1
|
Conboy JP, Istúriz Petitjean I, van der Net A, Koenderink GH. How cytoskeletal crosstalk makes cells move: Bridging cell-free and cell studies. BIOPHYSICS REVIEWS 2024; 5:021307. [PMID: 38840976 PMCID: PMC11151447 DOI: 10.1063/5.0198119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Cell migration is a fundamental process for life and is highly dependent on the dynamical and mechanical properties of the cytoskeleton. Intensive physical and biochemical crosstalk among actin, microtubules, and intermediate filaments ensures their coordination to facilitate and enable migration. In this review, we discuss the different mechanical aspects that govern cell migration and provide, for each mechanical aspect, a novel perspective by juxtaposing two complementary approaches to the biophysical study of cytoskeletal crosstalk: live-cell studies (often referred to as top-down studies) and cell-free studies (often referred to as bottom-up studies). We summarize the main findings from both experimental approaches, and we provide our perspective on bridging the two perspectives to address the open questions of how cytoskeletal crosstalk governs cell migration and makes cells move.
Collapse
Affiliation(s)
- James P. Conboy
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Irene Istúriz Petitjean
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Anouk van der Net
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
2
|
Sun ZG, Yadav V, Amiri S, Cao W, De La Cruz EM, Murrell M. Cofilin-mediated actin filament network flexibility facilitates 2D to 3D actomyosin shape change. Eur J Cell Biol 2024; 103:151379. [PMID: 38168598 DOI: 10.1016/j.ejcb.2023.151379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
The organization of actin filaments (F-actin) into crosslinked networks determines the transmission of mechanical stresses within the cytoskeleton and subsequent changes in cell and tissue shape. Principally mediated by proteins such as α-actinin, F-actin crosslinking increases both network connectivity and rigidity, thereby facilitating stress transmission at low crosslinking yet attenuating transmission at high crosslinker concentration. Here, we engineer a two-dimensional model of the actomyosin cytoskeleton, in which myosin-induced mechanical stresses are controlled by light. We alter the extent of F-actin crosslinking by the introduction of oligomerized cofilin. At pH 6.5, F-actin severing by cofilin is weak, but cofilin bundles and crosslinks filaments. Given its effect of lowering the F-actin bending stiffness, cofilin- crosslinked networks are significantly more flexible and softer in bending than networks crosslinked by α-actinin. Thus, upon local activation of myosin-induced contractile stress, the network bends out-of-plane in contrast to the in-plane compression as observed with networks crosslinked by α-actinin. Here, we demonstrate that local effects on filament mechanics by cofilin introduces novel large-scale network material properties that enable the sculpting of complex shapes in the cell cytoskeleton.
Collapse
Affiliation(s)
- Zachary Gao Sun
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | - Vikrant Yadav
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Sorosh Amiri
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Mechanical Engineering and Material Science, Yale University, New Haven, CT 06511, USA
| | - Wenxiang Cao
- Department of Molecular Biology & Biophysics, Yale University, New Haven, CT 06511, USA
| | - Enrique M De La Cruz
- Department of Molecular Biology & Biophysics, Yale University, New Haven, CT 06511, USA
| | - Michael Murrell
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
3
|
Gonzalez Rodriguez S, Wirshing AC, Goodman AL, Goode BL. Cytosolic concentrations of actin binding proteins and the implications for in vivo F-actin turnover. J Cell Biol 2023; 222:e202306036. [PMID: 37801069 PMCID: PMC10558290 DOI: 10.1083/jcb.202306036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
Understanding how numerous actin-binding proteins (ABPs) work in concert to control the assembly, organization, and turnover of the actin cytoskeleton requires quantitative information about the levels of each component. Here, we measured the cellular concentrations of actin and the majority of the conserved ABPs in Saccharomyces cerevisiae, as well as the free (cytosolic) fractions of each ABP. The cellular concentration of actin is estimated to be 13.2 µM, with approximately two-thirds in the F-actin form and one-third in the G-actin form. Cellular concentrations of ABPs range from 12.4 to 0.85 µM (Tpm1> Pfy1> Cof1> Abp1> Srv2> Abp140> Tpm2> Aip1> Cap1/2> Crn1> Sac6> Twf1> Arp2/3> Scp1). The cytosolic fractions of all ABPs are unexpectedly high (0.6-0.9) and remain so throughout the cell cycle. Based on these numbers, we speculate that F-actin binding sites are limited in vivo, which leads to high cytosolic levels of ABPs, and in turn helps drive the rapid assembly and turnover of cellular F-actin structures.
Collapse
Affiliation(s)
- Sofia Gonzalez Rodriguez
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Alison C.E. Wirshing
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Anya L. Goodman
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
- Department of Chemistry and Biochemistry, California Polytechnic State University SLO, San Luis Obispo, CA, USA
| | - Bruce L. Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| |
Collapse
|
4
|
Pérez-Verdugo F, Banerjee S. Tension Remodeling Regulates Topological Transitions in Epithelial Tissues. PRX LIFE 2023; 1:023006. [PMID: 39450340 PMCID: PMC11500814 DOI: 10.1103/prxlife.1.023006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Cell neighbor exchanges play a critical role in regulating tissue fluidity during epithelial morphogenesis and repair. In vivo, these neighbor exchanges are often hindered by the formation of transiently stable fourfold vertices, which can develop into complex multicellular rosettes where five or more cell junctions meet. Despite their importance, the mechanical origins of multicellular rosettes have remained elusive, and current cellular models lack the ability to explain their formation and maintenance. Here we present a dynamic vertex model of epithelial tissues with strain-dependent tension remodeling and mechanical memory dissipation. We show that an increase in cell junction tension upon contraction and reduction in tension upon extension can stabilize higher-order vertices, temporarily stalling cell rearrangements. On the other hand, inducing mechanical memory dissipation via relaxation of junction strain and stress promotes the resolution of higher-order vertices, facilitating cell neighbor exchanges. We demonstrate that by tuning the rates of tension remodeling and mechanical memory dissipation, we can control topological transitions and tissue material properties, recapitulating complex cellular topologies seen in developing organisms.
Collapse
Affiliation(s)
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
5
|
Li Y, Munro E. Filament-guided filament assembly provides structural memory of filament alignment during cytokinesis. Dev Cell 2021; 56:2486-2500.e6. [PMID: 34480876 DOI: 10.1016/j.devcel.2021.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 10/24/2022]
Abstract
During cytokinesis, animal cells rapidly remodel the equatorial cortex to build an aligned array of actin filaments called the contractile ring. Local reorientation of filaments by active equatorial compression is thought to underlie the emergence of filament alignment during ring assembly. Here, combining single molecule analysis and modeling in one-cell C. elegans embryos, we show that filaments turnover is far too fast for reorientation of individual filaments by equatorial compression to explain the observed alignment, even if favorably oriented filaments are selectively stabilized. By tracking single formin/CYK-1::GFP particles to monitor local filament assembly, we identify a mechanism that we call filament-guided filament assembly (FGFA), in which existing filaments serve as templates to orient the growth of new filaments. FGFA sharply increases the effective lifetime of filament orientation, providing structural memory that allows cells to build highly aligned filament arrays in response to equatorial compression, despite rapid turnover of individual filaments.
Collapse
Affiliation(s)
- Younan Li
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Protein friction and filament bending facilitate contraction of disordered actomyosin networks. Biophys J 2021; 120:4029-4040. [PMID: 34390686 DOI: 10.1016/j.bpj.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 12/23/2022] Open
Abstract
We use mathematical modeling and computation to investigate how protein friction facilitates contraction of disordered actomyosin networks. We simulate two-dimensional networks using an agent-based model, consisting of a system of force-balance equations for myosin motor proteins and semiflexible actin filaments. A major advantage of our approach is that it enables direct calculation of the network stress tensor, which provides a quantitative measure of contractility. Exploiting this, we use repeated simulations of disordered networks to confirm that both protein friction and actin filament bending are required for contraction. We then use simulations of elementary two-filament systems to show that filament bending flexibility can facilitate contraction on the microscopic scale. Finally, we show that actin filament turnover is necessary to sustain contraction and prevent filament aggregation. Simulations with and without turnover also exhibit contractile pulses. However, these pulses are aperiodic, suggesting that periodic pulsation can only arise because of additional regulatory mechanisms or more complex mechanical behavior.
Collapse
|
7
|
Abstract
Mechanical forces have emerged as essential regulators of cell organization, proliferation, migration, and polarity to regulate cellular and tissue homeostasis. Changes in forces or loss of the cellular response to them can result in abnormal embryonic development and diseases. Over the past two decades, many efforts have been put in deciphering the molecular mechanisms that convert forces into biochemical signals, allowing for the identification of many mechanotransducer proteins. Here we discuss how PDZ proteins are emerging as new mechanotransducer proteins by altering their conformations or localizations upon force loads, leading to the formation of macromolecular modules tethering the cell membrane to the actin cytoskeleton.
Collapse
|
8
|
Abstract
The generation of organismal form - morphogenesis - arises from forces produced at the cellular level. In animal cells, much of this force is produced by the actin cytoskeleton. Here, we review how mechanisms of actin-based force generation are deployed during animal morphogenesis to sculpt organs and organisms. Furthermore, we consider how cytoskeletal forces are coupled through cell adhesions to propagate across tissues, and discuss cases where cytoskeletal force or adhesion is patterned across a tissue to direct shape changes. Together, our review provides a conceptual framework that reflects our current understanding of animal morphogenesis and gives perspectives on future opportunities for study.
Collapse
Affiliation(s)
- D Nathaniel Clarke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
9
|
Shamipour S, Caballero-Mancebo S, Heisenberg CP. Cytoplasm's Got Moves. Dev Cell 2021; 56:213-226. [PMID: 33321104 DOI: 10.1016/j.devcel.2020.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023]
Abstract
Cytoplasm is a gel-like crowded environment composed of various macromolecules, organelles, cytoskeletal networks, and cytosol. The structure of the cytoplasm is highly organized and heterogeneous due to the crowding of its constituents and their effective compartmentalization. In such an environment, the diffusive dynamics of the molecules are restricted, an effect that is further amplified by clustering and anchoring of molecules. Despite the crowded nature of the cytoplasm at the microscopic scale, large-scale reorganization of the cytoplasm is essential for important cellular functions, such as cell division and polarization. How such mesoscale reorganization of the cytoplasm is achieved, especially for large cells such as oocytes or syncytial tissues that can span hundreds of micrometers in size, is only beginning to be understood. In this review, we will discuss recent advances in elucidating the molecular, cellular, and biophysical mechanisms by which the cytoskeleton drives cytoplasmic reorganization across different scales, structures, and species.
Collapse
Affiliation(s)
- Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | | |
Collapse
|
10
|
Kenkel DS, Peng S, Pesko MF, Wang H. Mostly harmless regulation? Electronic cigarettes, public policy, and consumer welfare. HEALTH ECONOMICS 2020; 29:1364-1377. [PMID: 32779278 PMCID: PMC7876166 DOI: 10.1002/hec.4136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 05/19/2023]
Abstract
Electronic cigarettes are a less harmful alternative to combustible cigarettes. We analyze data on e-cigarette choices in an online experimental market. Our data and mixed logit model capture two sources of consumer optimization errors: overestimates of the relative risks of e-cigarettes and present bias. Our novel data and policy analysis make three contributions. First, our predictions about e-cigarette use under counterfactual policy scenarios provide new information about current regulatory tradeoffs. Second, we provide empirical evidence about the role consumer optimization errors play in tobacco product choices. Third, we contribute to behavioral welfare analysis of policies that address individual optimization errors. Compared with standard cost-benefit analysis, our behavioral welfare economics analysis leads to much larger estimates of the costs of policies that discourage e-cigarette use or the benefits of policies that encourage e-cigarette use.
Collapse
Affiliation(s)
- Donald S Kenkel
- Department of Policy Analysis and Management, Cornell University, Ithaca, NY, USA
| | - Sida Peng
- Office of Chief Economist, Microsoft Research, Redmond, WA, USA
| | - Michael F Pesko
- Department of Economics, Georgia State University, Atlanta, GA, USA
| | - Hua Wang
- Department of Policy Analysis and Management, Cornell University, Ithaca, NY, USA
| |
Collapse
|
11
|
Jung W, Li J, Chaudhuri O, Kim T. Nonlinear Elastic and Inelastic Properties of Cells. J Biomech Eng 2020; 142:100806. [PMID: 32253428 PMCID: PMC7477719 DOI: 10.1115/1.4046863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/27/2020] [Indexed: 12/15/2022]
Abstract
Mechanical forces play an important role in various physiological processes, such as morphogenesis, cytokinesis, and migration. Thus, in order to illuminate mechanisms underlying these physiological processes, it is crucial to understand how cells deform and respond to external mechanical stimuli. During recent decades, the mechanical properties of cells have been studied extensively using diverse measurement techniques. A number of experimental studies have shown that cells are far from linear elastic materials. Cells exhibit a wide variety of nonlinear elastic and inelastic properties. Such complicated properties of cells are known to emerge from unique mechanical characteristics of cellular components. In this review, we introduce major cellular components that largely govern cell mechanical properties and provide brief explanations of several experimental techniques used for rheological measurements of cell mechanics. Then, we discuss the representative nonlinear elastic and inelastic properties of cells. Finally, continuum and discrete computational models of cell mechanics, which model both nonlinear elastic and inelastic properties of cells, will be described.
Collapse
Affiliation(s)
- Wonyeong Jung
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907
| |
Collapse
|
12
|
Cavanaugh KE, Staddon MF, Munro E, Banerjee S, Gardel ML. RhoA Mediates Epithelial Cell Shape Changes via Mechanosensitive Endocytosis. Dev Cell 2020; 52:152-166.e5. [PMID: 31883774 PMCID: PMC7565439 DOI: 10.1016/j.devcel.2019.12.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/17/2019] [Accepted: 12/05/2019] [Indexed: 11/27/2022]
Abstract
Epithelial remodeling involves ratcheting behavior whereby periodic contractility produces transient changes in cell-cell contact lengths, which stabilize to produce lasting morphogenetic changes. Pulsatile RhoA activity is thought to underlie morphogenetic ratchets, but how RhoA governs transient changes in junction length, and how these changes are rectified to produce irreversible deformation, remains poorly understood. Here, we use optogenetics to characterize responses to pulsatile RhoA in model epithelium. Short RhoA pulses drive reversible junction contractions, while longer pulses produce irreversible junction length changes that saturate with prolonged pulse durations. Using an enhanced vertex model, we show this is explained by two effects: thresholded tension remodeling and continuous strain relaxation. Our model predicts that structuring RhoA into multiple pulses overcomes the saturation of contractility and confirms this experimentally. Junction remodeling also requires formin-mediated E-cadherin clustering and dynamin-dependent endocytosis. Thus, irreversible junction deformations are regulated by RhoA-mediated contractility, membrane trafficking, and adhesion receptor remodeling.
Collapse
Affiliation(s)
- Kate E Cavanaugh
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Michael F Staddon
- Department of Physics and Astronomy and Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago 60637, IL, USA
| | - Shiladitya Banerjee
- Department of Physics and Astronomy and Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK; Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago 60637, IL, USA; James Franck Institute, Department of Physics, Pritzker School of Molecular Engineering, University of Chicago, Chicago 60637, IL, USA.
| |
Collapse
|
13
|
Lacy MM, Baddeley D, Berro J. Single-molecule turnover dynamics of actin and membrane coat proteins in clathrin-mediated endocytosis. eLife 2019; 8:52355. [PMID: 31855180 PMCID: PMC6977972 DOI: 10.7554/elife.52355] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022] Open
Abstract
Actin dynamics generate forces to deform the membrane and overcome the cell’s high turgor pressure during clathrin-mediated endocytosis (CME) in yeast, but precise molecular details are still unresolved. Our previous models predicted that actin filaments of the endocytic meshwork continually polymerize and disassemble, turning over multiple times during an endocytic event, similar to other actin systems. We applied single-molecule speckle tracking in live fission yeast to directly measure molecular turnover within CME sites for the first time. In contrast with the overall ~20 s lifetimes of actin and actin-associated proteins in endocytic patches, we detected single-molecule residence times around 1 to 2 s, and similarly high turnover rates of membrane-associated proteins in CME. Furthermore, we find heterogeneous behaviors in many proteins’ motions. These results indicate that endocytic proteins turn over up to five times during the formation of an endocytic vesicle, and suggest revising quantitative models of force production.
Collapse
Affiliation(s)
- Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States
| | - David Baddeley
- Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
14
|
Lacy MM, Baddeley D, Berro J. Single-molecule turnover dynamics of actin and membrane coat proteins in clathrin-mediated endocytosis. eLife 2019; 8. [PMID: 31855180 DOI: 10.1101/617746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/18/2019] [Indexed: 05/20/2023] Open
Abstract
Actin dynamics generate forces to deform the membrane and overcome the cell's high turgor pressure during clathrin-mediated endocytosis (CME) in yeast, but precise molecular details are still unresolved. Our previous models predicted that actin filaments of the endocytic meshwork continually polymerize and disassemble, turning over multiple times during an endocytic event, similar to other actin systems. We applied single-molecule speckle tracking in live fission yeast to directly measure molecular turnover within CME sites for the first time. In contrast with the overall ~20 s lifetimes of actin and actin-associated proteins in endocytic patches, we detected single-molecule residence times around 1 to 2 s, and similarly high turnover rates of membrane-associated proteins in CME. Furthermore, we find heterogeneous behaviors in many proteins' motions. These results indicate that endocytic proteins turn over up to five times during the formation of an endocytic vesicle, and suggest revising quantitative models of force production.
Collapse
Affiliation(s)
- Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
- Nanobiology Institute, Yale University, West Haven, United States
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States
| | - David Baddeley
- Nanobiology Institute, Yale University, West Haven, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
- Nanobiology Institute, Yale University, West Haven, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
15
|
Jung W, Tabatabai AP, Thomas JJ, Tabei SMA, Murrell MP, Kim T. Dynamic motions of molecular motors in the actin cytoskeleton. Cytoskeleton (Hoboken) 2019; 76:517-531. [PMID: 31758841 DOI: 10.1002/cm.21582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/23/2022]
Abstract
During intracellular transport, cellular cargos, such as organelles, vesicles, and proteins, are transported within cells. Intracellular transport plays an important role in diverse cellular functions. Molecular motors walking on the cytoskeleton facilitate active intracellular transport, which is more efficient than diffusion-based passive transport. Active transport driven by kinesin and dynein walking on microtubules has been studied well during recent decades. However, mechanisms of active transport occurring in disorganized actin networks via myosin motors remain elusive. To provide physiologically relevant insights, we probed motions of myosin motors in actin networks under various conditions using our well-established computational model that rigorously accounts for the mechanical and dynamical behaviors of the actin cytoskeleton. We demonstrated that myosin motions can be confined due to three different reasons in the absence of F-actin turnover. We verified mechanisms of motor stalling using in vitro reconstituted actomyosin networks. We also found that with F-actin turnover, motors consistently move for a long time without significant confinement. Our study sheds light on the importance of F-actin turnover for effective active transport in the actin cytoskeleton.
Collapse
Affiliation(s)
- Wonyeong Jung
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| | - A Pasha Tabatabai
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut.,Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut
| | - Jacob J Thomas
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, 215 Begeman Hall, Cedar Falls, Iowa
| | - Michael P Murrell
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut.,Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut.,Department of Physics, Yale University. 217 Prospect Street, New Haven, Connecticut
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| |
Collapse
|
16
|
Illukkumbura R, Bland T, Goehring NW. Patterning and polarization of cells by intracellular flows. Curr Opin Cell Biol 2019; 62:123-134. [PMID: 31760155 PMCID: PMC6968950 DOI: 10.1016/j.ceb.2019.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022]
Abstract
Beginning with Turing’s seminal work [1], decades of research have demonstrated the fundamental ability of biochemical networks to generate and sustain the formation of patterns. However, it is increasingly appreciated that biochemical networks both shape and are shaped by physical and mechanical processes [2, 3, 4]. One such process is fluid flow. In many respects, the cytoplasm, membrane and actin cortex all function as fluids, and as they flow, they drive bulk transport of molecules throughout the cell. By coupling biochemical activity to long range molecular transport, flows can shape the distributions of molecules in space. Here we review the various types of flows that exist in cells, with the aim of highlighting recent advances in our understanding of how flows are generated and how they contribute to intracellular patterning processes, such as the establishment of cell polarity.
Collapse
Affiliation(s)
| | - Tom Bland
- The Francis Crick Institute, London, UK; Institute for the Physics of Living Systems, University College London, London, UK
| | - Nathan W Goehring
- The Francis Crick Institute, London, UK; Institute for the Physics of Living Systems, University College London, London, UK; MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| |
Collapse
|
17
|
Staddon MF, Cavanaugh KE, Munro EM, Gardel ML, Banerjee S. Mechanosensitive Junction Remodeling Promotes Robust Epithelial Morphogenesis. Biophys J 2019; 117:1739-1750. [PMID: 31635790 PMCID: PMC6838884 DOI: 10.1016/j.bpj.2019.09.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/05/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Morphogenesis of epithelial tissues requires tight spatiotemporal coordination of cell shape changes. In vivo, many tissue-scale shape changes are driven by pulsatile contractions of intercellular junctions, which are rectified to produce irreversible deformations. The functional role of this pulsatory ratchet and its mechanistic basis remain unknown. Here we combine theory and biophysical experiments to show that mechanosensitive tension remodeling of epithelial cell junctions promotes robust epithelial shape changes via ratcheting. Using optogenetic control of actomyosin contractility, we find that epithelial junctions show elastic behavior under low contractile stress, returning to their original lengths after contraction, but undergo irreversible deformation under higher magnitudes of contractile stress. Existing vertex-based models for the epithelium are unable to capture these results, with cell junctions displaying purely elastic or fluid-like behaviors, depending on the choice of model parameters. To describe the experimental results, we propose a modified vertex model with two essential ingredients for junction mechanics: thresholded tension remodeling and continuous strain relaxation. First, junctions must overcome a critical strain threshold to trigger tension remodeling, resulting in irreversible junction length changes. Second, there is a continuous relaxation of junctional strain that removes mechanical memory from the system. This enables pulsatile contractions to further remodel cell shape via mechanical ratcheting. Taken together, the combination of mechanosensitive tension remodeling and junctional strain relaxation provides a robust mechanism for large-scale morphogenesis.
Collapse
Affiliation(s)
- Michael F Staddon
- Department of Physics and Astronomy, University College London, London, United Kingdom; Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Kate E Cavanaugh
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, Illinois
| | - Edwin M Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois; Department of Physics, University of Chicago, Chicago, Illinois; James Franck Institute, University of Chicago, Chicago, Illinois
| | - Shiladitya Banerjee
- Department of Physics and Astronomy, University College London, London, United Kingdom; Institute for the Physics of Living Systems, University College London, London, United Kingdom; Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
18
|
Skamrahl M, Colin-York H, Barbieri L, Fritzsche M. Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM-FRAP. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902202. [PMID: 31419037 PMCID: PMC7612032 DOI: 10.1002/smll.201902202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/22/2019] [Indexed: 06/02/2023]
Abstract
Quantifying the adaptive mechanical behavior of living cells is essential for the understanding of their inner working and function. Yet, despite the establishment of quantitative methodologies correlating independent measurements of cell mechanics and its underlying molecular kinetics, explicit evidence and knowledge of the sensitivity of the feedback mechanisms of cells controlling their adaptive mechanics behavior remains elusive. Here, a combination of atomic force microscopy and fluorescence recovery after photobleaching is introduced offering simultaneous quantification and direct correlation of molecule kinetics and mechanics in living cells. Systematic application of this optomechanical atomic force microscopy-fluorescence recovery after photobleaching platform reveals changes in the actin turnover and filament lengths of ventral actin stress fibers in response to constant mechanical force at the apical actin cortex with a dynamic range from 0.1 to 10 nN, highlighting a direct relationship of active mechanosensation and adaptation of the cellular actin cytoskeleton. Simultaneous quantification of the relationship between molecule kinetics and cell mechanics may thus open-up unprecedented insights into adaptive mechanobiological mechanisms of cells.
Collapse
Affiliation(s)
- Mark Skamrahl
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford. OX3 9DS, United Kingdom
| | - Huw Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford. OX3 9DS, United Kingdom
| | - Liliana Barbieri
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford. OX3 9DS, United Kingdom
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford. OX3 9DS, United Kingdom
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
| |
Collapse
|
19
|
Nickaeen M, Berro J, Pollard TD, Slepchenko BM. Actin assembly produces sufficient forces for endocytosis in yeast. Mol Biol Cell 2019; 30:2014-2024. [PMID: 31242058 PMCID: PMC6727779 DOI: 10.1091/mbc.e19-01-0059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We formulated a spatially resolved model to estimate forces exerted by a polymerizing actin meshwork on an invagination of the plasma membrane during endocytosis in yeast cells. The model, which approximates the actin meshwork as a visco-active gel exerting forces on a rigid spherocylinder representing the endocytic invagination, is tightly constrained by experimental data. Simulations of the model produce forces that can overcome resistance of turgor pressure in yeast cells. Strong forces emerge due to the high density of polymerized actin in the vicinity of the invagination and because of entanglement of the meshwork due to its dendritic structure and cross-linking. The model predicts forces orthogonal to the invagination that are consistent with formation of a flask shape, which would diminish the net force due to turgor pressure. Simulations of the model with either two rings of nucleation-promoting factors (NPFs) as in fission yeast or a single ring of NPFs as in budding yeast produce enough force to elongate the invagination against the turgor pressure.
Collapse
Affiliation(s)
- Masoud Nickaeen
- Richard D. Berlin Center for Cell Analysis and Modeling, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Julien Berro
- Departments of Molecular Biophysics and Biochemistry and of Cell Biology.,Nanobiology Institute, Yale University, New Haven, CT 06520
| | - Thomas D Pollard
- Departments of Molecular Biophysics and Biochemistry and of Cell Biology.,Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Boris M Slepchenko
- Richard D. Berlin Center for Cell Analysis and Modeling, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
20
|
Floyd C, Papoian GA, Jarzynski C. Quantifying dissipation in actomyosin networks. Interface Focus 2019; 9:20180078. [PMID: 31065344 PMCID: PMC6501337 DOI: 10.1098/rsfs.2018.0078] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Quantifying entropy production in various active matter phases will open new avenues for probing self-organization principles in these far-from-equilibrium systems. It has been hypothesized that the dissipation of free energy by active matter systems may be optimized, leading to system trajectories with histories of large dissipation and an accompanying emergence of ordered dynamical states. This interesting idea has not been widely tested. In particular, it is not clear whether emergent states of actomyosin networks, which represent a salient example of biological active matter, self-organize following the principle of dissipation optimization. In order to start addressing this question using detailed computational modelling, we rely on the MEDYAN simulation platform, which allows simulating active matter networks from fundamental molecular principles. We have extended the capabilities of MEDYAN to allow quantification of the rates of dissipation resulting from chemical reactions and relaxation of mechanical stresses during simulation trajectories. This is done by computing precise changes in Gibbs free energy accompanying chemical reactions using a novel formula and through detailed calculations of instantaneous values of the system's mechanical energy. We validate our approach with a mean-field model that estimates the rates of dissipation from filament treadmilling. Applying this methodology to the self-organization of small disordered actomyosin networks, we find that compact and highly cross-linked networks tend to allow more efficient transduction of chemical free energy into mechanical energy. In these simple systems, we observe that spontaneous network reorganizations tend to result in a decrease in the total dissipation rate to a low steady-state value. Future studies might carefully test whether the dissipation-driven adaptation hypothesis applies in this instance, as well as in more complex cytoskeletal geometries.
Collapse
Affiliation(s)
- Carlos Floyd
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
| | - Garegin A. Papoian
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Christopher Jarzynski
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
21
|
Malik-Garbi M, Ierushalmi N, Jansen S, Abu-Shah E, Goode BL, Mogilner A, Keren K. Scaling behaviour in steady-state contracting actomyosin networks. NATURE PHYSICS 2019; 15:509-516. [PMID: 31754369 PMCID: PMC6871652 DOI: 10.1038/s41567-018-0413-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/20/2018] [Indexed: 05/25/2023]
Abstract
Contractile actomyosin network flows are crucial for many cellular processes including cell division and motility, morphogenesis and transport. How local remodeling of actin architecture tunes stress production and dissipation and regulates large-scale network flows remains poorly understood. Here, we generate contracting actomyosin networks with rapid turnover in vitro, by encapsulating cytoplasmic Xenopus egg extracts into cell-sized 'water-in-oil' droplets. Within minutes, the networks reach a dynamic steady-state with continuous inward flow. The networks exhibit homogeneous, density-independent contraction for a wide range of physiological conditions, implying that the myosin-generated stress driving contraction and the effective network viscosity have similar density dependence. We further find that the contraction rate is roughly proportional to the network turnover rate, but this relation breaks down in the presence of excessive crosslinking or branching. Our findings suggest that cells use diverse biochemical mechanisms to generate robust, yet tunable, actin flows by regulating two parameters: turnover rate and network geometry.
Collapse
Affiliation(s)
- Maya Malik-Garbi
- Department of Physics, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Niv Ierushalmi
- Department of Physics, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Silvia Jansen
- Department of Biology, Brandeis University, Waltham, MA, USA
- Department of Cell Biology and Physiology, Washington University St. Louis, St. Louis, MO, USA
| | - Enas Abu-Shah
- Department of Physics, Technion- Israel Institute of Technology, Haifa 32000, Israel
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences and Department of Biology, New York University, New York, NY 10012, USA
| | - Kinneret Keren
- Department of Physics, Technion- Israel Institute of Technology, Haifa 32000, Israel
- Network Biology Research Laboratories and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
22
|
Miller KE, Suter DM. An Integrated Cytoskeletal Model of Neurite Outgrowth. Front Cell Neurosci 2018; 12:447. [PMID: 30534055 PMCID: PMC6275320 DOI: 10.3389/fncel.2018.00447] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022] Open
Abstract
Neurite outgrowth underlies the wiring of the nervous system during development and regeneration. Despite a significant body of research, the underlying cytoskeletal mechanics of growth and guidance are not fully understood, and the relative contributions of individual cytoskeletal processes to neurite growth are controversial. Here, we review the structural organization and biophysical properties of neurons to make a semi-quantitative comparison of the relative contributions of different processes to neurite growth. From this, we develop the idea that neurons are active fluids, which generate strong contractile forces in the growth cone and weaker contractile forces along the axon. As a result of subcellular gradients in forces and material properties, actin flows rapidly rearward in the growth cone periphery, and microtubules flow forward in bulk along the axon. With this framework, an integrated model of neurite outgrowth is proposed that hopefully will guide new approaches to stimulate neuronal growth.
Collapse
Affiliation(s)
- Kyle E Miller
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States.,Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States.,Birck Nanotechnology Center, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
23
|
Yu Q, Li J, Murrell MP, Kim T. Balance between Force Generation and Relaxation Leads to Pulsed Contraction of Actomyosin Networks. Biophys J 2018; 115:2003-2013. [PMID: 30389091 PMCID: PMC6303541 DOI: 10.1016/j.bpj.2018.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/23/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023] Open
Abstract
Actomyosin contractility regulates various biological processes, including cell migration and cytokinesis. The cell cortex underlying the membrane of eukaryote cells exhibits dynamic contractile behaviors facilitated by actomyosin contractility. Interestingly, the cell cortex shows reversible aggregation of actin and myosin called "pulsed contraction" in diverse cellular phenomena, such as embryogenesis and tissue morphogenesis. Although contractile behaviors of actomyosin machinery have been studied extensively in several in vitro experiments and computational studies, none of them successfully reproduced the pulsed contraction observed in vivo. Recent experiments have suggested the pulsed contraction is dependent upon the spatiotemporal expression of a small GTPase protein called RhoA. This only indicates the significance of biochemical signaling pathways during the pulsed contraction. In this study, we reproduced the pulsed contraction with only the mechanical and dynamic behaviors of cytoskeletal elements. First, we observed that small pulsed clusters or clusters with fluctuating sizes may appear when there is subtle balance between force generation from motors and force relaxation induced by actin turnover. However, the size and duration of these clusters differ from those of clusters observed during the cellular phenomena. We found that clusters with physiologically relevant size and duration can appear only with both actin turnover and angle-dependent F-actin severing resulting from buckling induced by motor activities. We showed how parameters governing F-actin severing events regulate the size and duration of pulsed clusters. Our study sheds light on the underestimated significance of F-actin severing for the pulsed contraction observed in physiological processes.
Collapse
Affiliation(s)
- Qilin Yu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Systems Biology Institute, Yale University, West Haven, Connecticut
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
24
|
Freedman SL, Hocky GM, Banerjee S, Dinner AR. Nonequilibrium phase diagrams for actomyosin networks. SOFT MATTER 2018; 14:7740-7747. [PMID: 30204203 PMCID: PMC6192427 DOI: 10.1039/c8sm00741a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Living cells dynamically modulate the local morphologies of their actin networks to perform biological functions, including force transduction, intracellular transport, and cell division. A major challenge is to understand how diverse structures of the actin cytoskeleton are assembled from a limited set of molecular building blocks. Here we study the spontaneous self-assembly of a minimal model of cytoskeletal materials, consisting of semiflexible actin filaments, crosslinkers, and molecular motors. Using coarse-grained simulations, we demonstrate that by changing concentrations and kinetics of crosslinkers and motors, as well as filament lengths, we can generate three distinct structural phases of actomyosin assemblies: bundled, polarity-sorted, and contracted. We introduce new metrics to distinguish these structural phases and demonstrate their functional roles. We find that the binding kinetics of motors and crosslinkers can be tuned to optimize contractile force generation, motor transport, and mechanical response. By quantitatively characterizing the relationships between the modes of cytoskeletal self-assembly, the resulting structures, and their functional consequences, our work suggests new principles for the design of active materials.
Collapse
Affiliation(s)
- Simon L. Freedman
- Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Glen M. Hocky
- James Franck Institute & Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA, Chicago, IL, USA;
| | - Shiladitya Banerjee
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E-6BT
| | - Aaron R. Dinner
- James Franck Institute & Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA, Chicago, IL, USA;
| |
Collapse
|
25
|
Tang VW. Cell-cell adhesion interface: orthogonal and parallel forces from contraction, protrusion, and retraction. F1000Res 2018; 7. [PMID: 30345009 PMCID: PMC6173117 DOI: 10.12688/f1000research.15860.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 01/22/2023] Open
Abstract
The epithelial lateral membrane plays a central role in the integration of intercellular signals and, by doing so, is a principal determinant in the emerging properties of epithelial tissues. Mechanical force, when applied to the lateral cell-cell interface, can modulate the strength of adhesion and influence intercellular dynamics. Yet the relationship between mechanical force and epithelial cell behavior is complex and not completely understood. This commentary aims to provide an investigative look at the usage of cellular forces at the epithelial cell-cell adhesion interface.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, 61801, USA
| |
Collapse
|
26
|
Burden DL, Kim D, Cheng W, Chandler Lawler E, Dreyer DR, Keranen Burden LM. Mechanically Enhancing Planar Lipid Bilayers with a Minimal Actin Cortex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10847-10855. [PMID: 30149716 DOI: 10.1021/acs.langmuir.8b01847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
All cells in all domains of life possess a cytoskeleton that provides mechanical resistance to deformation and general stability to the plasma membrane. Here, we utilize a two-dimensional scaffolding created by actin filaments to convey mechanical support upon relatively fragile planar bilayer membranes (black lipid membranes, BLMs). Robust biomembranes play a critical role in the development of protein nanopore sensor applications and might also prove helpful in ion-channel research. Our investigation utilizes a minimal actin cortex (MAC) that is formed by anchoring actin filaments to lipid membranes via a biotin-streptavidin-biotin bridge. We characterize the joined structure using various modes of optical microscopy, electrophysiology, and applied mechanical stress (including measurements of elastic modulus). Our findings show the resulting structure includes a thin supporting layer of actin. Electrical studies indicate that the integrity of the MAC-bilayer composite remains unchanged over the limits of our tests (i.e., hours to days). The actin filament structure can remain intact for months. Minimalistic layering of the actin support network produces an increase in the apparent elastic modulus of the MAC-derivatized bilayer by >100×, compared to unmodified BLMs. Furthermore, the resistance to applied stress improves with the number of actin layers, which can be cross-linked to arbitrary thicknesses, in principle. The weblike support structure retains the lateral fluidity of the BLM, maintains the high electrical resistance typical of traditional BLMs, enables relatively uninhibited molecular access to the lipid surface from bulk solution, and permits nanopore self-assembly and insertion in the bilayer. These interfacial features are highly desirable for ion-channel and nanopore sensing applications.
Collapse
Affiliation(s)
- Daniel L Burden
- Chemistry Department , Wheaton College , Wheaton , Illinois 60187 , United States
| | - Daniel Kim
- Chemistry Department , Wheaton College , Wheaton , Illinois 60187 , United States
| | - Wayland Cheng
- Chemistry Department , Wheaton College , Wheaton , Illinois 60187 , United States
| | | | - Daniel R Dreyer
- Chemistry Department , Wheaton College , Wheaton , Illinois 60187 , United States
| | | |
Collapse
|
27
|
Kemp JP, Brieher WM. The actin filament bundling protein α-actinin-4 actually suppresses actin stress fibers by permitting actin turnover. J Biol Chem 2018; 293:14520-14533. [PMID: 30049798 DOI: 10.1074/jbc.ra118.004345] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/21/2018] [Indexed: 01/07/2023] Open
Abstract
Cells organize actin filaments into contractile bundles known as stress fibers that resist mechanical stress, increase cell adhesion, remodel the extracellular matrix, and maintain tissue integrity. α-actinin is an actin filament bundling protein that is thought to be essential for stress fiber formation and stability. However, previous studies have also suggested that α-actinin might disrupt fibers, making the true function of this biomolecule unclear. Here we use fluorescence imaging to show that kidney epithelial cells depleted of α-actinin-4 via shRNA or CRISPR/Cas9, or expressing a disruptive mutant make more massive stress fibers that are less dynamic than those in WT cells, leading to defects in cell motility and wound healing. The increase in stress fiber mass and stability can be explained, in part, by increased loading of the filament component tropomyosin onto stress fibers in the absence of α-actinin, as monitored via immunofluorescence. We show using imaging and cosedimentation that α-actinin and tropomyosin compete for binding to F-actin and that tropomyosin shields actin filaments from cofilin-mediated disassembly in vitro and in cells. Perturbing tropomyosin in cells lacking α-actinin-4 results in a complete loss of stress fibers. Our results with α-actinin-4 on stress fiber organization are the opposite of what might have been predicted from previous in vitro biochemistry and further highlight how the complex interactions of multiple proteins competing for filament binding lead to unexpected functions for actin-binding proteins in cells.
Collapse
Affiliation(s)
| | - William M Brieher
- From the Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
28
|
Nandi SK. Activity-dependent self-regulation of viscous length scales in biological systems. Phys Rev E 2018; 97:052404. [PMID: 29906984 DOI: 10.1103/physreve.97.052404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 06/08/2023]
Abstract
The cellular cortex, which is a highly viscous thin cytoplasmic layer just below the cell membrane, controls the cell's mechanical properties, which can be characterized by a hydrodynamic length scale ℓ. Cells actively regulate ℓ via the activity of force-generating molecules, such as myosin II. Here we develop a general theory for such systems through a coarse-grained hydrodynamic approach including activity in the static description of the system providing an experimentally accessible parameter and elucidate the detailed mechanism of how a living system can actively self-regulate its hydrodynamic length scale, controlling the rigidity of the system. Remarkably, we find that ℓ, as a function of activity, behaves universally and roughly inversely proportional to the activity of the system. Our theory rationalizes a number of experimental findings on diverse systems, and comparison of our theory with existing experimental data shows good agreement.
Collapse
Affiliation(s)
- Saroj Kumar Nandi
- Max-Planck Institute für Physik Komplexer Systeme, 01187 Dresden, Germany
| |
Collapse
|