Neural Eng 2020; 17:056033. [DOI: 10.1088/1741-2552/abae8b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Barrios JP, Wang WC, England R, Reifenberg E, Douglass AD. Hypothalamic Dopamine Neurons Control Sensorimotor Behavior by Modulating Brainstem Premotor Nuclei in Zebrafish. Curr Biol 2020; 30:4606-4618.e4. [PMID: 33007241 DOI: 10.1016/j.cub.2020.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/26/2020] [Accepted: 09/02/2020] [Indexed: 01/10/2023]
Abstract
Dopamine (DA)-producing neurons are critically involved in the production of motor behaviors in multiple circuits that are conserved from basal vertebrates to mammals. Although there is increasing evidence that DA neurons in the hypothalamus play a locomotor role, their precise contributions to behavior and the circuit mechanisms by which they are achieved remain unclear. Here, we demonstrate that tyrosine-hydroxylase-2-expressing (th2+) DA neurons in the zebrafish hypothalamus fire phasic bursts of activity to acutely promote swimming and modulate audiomotor behaviors on fast timescales. Their anatomy and physiology reveal two distinct functional DA modules within the hypothalamus. The first comprises an interconnected set of cerebrospinal-fluid-contacting DA nuclei surrounding the 3rd ventricle, which lack distal projections outside of the hypothalamus and influence locomotion through unknown means. The second includes neurons in the preoptic nucleus, which send long-range projections to targets throughout the brain, including the mid- and hindbrain, where they activate premotor circuits involved in swimming and sensorimotor integration. These data suggest a broad regulation of motor behavior by DA neurons within multiple hypothalamic nuclei and elucidate a novel functional mechanism for the preoptic DA neurons in the initiation of movement.
Collapse
Affiliation(s)
- Joshua P Barrios
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Wei-Chun Wang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Roman England
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Erica Reifenberg
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Adam D Douglass
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
41
|
Fore S, Acuña-Hinrichsen F, Mutlu KA, Bartoszek EM, Serneels B, Faturos NG, Chau KTP, Cosacak MI, Verdugo CD, Palumbo F, Ringers C, Jurisch-Yaksi N, Kizil C, Yaksi E. Functional properties of habenular neurons are determined by developmental stage and sequential neurogenesis. SCIENCE ADVANCES 2020; 6:6/36/eaaz3173. [PMID: 32917624 PMCID: PMC7473745 DOI: 10.1126/sciadv.aaz3173] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/17/2020] [Indexed: 05/17/2023]
Abstract
The developing brain undergoes drastic alterations. Here, we investigated developmental changes in the habenula, a brain region that mediates behavioral flexibility during learning, social interactions, and aversive experiences. We showed that developing habenular circuits exhibit multiple alterations that lead to an increase in the structural and functional diversity of cell types, inputs, and functional modules. As the habenula develops, it sequentially transforms into a multisensory brain region that can process visual, olfactory, mechanosensory, and aversive stimuli. Moreover, we observed that the habenular neurons display spatiotemporally structured spontaneous activity that shows prominent alterations and refinement with age. These alterations in habenular activity are accompanied by sequential neurogenesis and the integration of distinct neural clusters across development. Last, we revealed that habenular neurons with distinct functional properties are born sequentially at distinct developmental time windows. Our results highlight a strong link between the functional properties of habenular neurons and their precise birthdate.
Collapse
Affiliation(s)
- Stephanie Fore
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Francisca Acuña-Hinrichsen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Kadir Aytac Mutlu
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Ewelina Magdalena Bartoszek
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Bram Serneels
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Nicholas Guy Faturos
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Khac Thanh Phong Chau
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany
| | - Carmen Diaz Verdugo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Fabrizio Palumbo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Christa Ringers
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St Olav University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway.
| |
Collapse
|
42
|
Ceto S, Sekiguchi KJ, Takashima Y, Nimmerjahn A, Tuszynski MH. Neural Stem Cell Grafts Form Extensive Synaptic Networks that Integrate with Host Circuits after Spinal Cord Injury. Cell Stem Cell 2020; 27:430-440.e5. [PMID: 32758426 DOI: 10.1016/j.stem.2020.07.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/11/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
Neural stem/progenitor cell (NSPC) grafts can integrate into sites of spinal cord injury (SCI) and generate neuronal relays across lesions that can provide functional benefit. To determine if and how grafts become synaptically organized and connect with host systems, we performed calcium imaging of NSPC grafts in SCI sites in vivo and in adult spinal cord slices. NSPC grafts organize into localized and spontaneously active synaptic networks. Optogenetic stimulation of host corticospinal tract axons regenerating into grafts elicited distinct and segregated neuronal network responses throughout the graft. Moreover, optogenetic stimulation of graft-derived axons extending from the graft into the denervated spinal cord also triggered local host neuronal network responses. In vivo imaging revealed that behavioral stimulation likewise elicited focal synaptic responses within grafts. Thus neural progenitor grafts can form functional synaptic subnetworks whose activity patterns resemble intact spinal cord.
Collapse
Affiliation(s)
- Steven Ceto
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Administration Medical Center, San Diego, La Jolla, CA 92161, USA.
| | - Kohei J Sekiguchi
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yoshio Takashima
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Administration Medical Center, San Diego, La Jolla, CA 92161, USA
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Administration Medical Center, San Diego, La Jolla, CA 92161, USA.
| |
Collapse
|
43
|
Oltmanns S, Abben FS, Ender A, Aimon S, Kovacs R, Sigrist SJ, Storace DA, Geiger JRP, Raccuglia D. NOSA, an Analytical Toolbox for Multicellular Optical Electrophysiology. Front Neurosci 2020; 14:712. [PMID: 32765213 PMCID: PMC7381214 DOI: 10.3389/fnins.2020.00712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/12/2020] [Indexed: 11/23/2022] Open
Abstract
Understanding how neural networks generate activity patterns and communicate with each other requires monitoring the electrical activity from many neurons simultaneously. Perfectly suited tools for addressing this challenge are genetically encoded voltage indicators (GEVIs) because they can be targeted to specific cell types and optically report the electrical activity of individual, or populations of neurons. However, analyzing and interpreting the data from voltage imaging experiments is challenging because high recording speeds and properties of current GEVIs yield only low signal-to-noise ratios, making it necessary to apply specific analytical tools. Here, we present NOSA (Neuro-Optical Signal Analysis), a novel open source software designed for analyzing voltage imaging data and identifying temporal interactions between electrical activity patterns of different origin. In this work, we explain the challenges that arise during voltage imaging experiments and provide hands-on analytical solutions. We demonstrate how NOSA's baseline fitting, filtering algorithms and movement correction can compensate for shifts in baseline fluorescence and extract electrical patterns from low signal-to-noise recordings. NOSA allows to efficiently identify oscillatory frequencies in electrical patterns, quantify neuronal response parameters and moreover provides an option for analyzing simultaneously recorded optical and electrical data derived from patch-clamp or other electrode-based recordings. To identify temporal relations between electrical activity patterns we implemented different options to perform cross correlation analysis, demonstrating their utility during voltage imaging in Drosophila and mice. All features combined, NOSA will facilitate the first steps into using GEVIs and help to realize their full potential for revealing cell-type specific connectivity and functional interactions.
Collapse
Affiliation(s)
- Sebastian Oltmanns
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frauke Sophie Abben
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anatoli Ender
- German Center for Neurodegenerative Diseases, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie Aimon
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Richard Kovacs
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stephan J. Sigrist
- German Center for Neurodegenerative Diseases, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Douglas A. Storace
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Jörg R. P. Geiger
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Davide Raccuglia
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
44
|
Shemesh OA, Linghu C, Piatkevich KD, Goodwin D, Celiker OT, Gritton HJ, Romano MF, Gao R, Yu CCJ, Tseng HA, Bensussen S, Narayan S, Yang CT, Freifeld L, Siciliano CA, Gupta I, Wang J, Pak N, Yoon YG, Ullmann JFP, Guner-Ataman B, Noamany H, Sheinkopf ZR, Park WM, Asano S, Keating AE, Trimmer JS, Reimer J, Tolias AS, Bear MF, Tye KM, Han X, Ahrens MB, Boyden ES. Precision Calcium Imaging of Dense Neural Populations via a Cell-Body-Targeted Calcium Indicator. Neuron 2020; 107:470-486.e11. [PMID: 32592656 DOI: 10.1016/j.neuron.2020.05.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 05/09/2019] [Accepted: 05/20/2020] [Indexed: 01/11/2023]
Abstract
Methods for one-photon fluorescent imaging of calcium dynamics can capture the activity of hundreds of neurons across large fields of view at a low equipment complexity and cost. In contrast to two-photon methods, however, one-photon methods suffer from higher levels of crosstalk from neuropil, resulting in a decreased signal-to-noise ratio and artifactual correlations of neural activity. We address this problem by engineering cell-body-targeted variants of the fluorescent calcium indicators GCaMP6f and GCaMP7f. We screened fusions of GCaMP to natural, as well as artificial, peptides and identified fusions that localized GCaMP to within 50 μm of the cell body of neurons in mice and larval zebrafish. One-photon imaging of soma-targeted GCaMP in dense neural circuits reported fewer artifactual spikes from neuropil, an increased signal-to-noise ratio, and decreased artifactual correlation across neurons. Thus, soma-targeting of fluorescent calcium indicators facilitates usage of simple, powerful, one-photon methods for imaging neural calcium dynamics.
Collapse
Affiliation(s)
- Or A Shemesh
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Changyang Linghu
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Kiryl D Piatkevich
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Daniel Goodwin
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Orhan Tunc Celiker
- MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Howard J Gritton
- Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA
| | - Michael F Romano
- Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA
| | - Ruixuan Gao
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Chih-Chieh Jay Yu
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Hua-An Tseng
- Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA
| | - Seth Bensussen
- Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Chao-Tsung Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Limor Freifeld
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | - Cody A Siciliano
- Vanderbilt Center for Addiction Research, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ishan Gupta
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Joyce Wang
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Nikita Pak
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Young-Gyu Yoon
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA; School of Electrical Engineering, KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea
| | - Jeremy F P Ullmann
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital & Harvard Medical School, Boston, MA, USA
| | - Burcu Guner-Ataman
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Habiba Noamany
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Zoe R Sheinkopf
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Shoh Asano
- Internal Medicine Research Unit, Pfizer, Cambridge, MA, USA
| | - Amy E Keating
- Department of Biological Engineering, MIT, Cambridge, MA, USA; Department of Biology, MIT, Cambridge, MA, USA; Koch Institute, MIT, Cambridge, MA 02139, USA
| | - James S Trimmer
- Department of Physiology and Membrane Biology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Center for Neuroscience and AI, Baylor College of Medicine, Houston, TX, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Center for Neuroscience and AI, Baylor College of Medicine, Houston, TX, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Edward S Boyden
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Koch Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
45
|
Lee Y, Xie J, Lee E, Sudarsanan S, Lin DT, Chen R, Bhattacharyya SS. Real-Time Neuron Detection and Neural Signal Extraction Platform for Miniature Calcium Imaging. Front Comput Neurosci 2020; 14:43. [PMID: 32676021 PMCID: PMC7333463 DOI: 10.3389/fncom.2020.00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/28/2020] [Indexed: 12/03/2022] Open
Abstract
Real-time neuron detection and neural activity extraction are critical components of real-time neural decoding. In this paper, we propose a novel real-time neuron detection and activity extraction system using a dataflow framework to provide real-time performance and adaptability to new algorithms and hardware platforms. The proposed system was evaluated on simulated calcium imaging data, calcium imaging data with manual annotation, and calcium imaging data of the anterior lateral motor cortex. We found that the proposed system accurately detected neurons and extracted neural activities in real time without any requirement for expensive, cumbersome, or special-purpose computing hardware. We expect that the system will enable cost-effective, real-time calcium imaging-based neural decoding, leading to precise neuromodulation.
Collapse
Affiliation(s)
- Yaesop Lee
- Department of Electrical and Computer Engineering, University of Maryland at College Park, College Park, MD, United States
| | - Jing Xie
- Department of Electrical and Computer Engineering, University of Maryland at College Park, College Park, MD, United States
| | - Eungjoo Lee
- Department of Electrical and Computer Engineering, University of Maryland at College Park, College Park, MD, United States
| | - Srijesh Sudarsanan
- Department of Electrical and Computer Engineering, University of Maryland at College Park, College Park, MD, United States
| | - Da-Ting Lin
- National Institute on Drug Abuse, National Institutes of Health (NIH), Baltimore, MD, United States
| | - Rong Chen
- Department of Electrical and Computer Engineering, University of Maryland at College Park, College Park, MD, United States.,Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland at Baltimore, Baltimore, MD, United States
| | - Shuvra S Bhattacharyya
- Department of Electrical and Computer Engineering, University of Maryland at College Park, College Park, MD, United States.,Institute for Advanced Computer Studies (UMIACS), University of Maryland at College Park, College Park, MD, United States
| |
Collapse
|
46
|
Martin NR, Plavicki JS. Advancing zebrafish as a model for studying developmental neurotoxicology. J Neurosci Res 2020; 98:981-983. [PMID: 32227499 DOI: 10.1002/jnr.24621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 01/01/2023]
Abstract
The cover photo shows the developing zebrafish nervous system at 5 days post-fertilization. Axon tracts are labeled with an anti-acetylated alpha tubulin antibody. The image, which was acquired on a Zeiss LSM 880 confocal microscope, is a maximum intensity projection of a z-stack that has been color-coded for depth. Major brain regions such as the olfactory bulb, forebrain, habenula, optic tectum, cerebellum, hindbrain, and eye are identifiable. This image is part of a study (Plavicki Lab, Brown University) focused on understanding the impact of toxicant exposures on brain development and activity with the goal of identifyingenvironmental factors that contribute to the etiology of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nathan R Martin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.,Pathobiology Graduate Program, Brown University, Providence, RI, USA.,Carney Brain Institute, Brown University, Providence, RI, USA
| | - Jessica S Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.,Pathobiology Graduate Program, Brown University, Providence, RI, USA.,Carney Brain Institute, Brown University, Providence, RI, USA
| |
Collapse
|
47
|
Betzel RF. Organizing principles of whole-brain functional connectivity in zebrafish larvae. Netw Neurosci 2020; 4:234-256. [PMID: 32166210 PMCID: PMC7055648 DOI: 10.1162/netn_a_00121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Network science has begun to reveal the fundamental principles by which large-scale brain networks are organized, including geometric constraints, a balance between segregative and integrative features, and functionally flexible brain areas. However, it remains unknown whether whole-brain networks imaged at the cellular level are organized according to similar principles. Here, we analyze whole-brain functional networks reconstructed from calcium imaging data recorded in larval zebrafish. Our analyses reveal that functional connections are distance-dependent and that networks exhibit hierarchical modular structure and hubs that span module boundaries. We go on to show that spontaneous network structure places constraints on stimulus-evoked reconfigurations of connections and that networks are highly consistent across individuals. Our analyses reveal basic organizing principles of whole-brain functional brain networks at the mesoscale. Our overarching methodological framework provides a blueprint for studying correlated activity at the cellular level using a low-dimensional network representation. Our work forms a conceptual bridge between macro- and mesoscale network neuroscience and opens myriad paths for future studies to investigate network structure of nervous systems at the cellular level.
Collapse
Affiliation(s)
- Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- IU Network Science Institute, Indiana University, Bloomington, IN, USA
| |
Collapse
|
48
|
Renteria C, Liu YZ, Chaney EJ, Barkalifa R, Sengupta P, Boppart SA. Dynamic Tracking Algorithm for Time-Varying Neuronal Network Connectivity using Wide-Field Optical Image Video Sequences. Sci Rep 2020; 10:2540. [PMID: 32054882 PMCID: PMC7018813 DOI: 10.1038/s41598-020-59227-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
Propagation of signals between neurons and brain regions provides information about the functional properties of neural networks, and thus information transfer. Advances in optical imaging and statistical analyses of acquired optical signals have yielded various metrics for inferring neural connectivity, and hence for mapping signal intercorrelation. However, a single coefficient is traditionally derived to classify the connection strength between two cells, ignoring the fact that neural systems are inherently time-variant systems. To overcome these limitations, we utilized a time-varying Pearson's correlation coefficient, spike-sorting, wavelet transform, and wavelet coherence of calcium transients from DIV 12-15 hippocampal neurons from GCaMP6s mice after applying various concentrations of glutamate. Results provide a comprehensive overview of resulting firing patterns, network connectivity, signal directionality, and network properties. Together, these metrics provide a more comprehensive and robust method of analyzing transient neural signals, and enable future investigations for tracking the effects of different stimuli on network properties.
Collapse
Affiliation(s)
- Carlos Renteria
- Beckman Institute for Advanced Science and Technology, Urbana, USA
- Department of Bioengineering, Urbana, USA
| | - Yuan-Zhi Liu
- Beckman Institute for Advanced Science and Technology, Urbana, USA
| | - Eric J Chaney
- Beckman Institute for Advanced Science and Technology, Urbana, USA
| | - Ronit Barkalifa
- Beckman Institute for Advanced Science and Technology, Urbana, USA
| | - Parijat Sengupta
- Beckman Institute for Advanced Science and Technology, Urbana, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, Urbana, USA.
- Department of Bioengineering, Urbana, USA.
- Department of Electrical and Computer Engineering, Urbana, USA.
- Neuroscience Program, Urbana, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, USA.
| |
Collapse
|
49
|
Radstake FDW, Raaijmakers EAL, Luttge R, Zinger S, Frimat JP. CALIMA: The semi-automated open-source calcium imaging analyzer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 179:104991. [PMID: 31443860 PMCID: PMC6718774 DOI: 10.1016/j.cmpb.2019.104991] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Ever since its discovery, calcium imaging has proven its worth in discovering new insights into the mechanisms of cellular communication. Yet, the analysis of the data generated by calcium imaging experiments demands a large amount of time from researchers. Tools enabling automated and semi-automated analysis are available, but often they allow automating only a part of the data analysis process. Therefore, we developed CALIMA (https://aethelraed.nl/calima), a free and open-source standalone software tool that provides an opportunity to quickly detect cells, to obtain the calcium spikes, and to determine the underlying network structure of neuronal cell cultures. METHODS Owing to the difference of Gaussians algorithm applied for the cell detection, CALIMA is able to detect regions of interest (ROIs) quickly. The z-scoring algorithm provides a means to set the requirements for spike detection, and the neuronal connections can be reconstructed by analyzing the cross-correlation between the cellular activity. We evaluated CALIMA's reliability, speed, and functionality with a special focus on neuronal cell detection and network reconstruction. The evaluation was performed by using real-life data such as a known example dataset (cultured primary rat cortical neurons, University of Pennsylvania) and by analyzing video graphic footage of in vitro brain cell samples (SH-SY5Y neuroblastoma cultures, one sample with synchronous neuron firing). The obtained results were compared to the corresponding outcomes observed on same datasets for other similar software solutions. Moreover, we compared the results of segmentation and peak detection analysis, the ones obtained using CALIMA and those acquired manually. RESULTS CALIMA was able to detect the cells in the cultures within seconds. The average sensitivity was 82% across the datasets checked, comparing favorably with the alternative software solutions. Using the correct parameters, CALIMA's Ca-spikes detection sensitivity reached 96%. Lastly, neuronal networks were reconstructed by combining the data on the ROI's activity and the cell's positions, finding the most likely inter-cell connections. CONCLUSIONS We found that CALIMA proved to be a robust and fast tool to analyze the data of experiments for the digital reconstruction of the neuronal cellular network while being able to process the analysis steps with minimal user input required and in a time efficient manner.
Collapse
Affiliation(s)
- F D W Radstake
- Department of Electrical Engineering, Signal Processing Systems Group, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - E A L Raaijmakers
- Department of Electrical Engineering, Electromagnetics Group, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - R Luttge
- Department of Mechanical Engineering, Neuro-Nanoscale Engineering Group, Microsystems Section & ICMS Institute for Complex Molecular Systems, Eindhoven University of Technology, the Netherlands
| | - S Zinger
- Department of Electrical Engineering, Signal Processing Systems Group, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - J P Frimat
- Department of Mechanical Engineering, Neuro-Nanoscale Engineering Group, Microsystems Section & ICMS Institute for Complex Molecular Systems, Eindhoven University of Technology, the Netherlands
| |
Collapse
|
50
|
Oh J, Lee C, Kaang BK. Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:237-249. [PMID: 31297008 PMCID: PMC6609268 DOI: 10.4196/kjpp.2019.23.4.237] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.
Collapse
Affiliation(s)
- Jihae Oh
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Chiwoo Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|