1
|
Maneekul J, Chiaha A, Hughes R, Labry F, Saito J, Almendares M, Banda BN, Lopez L, McGaskey N, Miranda M, Rana J, Zadeh BR, Hughes LE. Investigating novel Streptomyces bacteriophage endolysins as potential antimicrobial agents. Microbiol Spectr 2025; 13:e0117024. [PMID: 39570052 PMCID: PMC11705968 DOI: 10.1128/spectrum.01170-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
As antibiotic resistance has become a major global threat, the World Health Organization (WHO) has urgently called for alternative strategies for control of bacterial infections. Endolysin, a phage-encoded protein, can degrade bacterial peptidoglycan (PG) and disrupt bacterial growth. According to the WHO, there are only three endolysin products currently in clinical phase development. In this study, we explore novel endolysins from Streptomyces phages as only a few of them have been experimentally characterized. Using several bioinformatics tools, we identified nine different functional domain combinations from 250 Streptomyces phages putative endolysins. LazerLemon gp35 (CHAP; LL35lys), Nabi gp26 (amidase; Nb26lys), and Tribute gp42 (PGRP/amidase; Tb42lys) were selected for experimental studies. We hypothesized that (i) the proteins of interest will have the ability to degrade purified PG, and (ii) the proteins will have potential antimicrobial activity against bacteria from families of importance in antibiotic resistance, such as ESKAPE safe relatives (Enterococcus raffinosus, Staphylococcus epidermidis, Klebsiella aerogenes, Acinetobacter baylyi, Pseudomonas putida, and Escherichia coli). LL35lys, Nb26lys, and Tb42lys exhibit PG-degrading activity on zymography and hydrolysis assay. The enzymes (100 µg/mL) can reduce PG turbidity to 32%-40%. The killing assay suggests that Tb42lys has a broader range (E. coli, P. putida, A. baylyi and K. aerogenes). While Nb26lys better attacks Gram-negative than -positive bacteria, LL35lys can only reduce the growth of the Gram-positive ESKAPE strains but does so effectively with a low MIC90 of 2 µg/mL. A higher concentration (≥300 µg/mL) of Nb26lys is needed to inhibit P. putida and K. aerogenes. From 250 putative endolysins, bioinformatic methods were used to select three putative endolysins for cloning and study: LL35lys, Nb26lys, and Tb42lys. All have shown PG-degrading activity, a critical function of endolysin. With a low MIC, LL35lys shows activity for the Gram-positive ESKAPE strains, while Nb26lys and Tb42lys are active against the Gram negatives. Therefore, endolysins from Streptomyces phages have potential as possible antimicrobial agents against ESKAPE bacteria. IMPORTANCE As antibiotic resistance has become a major global threat, the World Health Organization (WHO) has urgently called for alternative strategies for control of bacterial infections. Endolysin, a phage-encoded protein, can degrade bacterial peptidoglycan in the bacterial cell wall and disrupt bacterial growth. According to the WHO, there are only three endolysin products currently in clinical phase development. In this study we explored novel endolysins from Streptomyces phages as only a few of them have been experimentally characterized. Using several bioinformatics tools, we identified nine different combinations of functional enzymatic domain types from 250 Streptomyces bacteriophages possible endolysins. From these, three potential endolysins were selected for experimental characterization. All three showed positive results in degrading cell wall material and disrupting bacterial growth, indicating their potential as possible antimicrobial agents.
Collapse
Affiliation(s)
- Jindanuch Maneekul
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Amanda Chiaha
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Rachel Hughes
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Faith Labry
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Joshua Saito
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Matthew Almendares
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Brenda N. Banda
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Leslie Lopez
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Nyeomi McGaskey
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Melizza Miranda
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Jenil Rana
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Brandon R. Zadeh
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Lee E. Hughes
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| |
Collapse
|
2
|
Herbig AF, Pendergrass EM. Complete genome sequence of Bacillus subtilis bacteriophage Adastra. Microbiol Resour Announc 2024:e0094224. [PMID: 39714142 DOI: 10.1128/mra.00942-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Adastra is a lytic bacteriophage that infects Bacillus subtilis. Here, we report the sequencing and annotation of the 136,306-bp genome of Adastra and its similarity to other myophages in the SPO1 family.
Collapse
Affiliation(s)
- Andrew F Herbig
- Department of Biology, Washburn University, Topeka, Kansas, USA
| | | |
Collapse
|
3
|
Parra B, Sandoval M, Arriagada V, Amsteins L, Aguayo C, Opazo-Capurro A, Dechesne A, González-Rocha G. Isolation and Characterization of Lytic Bacteriophages Capable of Infecting Diverse Multidrug-Resistant Strains of Pseudomonas aeruginosa: PaCCP1 and PaCCP2. Pharmaceuticals (Basel) 2024; 17:1616. [PMID: 39770458 PMCID: PMC11728774 DOI: 10.3390/ph17121616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Antimicrobial resistance (AMR) is a major public health threat, which is exacerbated by the lack of new antibiotics and the emergence of multidrug-resistant (MDR) superbugs. Comprehensive efforts and alternative strategies to combat AMR are urgently needed to prevent social, medical, and economic consequences. Pseudomonas aeruginosa is a pathogen responsible for a wide range of infections, from soft tissue infections to life-threatening conditions such as bacteremia and pneumonia. Bacteriophages have been considered as a potential therapeutic option to treat bacterial infections. Our aim was to isolate phages able to infect MDR P. aeruginosa strains. METHODS We isolated two lytic phages, using the conventional double layer agar technique (DLA), from samples obtained from the influent of a wastewater treatment plant in Concepción, Chile. The phages, designated as PaCCP1 and PaCCP2, were observed by electron microscopy and their host range was determined against multiple P. aeruginosa strains using DLA. Moreover, their genomes were sequenced and analyzed. RESULTS Phage PaCCP1 is a member of the Septimatrevirus genus and phage PaCCP2 is a member of the Pbunavirus genus. Both phages are tailed and contain dsDNA. The genome of PaCCP1 is 43,176 bp in length with a GC content of 54.4%, encoding 59 ORFs, one of them being a tRNA gene. The genome of PaCCP2 is 66,333 bp in length with a GC content of 55.6%, encoding 102 non-tRNA ORFs. PaCCP1 is capable of infecting five strains of P. aeruginosa, whereas phage PaCCP2 is capable of infecting three strains of P. aeruginosa. Both phages do not contain bacterial virulence or AMR genes and contain three and six putative Anti-CRISPR proteins. CONCLUSIONS Phages PaCCP1 and PaCCP2 show promise as effective treatments for MDR P. aeruginosa strains, offering a potential strategy for controlling this clinically important pathogen through phage therapy.
Collapse
Affiliation(s)
- Boris Parra
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Av. Jorge Alessandri 1160, Campus El Boldal, Concepción 4070409, Chile
| | - Maximiliano Sandoval
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| | - Vicente Arriagada
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| | - Luis Amsteins
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| | - Cristobal Aguayo
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| | - Andrés Opazo-Capurro
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| | - Arnaud Dechesne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofs Plads, Building 221, 2800 Kongens Lyngby, Denmark
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| |
Collapse
|
4
|
Valencia-Toxqui G, Ramsey J. How to introduce a new bacteriophage on the block: a short guide to phage classification. J Virol 2024; 98:e0182123. [PMID: 39264154 PMCID: PMC11494874 DOI: 10.1128/jvi.01821-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Bacteriophage (phage) studies established the field of molecular biology and continue to propel life science research forward due to their diversity, abundance, and potential applications. In this Gem article, we orient newcomers to four common ways phages are currently classified: infection cycle, morphology, taxonomy, and supergroup. By using these classifications, researchers can determine where any novel phage fits into the scheme of the known "phage-verse".
Collapse
Affiliation(s)
- Guadalupe Valencia-Toxqui
- Department of Biology, Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Jolene Ramsey
- Department of Biology, Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Asgharzadeh Kangachar S, Logel DY, Trofimova E, Zhu HX, Zaugg J, Schembri MA, Weynberg KD, Jaschke PR. Discovery and characterisation of new phage targeting uropathogenic Escherichia coli. Virology 2024; 597:110148. [PMID: 38941748 DOI: 10.1016/j.virol.2024.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Antimicrobial resistance is an escalating threat with few new therapeutic options in the pipeline. Urinary tract infections (UTIs) are one of the most prevalent bacterial infections globally and are prone to becoming recurrent and antibiotic resistant. We discovered and characterized six novel Autographiviridae and Guernseyvirinae bacterial viruses (phage) against uropathogenic Escherichia coli (UPEC), a leading cause of UTIs. The phage genomes were between 39,471 bp - 45,233 bp, with 45.0%-51.0% GC%, and 57-84 predicted coding sequences per genome. We show that tail fiber domain structure, predicted host capsule type, and host antiphage repertoire correlate with phage host range. In vitro characterisation of phage cocktails showed synergistic improvement against a mixed UPEC strain population and when sequentially dosed. Together, these phage are a new set extending available treatments for UTI from UPEC, and phage vM_EcoM_SHAK9454 represents a promising candidate for further improvement through engineering.
Collapse
Affiliation(s)
- Shahla Asgharzadeh Kangachar
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Dominic Y Logel
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Ellina Trofimova
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Hannah X Zhu
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Julian Zaugg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Mark A Schembri
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Karen D Weynberg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Paul R Jaschke
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
6
|
Jung JM, Rahman A, Schiffer AM, Weisberg AJ. Beav: a bacterial genome and mobile element annotation pipeline. mSphere 2024; 9:e0020924. [PMID: 39037262 PMCID: PMC11351099 DOI: 10.1128/msphere.00209-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/28/2024] [Indexed: 07/23/2024] Open
Abstract
Comprehensive and accurate genome annotation is crucial for inferring the predicted functions of an organism. Numerous tools exist to annotate genes, gene clusters, mobile genetic elements, and other diverse features. However, these tools and pipelines can be difficult to install and run, be specialized for a particular element or feature, or lack annotations for larger elements that provide important genomic context. Integrating results across analyses is also important for understanding gene function. To address these challenges, we present the Beav annotation pipeline. Beav is a command-line tool that automates the annotation of bacterial genome sequences, mobile genetic elements, molecular systems and gene clusters, key regulatory features, and other elements. Beav uses existing tools in addition to custom models, scripts, and databases to annotate diverse elements, systems, and sequence features. Custom databases for plant-associated microbes are incorporated to improve annotation of key virulence and symbiosis genes in agriculturally important pathogens and mutualists. Beav includes an optional Agrobacterium-specific pipeline that identifies and classifies oncogenic plasmids and annotates plasmid-specific features. Following the completion of all analyses, annotations are consolidated to produce a single comprehensive output. Finally, Beav generates publication-quality genome and plasmid maps. Beav is on Bioconda and is available for download at https://github.com/weisberglab/beav. IMPORTANCE Annotation of genome features, such as the presence of genes and their predicted function, or larger loci encoding secretion systems or biosynthetic gene clusters, is necessary for understanding the functions encoded by an organism. Genomes can also host diverse mobile genetic elements, such as integrative and conjugative elements and/or phages, that are often not annotated by existing pipelines. These elements can horizontally mobilize genes encoding for virulence, antimicrobial resistance, or other adaptive functions and alter the phenotype of an organism. We developed a software pipeline, called Beav, that combines new and existing tools for the comprehensive annotation of these and other major features. Existing pipelines often misannotate loci important for virulence or mutualism in plant-associated bacteria. Beav includes custom databases and optional workflows for the improved annotation of plant-associated bacteria. Beav is designed to be easy to install and run, making comprehensive genome annotation broadly available to the research community.
Collapse
Affiliation(s)
- Jewell M. Jung
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Arafat Rahman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Andrea M. Schiffer
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
7
|
Gauthier CH, Hatfull GF. A Bioinformatic Ecosystem for Bacteriophage Genomics: PhaMMSeqs, Phamerator, pdm_utils, PhagesDB, DEPhT, and PhamClust. Viruses 2024; 16:1278. [PMID: 39205252 PMCID: PMC11359507 DOI: 10.3390/v16081278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
The last thirty years have seen a meteoric rise in the number of sequenced bacteriophage genomes, spurred on by both the rise and success of groups working to isolate and characterize phages, and the rapid and significant technological improvements and reduced costs associated with sequencing their genomes. Over the course of these decades, the tools used to glean evolutionary insights from these sequences have grown more complex and sophisticated, and we describe here the suite of computational and bioinformatic tools used extensively by the integrated research-education communities such as SEA-PHAGES and PHIRE, which are jointly responsible for 25% of all complete phage genomes in the RefSeq database. These tools are used to integrate and analyze phage genome data from different sources, for identification and precise extraction of prophages from bacterial genomes, computing "phamilies" of related genes, and displaying the complex nucleotide and amino acid level mosaicism of these genomes. While over 50,000 SEA-PHAGES students have primarily benefitted from these tools, they are freely available for the phage community at large.
Collapse
Affiliation(s)
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| |
Collapse
|
8
|
Arce M, Venegas G, Paez K, Latz S, Navarrete P, Caruffo M, Feijoo C, García K, Bastías R. Valp1, a Newly Identified Temperate Phage Facilitating Coexistence of Lysogenic and Non-Lysogenic Populations of Vibrio anguillarum. Pathogens 2024; 13:285. [PMID: 38668240 PMCID: PMC11054321 DOI: 10.3390/pathogens13040285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/29/2024] Open
Abstract
Vibrio anguillarum is a pathogen for several fish and shellfish species. Its ecology is influenced by diverse factors, including bacteriophages. Here, we identify and characterize a new temperate bacteriophage (Valp1) of V. anguillarum. Valp1 is a myovirus with a 60 nm head and a 90 nm contractile tail. Its double-stranded DNA genome of 42,988 bp contains 68 genes, including a protelomerase gene, typical of telomeric phages. Valp1 inhibits the growth of the virulent strain of V. anguillarum PF4, while the derived lysogenic strain P1.1 presents a slight reduction in its growth but is not affected by the presence of Valp1. Both strains present similar virulence in a larval zebrafish (Danio rerio) model, and only slight differences have been observed in their biochemical profile. Co-culture assays reveal that PF4 and P1.1 can coexist for 10 h in the presence of naturally induced Valp1, with the proportion of PF4 ranging between 28% and 1.6%. By the end of the assay, the phage reached a concentration of ~108 PFU/mL, and all the non-lysogenic PF4 strains were resistant to Valp1. This equilibrium was maintained even after five successive subcultures, suggesting the existence of a coexistence mechanism between the lysogenic and non-lysogenic populations of V. anguillarum in conjunction with the phage Valp1.
Collapse
Affiliation(s)
- Manuel Arce
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (M.A.)
| | - Guillermo Venegas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (M.A.)
| | - Karla Paez
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (M.A.)
| | - Simone Latz
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (M.A.)
| | - Paola Navarrete
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 7830490, Chile
| | - Mario Caruffo
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 7830490, Chile
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820000, Chile
| | - Carmen Feijoo
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Roberto Bastías
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (M.A.)
| |
Collapse
|
9
|
Buck CB, Welch N, Belford AK, Varsani A, Pastrana DV, Tisza MJ, Starrett GJ. Widespread Horizontal Gene Transfer Among Animal Viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586562. [PMID: 38712252 PMCID: PMC11071296 DOI: 10.1101/2024.03.25.586562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The initial objective of this study was to shed light on the evolution of small DNA tumor viruses by analyzing de novo assemblies of publicly available deep sequencing datasets. The survey generated a searchable database of contig snapshots representing more than 100,000 Sequence Read Archive records. Using modern structure-aware search tools, we iteratively broadened the search to include an increasingly wide range of other virus families. The analysis revealed a surprisingly diverse range of chimeras involving different virus groups. In some instances, genes resembling known DNA-replication modules or known virion protein operons were paired with unrecognizable sequences that structural predictions suggest may represent previously unknown replicases and novel virion architectures. Discrete clades of an emerging group called adintoviruses were discovered in datasets representing humans and other primates. As a proof of concept, we show that the contig database is also useful for discovering RNA viruses and candidate archaeal phages. The ancillary searches revealed additional examples of chimerization between different virus groups. The observations support a gene-centric taxonomic framework that should be useful for future virus-hunting efforts.
Collapse
Affiliation(s)
| | - Nicole Welch
- National Cancer Institute, Bethesda, MD, USA
- current affiliation: L.E.K. Consulting, Boston, MA, USA
| | - Anna K. Belford
- National Cancer Institute, Bethesda, MD, USA
- current affiliation: University of Pittsburgh, Pittsburgh, PA, USA
| | - Arvind Varsani
- Arizona State University, Tempe, AZ, USA
- University of Cape Town, South Africa
| | | | - Michael J. Tisza
- National Cancer Institute, Bethesda, MD, USA
- current affiliation: Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
10
|
Martinez-Soto CE, McClelland M, Kropinski AM, Lin JT, Khursigara CM, Anany H. Multireceptor phage cocktail against Salmonella enterica to circumvent phage resistance. MICROLIFE 2024; 5:uqae003. [PMID: 38545601 PMCID: PMC10972627 DOI: 10.1093/femsml/uqae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Non-Typhoidal Salmonella (NTS) is one of the most common food-borne pathogens worldwide, with poultry products being the major vehicle for pathogenesis in humans. The use of bacteriophage (phage) cocktails has recently emerged as a novel approach to enhancing food safety. Here, a multireceptor Salmonella phage cocktail of five phages was developed and characterized. The cocktail targets four receptors: O-antigen, BtuB, OmpC, and rough Salmonella strains. Structural analysis indicated that all five phages belong to unique families or subfamilies. Genome analysis of four of the phages showed they were devoid of known virulence or antimicrobial resistance factors, indicating enhanced safety. The phage cocktail broad antimicrobial spectrum against Salmonella, significantly inhibiting the growth of all 66 strains from 20 serovars tested in vitro. The average bacteriophage insensitive mutant (BIM) frequency against the cocktail was 6.22 × 10-6 in S. Enteritidis, significantly lower than that of each of the individual phages. The phage cocktail reduced the load of Salmonella in inoculated chicken skin by 3.5 log10 CFU/cm2 after 48 h at 25°C and 15°C, and 2.5 log10 CFU/cm2 at 4°C. A genome-wide transduction assay was used to investigate the transduction efficiency of the selected phage in the cocktail. Only one of the four phages tested could transduce the kanamycin resistance cassette at a low frequency comparable to that of phage P22. Overall, the results support the potential of cocktails of phage that each target different host receptors to achieve complementary infection and reduce the emergence of phage resistance during biocontrol applications.
Collapse
Affiliation(s)
- Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, 811 Health Sciences Road, CA 92614, United States
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, 419 Gordon St, Guelph, ON N1G 2W1, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| |
Collapse
|
11
|
Cucić S, Ells T, Guri A, Kropinski AM, Khursigara CM, Anany H. Degradation of Listeria monocytogenes biofilm by phages belonging to the genus Pecentumvirus. Appl Environ Microbiol 2024; 90:e0106223. [PMID: 38315006 PMCID: PMC10952537 DOI: 10.1128/aem.01062-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/29/2023] [Indexed: 02/07/2024] Open
Abstract
Listeria monocytogenes is a pathogenic foodborne bacterium that is a significant cause of mortality associated with foodborne illness and causes many food recalls attributed to a bacteriological cause. Their ability to form biofilms contributes to the persistence of Listeria spp. in food processing environments. When growing as biofilms, L. monocytogenes are more resistant to sanitizers used in the food industry, such as benzalkonium chloride (BAC), as well as to physical stresses like desiccation and starvation. Lytic phages of Listeria are antagonistic to a broad range of Listeria spp. and may, therefore, have utility in reducing the occurrence of Listeria-associated food recalls by preventing food contamination. We screened nine closely related Listeria phages, including the commercially available Listex P100, for host range and ability to degrade microtiter plate biofilms of L. monocytogenes ATCC 19111 (serovar 1/2a). One phage, CKA15, was selected and shown to rapidly adsorb to its host under conditions relevant to applying the phage in dairy processing environments. Under simulated dairy processing conditions (SDPC), CKA15 caused a 2-log reduction in Lm19111 biofilm bacteria. This work supports the biosanitation potential of phage CKA15 and provides a basis for further investigation of phage-bacteria interactions in biofilms grown under SDPC. IMPORTANCE Listeria monocytogenes is a pathogenic bacterium that is especially dangerous for children, the elderly, pregnant women, and immune-compromised people. Because of this, the food industry takes its presence in their plants seriously. Food recalls due to L. monocytogenes are common with a high associated economic cost. In food-processing plants, Listeria spp. typically reside in biofilms, which are structures produced by bacteria that shield them from environmental stressors and are often attached to surfaces. The significance of our work is that we show a bacteriophage-a virus-infecting bacteria-can reduce Listeria counts by two orders of magnitude when the bacterial biofilms were grown under simulated dairy processing conditions. This work provides insights into how phages may be tested and used to develop biosanitizers that are effective but are not harmful to the environment or human health.
Collapse
Affiliation(s)
- Stevan Cucić
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Tim Ells
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, Nova Scotia, Canada
| | - Anilda Guri
- Gay Lea Foods Co-operative, Research and Development Centre, Hamilton, Ontario, Canada
| | - Andrew M. Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Cezar M. Khursigara
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
12
|
Würstle S, Lee A, Kortright KE, Winzig F, An W, Stanley GL, Rajagopalan G, Harris Z, Sun Y, Hu B, Blazanin M, Hajfathalian M, Bollyky PL, Turner PE, Koff JL, Chan BK. Optimized preparation pipeline for emergency phage therapy against Pseudomonas aeruginosa at Yale University. Sci Rep 2024; 14:2657. [PMID: 38302552 PMCID: PMC10834462 DOI: 10.1038/s41598-024-52192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Bacteriophage therapy is one potential strategy to treat antimicrobial resistant or persistent bacterial infections, and the year 2021 marked the centennial of Felix d'Hérelle's first publication on the clinical applications of phages. At the Center for Phage Biology & Therapy at Yale University, a preparatory modular approach has been established to offer safe and potent phages for single-patient investigational new drug applications while recognizing the time constraints imposed by infection(s). This study provides a practical walkthrough of the pipeline with an Autographiviridae phage targeting Pseudomonas aeruginosa (phage vB_PaeA_SB, abbreviated to ΦSB). Notably, a thorough phage characterization and the evolutionary selection pressure exerted on bacteria by phages, analogous to antibiotics, are incorporated into the pipeline.
Collapse
Affiliation(s)
- Silvia Würstle
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
- Technical University of Munich, 81675, Munich, Germany
| | - Alina Lee
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Kaitlyn E Kortright
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Franziska Winzig
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Technical University of Munich, 81675, Munich, Germany
| | - William An
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Gail L Stanley
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Govindarajan Rajagopalan
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Zach Harris
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Ying Sun
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Buqu Hu
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Michael Blazanin
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Maryam Hajfathalian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Paul E Turner
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
- Program in Microbiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Jonathan L Koff
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA.
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA.
| | - Benjamin K Chan
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
13
|
Manohar P, Young R. Complete genomic analysis of Escherichia phage Mangalyan infecting Escherichia fergusonii. Microbiol Resour Announc 2024; 13:e0096323. [PMID: 38088570 PMCID: PMC10793314 DOI: 10.1128/mra.00963-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/09/2023] [Indexed: 01/18/2024] Open
Abstract
Escherichia fergusonii is a rarely isolated opportunistic pathogen in animals and humans. Here, we present the annotated genome sequence of Escherichia phage Mangalyan, a T4-like bacteriophage infecting E. fergusonii isolated from chickens. Phage Mangalyan has a genome length of 140,513 bp and belongs to the Vequintavirinae family.
Collapse
Affiliation(s)
- Prasanth Manohar
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Ry Young
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M AgriLife Research, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
14
|
Yao G, Le T, Korn AM, Peterson HN, Liu M, Gonzalez CF, Gill JJ. Phage Milagro: a platform for engineering a broad host range virulent phage for Burkholderia. J Virol 2023; 97:e0085023. [PMID: 37943040 PMCID: PMC10688314 DOI: 10.1128/jvi.00850-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE Burkholderia infections are a significant concern in people with CF and other immunocompromising disorders, and are difficult to treat with conventional antibiotics due to their inherent drug resistance. Bacteriophages, or bacterial viruses, are now seen as a potential alternative therapy for these infections, but most of the naturally occurring phages are temperate and have narrow host ranges, which limit their utility as therapeutics. Here we describe the temperate Burkholderia phage Milagro and our efforts to engineer this phage into a potential therapeutic by expanding the phage host range and selecting for phage mutants that are strictly virulent. This approach may be used to generate new therapeutic agents for treating intractable infections in CF patients.
Collapse
Affiliation(s)
- Guichun Yao
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Tram Le
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Abby M. Korn
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Hannah N. Peterson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Mei Liu
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Carlos F. Gonzalez
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Jason J. Gill
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
15
|
Lisboa J, Pereira C, Pinto RD, Rodrigues IS, Pereira LMG, Pinheiro B, Oliveira P, Pereira PJB, Azevedo JE, Durand D, Benz R, do Vale A, Dos Santos NMS. Unconventional structure and mechanisms for membrane interaction and translocation of the NF-κB-targeting toxin AIP56. Nat Commun 2023; 14:7431. [PMID: 37973928 PMCID: PMC10654918 DOI: 10.1038/s41467-023-43054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Bacterial AB toxins are secreted key virulence factors that are internalized by target cells through receptor-mediated endocytosis, translocating their enzymatic domain to the cytosol from endosomes (short-trip) or the endoplasmic reticulum (long-trip). To accomplish this, bacterial AB toxins evolved a multidomain structure organized into either a single polypeptide chain or non-covalently associated polypeptide chains. The prototypical short-trip single-chain toxin is characterized by a receptor-binding domain that confers cellular specificity and a translocation domain responsible for pore formation whereby the catalytic domain translocates to the cytosol in an endosomal acidification-dependent way. In this work, the determination of the three-dimensional structure of AIP56 shows that, instead of a two-domain organization suggested by previous studies, AIP56 has three-domains: a non-LEE encoded effector C (NleC)-like catalytic domain associated with a small middle domain that contains the linker-peptide, followed by the receptor-binding domain. In contrast to prototypical single-chain AB toxins, AIP56 does not comprise a typical structurally complex translocation domain; instead, the elements involved in translocation are scattered across its domains. Thus, the catalytic domain contains a helical hairpin that serves as a molecular switch for triggering the conformational changes necessary for membrane insertion only upon endosomal acidification, whereas the middle and receptor-binding domains are required for pore formation.
Collapse
Affiliation(s)
- Johnny Lisboa
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| | - Cassilda Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Rute D Pinto
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
| | - Inês S Rodrigues
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Liliana M G Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
| | - Bruno Pinheiro
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology (MCbiology), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto, Porto, Portugal
| | - Pedro Oliveira
- EPIUnit, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Pedro José Barbosa Pereira
- Biomolecular Structure Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Macromolecular Structure Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Jorge E Azevedo
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Organelle Biogenesis and Function, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Organelle Biogenesis and Function, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Dominique Durand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Roland Benz
- Science Faculty, Constructor University, Bremen, Germany
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Nuno M S Dos Santos
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
16
|
Meier S, Ridgway ZM, Picciano AL, Caputo GA. Impacts of Hydrophobic Mismatch on Antimicrobial Peptide Efficacy and Bilayer Permeabilization. Antibiotics (Basel) 2023; 12:1624. [PMID: 37998826 PMCID: PMC10669323 DOI: 10.3390/antibiotics12111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial resistance continues to be a major threat to world health, with the continued emergence of resistant bacterial strains. Antimicrobial peptides have emerged as an attractive option for the development of novel antimicrobial compounds in part due to their ubiquity in nature and the general lack of resistance development to this class of molecules. In this work, we analyzed the antimicrobial peptide C18G and several truncated forms for efficacy and the underlying mechanistic effects of the sequence truncation. The peptides were screened for antimicrobial efficacy against several standard laboratory strains, and further analyzed using fluorescence spectroscopy to evaluate binding to model lipid membranes and bilayer disruption. The results show a clear correlation between the length of the peptide and the antimicrobial efficacy. Furthermore, there is a correlation between peptide length and the hydrophobic thickness of the bilayer, indicating that hydrophobic mismatch is likely a contributing factor to the loss of efficacy in shorter peptides.
Collapse
Affiliation(s)
- Steven Meier
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA (A.L.P.)
| | - Zachary M. Ridgway
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA (A.L.P.)
| | - Angela L. Picciano
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA (A.L.P.)
| | - Gregory A. Caputo
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA (A.L.P.)
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
17
|
Kelly A, Went SC, Mariano G, Shaw LP, Picton DM, Duffner SJ, Coates I, Herdman-Grant R, Gordeeva J, Drobiazko A, Isaev A, Lee YJ, Luyten Y, Morgan RD, Weigele P, Severinov K, Wenner N, Hinton JCD, Blower TR. Diverse Durham collection phages demonstrate complex BREX defense responses. Appl Environ Microbiol 2023; 89:e0062323. [PMID: 37668405 PMCID: PMC10537673 DOI: 10.1128/aem.00623-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023] Open
Abstract
Bacteriophages (phages) outnumber bacteria ten-to-one and cause infections at a rate of 1025 per second. The ability of phages to reduce bacterial populations makes them attractive alternative antibacterials for use in combating the rise in antimicrobial resistance. This effort may be hindered due to bacterial defenses such as Bacteriophage Exclusion (BREX) that have arisen from the constant evolutionary battle between bacteria and phages. For phages to be widely accepted as therapeutics in Western medicine, more must be understood about bacteria-phage interactions and the outcomes of bacterial phage defense. Here, we present the annotated genomes of 12 novel bacteriophage species isolated from water sources in Durham, UK, during undergraduate practical classes. The collection includes diverse species from across known phylogenetic groups. Comparative analyses of two novel phages from the collection suggest they may be founding members of a new genus. Using this Durham phage collection, we determined that particular BREX defense systems were likely to confer a varied degree of resistance against an invading phage. We concluded that the number of BREX target motifs encoded in the phage genome was not proportional to the degree of susceptibility. IMPORTANCE Bacteriophages have long been the source of tools for biotechnology that are in everyday use in molecular biology research laboratories worldwide. Phages make attractive new targets for the development of novel antimicrobials. While the number of phage genome depositions has increased in recent years, the expected bacteriophage diversity remains underrepresented. Here we demonstrate how undergraduates can contribute to the identification of novel phages and that a single City in England can provide ample phage diversity and the opportunity to find novel technologies. Moreover, we demonstrate that the interactions and intricacies of the interplay between bacterial phage defense systems such as Bacteriophage Exclusion (BREX) and phages are more complex than originally thought. Further work will be required in the field before the dynamic interactions between phages and bacterial defense systems are fully understood and integrated with novel phage therapies.
Collapse
Affiliation(s)
- Abigail Kelly
- Department of Biosciences, Durham University, Durham, UK
| | - Sam C. Went
- Department of Biosciences, Durham University, Durham, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Liam P. Shaw
- Department of Biosciences, Durham University, Durham, UK
- Department of Biology, University of Oxford, Oxford, UK
| | | | | | - Isabel Coates
- Department of Biosciences, Durham University, Durham, UK
| | | | - Julia Gordeeva
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alena Drobiazko
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Yan-Jiun Lee
- New England Biolabs, Ipswich, Massachusetts, USA
| | | | | | | | | | - Nicolas Wenner
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Tim R. Blower
- Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
18
|
Hosseini N, Paquet VE, Marcoux PÉ, Alain CA, Paquet MF, Moineau S, Charette SJ. MQM1, a bacteriophage infecting strains of Aeromonas salmonicida subspecies salmonicida carrying Prophage 3. Virus Res 2023; 334:199165. [PMID: 37385348 PMCID: PMC10410586 DOI: 10.1016/j.virusres.2023.199165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
Aeromonas salmonicida subsp. salmonicida is a Gam-negative bacterium responsible for furunculosis in fish. Because this aquatic bacterial pathogen has a rich reservoir of antibiotic-resistant genes, it is essential to investigate antibacterial alternatives, including the use of phages. Yet, we have previously demonstrated the inefficiency of a phage cocktail designed against A. salmonicida subsp. salmonicida strains due to a phage resistance phenotype associated to a prophage, namely Prophage 3. To bypass this resistance, one of the solutions is to isolate novel phages capable of infecting Prophage 3-bearing strains. Here we report on the isolation and characterization of the new virulent phage vB_AsaP_MQM1 (or MQM1), which is highly specific to A. salmonicida subsp. salmonicida strains. Phage MQM1 inhibited the growth of 01-B516, a strain carrying Prophage 3, including when combined to the previous phage cocktail. MQM1 infected 26 out of the 30 (87%) Prophage 3-bearing strains tested. Its linear dsDNA genome contains 63,343 bp, with a GC content of 50.2%. MQM1 genome can encode 88 proteins and 8 tRNAs, while no integrase or transposase-encoding genes were found. This podophage has an icosahedral capsid and a non-contractile short tail. We suggest that MQM1 may be a good addition to future phage cocktails against furunculosis to resolve the Prophage 3-resistance issue.
Collapse
Affiliation(s)
- Nava Hosseini
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC, G1V 0A6, Canada.; Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada..
| | - Valérie E Paquet
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC, G1V 0A6, Canada.; Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada.; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC, G1V 4G5, Canada
| | - Pierre-Étienne Marcoux
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC, G1V 0A6, Canada.; Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Charles-Antoine Alain
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC, G1V 0A6, Canada.; Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Maude F Paquet
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC, G1V 0A6, Canada.; Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Sylvain Moineau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC, G1V 0A6, Canada.; Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada.; Groupe de Recherche en Écologie Buccale (GREB), Faculté de médecine dentaire, Université Laval, Quebec City, QC, G1V 0A6, Canada.; Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC, G1V 0A6, Canada.; Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada.; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC, G1V 4G5, Canada..
| |
Collapse
|
19
|
de Sousa DM, Janssen L, Rosa RB, Belmok A, Yamada JK, Corrêa RFT, de Souza Andrade M, Inoue-Nagata AK, Ribeiro BM, de Carvalho Pontes N. Isolation, characterization, and evaluation of putative new bacteriophages for controlling bacterial spot on tomato in Brazil. Arch Virol 2023; 168:222. [PMID: 37548749 DOI: 10.1007/s00705-023-05846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023]
Abstract
Bacterial spot is a highly damaging tomato disease caused by members of several species of the genus Xanthomonas. Bacteriophages have been studied for their potential use in the biological control of bacterial diseases. In the current study, bacteriophages were obtained from soil and tomato leaves in commercial fields in Brazil with the aim of obtaining biological control agents against bacterial spot. Phage isolation was carried out by co-cultivation with isolates of Xanthomonas euvesicatoria pv. perforans, which was prevalent in the collection areas. In a host range evaluation, none of the phage isolates was able to induce a lytic cycle in all of the bacterial isolates tested. In in vivo tests, treatment of susceptible bacterial isolates with the corresponding phage prior to application to tomato plants led to a reduction in the severity of the resulting disease. The level of disease control provided by phage application was equal to or greater than that achieved using copper hydroxide. Electron microscopy analysis showed that all of the phages had similar morphology, with head and tail structures similar to those of viruses belonging to the class Caudoviricetes. The presence of short, non-contractile tubular tails strongly suggested that these phages belong to the family Autographiviridae. This was confirmed by phylogenetic analysis, which further revealed that they all belong to the genus Pradovirus. The phages described here are closely related to each other and potentially belong to a new species within the genus. These phages will be evaluated in future studies against other tomato xanthomonad strains to assess their potential as biological control agents.
Collapse
Affiliation(s)
- Dayane Maria de Sousa
- Programa de Pós-Graduação em Olericultura, Instituto Federal Goiano (IF Goiano), Morrinhos, GO, Brazil
| | - Luis Janssen
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Raphael Barboza Rosa
- Programa de Pós-Graduação em Olericultura, Instituto Federal Goiano (IF Goiano), Morrinhos, GO, Brazil
| | - Aline Belmok
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Jaqueline Kiyomi Yamada
- Programa de Pós-Graduação em Olericultura, Instituto Federal Goiano (IF Goiano), Morrinhos, GO, Brazil
| | - Roberto Franco Teixeira Corrêa
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Miguel de Souza Andrade
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | | | - Bergmann Morais Ribeiro
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Nadson de Carvalho Pontes
- Programa de Pós-Graduação em Olericultura, Instituto Federal Goiano (IF Goiano), Morrinhos, GO, Brazil.
| |
Collapse
|
20
|
Matrishin CB, Haase EM, Dewhirst FE, Mark Welch JL, Miranda-Sanchez F, Chen T, MacFarland DC, Kauffman KM. Phages are unrecognized players in the ecology of the oral pathogen Porphyromonas gingivalis. MICROBIOME 2023; 11:161. [PMID: 37491415 PMCID: PMC10367356 DOI: 10.1186/s40168-023-01607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Porphyromonas gingivalis (hereafter "Pg") is an oral pathogen that has been hypothesized to act as a keystone driver of inflammation and periodontal disease. Although Pg is most readily recovered from individuals with actively progressing periodontal disease, healthy individuals and those with stable non-progressing disease are also colonized by Pg. Insights into the factors shaping the striking strain-level variation in Pg, and its variable associations with disease, are needed to achieve a more mechanistic understanding of periodontal disease and its progression. One of the key forces often shaping strain-level diversity in microbial communities is infection of bacteria by their viral (phage) predators and symbionts. Surprisingly, although Pg has been the subject of study for over 40 years, essentially nothing is known of its phages, and the prevailing paradigm is that phages are not important in the ecology of Pg. RESULTS Here we systematically addressed the question of whether Pg are infected by phages-and we found that they are. We found that prophages are common in Pg, they are genomically diverse, and they encode genes that have the potential to alter Pg physiology and interactions. We found that phages represent unrecognized targets of the prevalent CRISPR-Cas defense systems in Pg, and that Pg strains encode numerous additional mechanistically diverse candidate anti-phage defense systems. We also found that phages and candidate anti-phage defense system elements together are major contributors to strain-level diversity and the species pangenome of this oral pathogen. Finally, we demonstrate that prophages harbored by a model Pg strain are active in culture, producing extracellular viral particles in broth cultures. CONCLUSION This work definitively establishes that phages are a major unrecognized force shaping the ecology and intra-species strain-level diversity of the well-studied oral pathogen Pg. The foundational phage sequence datasets and model systems that we establish here add to the rich context of all that is already known about Pg, and point to numerous avenues of future inquiry that promise to shed new light on fundamental features of phage impacts on human health and disease broadly. Video Abstract.
Collapse
Affiliation(s)
- Cole B Matrishin
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, Buffalo, NY, USA
| | - Elaine M Haase
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, Buffalo, NY, USA
| | - Floyd E Dewhirst
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | | | | | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Donald C MacFarland
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine, The University at Buffalo, Buffalo, NY, USA
| | - Kathryn M Kauffman
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
21
|
Schwarz JC, Chan BK, Turner PE, Burmeister AR. Complete Genome Assembly and Annotation of Escherichia coli Bacteriophage 107. Microbiol Resour Announc 2023:e0010623. [PMID: 37191527 DOI: 10.1128/mra.00106-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
We present the annotated genome sequence of Escherichia coli bacteriophage 107, a T4-like bacteriophage. Phage 107 has a genome length of 167,509 bp and 287 predicted genes.
Collapse
Affiliation(s)
- Joshua C Schwarz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, Connecticut, USA
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, USA
- Program in Microbiology, Yale School of Medicine, New Haven, Connecticut, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, Connecticut, USA
| | - Alita R Burmeister
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, USA
| |
Collapse
|
22
|
Droubogiannis S, Pavlidi L, Skliros D, Flemetakis E, Katharios P. Comprehensive Characterization of a Novel Bacteriophage, vB_VhaS_MAG7 against a Fish Pathogenic Strain of Vibrio harveyi and Its In Vivo Efficacy in Phage Therapy Trials. Int J Mol Sci 2023; 24:ijms24098200. [PMID: 37175906 PMCID: PMC10179652 DOI: 10.3390/ijms24098200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Vibrio harveyi, a significant opportunistic marine pathogen, has been a challenge to the aquaculture industry, leading to severe economical and production losses. Phage therapy has been an auspicious approach in controlling such bacterial infections in the era of antimicrobial resistance. In this study, we isolated and fully characterized a novel strain-specific phage, vB_VhaS_MAG7, which infects V. harveyi MM46, and tested its efficacy as a therapeutic agent in challenged gilthead seabream larvae. vB_VhaS_MAG7 is a tailed bacteriophage with a double-stranded DNA of 49,315 bp. No genes linked with virulence or antibiotic resistance were harbored in the genome. The phage had a remarkably large burst size of 1393 PFU cell-1 and showed strong lytic ability in in vitro assays. When applied in phage therapy trials in challenged gilthead seabream larvae, vB_VhaS_MAG7 was capable of improving the survival of the larvae up to 20%. Due to its distinct features and safety, vB_VhaS_MAG7 is considered a suitable candidate for applied phage therapy.
Collapse
Affiliation(s)
- Stavros Droubogiannis
- Institute of Marine Biology, Biotechnology & Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Lydia Pavlidi
- Institute of Marine Biology, Biotechnology & Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 11855 Athens, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 11855 Athens, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology & Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| |
Collapse
|
23
|
Mahler M, Malone LM, van den Berg DF, Smith LM, Brouns SJJ, Fineran PC. An OmpW-dependent T4-like phage infects Serratia sp. ATCC 39006. Microb Genom 2023; 9:mgen000968. [PMID: 36995210 PMCID: PMC10132071 DOI: 10.1099/mgen.0.000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/27/2023] [Indexed: 03/31/2023] Open
Abstract
Serratia sp. ATCC 39006 is a Gram-negative bacterium that has been used to study the function of phage defences, such as CRISPR-Cas, and phage counter-defence mechanisms. To expand our phage collection to study the phage-host interaction with Serratia sp. ATCC 39006, we isolated the T4-like myovirus LC53 in Ōtepoti Dunedin, Aotearoa New Zealand. Morphological, phenotypic and genomic characterization revealed that LC53 is virulent and similar to other Serratia, Erwinia and Kosakonia phages belonging to the genus Winklervirus. Using a transposon mutant library, we identified the host ompW gene as essential for phage infection, suggesting that it encodes the phage receptor. The genome of LC53 encodes all the characteristic T4-like core proteins involved in phage DNA replication and generation of viral particles. Furthermore, our bioinformatic analysis suggests that the transcriptional organization of LC53 is similar to that of Escherichia coli phage T4. Importantly, LC53 encodes 18 tRNAs, which likely compensate for differences in GC content between phage and host genomes. Overall, this study describes a newly isolated phage infecting Serratia sp. ATCC 39006 that expands the diversity of phages available to study phage-host interactions.
Collapse
Affiliation(s)
- Marina Mahler
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
| | - Lucia M. Malone
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft, Netherlands
| | - Daan F. van den Berg
- Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft, Netherlands
| | - Leah M. Smith
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Stan J. J. Brouns
- Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft, Netherlands
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Wu J, Liu Q, Li M, Xu J, Wang C, Zhang J, Xiao M, Bin Y, Xia J. PhaGAA: an integrated web server platform for phage genome annotation and analysis. Bioinformatics 2023; 39:7070502. [PMID: 36882183 PMCID: PMC10013646 DOI: 10.1093/bioinformatics/btad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
MOTIVATION Phage genome annotation plays a key role in the design of phage therapy. To date, there have been various genome annotation tools for phages, but most of these tools focus on mono-functional annotation and have complex operational processes. Accordingly, comprehensive and user-friendly platforms for phage genome annotation are needed. RESULTS Here, we propose PhaGAA, an online integrated platform for phage genome annotation and analysis. By incorporating several annotation tools, PhaGAA is constructed to annotate the prophage genome at DNA and protein levels and provide the analytical results. Furthermore, PhaGAA could mine and annotate phage genomes from bacterial genome or metagenome. In summary, PhaGAA will be a useful resource for experimental biologists and help advance the phage synthetic biology in basic and application research. AVAILABILITY AND IMPLEMENTATION PhaGAA is freely available at http://phage.xialab.info/.
Collapse
Affiliation(s)
- Jiawei Wu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Qingrui Liu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Min Li
- BGI-Shenzhen, Shenzhen 518083, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Jiliang Xu
- School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| | - Chen Wang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Junyin Zhang
- School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| | - Minfeng Xiao
- BGI-Shenzhen, Shenzhen 518083, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Yannan Bin
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Junfeng Xia
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
25
|
Bouras G, Nepal R, Houtak G, Psaltis AJ, Wormald PJ, Vreugde S. Pharokka: a fast scalable bacteriophage annotation tool. Bioinformatics 2023; 39:6858464. [PMID: 36453861 PMCID: PMC9805569 DOI: 10.1093/bioinformatics/btac776] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/20/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
SUMMARY In recent years, there has been an increasing interest in bacteriophages, which has led to growing numbers of bacteriophage genomic sequences becoming available. Consequently, there is a need for a rapid and consistent genomic annotation tool dedicated for bacteriophages. Existing tools either are not designed specifically for bacteriophages or are web- and email-based and require significant manual curation, which makes their integration into bioinformatic pipelines challenging. Pharokka was created to provide a tool that annotates bacteriophage genomes easily, rapidly and consistently with standards compliant outputs. Moreover, Pharokka requires only two lines of code to install and use and takes under 5 min to run for an average 50-kb bacteriophage genome. AVAILABILITY AND IMPLEMENTATION Pharokka is implemented in Python and is available as a bioconda package using 'conda install -c bioconda pharokka'. The source code is available on GitHub (https://github.com/gbouras13/pharokka). Pharokka has been tested on Linux-64 and MacOSX machines and on Windows using a Linux Virtual Machine.
Collapse
Affiliation(s)
| | - Roshan Nepal
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5070, Australia
- Department of Surgery—Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA 5070, Australia
| | - Ghais Houtak
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5070, Australia
- Department of Surgery—Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA 5070, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5070, Australia
- Department of Surgery—Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA 5070, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5070, Australia
- Department of Surgery—Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA 5070, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5070, Australia
- Department of Surgery—Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA 5070, Australia
| |
Collapse
|
26
|
Naligama KN, Halmillawewa AP. Pectobacterium carotovorum Phage vB_PcaM_P7_Pc Is a New Member of the Genus Certrevirus. Microbiol Spectr 2022; 10:e0312622. [PMID: 36346243 PMCID: PMC9769974 DOI: 10.1128/spectrum.03126-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Pectobacterium carotovorum is an economically important phytopathogen and has been identified as the major causative agent of bacterial soft rot in carrots. Control of this phytopathogen is vital to minimizing carrot harvest losses. As fully efficient control measures to successfully avoid the disease are unavailable, the phage-mediated biocontrol of the pathogen has recently gained scientific attention. In this study, we present a comprehensive characterization of the P. carotovorum phage vB_PcaM_P7_Pc (abbreviated as P7_Pc) that was isolated from infected carrot samples with characteristic soft rot symptoms, which were obtained from storage facilities at market places in Gampaha District, Sri Lanka. P7_Pc is a myovirus, and it exhibits growth characteristics of an exclusively lytic life cycle. It showed visible lysis against four of the tested P. carotovorum strains and one Pectobacterium aroidearum strain. This phage also showed a longer latent period (125 min) than other related phages; however, this did not affect its high phage titter (>1010 PFU/mL). The final assembled genome of P7_Pc is 147,299 bp in length with a G+C content of 50.34%. Of the 298 predicted open reading frames (ORFs) of the genome of P7_Pc, putative functions were assigned to 53 ORFs. Seven tRNA-coding genes were predicted in the genome, while the genome lacked any major genes coding for lysogeny-related products, confirming its virulent nature. The P7_Pc genome shares 96.12% and 95.74% average nucleotide identities with Cronobacter phages CR8 and PBES02, respectively. Phylogenetic and phylogenomic analyses of the genome revealed that P7_Pc clusters well within the clade with the members representing the genus Certrevirus. Currently, there are only 4 characterized Pectobacterium phages (P. atrosepticum phages phiTE and CB7 and Pectobacterium phages DU_PP_I and DU_PP_IV) that are classified under the genus, making the phage P7_Pc the first reported member of the genus isolated using the host bacterium P. carotovorum. The results of this study provide a detailed characterization of the phage P7_Pc, enabling its careful classification into the genus Certrevirus. The knowledge gathered on the phage based on the shared biology of the genus will further aid in the future selection of phage P7_Pc as a biocontrol agent. IMPORTANCE Bacterial soft rot disease, caused by Pectobacterium spp., can lead to significant losses in carrot yields. As current control measures involving the use of chemicals or antibiotics are not recommended in many countries, bacteriophage-mediated biocontrol strategies are being explored for the successful control of these phytopathogens. The successful implementation of such biocontrol strategies relies heavily upon the proper understanding of the growth characteristics and genomic properties of the phage. Further, the selection of taxonomically different phages for the formulation of phage cocktails in biocontrol applications is critical to combat potential bacterial resistance development. This study was conducted to carefully characterize and resolve the phylogenetic placement of the P. carotovorum phage vB_PcaM_P7_Pc by using its biological and genomic properties. Phage P7_Pc has a myovirus morphotype with an exclusively lytic life cycle, and the absence of genes related to lysogeny, toxin production, and antibiotic resistance in its genome confirmed its suitability to be used in environmental applications. Furthermore, P7_Pc is classified under the genus Certrevirus, making it the first reported phage of the genus of the host species, P. carotovorum.
Collapse
Affiliation(s)
- Kishani N. Naligama
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| | | |
Collapse
|
27
|
Isolation, Characterization, and Genome Analysis of a Novel Bacteriophage, Escherichia Phage vB_EcoM-4HA13, Representing a New Phage Genus in the Novel Phage Family Chaseviridae. Viruses 2022; 14:v14112356. [PMID: 36366454 PMCID: PMC9699118 DOI: 10.3390/v14112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 02/01/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is one of the leading causes of foodborne illnesses in North America and can lead to severe symptoms, with increased fatality risk for young children. While E. coli O157:H7 remains the dominant STEC serotype associated with foodborne outbreaks, there has been an increasing number of non-O157 STEC outbreaks in recent years. For the food industry, lytic bacteriophages offer an organic, self-limiting alternative to pathogen reduction-one that could replace or reduce the use of chemical and physical food processing methods. From EHEC-enriched sewage, we isolated a novel bacteriophage, vB_EcoM-4HA13 (4HA13). Phenotypic characterizations revealed 4HA13 to possess a myoviral morphotype, with a high specificity to non-motile O111 serotype, and a long latent period (90 min). Through genomic analyses, this 52,401-bp dsDNA phage was found to contain 81 CDS, but no detectable presence of antibiotic resistance, integrase, or virulence genes. A BLASTn search for each of the identified 81 CDS yielded homologues with low levels of similarity. Comparison of RNA polymerase and terminase large subunit amino acid sequences led to the proposal and acceptance of a new bacteriophage family, Chaseviridae, with 4HA13 representing a new species and genus. The discovery of this phage has broadened our current knowledge of bacteriophage diversity.
Collapse
|
28
|
Abstract
We describe the complete genome sequence of bacteriophage Motto, which infects clinical strains of Pseudomonas aeruginosa. Motto is a T1-like siphovirus related to members of the family Drexlerviridae and has a capsid width of ~57 nm and a tail length of ~255 nm. The 49.9-kb genome contains 84 protein-coding genes.
Collapse
|
29
|
Complete Genome Sequences of Five Phietaviruses Infecting Staphylococcus aureus. Microbiol Resour Announc 2022; 11:e0085522. [PMID: 36173192 PMCID: PMC9583785 DOI: 10.1128/mra.00855-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The annotated whole-genome sequences of five cultured phietaviruses infecting Staphylococcus aureus are presented. They are closely related to prophages that were previously sequenced as part of S. aureus genomes.
Collapse
|
30
|
Abstract
Here, we describe the isolation and genomic annotation of two novel siphovirus species of bacteriophages that infect
Bacteroides uniformis
: Bacteroides phage EMB1 and Bacteroides phage EMB2. EMB1 has a 34,204-bp genome with 48 coding sequences, and EMB2 has a 34,008-bp genome with 47 coding sequences.
Collapse
|
31
|
Farquharson EL, Nugen SR. Enterobacteria Phage Ac3's Genome Annotation and Host Range Analysis Against the ECOR Reference Library. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:165-170. [PMID: 36199530 PMCID: PMC9527048 DOI: 10.1089/phage.2022.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Host range analyses and genome sequencing/annotation of bacteriophage isolates allow more effective development of tools for applications in medicine, agriculture, and the environment and expand our understanding of phage biology. Here we present the complete sequence of phage Ac3's assembled and annotated genome (accession OK040907). Originally referred to simply as "3," Ac3 has previously been described as a T4-like bacteriophage belonging to the Myoviridae family in the Caudovirales order of tailed bacteriophages. Using a combination of spot tests and full plate plaque assays, Ac3's permissive and adsorptive host range were evaluated against the ECOR Reference Library; a panel of 72 Escherichia coli isolates meant to represent the diversity of E. coli. Spot assays revealed that Ac3 could adsorb to 43 of the 72 strains (59.7%), whereas plaque assays demonstrated Ac3's ability to complete replication within 27 of the 72 strains (37.5%). By overlaying spot test and plaque assay results, 16 of the 45 nonpermissive ECOR strains (35.5%) were highlighted as being able to support Ac3's adsorption and tail contraction, but not its replication. Further characterization of Ac3 is still needed, however, the study presented here provides a solid starting point for future research.
Collapse
Affiliation(s)
| | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
32
|
Droubogiannis S, Pavlidi L, Tsertou MI, Kokkari C, Skliros D, Flemetakis E, Katharios P. Vibrio Phage Artemius, a Novel Phage Infecting Vibrio alginolyticus. Pathogens 2022; 11:pathogens11080848. [PMID: 36014969 PMCID: PMC9416449 DOI: 10.3390/pathogens11080848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Vibrio alginolyticus is an important pathogen of marine animals and has been the target of phage therapy applications in marine aquaculture for many years. Here, we report the isolation and partial characterization of a novel species of the Siphoviridae family, the Vibrio phage Artemius. The novel phage was species-specific and could only infect strains of V. alginolyticus. It could efficiently reduce the growth of the host bacterium at various multiplicities of infection as assessed by an in vitro lysis assay. It had a genome length of 43,349 base pairs. The complete genome has double-stranded DNA with a G + C content of 43.61%. In total, 57 ORFs were identified, of which 19 were assigned a predicted function. A genomic analysis indicated that Vibrio phage Artemius is lytic and does not harbor genes encoding toxins and antibiotic resistance determinants.
Collapse
Affiliation(s)
- Stavros Droubogiannis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
- Department of Biology, School of Sciences and Engineering, University of Crete, 71500 Heraklion, Greece
| | - Lydia Pavlidi
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
| | - Maria Ioanna Tsertou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
| | - Constantina Kokkari
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
| | - Dimitrios Skliros
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (D.S.); (E.F.)
| | - Emmanouil Flemetakis
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (D.S.); (E.F.)
| | - Pantelis Katharios
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
- Correspondence:
| |
Collapse
|
33
|
Comparative genomics of Acinetobacter baumannii and therapeutic bacteriophages from a patient undergoing phage therapy. Nat Commun 2022; 13:3776. [PMID: 35773283 PMCID: PMC9247103 DOI: 10.1038/s41467-022-31455-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
In 2016, a 68-year-old patient with a disseminated multidrug-resistant Acinetobacter baumannii infection was successfully treated using lytic bacteriophages. Here we report the genomes of the nine phages used for treatment and three strains of A. baumannii isolated prior to and during treatment. The phages used in the initial treatment are related, T4-like myophages. Analysis of 19 A. baumannii isolates collected before and during phage treatment shows that resistance to the T4-like phages appeared two days following the start of treatment. We generate complete genomic sequences for three A. baumannii strains (TP1, TP2 and TP3) collected before and during treatment, supporting a clonal relationship. Furthermore, we use strain TP1 to select for increased resistance to five of the phages in vitro, and identify mutations that are also found in phage-insensitive isolates TP2 and TP3 (which evolved in vivo during phage treatment). These results support that in vitro investigations can produce results that are relevant to the in vivo environment.
Collapse
|
34
|
Abstract
Bacteriophage Mu is a paradigm coliphage studied mainly because of its use of transposition for genome replication. However, in extensive nonsense mutant screens, only one lysis gene has been identified, the endolysin gp22. This is surprising because in Gram-negative hosts, lysis by Caudovirales phages has been shown to require proteins which disrupt all three layers of the cell envelope. Usually this involves a holin, an endolysin, and a spanin targeting the cytoplasmic membrane, peptidoglycan (PG), and outer membrane (OM), respectively, with the holin determining the timing of lysis initiation. Here, we demonstrate that gp22 is a signal-anchor-release (SAR) endolysin and identify gp23 and gp23.1 as two-component spanin subunits. However, we find that Mu lacks a holin and instead encodes a membrane-tethered cytoplasmic protein, gp25, which is required for the release of the SAR endolysin. Mutational analysis showed that this dependence on gp25 is conferred by lysine residues at positions 6 and 7 of the short cytoplasmic domain of gp22. gp25, which we designate as a releasin, also facilitates the release of SAR endolysins from other phages. Moreover, the entire length of gp25, including its N-terminal transmembrane domain, belongs to a protein family, DUF2730, found in many Mu-like phages, including those with cytoplasmic endolysins. These results are discussed in terms of models for the evolution and mechanism of releasin function and a rationale for Mu lysis without holin control. IMPORTANCE Host cell lysis is the terminal event of the bacteriophage infection cycle. In Gram-negative hosts, lysis requires proteins that disrupt each of the three cell envelope components, only one of which has been identified in Mu: the endolysin gp22. We show that gp22 can be characterized as a SAR endolysin, a muralytic enzyme that activates upon release from the membrane to degrade the cell wall. Furthermore, we identify genes 23 and 23.1 as spanin subunits used for outer membrane disruption. Significantly, we demonstrate that Mu is the first known Caudovirales phage to lack a holin, a protein that disrupts the inner membrane and is traditionally known to release endolysins. In its stead, we report the discovery of a lysis protein, termed the releasin, which Mu uses for SAR endolysin release. This is an example of a system where the dynamic membrane localization of one protein is controlled by a secondary protein.
Collapse
|
35
|
McCutcheon JG, Lin A, Dennis JJ. Characterization of Stenotrophomonas maltophilia phage AXL1 as a member of the genus Pamexvirus encoding resistance to trimethoprim-sulfamethoxazole. Sci Rep 2022; 12:10299. [PMID: 35717537 PMCID: PMC9206674 DOI: 10.1038/s41598-022-14025-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Stenotrophomonas maltophilia is a ubiquitous environmental bacterium capable of causing disease in humans. Antibiotics are largely ineffective against this pathogen due to numerous chromosomally encoded antibiotic resistance mechanisms. An alternative treatment option is phage therapy, the use of bacteriophages to selectively kill target bacteria that are causing infection. To this aim, we isolated the Siphoviridae bacteriophage AXL1 (vB_SmaS-AXL_1) from soil and herein describe its characterization. Host range analysis on a panel of 30 clinical S. maltophilia strains reveals a moderate tropism that includes cross-species infection of Xanthomonas, with AXL1 using the type IV pilus as its host surface receptor for infection. Complete genome sequencing and analysis revealed a 63,962 bp genome encoding 83 putative proteins. Comparative genomics place AXL1 in the genus Pamexvirus, along with seven other phages that infect one of Stenotrophomonas, Pseudomonas or Xanthomonas species. Functional genomic analyses identified an AXL1-encoded dihydrofolate reductase enzyme that provides additional resistance to the antibiotic combination trimethoprim-sulfamethoxazole, the current recommended treatment option for S. maltophilia infections. This research characterizes the sixth type IV pilus-binding phage of S. maltophilia and is an example of phage-encoded antibiotic resistance.
Collapse
Affiliation(s)
- Jaclyn G McCutcheon
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Andrea Lin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Jonathan J Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
36
|
Grisales-Vargas CD, Ramírez-Cuartas CA, Pérez-Jaramillo JE. The First Complete Genome Resource of a Ralstonia solanacearum Phage UAM5 from Colombia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:496-499. [PMID: 35395909 DOI: 10.1094/mpmi-01-22-0033-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Cristian D Grisales-Vargas
- Unidad de Bioprospección y Estudio de Microbiomas, Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, 1226, Colombia
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Camilo A Ramírez-Cuartas
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
- Grupo de Bacteriología Agrícola y Ambiental-BA&A, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Juan E Pérez-Jaramillo
- Unidad de Bioprospección y Estudio de Microbiomas, Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, 1226, Colombia
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
| |
Collapse
|
37
|
Droubogiannis S, Katharios P. Genomic and Biological Profile of a Novel Bacteriophage, Vibrio phage Virtus, Which Improves Survival of Sparus aurata Larvae Challenged with Vibrio harveyi. Pathogens 2022; 11:pathogens11060630. [PMID: 35745484 PMCID: PMC9229204 DOI: 10.3390/pathogens11060630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 01/15/2023] Open
Abstract
Due to the emergence of multidrug-resistant bacteria, commonly known as “superbugs”, phage therapy for the control of bacterial diseases rose in popularity. In this context, the use of phages for the management of many important bacterial diseases in the aquaculture environment is auspicious. Vibrio harveyi, a well-known and serious bacterial pathogen, is responsible for many disease outbreaks in aquaculture, resulting in huge economic and production losses. We isolated and fully characterized a novel bacteriophage, Vibrio phage Virtus, infecting V. harveyi strain VH2. Vibrio phage Virtus can infect a wide spectrum of Vibrio spp., including strains of V. harveyi, V. owensii, V. campbellii, V. parahaemolyticus, and V. mediterranei. It has a latent period of 40 min with an unusually high burst size of 3200 PFU/cell. Vibrio phage Virtus has a double-stranded DNA of 82,960 base pairs with 127 predicted open reading frames (ORFs). No virulence, antibiotic resistance, or integrase-encoding genes were detected. In vivo phage therapy trials in gilthead seabream, Sparus aurata, larvae demonstrated that Vibrio phage Virtus was able to significantly improve the survival of larvae for five days at a multiplicity of infection (MOI) of 10, which suggests that it can be an excellent candidate for phage therapy.
Collapse
Affiliation(s)
- Stavros Droubogiannis
- Institute of Marine Biology, Biotechnology & Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece;
- Department of Biology, School of Sciences and Engineering, University of Crete, 71500 Heraklion, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology & Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece;
- Correspondence:
| |
Collapse
|
38
|
Christinaki AC, Kanellopoulos SG, Kortsinoglou AM, Andrikopoulos MΑ, Theelen B, Boekhout T, Kouvelis VN. Mitogenomics and mitochondrial gene phylogeny decipher the evolution of Saccharomycotina yeasts. Genome Biol Evol 2022; 14:6586520. [PMID: 35576568 PMCID: PMC9154068 DOI: 10.1093/gbe/evac073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Saccharomycotina yeasts belong to diverse clades within the kingdom of fungi and are important to human everyday life. This work investigates the evolutionary relationships among these yeasts from a mitochondrial (mt) genomic perspective. A comparative study of 155 yeast mt genomes representing all major phylogenetic lineages of Saccharomycotina was performed, including genome size and content variability, intron and intergenic regions’ diversity, genetic code alterations, and syntenic variation. Findings from this study suggest that mt genome size diversity is the result of a ceaseless random process, mainly based on genetic recombination and intron mobility. Gene order analysis revealed conserved syntenic units and many occurring rearrangements, which can be correlated with major evolutionary events as shown by the phylogenetic analysis of the concatenated mt protein matrix. For the first time, molecular dating indicated a slower mt genome divergence rate in the early stages of yeast evolution, in contrast with a faster rate in the late evolutionary stages, compared to their nuclear time divergence. Genetic code reassignments of mt genomes are a perpetual process happening in many different parallel evolutionary steps throughout the evolution of Saccharomycotina. Overall, this work shows that phylogenetic studies based on the mt genome of yeasts highlight major evolutionary events.
Collapse
Affiliation(s)
- Anastasia C Christinaki
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Genetics and Biotechnology, Athens, Greece
| | - Spyros G Kanellopoulos
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Genetics and Biotechnology, Athens, Greece
| | - Alexandra M Kortsinoglou
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Genetics and Biotechnology, Athens, Greece
| | - Marios Α Andrikopoulos
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Genetics and Biotechnology, Athens, Greece
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,University of Amsterdam, Institute of Biodiversity and Ecosystem Dynamics (IBED), Amsterdam, The Netherlands
| | - Vassili N Kouvelis
- National and Kapodistrian University of Athens, Faculty of Biology, Department of Genetics and Biotechnology, Athens, Greece
| |
Collapse
|
39
|
Complete Genome Sequence of Stenotrophomonas maltophilia Phage Philippe. Microbiol Resour Announc 2022; 11:e0012522. [PMID: 35510862 PMCID: PMC9202365 DOI: 10.1128/mra.00125-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is emerging as an opportunistic multidrug-resistant pathogen. S. maltophilia podophage Philippe has a 74,717-bp genome which is related broadly to the N4-like phage group, including Stenotrophomonas phage Pokken. The low sequence identity to other described phages suggests that Philippe is an unclassified member of the N4-like subfamily Rothmandenesvirinae.
Collapse
|
40
|
Complete Genome Sequence of Stenotrophomonas maltophilia Siphophage Siara. Microbiol Resour Announc 2022; 11:e0017722. [PMID: 35499340 PMCID: PMC9119069 DOI: 10.1128/mra.00177-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is associated with an increasing incidence of nosocomial infections. Here, we describe the isolation and genome annotation of S. maltophilia siphophage Siara. Its 61,427-bp genome is currently related only to one phage in the NCBI database, namely, S. maltophilia phage Salva, and is not related to any prophages.
Collapse
|
41
|
Abstract
Stenotrophomonas maltophilia is an opportunistic bacterium that is commonly associated with respiratory infections in immunocompromised patients, including cystic fibrosis patients. In this report, we introduce the complete genome sequence of S. maltophilia podophage Pepon, which is a T7-like phage closely related to the previously reported phage Ponderosa.
Collapse
|
42
|
Complete Genome Sequence of Alcaligenes faecalis Phage Piluca. Microbiol Resour Announc 2022; 11:e0012422. [PMID: 35289650 PMCID: PMC9022569 DOI: 10.1128/mra.00124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Alcaligenes faecalis is an opportunistic pathogen exhibiting drug resistance. Here, the 35,451-bp genome of A. faecalis phage Piluca is described. Piluca is not closely related to any isolated phages in the NCBI database. Piluca possesses genes encoding CI-like and Cro-like repressors and a tyrosine integrase, suggesting its temperate lifestyle.
Collapse
|
43
|
Complete Genome Sequence of Enterococcus faecalis Siphophage Sigurd. Microbiol Resour Announc 2022; 11:e0012322. [PMID: 35343805 PMCID: PMC9022519 DOI: 10.1128/mra.00123-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis is associated with antibiotic-resistant infections, and this study presents E. faecalis siphophage Sigurd. The 41,811-bp Sigurd genome is divided into two arms defined by long convergent predicted transcription units that are separated by a bidirectional rho-independent terminator. Sigurd has a small terminase that is closely related to Bacillus subtilis cos phage phi105.
Collapse
|
44
|
Mutalik VK, Arkin AP. A Phage Foundry Framework to Systematically Develop Viral Countermeasures to Combat Antibiotic-Resistant Bacterial Pathogens. iScience 2022; 25:104121. [PMID: 35402883 PMCID: PMC8983348 DOI: 10.1016/j.isci.2022.104121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
At its current rate, the rise of antimicrobial-resistant (AMR) infections is predicted to paralyze our industries and healthcare facilities while becoming the leading global cause of loss of human life. With limited new antibiotics on the horizon, we need to invest in alternative solutions. Bacteriophages (phages)-viruses targeting bacteria-offer a powerful alternative approach to tackle bacterial infections. Despite recent advances in using phages to treat recalcitrant AMR infections, the field lacks systematic development of phage therapies scalable to different applications. We propose a Phage Foundry framework to establish metrics for phage characterization and to fill the knowledge and technological gaps in phage therapeutics. Coordinated investment in AMR surveillance, sampling, characterization, and data sharing procedures will enable rational exploitation of phages for treatments. A fully realized Phage Foundry will enhance the sharing of knowledge, technology, and viral reagents in an equitable manner and will accelerate the biobased economy.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adam P. Arkin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| |
Collapse
|
45
|
Complete Genome Sequences of Lambdoid Phages 21, 434, and 434B and Several Lambda Hybrids. Microbiol Resour Announc 2022; 11:e0012022. [PMID: 35412353 PMCID: PMC9119081 DOI: 10.1128/mra.00120-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recombinational hybrids between phage λ and its relatives were instrumental in the beginnings of molecular biology. Here, we report the complete genome sequences of lambdoid phages 21 and 434 and three of their λ hybrids. In addition, we describe 434B, where the entire lysis gene region was replaced by cryptic prophage sequences.
Collapse
|
46
|
Complete Genome Sequence of Stenotrophomonas maltophilia Podophage Paxi. Microbiol Resour Announc 2022; 11:e0017922. [PMID: 35377170 PMCID: PMC9022576 DOI: 10.1128/mra.00179-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Stenotrophomonas maltophilia is a multidrug-resistant nosocomial pathogen that can cause life-threatening infections among immunocompromised populations. This report presents the complete 74,962-bp genome of S. maltophilia podophage Paxi, an N4-like phage sharing 85.3% nucleotide similarity to S. maltophilia podophage Pokken.
Collapse
|
47
|
Complete Genome Sequence of Burkholderia cenocepacia Phage Paku. Microbiol Resour Announc 2022; 11:e0122021. [PMID: 35343779 PMCID: PMC9022590 DOI: 10.1128/mra.01220-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Burkholderia cenocepacia is able to cause infections in cystic fibrosis patients. B. cenocepacia phage Paku has a 42,727-bp genome sharing a phiKMV-like genome arrangement. T7-like tail components were identified in parallel with a tyrosine integrase, suggesting that Paku might exhibit a temperate lifestyle, an atypical feature for an Autographiviridae phage.
Collapse
|
48
|
Complete Genome Sequence of Stenotrophomonas maltophilia Siphophage Sonora. Microbiol Resour Announc 2022; 11:e0016722. [PMID: 35319245 PMCID: PMC9022593 DOI: 10.1128/mra.00167-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage Sonora is a siphophage that was isolated against the opportunistic human pathogen Stenotrophomonas maltophilia. The genome of phage Sonora is 63,825 bp long and is not related to that of any phage at the nucleotide level. Sonora shares 46 of 97 total proteins with the Bordetella phages CN2, MW2, and FP1.
Collapse
|
49
|
Complete Genome Sequence of Stenotrophomonas maltophilia Podophage Piffle. Microbiol Resour Announc 2022; 11:e0015922. [PMID: 35319268 PMCID: PMC9022547 DOI: 10.1128/mra.00159-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is an emerging multidrug-resistant opportunistic human pathogen causing various nosocomial infections. Here, we characterize the genome of S. maltophilia podophage Piffle. Its 76,332-bp genome is most closely related to the N4-like S. maltophilia podophage Pokken, with over 86% genome-wide nucleotide identity and 84 shared proteins.
Collapse
|
50
|
Complete Genome Sequence of Stenotrophomonas maltophilia Siphophage Silvanus. Microbiol Resour Announc 2022; 11:e0121021. [PMID: 35225669 PMCID: PMC8928760 DOI: 10.1128/mra.01210-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Stenotrophomonas maltophilia is an opportunistic Gram-negative bacterium capable of causing respiratory infections. S. maltophilia siphophage Silvanus was isolated, and its 45,678-bp genome is not closely related to known phages based on whole-genome comparative genomics analysis. It is predicted to use cos-type packaging due to the similarity of its large terminase subunit to that of phage HK97.
Collapse
|