1
|
Masri S, Fauzi MB, Rajab NF, Lee WH, Zainal Abidin DA, Siew EL. In vitro 3D skin culture and its sustainability in toxicology: a narrative review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:476-499. [PMID: 39359233 DOI: 10.1080/21691401.2024.2407617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
In current toxicological research, 2D cell cultures and animal models are well- accepted and commonly employed methods. However, these approaches have many drawbacks and are distant from the actual environment in human. To embrace this, great efforts have been made to provide alternative methods for non-animal skin models in toxicology studies with the need for more mechanistically informative methods. This review focuses on the current state of knowledge regarding the in vitro 3D skin model methods, with different functional states that correspond to the sustainability in the field of toxicology testing. We discuss existing toxicology testing methods using in vitro 3D skin models which provide a better understanding of the testing requirements that are needed. The challenges and future landscape in using the in vitro 3D skin models in toxicology testing are also discussed. We are confident that the in vitro 3D skin models application may become an important tool in toxicology in the context of risk assessment.
Collapse
Affiliation(s)
- Syafira Masri
- Department of Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nor Fadilah Rajab
- Centre for Health Aging and Wellness, Faculty of Helath Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wing-Hin Lee
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), Perak, Malaysia
| | | | - Ee Ling Siew
- ASASIpintar Unit, Pusat PERMATA@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Bharadwaj S, Deepika K, Kumar A, Jaiswal S, Miglani S, Singh D, Fartyal P, Kumar R, Singh S, Singh MP, Gaidhane AM, Kumar B, Jha V. Exploring the Artificial Intelligence and Its Impact in Pharmaceutical Sciences: Insights Toward the Horizons Where Technology Meets Tradition. Chem Biol Drug Des 2024; 104:e14639. [PMID: 39396920 DOI: 10.1111/cbdd.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
The technological revolutions in computers and the advancement of high-throughput screening technologies have driven the application of artificial intelligence (AI) for faster discovery of drug molecules with more efficiency, and cost-friendly finding of hit or lead molecules. The ability of software and network frameworks to interpret molecular structures' representations and establish relationships/correlations has enabled various research teams to develop numerous AI platforms for identifying new lead molecules or discovering new targets for already established drug molecules. The prediction of biological activity, ADME properties, and toxicity parameters in early stages have reduced the chances of failure and associated costs in later clinical stages, which was observed at a high rate in the tedious, expensive, and laborious drug discovery process. This review focuses on the different AI and machine learning (ML) techniques with their applications mainly focused on the pharmaceutical industry. The applications of AI frameworks in the identification of molecular target, hit identification/hit-to-lead optimization, analyzing drug-receptor interactions, drug repurposing, polypharmacology, synthetic accessibility, clinical trial design, and pharmaceutical developments are discussed in detail. We have also compiled the details of various startups in AI in this field. This review will provide a comprehensive analysis and outline various state-of-the-art AI/ML techniques to the readers with their framework applications. This review also highlights the challenges in this field, which need to be addressed for further success in pharmaceutical applications.
Collapse
Affiliation(s)
- Shruti Bharadwaj
- Center for SeNSE, Indian Institute of Technology Delhi (IIT), New Delhi, India
| | - Kumari Deepika
- Department of Computer Engineering, Pune Institute of Computer Technology, Pune, India
| | - Asim Kumar
- Amity Institute of Pharmacy (AIP), Amity University Haryana, Manesar, India
| | - Shivani Jaiswal
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Shaweta Miglani
- Department of Education, Central University of Punjab, Bathinda, India
| | - Damini Singh
- IES Institute of Pharmacy, IES University, Bhopal, Madhya Pradesh, India
| | - Prachi Fartyal
- Department of Mathematics, Govt PG College Bajpur (US Nagar), Bazpur, Uttarakhand, India
| | - Roshan Kumar
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, India
- Department of Microbiology, Central University of Punjab, VPO-Ghudda, Punjab, India
| | - Shareen Singh
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Mahendra Pratap Singh
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abhay M Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education, Wardha, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar, Uttarakhand, India
| | - Vibhu Jha
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
3
|
Duo L, Liu Y, Ren J, Tang B, Hirst JD. Artificial intelligence for small molecule anticancer drug discovery. Expert Opin Drug Discov 2024; 19:933-948. [PMID: 39074493 DOI: 10.1080/17460441.2024.2367014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION The transition from conventional cytotoxic chemotherapy to targeted cancer therapy with small-molecule anticancer drugs has enhanced treatment outcomes. This approach, which now dominates cancer treatment, has its advantages. Despite the regulatory approval of several targeted molecules for clinical use, challenges such as low response rates and drug resistance still persist. Conventional drug discovery methods are costly and time-consuming, necessitating more efficient approaches. The rise of artificial intelligence (AI) and access to large-scale datasets have revolutionized the field of small-molecule cancer drug discovery. Machine learning (ML), particularly deep learning (DL) techniques, enables the rapid identification and development of novel anticancer agents by analyzing vast amounts of genomic, proteomic, and imaging data to uncover hidden patterns and relationships. AREA COVERED In this review, the authors explore the important landmarks in the history of AI-driven drug discovery. They also highlight various applications in small-molecule cancer drug discovery, outline the challenges faced, and provide insights for future research. EXPERT OPINION The advent of big data has allowed AI to penetrate and enable innovations in almost every stage of medicine discovery, transforming the landscape of oncology research through the development of state-of-the-art algorithms and models. Despite challenges in data quality, model interpretability, and technical limitations, advancements promise breakthroughs in personalized and precision oncology, revolutionizing future cancer management.
Collapse
Affiliation(s)
- Lihui Duo
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Yu Liu
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Jianfeng Ren
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Bencan Tang
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham University Park, Nottingham, UK
| |
Collapse
|
4
|
Zhu Z, Wu R, Luo M, Zeng L, Zhang D, Hu N, Hu Y, Li Y. Two-Dimensional Deep Learning Frameworks for Drug-Induced Cardiotoxicity Detection. ACS Sens 2024; 9:3316-3326. [PMID: 38842187 DOI: 10.1021/acssensors.4c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The identification of drug-induced cardiotoxicity remains a pressing challenge with far-reaching clinical and economic ramifications, often leading to patient harm and resource-intensive drug recalls. Current methodologies, including in vivo and in vitro models, have severe limitations in accurate identification of cardiotoxic substances. Pioneering a paradigm shift from these conventional techniques, our study presents two deep learning-based frameworks, STFT-CNN and SST-CNN, to assess cardiotoxicity with markedly improved accuracy and reliability. Leveraging the power of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) as a more human-relevant cell model, we record mechanical beating signals through impedance measurements. These temporal signals were converted into enriched two-dimensional representations through advanced transformation techniques, specifically short-time Fourier transform (STFT) and synchro-squeezing transform (SST). These transformed data are fed into the proposed frameworks for comprehensive analysis, including drug type classification, concentration classification, cardiotoxicity classification, and new drug identification. Compared to traditional models like recurrent neural network (RNN) and 1-dimensional convolutional neural network (1D-CNN), SST-CNN delivered an impressive test accuracy of 98.55% in drug type classification and 99% in distinguishing cardiotoxic and noncardiotoxic drugs. Its feasibility is further highlighted with a stellar 98.5% average accuracy for classification of various concentrations, and the superiority of our proposed frameworks underscores their promise in revolutionizing drug safety assessments. With a potential for scalability, they represent a major leap in drug safety assessments, offering a pathway to more robust, efficient, and human-relevant cardiotoxicity evaluations.
Collapse
Affiliation(s)
- Zhijing Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Ruochen Wu
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ma Luo
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311121, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311121, China
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Ye Hu
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 211198, China
| | - Ying Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
5
|
Niu Y, Li Z, Chen Z, Huang W, Tan J, Tian F, Yang T, Fan Y, Wei J, Mu J. Efficient screening of pharmacological broad-spectrum anti-cancer peptides utilizing advanced bidirectional Encoder representation from Transformers strategy. Heliyon 2024; 10:e30373. [PMID: 38765108 PMCID: PMC11101728 DOI: 10.1016/j.heliyon.2024.e30373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024] Open
Abstract
In the vanguard of oncological advancement, this investigation delineates the integration of deep learning paradigms to refine the screening process for Anticancer Peptides (ACPs), epitomizing a new frontier in broad-spectrum oncolytic therapeutics renowned for their targeted antitumor efficacy and specificity. Conventional methodologies for ACP identification are marred by prohibitive time and financial exigencies, representing a formidable impediment to the evolution of precision oncology. In response, our research heralds the development of a groundbreaking screening apparatus that marries Natural Language Processing (NLP) with the Pseudo Amino Acid Composition (PseAAC) technique, thereby inaugurating a comprehensive ACP compendium for the extraction of quintessential primary and secondary structural attributes. This innovative methodological approach is augmented by an optimized BERT model, meticulously calibrated for ACP detection, which conspicuously surpasses existing BERT variants and traditional machine learning algorithms in both accuracy and selectivity. Subjected to rigorous validation via five-fold cross-validation and external assessment, our model exhibited exemplary performance, boasting an average Area Under the Curve (AUC) of 0.9726 and an F1 score of 0.9385, with external validation further affirming its prowess (AUC of 0.9848 and F1 of 0.9371). These findings vividly underscore the method's unparalleled efficacy and prospective utility in the precise identification and prognostication of ACPs, significantly ameliorating the financial and temporal burdens traditionally associated with ACP research and development. Ergo, this pioneering screening paradigm promises to catalyze the discovery and clinical application of ACPs, constituting a seminal stride towards the realization of more efficacious and economically viable precision oncology interventions.
Collapse
Affiliation(s)
- Yupeng Niu
- College of Information Engineering, Sichuan Agricultural University, Ya'an 625000, China
- Artificial intelligence laboratory, Sichuan Agricultural University, Ya'an 625000, China
| | - Zhenghao Li
- College of Information Engineering, Sichuan Agricultural University, Ya'an 625000, China
- Artificial intelligence laboratory, Sichuan Agricultural University, Ya'an 625000, China
| | - Ziao Chen
- College of Law, Sichuan Agricultural University, Ya'an 625000, China
- Artificial intelligence laboratory, Sichuan Agricultural University, Ya'an 625000, China
| | - Wenyuan Huang
- College of Information Engineering, Sichuan Agricultural University, Ya'an 625000, China
- Artificial intelligence laboratory, Sichuan Agricultural University, Ya'an 625000, China
| | - Jingxuan Tan
- College of Information Engineering, Sichuan Agricultural University, Ya'an 625000, China
- Artificial intelligence laboratory, Sichuan Agricultural University, Ya'an 625000, China
| | - Fa Tian
- College of Information Engineering, Sichuan Agricultural University, Ya'an 625000, China
| | - Tao Yang
- College of Information Engineering, Sichuan Agricultural University, Ya'an 625000, China
- Artificial intelligence laboratory, Sichuan Agricultural University, Ya'an 625000, China
| | - Yamin Fan
- College of Information Engineering, Sichuan Agricultural University, Ya'an 625000, China
- Artificial intelligence laboratory, Sichuan Agricultural University, Ya'an 625000, China
| | - Jiangshu Wei
- College of Information Engineering, Sichuan Agricultural University, Ya'an 625000, China
| | - Jiong Mu
- College of Information Engineering, Sichuan Agricultural University, Ya'an 625000, China
- Artificial intelligence laboratory, Sichuan Agricultural University, Ya'an 625000, China
| |
Collapse
|
6
|
Pulfer A, Pizzagalli DU, Gagliardi PA, Hinderling L, Lopez P, Zayats R, Carrillo-Barberà P, Antonello P, Palomino-Segura M, Grädel B, Nicolai M, Giusti A, Thelen M, Gambardella LM, Murooka TT, Pertz O, Krause R, Gonzalez SF. Transformer-based spatial-temporal detection of apoptotic cell death in live-cell imaging. eLife 2024; 12:RP90502. [PMID: 38497754 PMCID: PMC10948145 DOI: 10.7554/elife.90502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Intravital microscopy has revolutionized live-cell imaging by allowing the study of spatial-temporal cell dynamics in living animals. However, the complexity of the data generated by this technology has limited the development of effective computational tools to identify and quantify cell processes. Amongst them, apoptosis is a crucial form of regulated cell death involved in tissue homeostasis and host defense. Live-cell imaging enabled the study of apoptosis at the cellular level, enhancing our understanding of its spatial-temporal regulation. However, at present, no computational method can deliver robust detection of apoptosis in microscopy timelapses. To overcome this limitation, we developed ADeS, a deep learning-based apoptosis detection system that employs the principle of activity recognition. We trained ADeS on extensive datasets containing more than 10,000 apoptotic instances collected both in vitro and in vivo, achieving a classification accuracy above 98% and outperforming state-of-the-art solutions. ADeS is the first method capable of detecting the location and duration of multiple apoptotic events in full microscopy timelapses, surpassing human performance in the same task. We demonstrated the effectiveness and robustness of ADeS across various imaging modalities, cell types, and staining techniques. Finally, we employed ADeS to quantify cell survival in vitro and tissue damage in mice, demonstrating its potential application in toxicity assays, treatment evaluation, and inflammatory dynamics. Our findings suggest that ADeS is a valuable tool for the accurate detection and quantification of apoptosis in live-cell imaging and, in particular, intravital microscopy data, providing insights into the complex spatial-temporal regulation of this process.
Collapse
Affiliation(s)
- Alain Pulfer
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, USILuganoSwitzerland
- Department of Information Technology and Electrical Engineering, ETH ZurichZürichSwitzerland
| | - Diego Ulisse Pizzagalli
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, USILuganoSwitzerland
- Euler Institute, USILuganoSwitzerland
| | | | | | | | | | - Pau Carrillo-Barberà
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, USILuganoSwitzerland
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de ValènciaValenciaSpain
| | - Paola Antonello
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, USILuganoSwitzerland
- Institute of Cell Biology, University of BernBernSwitzerland
| | | | - Benjamin Grädel
- Institute of Cell Biology, University of BernBernSwitzerland
| | | | - Alessandro Giusti
- Dalle Molle Institute for Artificial Intelligence, IDSIALuganoSwitzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, USILuganoSwitzerland
| | | | | | - Olivier Pertz
- Institute of Cell Biology, University of BernBernSwitzerland
| | | | | |
Collapse
|
7
|
A R N, G K R. A deep learning and docking simulation-based virtual screening strategy enables the rapid identification of HIF-1α pathway activators from a marine natural product database. J Biomol Struct Dyn 2024; 42:629-651. [PMID: 37038705 DOI: 10.1080/07391102.2023.2194997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023]
Abstract
Artificial Intelligence is hailed as a cutting-edge technology for accelerating drug discovery efforts, and our goal was to validate its potential in predicting pharmacological inhibitors of EGLN1 using a deep learning-based architecture, one of its subsidiaries. Egl nine homolog 1 (EGLN1) inhibition prevents poly ubiquitination-mediated proteosomal destruction HIF-1α. The pharmacological interventions aimed at stabilizing HIF-1α have the potential to be a promising treatment option for a range of human diseases, including ischemic stroke. To unveil a novel EGLN1 inhibitor from marine natural products, a custom-based virtual screening was carried out using a Deep Convolutional Neural Network (DCNN) architecture, docking, and molecular dynamics simulation. The custom DCNN model was optimized and further employed to screen marine natural products from the CMNPD database. The docking was performed as a secondary strategy for screened hits. Molecular dynamics (MD) and molecular mechanics/generalized Born surface area (MM-GBSA) were used to analyze inhibitor binding and identify key interactions. The findings support the claim that deep learning-based virtual screening is a rapid, reliable and accurate method of identifying highly contributing drug candidates (EGLN1 inhibitors). This study demonstrates that deep learning architecture can significantly accelerate drug discovery and development, and provides a solid foundation for using (Z)-2-ethylhex-2-enedioic acid [(Z)-2-ethylhex-2-enedioic acid] as a potential EGLN1 inhibitor for treating various health complications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neelakandan A R
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Rajanikant G K
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
8
|
Raza A, Chohan TA, Buabeid M, Arafa ESA, Chohan TA, Fatima B, Sultana K, Ullah MS, Murtaza G. Deep learning in drug discovery: a futuristic modality to materialize the large datasets for cheminformatics. J Biomol Struct Dyn 2023; 41:9177-9192. [PMID: 36305195 DOI: 10.1080/07391102.2022.2136244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/08/2022] [Indexed: 10/31/2022]
Abstract
Artificial intelligence (AI) development imitates the workings of the human brain to comprehend modern problems. The traditional approaches such as high throughput screening (HTS) and combinatorial chemistry are lengthy and expensive to the pharmaceutical industry as they can only handle a smaller dataset. Deep learning (DL) is a sophisticated AI method that uses a thorough comprehension of particular systems. The pharmaceutical industry is now adopting DL techniques to enhance the research and development process. Multi-oriented algorithms play a crucial role in the processing of QSAR analysis, de novo drug design, ADME evaluation, physicochemical analysis, preclinical development, followed by clinical trial data precision. In this study, we investigated the performance of several algorithms, including deep neural networks (DNN), convolutional neural networks (CNN) and multi-task learning (MTL), with the aim of generating high-quality, interpretable big and diverse databases for drug design and development. Studies have demonstrated that CNN, recurrent neural network and deep belief network are compatible, accurate and effective for the molecular description of pharmacodynamic properties. In Covid-19, existing pharmacological compounds has also been repurposed using DL models. In the absence of the Covid-19 vaccine, remdesivir and oseltamivir have been widely employed to treat severe SARS-CoV-2 infections. In conclusion, the results indicate the potential benefits of employing the DL strategies in the drug discovery process.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Raza
- Department of pharmaceutical chemistry, Faculty of Pharmacy, The University of Lahore, Pakistan
- Institute of Molecular Biology and Biochemistry, The University of Lahore, Pakistan
| | - Talha Ali Chohan
- Institute of Molecular Biology and Biochemistry, The University of Lahore, Pakistan
- Institute of Pharmaceutical Science, UVAS, Lahore, Pakistan
| | - Manal Buabeid
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - El-Shaima A Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | | | - Batool Fatima
- Department of biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Kishwar Sultana
- Department of pharmaceutical chemistry, Faculty of Pharmacy, The University of Lahore, Pakistan
| | - Malik Saad Ullah
- Department of Pharmacy, Government College University, Faisalabad, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Pakistan
| |
Collapse
|
9
|
Sinha K, Ghosh N, Sil PC. A Review on the Recent Applications of Deep Learning in Predictive Drug Toxicological Studies. Chem Res Toxicol 2023; 36:1174-1205. [PMID: 37561655 DOI: 10.1021/acs.chemrestox.2c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Drug toxicity prediction is an important step in ensuring patient safety during drug design studies. While traditional preclinical studies have historically relied on animal models to evaluate toxicity, recent advances in deep-learning approaches have shown great promise in advancing drug safety science and reducing animal use in preclinical studies. However, deep-learning-based approaches also face challenges in handling large biological data sets, model interpretability, and regulatory acceptance. In this review, we provide an overview of recent developments in deep-learning-based approaches for predicting drug toxicity, highlighting their potential advantages over traditional methods and the need to address their limitations. Deep-learning models have demonstrated excellent performance in predicting toxicity outcomes from various data sources such as chemical structures, genomic data, and high-throughput screening assays. The potential of deep learning for automated feature engineering is also discussed. This review emphasizes the need to address ethical concerns related to the use of deep learning in drug toxicity studies, including the reduction of animal use and ensuring regulatory acceptance. Furthermore, emerging applications of deep learning in drug toxicity prediction, such as predicting drug-drug interactions and toxicity in rare subpopulations, are highlighted. The integration of deep-learning-based approaches with traditional methods is discussed as a way to develop more reliable and efficient predictive models for drug safety assessment, paving the way for safer and more effective drug discovery and development. Overall, this review highlights the critical role of deep learning in predictive toxicology and drug safety evaluation, emphasizing the need for continued research and development in this rapidly evolving field. By addressing the limitations of traditional methods, leveraging the potential of deep learning for automated feature engineering, and addressing ethical concerns, deep-learning-based approaches have the potential to revolutionize drug toxicity prediction and improve patient safety in drug discovery and development.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram 721507, West Bengal, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata 700013, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, West Bengal, India
| |
Collapse
|
10
|
Sharma B, Chenthamarakshan V, Dhurandhar A, Pereira S, Hendler JA, Dordick JS, Das P. Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Sci Rep 2023; 13:4908. [PMID: 36966203 PMCID: PMC10039880 DOI: 10.1038/s41598-023-31169-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 03/07/2023] [Indexed: 03/27/2023] Open
Abstract
Explainable machine learning for molecular toxicity prediction is a promising approach for efficient drug development and chemical safety. A predictive ML model of toxicity can reduce experimental cost and time while mitigating ethical concerns by significantly reducing animal and clinical testing. Herein, we use a deep learning framework for simultaneously modeling in vitro, in vivo, and clinical toxicity data. Two different molecular input representations are used; Morgan fingerprints and pre-trained SMILES embeddings. A multi-task deep learning model accurately predicts toxicity for all endpoints, including clinical, as indicated by the area under the Receiver Operator Characteristic curve and balanced accuracy. In particular, pre-trained molecular SMILES embeddings as input to the multi-task model improved clinical toxicity predictions compared to existing models in MoleculeNet benchmark. Additionally, our multitask approach is comprehensive in the sense that it is comparable to state-of-the-art approaches for specific endpoints in in vitro, in vivo and clinical platforms. Through both the multi-task model and transfer learning, we were able to indicate the minimal need of in vivo data for clinical toxicity predictions. To provide confidence and explain the model's predictions, we adapt a post-hoc contrastive explanation method that returns pertinent positive and negative features, which correspond well to known mutagenic and reactive toxicophores, such as unsubstituted bonded heteroatoms, aromatic amines, and Michael receptors. Furthermore, toxicophore recovery by pertinent feature analysis captures more of the in vitro (53%) and in vivo (56%), rather than of the clinical (8%), endpoints, and indeed uncovers a preference in known toxicophore data towards in vitro and in vivo experimental data. To our knowledge, this is the first contrastive explanation, using both present and absent substructures, for predictions of clinical and in vivo molecular toxicity.
Collapse
Affiliation(s)
| | | | | | - Shiranee Pereira
- ICARE, International Center for Alternatives in Research and Education, Chennai, India
| | | | | | - Payel Das
- IBM Research, Yorktown Heights, NY, USA.
| |
Collapse
|
11
|
Berker Y, ElHarouni D, Peterziel H, Fiesel P, Witt O, Oehme I, Schlesner M, Oppermann S. Patient-by-Patient Deep Transfer Learning for Drug-Response Profiling Using Confocal Fluorescence Microscopy of Pediatric Patient-Derived Tumor-Cell Spheroids. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3981-3999. [PMID: 36099221 DOI: 10.1109/tmi.2022.3205554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Image-based phenotypic drug profiling is receiving increasing attention in drug discovery and precision medicine. Compared to classical end-point measurements quantifying drug response, image-based profiling enables both the quantification of drug response and characterization of disease entities and drug-induced cell-death phenotypes. Here, we aim to quantify image-based drug responses in patient-derived 3D spheroid tumor cell cultures, tackling the challenges of a lack of single-cell-segmentation methods and limited patient-derived material. Therefore, we investigate deep transfer learning with patient-by-patient fine-tuning for cell-viability quantification. We fine-tune a convolutional neural network (pre-trained on ImageNet) with 210 control images specific to a single training cell line and 54 additional screen -specific assay control images. This method of image-based drug profiling is validated on 6 cell lines with known drug sensitivities, and further tested with primary patient-derived samples in a medium-throughput setting. Network outputs at different drug concentrations are used for drug-sensitivity scoring, and dense-layer activations are used in t-distributed stochastic neighbor embeddings of drugs to visualize groups of drugs with similar cell-death phenotypes. Image-based cell-line experiments show strong correlation to metabolic results ( R ≈ 0.7 ) and confirm expected hits, indicating the predictive power of deep learning to identify drug-hit candidates for individual patients. In patient-derived samples, combining drug sensitivity scoring with phenotypic analysis may provide opportunities for complementary combination treatments. Deep transfer learning with patient-by-patient fine-tuning is a promising, segmentation-free image-analysis approach for precision medicine and drug discovery.
Collapse
|
12
|
Limbu S, Zakka C, Dakshanamurthy S. Predicting Dose-Range Chemical Toxicity using Novel Hybrid Deep Machine-Learning Method. TOXICS 2022; 10:706. [PMID: 36422913 PMCID: PMC9692315 DOI: 10.3390/toxics10110706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Humans are exposed to thousands of chemicals, including environmental chemicals. Unfortunately, little is known about their potential toxicity, as determining the toxicity remains challenging due to the substantial resources required to assess a chemical in vivo. Here, we present a novel hybrid neural network (HNN) deep learning method, called HNN-Tox, to predict chemical toxicity at different doses. To develop a hybrid HNN-Tox method, we combined two neural network frameworks, the Convolutional Neural Network (CNN) and the multilayer perceptron (MLP)-type feed-forward neural network (FFNN). Combining the CNN and FCNN in the field of environmental chemical toxicity prediction is a novel approach. We developed several binary and multiclass classification models to assess dose-range chemical toxicity that is trained based on thousands of chemicals with known toxicity. The performance of the HNN-Tox was compared with other machine-learning methods, including Random Forest (RF), Bootstrap Aggregation (Bagging), and Adaptive Boosting (AdaBoost). We also analyzed the model performance dependency on varying features, descriptors, dataset size, route of exposure, and toxic dose. The HNN-Tox model, trained on 59,373 chemicals annotated with known LD50 and routes of exposure, maintained its predictive ability with an accuracy of 84.9% and 84.1%, even after reducing the descriptor size from 318 to 51, and the area under the ROC curve (AUC) was 0.89 and 0.88, respectively. Further, we validated the HNN-Tox with several external toxic chemical datasets on a large scale. The HNN-Tox performed optimally or better than the other machine-learning methods for diverse chemicals. This study is the first to report a large-scale prediction of dose-range chemical toxicity with varying features. The HNN-Tox has broad applicability in predicting toxicity for diverse chemicals and could serve as an alternative methodology approach to animal-based toxicity assessment.
Collapse
Affiliation(s)
- Sarita Limbu
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Cyril Zakka
- Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Sivanesan Dakshanamurthy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
13
|
Nag S, Baidya ATK, Mandal A, Mathew AT, Das B, Devi B, Kumar R. Deep learning tools for advancing drug discovery and development. 3 Biotech 2022; 12:110. [PMID: 35433167 PMCID: PMC8994527 DOI: 10.1007/s13205-022-03165-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/18/2022] [Indexed: 12/26/2022] Open
Abstract
A few decades ago, drug discovery and development were limited to a bunch of medicinal chemists working in a lab with enormous amount of testing, validations, and synthetic procedures, all contributing to considerable investments in time and wealth to get one drug out into the clinics. The advancements in computational techniques combined with a boom in multi-omics data led to the development of various bioinformatics/pharmacoinformatics/cheminformatics tools that have helped speed up the drug development process. But with the advent of artificial intelligence (AI), machine learning (ML) and deep learning (DL), the conventional drug discovery process has been further rationalized. Extensive biological data in the form of big data present in various databases across the globe acts as the raw materials for the ML/DL-based approaches and helps in accurate identifications of patterns and models which can be used to identify therapeutically active molecules with much fewer investments on time, workforce and wealth. In this review, we have begun by introducing the general concepts in the drug discovery pipeline, followed by an outline of the fields in the drug discovery process where ML/DL can be utilized. We have also introduced ML and DL along with their applications, various learning methods, and training models used to develop the ML/DL-based algorithms. Furthermore, we have summarized various DL-based tools existing in the public domain with their application in the drug discovery paradigm which includes DL tools for identification of drug targets and drug-target interaction such as DeepCPI, DeepDTA, WideDTA, PADME DeepAffinity, and DeepPocket. Additionally, we have discussed various DL-based models used in protein structure prediction, de novo design of new chemical scaffolds, virtual screening of chemical libraries for hit identification, absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction, metabolite prediction, clinical trial design, and oral bioavailability prediction. In the end, we have tried to shed light on some of the successful ML/DL-based models used in the drug discovery and development pipeline while also discussing the current challenges and prospects of the application of DL tools in drug discovery and development. We believe that this review will be useful for medicinal and computational chemists searching for DL tools for use in their drug discovery projects.
Collapse
Affiliation(s)
- Sagorika Nag
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U.), Varanasi, UP 221005 India
| | - Anurag T. K. Baidya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U.), Varanasi, UP 221005 India
| | - Abhimanyu Mandal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U.), Varanasi, UP 221005 India
| | - Alen T. Mathew
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U.), Varanasi, UP 221005 India
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U.), Varanasi, UP 221005 India
| | - Bharti Devi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U.), Varanasi, UP 221005 India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U.), Varanasi, UP 221005 India
| |
Collapse
|
14
|
A hybrid resampling algorithms SMOTE and ENN based deep learning models for identification of Marburg virus inhibitors. Future Med Chem 2022; 14:701-715. [PMID: 35393862 DOI: 10.4155/fmc-2021-0290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: Marburg virus (MARV) is a sporadic outbreak of a zoonotic disease that causes lethal hemorrhagic fever in humans. We propose a deep learning model with resampling techniques and predict the inhibitory activity of MARV from unknown compounds in the virtual screening process. Methodology & results: We applied resampling techniques to solve the imbalanced data problem. The classifier model comparisons revealed that the hybrid model of synthetic minority oversampling technique - edited nearest neighbor and artificial neural network (SMOTE-ENN + ANN) achieved better classification performance with 95% overall accuracy. The trained SMOTE-ENN+ANN hybrid model predicted as lead molecules; 25 out of 87,043 from ChemDiv, four out of 340 from ChEMBL anti-viral library, three out of 918 from Phytochemical database, and seven out of 419 from Natural products from NCI divsetIV, and 214 out of 1,12,267 from Natural compounds ZINC database for MARV. Conclusion: Our studies reveal that the proposed SMOTE-ENN + ANN hybrid model can improve overall accuracy more effectively and predict new lead molecules against MARV.
Collapse
|
15
|
Hu F, Santagostino SF, Danilenko DM, Tseng M, Brumm J, Zehnder P, Wu KC. Assessment of Skin Toxicity in an in Vitro Reconstituted Human Epidermis Model Using Deep Learning. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:687-700. [PMID: 35063406 DOI: 10.1016/j.ajpath.2021.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/12/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Skin toxicity is a common safety concern associated with drugs that inhibit epidermal growth factor receptors as well as other targets involved in epidermal growth and differentiation. Recently, the use of a three-dimensional reconstructed human epidermis model enabled large-scale drug screening and showed potential for predicting skin toxicity. Although a decrease in epidermal thickness was often observed when the three-dimensional reconstructed tissues were exposed to drugs causing skin toxicity, the thickness evaluation of epidermal layers from a pathologist was subjective and not easily reproducible or scalable. In addition, the subtle differences in thickness among tissues, as well as the large number of samples tested, made cross-study comparison difficult when a manual evaluation strategy was used. The current study used deep learning and image-processing algorithms to measure the viable epidermal thickness from multiple studies and found that the measured thickness was not only significantly correlated with a pathologist's semi-quantitative evaluation but was also in close agreement with the quantitative measurement performed by pathologists. Moreover, a sensitivity of 0.8 and a specificity of 0.75 were achieved when predicting the toxicity of 18 compounds with clinical observations with these epidermal thickness algorithms. This approach is fully automated, reproducible, and highly scalable. It not only shows reasonable accuracy in predicting skin toxicity but also enables cross-study comparison and high-throughput compound screening.
Collapse
Affiliation(s)
- Fangyao Hu
- Department of Safety Assessment, Genentech, South San Francisco, California.
| | | | | | - Min Tseng
- Department of Safety Assessment, Genentech, South San Francisco, California
| | - Jochen Brumm
- Department of Nonclinical Biostatistics, Genentech, South San Francisco, California
| | - Philip Zehnder
- Department of Safety Assessment, Genentech, South San Francisco, California
| | - Kai Connie Wu
- Department of Safety Assessment, Genentech, South San Francisco, California.
| |
Collapse
|
16
|
Sun X, Zhu J, Chen B, You H, Xu H. A feature transferring workflow between data-poor compounds in various tasks. PLoS One 2022; 17:e0266088. [PMID: 35353844 PMCID: PMC8967016 DOI: 10.1371/journal.pone.0266088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Compound screening by in silico approaches has advantages in identifying high-activity leading compounds and can predict the safety of the drug. A key challenge is that the number of observations of drug activity and toxicity accumulation varies by target in different datasets, some of which are more understudied than others. Owing to an overall insufficiency and imbalance of drug data, it is hard to accurately predict drug activity and toxicity of multiple tasks by the existing models. To solve this problem, this paper proposed a two-stage transfer learning workflow to develop a novel prediction model, which can accurately predict drug activity and toxicity of the targets with insufficient observations. We built a balanced dataset based on the Tox21 dataset and developed a drug activity and toxicity prediction model based on Siamese networks and graph convolution to produce multitasking output. We also took advantage of transfer learning from data-rich targets to data-poor targets. We showed greater accuracy in predicting the activity and toxicity of compounds to targets with rich data and poor data. In Tox21, a relatively rich dataset, the prediction model accuracy for classification tasks was 0.877 AUROC. In the other five unbalanced datasets, we also found that transfer learning strategies brought the accuracy of models to a higher level in understudied targets. Our models can overcome the imbalance in target data and predict the compound activity and toxicity of understudied targets to help prioritize upcoming biological experiments.
Collapse
Affiliation(s)
- Xiaofei Sun
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyuan Zhu
- School of science, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Bin Chen
- University of Chinese Academy of Sciences, Beijing, China
- IRIAI, Harbin Institute of Technology, Shenzhen, Guangdong, China
- * E-mail: (BC); (HY)
| | - Hengzhi You
- School of science, Harbin Institute of Technology, Shenzhen, Guangdong, China
- * E-mail: (BC); (HY)
| | - Huiqing Xu
- Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Bo W, Qin D, Zheng X, Wang Y, Ding B, Li Y, Liang G. Prediction of bitterant and sweetener using structure-taste relationship models based on an artificial neural network. Food Res Int 2022; 153:110974. [DOI: 10.1016/j.foodres.2022.110974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
|
18
|
Tandon A, Howard B, Ramaiahgari S, Maharana A, Ferguson S, Shah R, Merrick BA. Deep Learning Image Analysis of High-Throughput Toxicology Assay Images. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:29-38. [PMID: 35058173 PMCID: PMC8955414 DOI: 10.1016/j.slasd.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
High-throughput chemical screening approaches often employ microscopy to capture photomicrographs from multi-well cell culture plates, generating thousands of images that require time-consuming human analysis. To automate this subjective and time-consuming manual process, we have developed a method that uses deep learning to automatically classify digital assay images. We have trained a convolutional neural network (CNN) to perform binary and multi-class classification. The binary classifier binned assay images into healthy (comparable to untreated controls) and altered (not comparable to untreated-control) classes with >98% accuracy; the multi-class classifier assigned "Healthy," "Intermediate" and "Altered" labels to assay images with >95% accuracy. Our dataset comprised high-resolution assay images from primary human hepatocytes and undifferentiated (proliferating) and differentiated 2D cultures of HepaRG cells. In this study we have focused on testing and fine-tuning various CNN architectures, including ResNet 34, 50 and 101. To visualize regions in the images that the CNN model used for classification, we employed Class Activation Maps (CAM). This allowed us to better understand the inner workings of the neural network and led to additional optimizations of the algorithm. The results indicate a strong correspondence between dosage and classifier-predicted scores, suggesting that these scores might be useful in further characterizing benchmark dose. Together, these results clearly demonstrate that deep-learning based automated image classification of cell morphology changes upon chemical-induced stress can yield highly accurate and reproducible assessments of cytotoxicity across a variety of cell types.
Collapse
Affiliation(s)
| | | | - Sreenivasa Ramaiahgari
- National Toxicology Program Division, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Stephen Ferguson
- National Toxicology Program Division, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ruchir Shah
- Sciome LLC, Research Triangle Park, NC, USA.
| | - B Alex Merrick
- National Toxicology Program Division, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
19
|
Pérez Santín E, Rodríguez Solana R, González García M, García Suárez MDM, Blanco Díaz GD, Cima Cabal MD, Moreno Rojas JM, López Sánchez JI. Toxicity prediction based on artificial intelligence: A multidisciplinary overview. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1516] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Efrén Pérez Santín
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| | - Raquel Rodríguez Solana
- Department of Food Science and Health Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo Avda Córdoba, Andalucía Spain
| | - Mariano González García
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| | - María Del Mar García Suárez
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| | - Gerardo David Blanco Díaz
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| | - María Dolores Cima Cabal
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| | - José Manuel Moreno Rojas
- Department of Food Science and Health Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo Avda Córdoba, Andalucía Spain
| | - José Ignacio López Sánchez
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| |
Collapse
|
20
|
Exploring the value of pleural fluid biomarkers for complementary pleural effusion disease examination. Comput Biol Chem 2021; 94:107559. [PMID: 34412001 DOI: 10.1016/j.compbiolchem.2021.107559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Pleural fluid biomarkers are beneficial for the complementary diagnosis of pleural effusion etiologies. This study focuses on the multidimensional evaluation of deep learning to investigate the pleural effusion biomarkers value and the diagnostic utility of combining these markers, in distinguishing pleural effusion etiologies. METHODS Pleural effusion were divided into three groups according to the diagnosis and treatment guidelines: malignant pleural effusion (MPE), parapneumonic effusion (PPE), and congestive heart failure (CHF). First, the value of the biomarker was analyzed by a receiver operating characteristic (ROC) curve. Then by utilizing deep learning and entropy weight method (EWM), the clinical value of biomarkers was computed multidimensionally for complementary diagnosis of pleural effusion diseases. RESULTS There were significant differences in the six biomarkers, TP, ADA, CEA, CYFRA211, NSE, MNC% (p < 0.05) and no significant differences in three physical characteristics including color, transparency, specific gravity and six other biomarkers such as WBC, PNC%, MTC%, pH level, GLU, LDH (p > 0.05) among the three pleural effusion groups. The comprehensive test of pleural fluid biomarkers based on deep learning is of high accuracy. The clinical value of cytomorphology biomarkers WBC, MNC %, PNC %, MTC % was higher among pleural fluid biomarkers. CONCLUSION The clinical value of multi-dimensional analysis of biomarkers by deep learning and entropy weight method is different from the ROC curve analysis. It is suggested that during the clinical examination process, more attention should be paid to the cell morphology biomarkers, but the physical properties of the pleural fluid are less clinical significance.
Collapse
|
21
|
Sharma A, Lysenko A, Boroevich KA, Vans E, Tsunoda T. DeepFeature: feature selection in nonimage data using convolutional neural network. Brief Bioinform 2021; 22:6343526. [PMID: 34368836 PMCID: PMC8575039 DOI: 10.1093/bib/bbab297] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/30/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Artificial intelligence methods offer exciting new capabilities for the discovery of biological mechanisms from raw data because they are able to detect vastly more complex patterns of association that cannot be captured by classical statistical tests. Among these methods, deep neural networks are currently among the most advanced approaches and, in particular, convolutional neural networks (CNNs) have been shown to perform excellently for a variety of difficult tasks. Despite that applications of this type of networks to high-dimensional omics data and, most importantly, meaningful interpretation of the results returned from such models in a biomedical context remains an open problem. Here we present, an approach applying a CNN to nonimage data for feature selection. Our pipeline, DeepFeature, can both successfully transform omics data into a form that is optimal for fitting a CNN model and can also return sets of the most important genes used internally for computing predictions. Within the framework, the Snowfall compression algorithm is introduced to enable more elements in the fixed pixel framework, and region accumulation and element decoder is developed to find elements or genes from the class activation maps. In comparative tests for cancer type prediction task, DeepFeature simultaneously achieved superior predictive performance and better ability to discover key pathways and biological processes meaningful for this context. Capabilities offered by the proposed framework can enable the effective use of powerful deep learning methods to facilitate the discovery of causal mechanisms in high-dimensional biomedical data.
Collapse
Affiliation(s)
- Alok Sharma
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Artem Lysenko
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Keith A Boroevich
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Edwin Vans
- STEMP, University of the South Pacific, Suva, Fiji
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Piroozmand F, Mohammadipanah F, Sajedi H. Spectrum of deep learning algorithms in drug discovery. Chem Biol Drug Des 2021; 96:886-901. [PMID: 33058458 DOI: 10.1111/cbdd.13674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022]
Abstract
Deep learning (DL) algorithms are a subset of machine learning algorithms with the aim of modeling complex mapping between a set of elements and their classes. In parallel to the advance in revealing the molecular bases of diseases, a notable innovation has been undertaken to apply DL in data/libraries management, reaction optimizations, differentiating uncertainties, molecule constructions, creating metrics from qualitative results, and prediction of structures or interactions. From source identification to lead discovery and medicinal chemistry of the drug candidate, drug delivery, and modification, the challenges can be subjected to artificial intelligence algorithms to aid in the generation and interpretation of data. Discovery and design approach, both demand automation, large data management and data fusion by the advance in high-throughput mode. The application of DL can accelerate the exploration of drug mechanisms, finding novel indications for existing drugs (drug repositioning), drug development, and preclinical and clinical studies. The impact of DL in the workflow of drug discovery, design, and their complementary tools are highlighted in this review. Additionally, the type of DL algorithms used for this purpose, and their pros and cons along with the dominant directions of future research are presented.
Collapse
Affiliation(s)
- Firoozeh Piroozmand
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Hedieh Sajedi
- Department of Computer Science, School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
23
|
La Greca AD, Pérez N, Castañeda S, Milone PM, Scarafía MA, Möbbs AM, Waisman A, Moro LN, Sevlever GE, Luzzani CD, Miriuka SG. celldeath: A tool for detection of cell death in transmitted light microscopy images by deep learning-based visual recognition. PLoS One 2021; 16:e0253666. [PMID: 34166446 PMCID: PMC8224851 DOI: 10.1371/journal.pone.0253666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/09/2021] [Indexed: 12/03/2022] Open
Abstract
Cell death experiments are routinely done in many labs around the world, these experiments are the backbone of many assays for drug development. Cell death detection is usually performed in many ways, and requires time and reagents. However, cell death is preceded by slight morphological changes in cell shape and texture. In this paper, we trained a neural network to classify cells undergoing cell death. We found that the network was able to highly predict cell death after one hour of exposure to camptothecin. Moreover, this prediction largely outperforms human ability. Finally, we provide a simple python tool that can broadly be used to detect cell death.
Collapse
Affiliation(s)
| | - Nelba Pérez
- Laboratorio de Investigación Aplicada a Neurociencias, FLENI-CONICET, Buenos Aires, Argentina
| | - Sheila Castañeda
- Laboratorio de Investigación Aplicada a Neurociencias, FLENI-CONICET, Buenos Aires, Argentina
| | - Paula Melania Milone
- Laboratorio de Investigación Aplicada a Neurociencias, FLENI-CONICET, Buenos Aires, Argentina
| | - María Agustina Scarafía
- Laboratorio de Investigación Aplicada a Neurociencias, FLENI-CONICET, Buenos Aires, Argentina
| | - Alan Miqueas Möbbs
- Laboratorio de Investigación Aplicada a Neurociencias, FLENI-CONICET, Buenos Aires, Argentina
| | - Ariel Waisman
- Laboratorio de Investigación Aplicada a Neurociencias, FLENI-CONICET, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Lucía Natalia Moro
- Laboratorio de Investigación Aplicada a Neurociencias, FLENI-CONICET, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Emilio Sevlever
- Laboratorio de Investigación Aplicada a Neurociencias, FLENI-CONICET, Buenos Aires, Argentina
| | - Carlos Daniel Luzzani
- Laboratorio de Investigación Aplicada a Neurociencias, FLENI-CONICET, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Santiago Gabriel Miriuka
- Laboratorio de Investigación Aplicada a Neurociencias, FLENI-CONICET, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
24
|
Shanbhogue H M, Thirumaleshwar S, Kumar Tm P, Kumar S H. Artificial Intelligence in Pharmaceutical Field - A Critical Review. Curr Drug Deliv 2021; 18:1456-1466. [PMID: 34139981 DOI: 10.2174/1567201818666210617100613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022]
Abstract
Artificial intelligence is an emerging sector in almost all fields. It is not confined only to a particular category and can be used in various fields like research, technology, and health. AI mainly concentrates on how computers analyze data and mimic the human thought process. As drug development involves high R & D costs and uncertainty in time consumption, artificial intelligence can serve as one of the promising solutions to overcome all these demerits. Due to the availability of enormous data, there are chances of missing out on some crucial details. For solving these issues, algorithms like machine learning, deep learning, and other expert systems are being used. On successful implementation of AI in the pharmaceutical field, the delays in drug development, and failure at the clinical and marketing level can be reduced. This review comprises information regarding the development of AI, its subfields, its overall implementation, and its application in the pharmaceutical sector and provides insights on challenges and limitations concerning AI.
Collapse
Affiliation(s)
- Maithri Shanbhogue H
- Department of Pharmaceutics, Industrial Pharmacy Group, JSS College of Pharmacy, Mysuru JSS Academy of Higher Education and Research Sri Shivarathreeshwara Nagara, Mysuru - 570015, Karnataka, India
| | - Shailesh Thirumaleshwar
- Department of Pharmaceutics, Industrial Pharmacy Group, JSS College of Pharmacy, Mysuru JSS Academy of Higher Education and Research Sri Shivarathreeshwara Nagara, Mysuru - 570015, Karnataka, India
| | - Pramod Kumar Tm
- Department of Pharmaceutics, Industrial Pharmacy Group, JSS College of Pharmacy, Mysuru JSS Academy of Higher Education and Research Sri Shivarathreeshwara Nagara, Mysuru - 570015, Karnataka, India
| | - Hemanth Kumar S
- Department of Pharmaceutics, Industrial Pharmacy Group, JSS College of Pharmacy, Mysuru JSS Academy of Higher Education and Research Sri Shivarathreeshwara Nagara, Mysuru - 570015, Karnataka, India
| |
Collapse
|
25
|
Kumari M, Subbarao N. Deep learning model for virtual screening of novel 3C-like protease enzyme inhibitors against SARS coronavirus diseases. Comput Biol Med 2021; 132:104317. [PMID: 33721736 PMCID: PMC7935676 DOI: 10.1016/j.compbiomed.2021.104317] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
In the context of the recently emerging COVID-19 pandemic, we developed a deep learning model that can be used to predict the inhibitory activity of 3CLpro in severe acute respiratory syndrome coronavirus (SARS-CoV) for unknown compounds during the virtual screening process. This paper proposes a novel deep learning-based method to implement virtual screening with convolutional neural network (CNN) architecture. The descriptors represent chemical molecules, and these descriptors are input into the CNN framework to train a model and predict active compounds. When compared to other machine learning methods, including random forest, naive Bayes, decision tree, and support vector machine, the proposed CNN model's evaluation of the test set showed an accuracy of 0.86, a sensitivity of 0.45, a specificity of 0.96, a precision of 0.73, a recall of 0.45, an F-measure of 0.55, and a ROC of 0.71. The CNN model screened 17 out of 918 phytochemical compounds; 60 out of 423 from the natural product NCI divset IV; 17,831 out of 112,267 from the ZINC natural product database; and 315 out of 1556 FDA-approved drugs as anti-SARS-CoV agents. Further, to prioritize drug-like compounds, Lipinski's rule of five was applied to screen anti-SARS-CoV compounds (excluding FDA-approved drugs), resulting in 10, 59, and 14,025 hit molecules. Out of 10 phytochemical compounds, 9 anti-SARS-CoV agents belonged to the flavonoid group. In conclusion, the proposed CNN model can prove useful for developing novel target-specific anti-SARS-CoV compounds.
Collapse
|
26
|
Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today 2021; 26:80-93. [PMID: 33099022 PMCID: PMC7577280 DOI: 10.1016/j.drudis.2020.10.010] [Citation(s) in RCA: 380] [Impact Index Per Article: 126.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/03/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Artificial intelligence-integrated drug discovery and development has accelerated the growth of the pharmaceutical sector, leading to a revolutionary change in the pharma industry. Here, we discuss areas of integration, tools, and techniques utilized in enforcing AI, ongoing challenges, and ways to overcome them.
Collapse
Affiliation(s)
- Debleena Paul
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Gaurav Sanap
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Snehal Shenoy
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Dnyaneshwar Kalyane
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
27
|
Wang MWH, Goodman JM, Allen TEH. Machine Learning in Predictive Toxicology: Recent Applications and Future Directions for Classification Models. Chem Res Toxicol 2020; 34:217-239. [PMID: 33356168 DOI: 10.1021/acs.chemrestox.0c00316] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent times, machine learning has become increasingly prominent in predictive toxicology as it has shifted from in vivo studies toward in silico studies. Currently, in vitro methods together with other computational methods such as quantitative structure-activity relationship modeling and absorption, distribution, metabolism, and excretion calculations are being used. An overview of machine learning and its applications in predictive toxicology is presented here, including support vector machines (SVMs), random forest (RF) and decision trees (DTs), neural networks, regression models, naïve Bayes, k-nearest neighbors, and ensemble learning. The recent successes of these machine learning methods in predictive toxicology are summarized, and a comparison of some models used in predictive toxicology is presented. In predictive toxicology, SVMs, RF, and DTs are the dominant machine learning methods due to the characteristics of the data available. Lastly, this review describes the current challenges facing the use of machine learning in predictive toxicology and offers insights into the possible areas of improvement in the field.
Collapse
Affiliation(s)
- Marcus W H Wang
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jonathan M Goodman
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Timothy E H Allen
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester LE1 7HB, United Kingdom
| |
Collapse
|
28
|
Hemmerich J, Ecker GF. In silico toxicology: From structure–activity relationships towards deep learning and adverse outcome pathways. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020; 10:e1475. [PMID: 35866138 PMCID: PMC9286356 DOI: 10.1002/wcms.1475] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
In silico toxicology is an emerging field. It gains increasing importance as research is aiming to decrease the use of animal experiments as suggested in the 3R principles by Russell and Burch. In silico toxicology is a means to identify hazards of compounds before synthesis, and thus in very early stages of drug development. For chemical industries, as well as regulatory agencies it can aid in gap‐filling and guide risk minimization strategies. Techniques such as structural alerts, read‐across, quantitative structure–activity relationship, machine learning, and deep learning allow to use in silico toxicology in many cases, some even when data is scarce. Especially the concept of adverse outcome pathways puts all techniques into a broader context and can elucidate predictions by mechanistic insights. This article is categorized under:Structure and Mechanism > Computational Biochemistry and Biophysics Data Science > Chemoinformatics
Collapse
Affiliation(s)
- Jennifer Hemmerich
- Department of Pharmaceutical Chemistry University of Vienna Vienna Austria
| | - Gerhard F. Ecker
- Department of Pharmaceutical Chemistry University of Vienna Vienna Austria
| |
Collapse
|
29
|
Liu Z, Du J, Fang J, Yin Y, Xu G, Xie L. DeepScreening: a deep learning-based screening web server for accelerating drug discovery. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5585580. [PMID: 31608949 PMCID: PMC6790966 DOI: 10.1093/database/baz104] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
Deep learning contributes significantly to researches in biological sciences and drug discovery. Previous studies suggested that deep learning techniques have shown superior performance to other machine learning algorithms in virtual screening, which is a critical step to accelerate the drug discovery. However, the application of deep learning techniques in drug discovery and chemical biology are hindered due to the data availability, data further processing and lacking of the user-friendly deep learning tools and interface. Therefore, we developed a user-friendly web server with integration of the state of art deep learning algorithm, which utilizes either the public or user-provided dataset to help biologists or chemists perform virtual screening either the chemical probes or drugs for a specific target of interest. With DeepScreening, user could conveniently construct a deep learning model and generate the target-focused de novo libraries. The constructed classification and regression models could be subsequently used for virtual screening against the generated de novo libraries, or diverse chemical libraries in stock. From deep models training to virtual screening, and target focused de novo library generation, all those tasks could be finished with DeepScreening. We believe this deep learning-based web server will benefit to both biologists and chemists for probes or drugs discovery.
Collapse
Affiliation(s)
- Zhihong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Jiewen Du
- Division of Algorithm, Beijing Jingpai Technology Co., Ltd. 1500-1, Hailong Building Z-Park, Beijing 100090, China
| | - Jiansong Fang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9620 Carnegie Ave n building, Cleveland, OH 44106, USA
| | - Yulong Yin
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China.,Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou 510282, China
| |
Collapse
|
30
|
Wu Z, Lei T, Shen C, Wang Z, Cao D, Hou T. ADMET Evaluation in Drug Discovery. 19. Reliable Prediction of Human Cytochrome P450 Inhibition Using Artificial Intelligence Approaches. J Chem Inf Model 2019; 59:4587-4601. [DOI: 10.1021/acs.jcim.9b00801] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410004, Hunan, P. R. China
| | | |
Collapse
|
31
|
Basile AO, Yahi A, Tatonetti NP. Artificial Intelligence for Drug Toxicity and Safety. Trends Pharmacol Sci 2019; 40:624-635. [PMID: 31383376 PMCID: PMC6710127 DOI: 10.1016/j.tips.2019.07.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
Interventional pharmacology is one of medicine's most potent weapons against disease. These drugs, however, can result in damaging side effects and must be closely monitored. Pharmacovigilance is the field of science that monitors, detects, and prevents adverse drug reactions (ADRs). Safety efforts begin during the development process, using in vivo and in vitro studies, continue through clinical trials, and extend to postmarketing surveillance of ADRs in real-world populations. Future toxicity and safety challenges, including increased polypharmacy and patient diversity, stress the limits of these traditional tools. Massive amounts of newly available data present an opportunity for using artificial intelligence (AI) and machine learning to improve drug safety science. Here, we explore recent advances as applied to preclinical drug safety and postmarketing surveillance with a specific focus on machine and deep learning (DL) approaches.
Collapse
Affiliation(s)
- Anna O Basile
- Columbia University Medical Center, New York, NY, USA
| | | | | |
Collapse
|