1
|
Xue WF. Trace_y: Software algorithms for structural analysis of individual helical filaments by three-dimensional contact point reconstruction atomic force microscopy. Structure 2024:S0969-2126(24)00497-0. [PMID: 39642871 DOI: 10.1016/j.str.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Atomic force microscopy (AFM) is a powerful and increasingly accessible technology that has a wide range of bio-imaging applications. AFM is capable of producing detailed three-dimensional topographical images with high signal-to-noise ratio, which enables the structural features of individual molecules to be studied without the need for ensemble averaging. Here, a software tool Trace_y, designed to reconstruct the three-dimensional surface envelopes of individual helical filament structures from topographical AFM images, is presented. Workflow using Trace_y is demonstrated on the structural analysis of individual helical amyloid protein fibrils where the assembly mechanism of heterogeneous, complex and diverse fibril populations due to structural polymorphism is not understood. The algorithms presented here allow structural information encoded in topographical AFM height images to be extracted and understood as three-dimensional (3D) contact point clouds. This approach will facilitate the use of AFM in structural biology to understand molecular structures and behaviors at individual molecule level.
Collapse
Affiliation(s)
- Wei-Feng Xue
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK.
| |
Collapse
|
2
|
Giblin-Burnham J, Javanmardi Y, Moeendarbary E, Hoogenboom BW. Finite element modelling of atomic force microscopy imaging on deformable surfaces. SOFT MATTER 2024. [PMID: 39569923 PMCID: PMC11580413 DOI: 10.1039/d4sm01084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Atomic force microscopy (AFM) provides a three-dimensional topographic representation of a sample surface, at nanometre resolution. Computational simulations can aid the interpretation of such representations, but have mostly been limited to cases where both the AFM probe and the sample are hard and not compressible. In many applications, however, the sample is soft and therefore deformed due to the force exerted by the AFM tip. Here we use finite element modelling (FEM) to study how the measured AFM topography relates to the surface structures of soft and compressible materials. Consistent with previous analytical studies, the measured elastic modulus in AFM is generally found to deviate from the elastic modulus of the sample material. By the analysis of simple surface geometries, the FEM modelling shows how measured mechanical and topographic features in AFM images depend on a combination of tip-sample geometry and indentation of the tip into the sample. Importantly for the interpretation of AFM data, nanoparticles may appear larger or smaller by a factor of two depending on tip size and indentation force; and a higher spatial resolution in AFM images does not necessarily coincide with a more accurate representation of the sample surface. These observations on simple surface geometries also extend to molecular-resolution AFM, as illustrated by comparing FEM results with experimental data acquired on DNA. Taken together, the FEM results provide a framework that aids the interpretation of surface topography and local mechanics as measured by AFM.
Collapse
Affiliation(s)
- Joshua Giblin-Burnham
- Department of Engineering Science, University of Oxford, Wellington Square, Oxford OX1 2JD, UK.
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK.
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK.
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
3
|
Wu X, Miyashita O, Tama F. Modeling Conformational Transitions of Biomolecules from Atomic Force Microscopy Images using Normal Mode Analysis. J Phys Chem B 2024; 128:9363-9372. [PMID: 39319845 PMCID: PMC11457880 DOI: 10.1021/acs.jpcb.4c04189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024]
Abstract
Observing a single biomolecule performing its function is fundamental in biophysics as it provides important information for elucidating the mechanism. High-speed atomic force microscopy (HS-AFM) is a unique and powerful technique that allows the observation of biomolecular motion in a near-native environment. However, the spatial resolution of HS-AFM is limited by the physical size of the cantilever tip, which restricts the ability to obtain atomic details of molecules. In this study, we propose a novel computational algorithm designed to derive atomistic models of conformational dynamics from AFM images. Our method uses normal-mode analysis to describe the expected motions of the molecule, allowing these motions to be represented with a limited number of coordinates. This approach mitigates the problem of overinterpretation inherent in the analysis of AFM images with limited resolution. We demonstrate the effectiveness of our algorithm, NMFF-AFM, using synthetic data sets for three proteins that undergo significant conformational changes. NMFF-AFM is a fast and user-friendly program that requires minimal setup and has the potential to be a valuable tool for biophysical studies using HS-AFM.
Collapse
Affiliation(s)
- Xuan Wu
- Department
of Physics, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Osamu Miyashita
- RIKEN
Center for Computational Science, 6-7-1 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Florence Tama
- Department
of Physics, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- RIKEN
Center for Computational Science, 6-7-1 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Institute
of Transformative Bio-Molecules, Nagoya
University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
4
|
Heath GR, Micklethwaite E, Storer TM. NanoLocz: Image Analysis Platform for AFM, High-Speed AFM, and Localization AFM. SMALL METHODS 2024; 8:e2301766. [PMID: 38426645 DOI: 10.1002/smtd.202301766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Atomic Force Microscopy (AFM), High-Speed AFM (HS-AFM) simulation AFM, and Localization AFM (LAFM) enable the study of molecules and surfaces with increasingly higher spatiotemporal resolution. However, effective and rapid analysis of the images and movies produced by these techniques can be challenging, often requiring the use of multiple image processing software applications and scripts. Here, NanoLocz, an open-source solution that offers advanced analysis capabilities for the AFM community, is presented. Integration and continued development of AFM analysis tools is essential to improve access to data, increase throughput, and open new analysis opportunities. NanoLocz efficiently leverages the rich data AFM has to offer by incorporating and combining existing and newly developed analysis methods for AFM, HS-AFM, simulation AFM, and LAFM seamlessly. It facilitates and streamlines AFM analysis workflows from import of raw data, through to various analysis workflows. Here, the study demonstrates the capabilities of NanoLocz and the new methods it enables including single-molecule LAFM, time-resolved LAFM, and simulation LAFM.
Collapse
Affiliation(s)
- George R Heath
- School of Physics & Astronomy, Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
- School of Biomedical Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Emily Micklethwaite
- School of Physics & Astronomy, Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| | - Tabitha M Storer
- School of Physics & Astronomy, Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
5
|
Chen S, Peng M, Li Y, Ju BF, Bao H, Chen YL, Zhang G. Multi-view neural 3D reconstruction of micro- and nanostructures with atomic force microscopy. COMMUNICATIONS ENGINEERING 2024; 3:131. [PMID: 39266632 PMCID: PMC11393419 DOI: 10.1038/s44172-024-00270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/19/2024] [Indexed: 09/14/2024]
Abstract
Atomic Force Microscopy (AFM) is a widely employed tool for micro- and nanoscale topographic imaging. However, conventional AFM scanning struggles to reconstruct complex 3D micro- and nanostructures precisely due to limitations such as incomplete sample topography capturing and tip-sample convolution artifacts. Here, we propose a multi-view neural-network-based framework with AFM, named MVN-AFM, which accurately reconstructs surface models of intricate micro- and nanostructures. Unlike previous 3D-AFM approaches, MVN-AFM does not depend on any specially shaped probes or costly modifications to the AFM system. To achieve this, MVN-AFM employs an iterative method to align multi-view data and eliminate AFM artifacts simultaneously. Furthermore, we apply the neural implicit surface reconstruction technique in nanotechnology and achieve improved results. Additional extensive experiments show that MVN-AFM effectively eliminates artifacts present in raw AFM images and reconstructs various micro- and nanostructures, including complex geometrical microstructures printed via two-photon lithography and nanoparticles such as poly(methyl methacrylate) (PMMA) nanospheres and zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. This work presents a cost-effective tool for micro- and nanoscale 3D analysis.
Collapse
Affiliation(s)
- Shuo Chen
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Mao Peng
- State Key Lab of Fluid Power&Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Yijin Li
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Bing-Feng Ju
- State Key Lab of Fluid Power&Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Hujun Bao
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Yuan-Liu Chen
- State Key Lab of Fluid Power&Mechatronic Systems, Zhejiang University, Hangzhou, China.
| | - Guofeng Zhang
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Sumino A, Sumikama T, Zhao Y, Flechsig H, Umeda K, Kodera N, Konno H, Hattori M, Shibata M. High-Speed Atomic Force Microscopy Reveals Fluctuations and Dimer Splitting of the N-Terminal Domain of GluA2 Ionotropic Glutamate Receptor-Auxiliary Subunit Complex. ACS NANO 2024; 18:25018-25035. [PMID: 39180186 DOI: 10.1021/acsnano.4c06295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid glutamate receptors (AMPARs) enable rapid excitatory synaptic transmission by localizing to the postsynaptic density of glutamatergic spines. AMPARs possess large extracellular N-terminal domains (NTDs), which are crucial for AMPAR clustering at synaptic sites. However, the dynamics of NTDs and the molecular mechanism governing their synaptic clustering remain elusive. Here, we employed high-speed atomic force microscopy (HS-AFM) to directly visualize the conformational dynamics of NTDs in the GluA2 subunit complexed with TARP γ2 in lipid environments. HS-AFM videos of GluA2-γ2 in the resting and activated/open states revealed fluctuations in NTD dimers. Conversely, in the desensitized/closed state, the two NTD dimers adopted a separated conformation with less fluctuation. Notably, we observed individual NTD dimers transitioning into monomers, with extended monomeric states in the activated/open state. Molecular dynamics simulations provided further support, confirming the energetic stability of the monomeric NTD states within lipids. This NTD-dimer splitting resulted in subunit exchange between the receptors and increased the number of interaction sites with synaptic protein neuronal pentraxin 1 (NP1). Moreover, our HS-AFM studies revealed that NP1 forms a ring-shaped octamer through N-terminal disulfide bonds and binds to the tip of the NTD. These findings suggest a molecular mechanism in which NP1, upon forming an octamer, is secreted into the synaptic region and binds to the tip of the GluA2 NTD, thereby bridging and clustering multiple AMPARs. Thus, our findings illuminate the critical role of NTD dynamics in the synaptic clustering of AMPARs and contribute valuable insights into the fundamental processes of synaptic transmission.
Collapse
Affiliation(s)
- Ayumi Sumino
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Takashi Sumikama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yimeng Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, and Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Yangpu District, Shanghai 200438, China
- Human Phenome Institute, Fudan University, Yangpu District, Shanghai 200438, China
| | - Holger Flechsig
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, and Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Yangpu District, Shanghai 200438, China
| | - Mikihiro Shibata
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
7
|
Ando T, Fukuda S, Ngo KX, Flechsig H. High-Speed Atomic Force Microscopy for Filming Protein Molecules in Dynamic Action. Annu Rev Biophys 2024; 53:19-39. [PMID: 38060998 DOI: 10.1146/annurev-biophys-030722-113353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Structural biology is currently undergoing a transformation into dynamic structural biology, which reveals the dynamic structure of proteins during their functional activity to better elucidate how they function. Among the various approaches in dynamic structural biology, high-speed atomic force microscopy (HS-AFM) is unique in the ability to film individual molecules in dynamic action, although only topographical information is acquirable. This review provides a guide to the use of HS-AFM for biomolecular imaging and showcases several examples, as well as providing information on up-to-date progress in HS-AFM technology. Finally, we discuss the future prospects of HS-AFM in the context of dynamic structural biology in the upcoming era.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Kien X Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| |
Collapse
|
8
|
Chitty C, Kuliga K, Xue WF. Atomic force microscopy 3D structural reconstruction of individual particles in the study of amyloid protein assemblies. Biochem Soc Trans 2024; 52:761-771. [PMID: 38600027 DOI: 10.1042/bst20230857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Recent developments in atomic force microscopy (AFM) image analysis have made three-dimensional (3D) structural reconstruction of individual particles observed on 2D AFM height images a reality. Here, we review the emerging contact point reconstruction AFM (CPR-AFM) methodology and its application in 3D reconstruction of individual helical amyloid filaments in the context of the challenges presented by the structural analysis of highly polymorphous and heterogeneous amyloid protein structures. How individual particle-level structural analysis can contribute to resolving the amyloid polymorph structure-function relationships, the environmental triggers leading to protein misfolding and aggregation into amyloid species, the influences by the conditions or minor fluctuations in the initial monomeric protein structure on the speed of amyloid fibril formation, and the extent of the different types of amyloid species that can be formed, are discussed. Future perspectives in the capabilities of AFM-based 3D structural reconstruction methodology exploiting synergies with other recent AFM technology advances are also discussed to highlight the potential of AFM as an emergent general, accessible and multimodal structural biology tool for the analysis of individual biomolecules.
Collapse
Affiliation(s)
- Claudia Chitty
- Division of Natural Sciences, School of Biosciences, University of Kent, CT2 7NJ Canterbury, U.K
| | - Kinga Kuliga
- Division of Natural Sciences, School of Biosciences, University of Kent, CT2 7NJ Canterbury, U.K
| | - Wei-Feng Xue
- Division of Natural Sciences, School of Biosciences, University of Kent, CT2 7NJ Canterbury, U.K
| |
Collapse
|
9
|
Tamilselvan E, Sotomayor M. CELSR1, a core planar cell polarity protein, features a weakly adhesive and flexible cadherin ectodomain. Structure 2024; 32:476-491.e5. [PMID: 38307021 DOI: 10.1016/j.str.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/30/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Planar cell polarity (PCP), essential to multicellular developmental processes, arises when cells polarize and align across tissues. Central to PCP is CELSR1, an atypical cadherin featuring a long ectodomain with nine extracellular cadherin (EC) repeats, a membrane adjacent domain (MAD10), and several characteristic adhesion GPCR domains. Cell-based aggregation assays have demonstrated CELSR1's homophilic adhesive nature, but mechanistic details are missing. Here, we investigate the possible adhesive properties and structures of CELSR1 EC repeats. Our bead aggregation assays do not support strong adhesion by EC repeats alone. Consistently, EC1-4 only dimerizes at high concentration in solution. Crystal structures of human CELSR1 EC1-4 and EC4-7 reveal typical folds and a non-canonical linker between EC5 and EC6. Simulations and experiments using EC4-7 indicate flexibility at EC5-6, and solution experiments show EC7-MAD10-mediated dimerization. Our results suggest weak homophilic adhesion by CELSR1 cadherin repeats and provide mechanistic insights into the structural determinants of CELSR1 function.
Collapse
Affiliation(s)
- Elakkiya Tamilselvan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
10
|
do Nascimento Amorim MDS, Silva França ÁR, Santos-Oliveira R, Rodrigues Sanches J, Marinho Melo T, Araújo Serra Pinto B, Barbosa LRS, Alencar LMR. Atomic Force Microscopy Applied to the Study of Tauopathies. ACS Chem Neurosci 2024; 15:699-715. [PMID: 38305187 DOI: 10.1021/acschemneuro.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Atomic force microscopy (AFM) is a scanning probe microscopy technique which has a physical principle, the measurement of interatomic forces between a very thin tip and the surface of a sample, allowing the obtaining of quantitative data at the nanoscale, contributing to the surface study and mechanical characterization. Due to its great versatility, AFM has been used to investigate the structural and nanomechanical properties of several inorganic and biological materials, including neurons affected by tauopathies. Tauopathies are neurodegenerative diseases featured by aggregation of phosphorylated tau protein inside neurons, leading to functional loss and progressive neurotoxicity. In the broad universe of neurodegenerative diseases, tauopathies comprise the most prevalent, with Alzheimer's disease as its main representative. This review highlights the use of AFM as a suitable research technique for the study of cellular damages in tauopathies, even in early stages, allowing elucidation of pathogenic mechanisms of these diseases.
Collapse
Affiliation(s)
- Maria do Socorro do Nascimento Amorim
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, Maranhão, Brazil
| | - Álefe Roger Silva França
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, Maranhão, Brazil
| | - Ralph Santos-Oliveira
- Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941906, Brazil
- Laboratory of Nanoradiopharmacy, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| | - Jonas Rodrigues Sanches
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Thamys Marinho Melo
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Bruno Araújo Serra Pinto
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Leandro R S Barbosa
- Department of General Physics, Institute of Physics, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, SP, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, Maranhão, Brazil
| |
Collapse
|
11
|
Sun H, Liao F, Tian Y, Lei Y, Fu Y, Wang J. Molecular-Scale Investigations Reveal the Effect of Natural Polyphenols on BAX/Bcl-2 Interactions. Int J Mol Sci 2024; 25:2474. [PMID: 38473728 DOI: 10.3390/ijms25052474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Apoptosis signaling controls the cell cycle through the protein-protein interactions (PPIs) of its major B-cell lymphoma 2-associated x protein (BAX) and B-cell lymphoma 2 protein (Bcl-2). Due to the antagonistic function of both proteins, apoptosis depends on a properly tuned balance of the kinetics of BAX and Bcl-2 activities. The utilization of natural polyphenols to regulate the binding process of PPIs is feasible. However, the mechanism of this modulation has not been studied in detail. Here, we utilized atomic force microscopy (AFM) to evaluate the effects of polyphenols (kaempferol, quercetin, dihydromyricetin, baicalin, curcumin, rutin, epigallocatechin gallate, and gossypol) on the BAX/Bcl-2 binding mechanism. We demonstrated at the molecular scale that polyphenols quantitatively affect the interaction forces, kinetics, thermodynamics, and structural properties of BAX/Bcl-2 complex formation. We observed that rutin, epigallocatechin gallate, and baicalin reduced the binding affinity of BAX/Bcl-2 by an order of magnitude. Combined with surface free energy and molecular docking, the results revealed that polyphenols are driven by multiple forces that affect the orientation freedom of PPIs, with hydrogen bonding, hydrophobic interactions, and van der Waals forces being the major contributors. Overall, our work provides valuable insights into how molecules tune PPIs to modulate their function.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Fenghui Liao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
12
|
Akter L, Flechsig H, Marchesi A, Franz CM. Observing Dynamic Conformational Changes within the Coiled-Coil Domain of Different Laminin Isoforms Using High-Speed Atomic Force Microscopy. Int J Mol Sci 2024; 25:1951. [PMID: 38396630 PMCID: PMC10888245 DOI: 10.3390/ijms25041951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Laminins are trimeric glycoproteins with important roles in cell-matrix adhesion and tissue organization. The laminin α, ß, and γ-chains have short N-terminal arms, while their C-termini are connected via a triple coiled-coil domain, giving the laminin molecule a well-characterized cross-shaped morphology as a result. The C-terminus of laminin alpha chains contains additional globular laminin G-like (LG) domains with important roles in mediating cell adhesion. Dynamic conformational changes of different laminin domains have been implicated in regulating laminin function, but so far have not been analyzed at the single-molecule level. High-speed atomic force microscopy (HS-AFM) is a unique tool for visualizing such dynamic conformational changes under physiological conditions at sub-second temporal resolution. After optimizing surface immobilization and imaging conditions, we characterized the ultrastructure of laminin-111 and laminin-332 using HS-AFM timelapse imaging. While laminin-111 features a stable S-shaped coiled-coil domain displaying little conformational rearrangement, laminin-332 coiled-coil domains undergo rapid switching between straight and bent conformations around a defined central molecular hinge. Complementing the experimental AFM data with AlphaFold-based coiled-coil structure prediction enabled us to pinpoint the position of the hinge region, as well as to identify potential molecular rearrangement processes permitting hinge flexibility. Coarse-grained molecular dynamics simulations provide further support for a spatially defined kinking mechanism in the laminin-332 coiled-coil domain. Finally, we observed the dynamic rearrangement of the C-terminal LG domains of laminin-111 and laminin-332, switching them between compact and open conformations. Thus, HS-AFM can directly visualize molecular rearrangement processes within different laminin isoforms and provide dynamic structural insight not available from other microscopy techniques.
Collapse
Affiliation(s)
- Lucky Akter
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1167, Japan; (L.A.); (H.F.); (A.M.)
| | - Holger Flechsig
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1167, Japan; (L.A.); (H.F.); (A.M.)
| | - Arin Marchesi
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1167, Japan; (L.A.); (H.F.); (A.M.)
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Via Tronto, 10/A Torrette di Ancona, 60126 Ancona, Italy
| | - Clemens M. Franz
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1167, Japan; (L.A.); (H.F.); (A.M.)
| |
Collapse
|
13
|
Ye Z, Galvanetto N, Puppulin L, Pifferi S, Flechsig H, Arndt M, Triviño CAS, Di Palma M, Guo S, Vogel H, Menini A, Franz CM, Torre V, Marchesi A. Structural heterogeneity of the ion and lipid channel TMEM16F. Nat Commun 2024; 15:110. [PMID: 38167485 PMCID: PMC10761740 DOI: 10.1038/s41467-023-44377-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Transmembrane protein 16 F (TMEM16F) is a Ca2+-activated homodimer which functions as an ion channel and a phospholipid scramblase. Despite the availability of several TMEM16F cryogenic electron microscopy (cryo-EM) structures, the mechanism of activation and substrate translocation remains controversial, possibly due to restrictions in the accessible protein conformational space. In this study, we use atomic force microscopy under physiological conditions to reveal a range of structurally and mechanically diverse TMEM16F assemblies, characterized by variable inter-subunit dimerization interfaces and protomer orientations, which have escaped prior cryo-EM studies. Furthermore, we find that Ca2+-induced activation is associated to stepwise changes in the pore region that affect the mechanical properties of transmembrane helices TM3, TM4 and TM6. Our direct observation of membrane remodelling in response to Ca2+ binding along with additional electrophysiological analysis, relate this structural multiplicity of TMEM16F to lipid and ion permeation processes. These results thus demonstrate how conformational heterogeneity of TMEM16F directly contributes to its diverse physiological functions.
Collapse
Affiliation(s)
- Zhongjie Ye
- International School for Advanced Studies (SISSA), 34136, Trieste, Italy
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Nicola Galvanetto
- Department of Physics, University of Zurich, 8057, Zurich, Switzerland
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Leonardo Puppulin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, I-30172 Mestre, Venice, Italy
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Japan
| | - Simone Pifferi
- International School for Advanced Studies (SISSA), 34136, Trieste, Italy
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| | - Holger Flechsig
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Japan
| | - Melanie Arndt
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | | | - Michael Di Palma
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| | - Shifeng Guo
- Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Horst Vogel
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anna Menini
- International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Clemens M Franz
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Japan
| | - Vincent Torre
- International School for Advanced Studies (SISSA), 34136, Trieste, Italy.
- Institute of Materials (ION-CNR), Area Science Park, Basovizza, 34149, Trieste, Italy.
- BIoValley Investments System and Solutions (BISS), 34148, Trieste, Italy.
| | - Arin Marchesi
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Japan.
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy.
| |
Collapse
|
14
|
Takeda K, Flechsig H, Muro I, Amyot R, Kobayashi F, Kodera N, Ando T, Konno H. Structural Dynamics of E6AP E3 Ligase HECT Domain and Involvement of a Flexible Hinge Loop in the Ubiquitin Chain Synthesis Mechanism. NANO LETTERS 2023; 23:11940-11948. [PMID: 38055898 PMCID: PMC10755755 DOI: 10.1021/acs.nanolett.3c04150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Ubiquitin (Ub) ligases E3 are important factors in selecting target proteins for ubiquitination and determining the type of polyubiquitin chains on the target proteins. In the HECT (homologous to E6AP C-terminus)-type E3 ligases, the HECT domain is composed of an N-lobe and a C-lobe that are connected by a flexible hinge loop. The large conformational rearrangement of the HECT domain via the flexible hinge loop is essential for the HECT-type E3-mediated Ub transfer from E2 to a target protein. However, detailed insights into the structural dynamics of the HECT domain remain unclear. Here, we provide the first direct demonstration of the structural dynamics of the HECT domain using high-speed atomic force microscopy at the nanoscale. We also found that the flexibility of the hinge loop has a great impact not only on its structural dynamics but also on the formation mechanism of free Ub chains.
Collapse
Affiliation(s)
- Kazusa Takeda
- Graduate
School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Holger Flechsig
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ikumi Muro
- Graduate
School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Romain Amyot
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Fuminori Kobayashi
- Graduate
School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroki Konno
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
15
|
Sumino A, Sumikama T, Shibata M, Irie K. Voltage sensors of a Na + channel dissociate from the pore domain and form inter-channel dimers in the resting state. Nat Commun 2023; 14:7835. [PMID: 38114487 PMCID: PMC10730821 DOI: 10.1038/s41467-023-43347-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
Understanding voltage-gated sodium (Nav) channels is significant since they generate action potential. Nav channels consist of a pore domain (PD) and a voltage sensor domain (VSD). All resolved Nav structures in different gating states have VSDs that tightly interact with PDs; however, it is unclear whether VSDs attach to PDs during gating under physiological conditions. Here, we reconstituted three different voltage-dependent NavAb, which is cloned from Arcobacter butzleri, into a lipid membrane and observed their structural dynamics by high-speed atomic force microscopy on a sub-second timescale in the steady state. Surprisingly, VSDs dissociated from PDs in the mutant in the resting state and further dimerized to form cross-links between channels. This dimerization would occur at a realistic channel density, offering a potential explanation for the facilitation of positive cooperativity of channel activity in the rising phase of the action potential.
Collapse
Affiliation(s)
- Ayumi Sumino
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Takashi Sumikama
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Mikihiro Shibata
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsumasa Irie
- Department of Biophysical chemistry School of Pharmaceutical Science, Wakayama Medical University, Wakayama, 640-8156, Japan.
| |
Collapse
|
16
|
Sumikama T. Computation of topographic and three-dimensional atomic force microscopy images of biopolymers by calculating forces. Biophys Rev 2023; 15:2059-2064. [PMID: 38192341 PMCID: PMC10771545 DOI: 10.1007/s12551-023-01167-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Abstract
Atomic force microscopy (AFM) is widely utilized to visualize the molecular motions of biomolecules. Comparison of experimentally measured AFM images with simulated AFM images based on known structures of biomolecules is often necessary to elucidate what is actually resolved in the images. Experimental AFM images are generated by force measurements; however, conventional AFM simulation has been based on geometrical considerations rather than calculating forces using molecular dynamics simulations due to limited computation time. This letter summarizes recently developed methods to simulate topographic and three-dimensional AFM (3D-AFM) images of biopolymers such as chromosomes and cytoskeleton fibers. Scanning such biomolecules in AFM measurements usually results in nonequilibrium-type work being performed. As such, the Jarzynski equality was employed to relate the nonequilibrium work to the free energy profiles, and the forces were calculated by differentiating the free energy profiles. The biomolecules and probes were approximated using a supra-coarse-grained model, allowing the simulation of force-distance curves in feasible time. It was found that there is an optimum scanning velocity and that some of polymer structures are resolved in the simulated 3D-AFM images. The theoretical background adopted to rationalize the use of small probe radius in the conventional AFM simulation of biomolecules is clarified.
Collapse
Affiliation(s)
- Takashi Sumikama
- PRESTO, JST, Kawaguchi, Saitama 332-0012 Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192 Japan
| |
Collapse
|
17
|
Heath GR. High-speed atomic force microscopy: extracting high-resolution information through image analysis. Biophys Rev 2023; 15:2065-2068. [PMID: 38192352 PMCID: PMC10771478 DOI: 10.1007/s12551-023-01168-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Affiliation(s)
- George R. Heath
- School of Physics & Astronomy, Bragg Centre for Materials Research, University of Leeds, Leeds, UK
- School of Biomedical Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
18
|
Fukuda S, Ando T. Technical advances in high-speed atomic force microscopy. Biophys Rev 2023; 15:2045-2058. [PMID: 38192344 PMCID: PMC10771405 DOI: 10.1007/s12551-023-01171-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/19/2023] [Indexed: 01/10/2024] Open
Abstract
It has been 30 years since the outset of developing high-speed atomic force microscopy (HS-AFM), and 15 years have passed since its establishment in 2008. This advanced microscopy is capable of directly visualizing individual biological macromolecules in dynamic action and has been widely used to answer important questions that are inaccessible by other approaches. The number of publications on the bioapplications of HS-AFM has rapidly increased in recent years and has already exceeded 350. Although less visible than these biological studies, efforts have been made for further technical developments aimed at enhancing the fundamental performance of HS-AFM, such as imaging speed, low sample disturbance, and scan size, as well as expanding its functionalities, such as correlative microscopy, temperature control, buffer exchange, and sample manipulations. These techniques can expand the range of HS-AFM applications. After summarizing the key technologies underlying HS-AFM, this article focuses on recent technical advances and discusses next-generation HS-AFM.
Collapse
Affiliation(s)
- Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192 Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192 Japan
| |
Collapse
|
19
|
Yilmaz N, Panevska A, Tomishige N, Richert L, Mély Y, Sepčić K, Greimel P, Kobayashi T. Assembly dynamics and structure of an aegerolysin, ostreolysin A6. J Biol Chem 2023; 299:104940. [PMID: 37343702 PMCID: PMC10366546 DOI: 10.1016/j.jbc.2023.104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Ostreolysin A6 (OlyA6) is an oyster mushroom-derived membrane-binding protein that, upon recruitment of its partner protein, pleurotolysin B, forms a cytolytic membrane pore complex. OlyA6 itself is not cytolytic but has been reported to exhibit pro-apoptotic activities in cell culture. Here we report the formation dynamics and the structure of OlyA6 assembly on a lipid membrane containing an OlyA6 high-affinity receptor, ceramide phosphoethanolamine, and cholesterol. High-speed atomic force microscopy revealed the reorganization of OlyA6 dimers from initial random surface coverage to 2D protein crystals composed of hexameric OlyA6 repeat units. Crystal growth took place predominantly in the longitudinal direction by the association of OlyA6 dimers, forming a hexameric unit cell. Molecular-level examination of the OlyA6 crystal elucidated the arrangement of dimers within the unit cell and the structure of the dimer that recruits pleurotolysin B for pore formation.
Collapse
Affiliation(s)
- Neval Yilmaz
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; NanoLSI, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan.
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nario Tomishige
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Greimel
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan.
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| |
Collapse
|
20
|
Kurusu R, Fujimoto Y, Morishita H, Noshiro D, Takada S, Yamano K, Tanaka H, Arai R, Kageyama S, Funakoshi T, Komatsu-Hirota S, Taka H, Kazuno S, Miura Y, Koike M, Wakai T, Waguri S, Noda NN, Komatsu M. Integrated proteomics identifies p62-dependent selective autophagy of the supramolecular vault complex. Dev Cell 2023:S1534-5807(23)00191-0. [PMID: 37192622 DOI: 10.1016/j.devcel.2023.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/13/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023]
Abstract
In addition to membranous organelles, autophagy selectively degrades biomolecular condensates, in particular p62/SQSTM1 bodies, to prevent diseases including cancer. Evidence is growing regarding the mechanisms by which autophagy degrades p62 bodies, but little is known about their constituents. Here, we established a fluorescence-activated-particle-sorting-based purification method for p62 bodies using human cell lines and determined their constituents by mass spectrometry. Combined with mass spectrometry of selective-autophagy-defective mouse tissues, we identified vault, a large supramolecular complex, as a cargo within p62 bodies. Mechanistically, major vault protein directly interacts with NBR1, a p62-interacting protein, to recruit vault into p62 bodies for efficient degradation. This process, named vault-phagy, regulates homeostatic vault levels in vivo, and its impairment may be associated with non-alcoholic-steatohepatitis-derived hepatocellular carcinoma. Our study provides an approach to identifying phase-separation-mediated selective autophagy cargoes, expanding our understanding of the role of phase separation in proteostasis.
Collapse
Affiliation(s)
- Reo Kurusu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuki Fujimoto
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hideaki Morishita
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Daisuke Noshiro
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Shuhei Takada
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Koji Yamano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hideaki Tanaka
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ritsuko Arai
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Hikarigaoka, Fukushima 960-1295, Japan
| | - Shun Kageyama
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomoko Funakoshi
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Satoko Komatsu-Hirota
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hikari Taka
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata 951-8510, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Hikarigaoka, Fukushima 960-1295, Japan
| | - Nobuo N Noda
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
21
|
Flechsig H, Ando T. Protein dynamics by the combination of high-speed AFM and computational modeling. Curr Opin Struct Biol 2023; 80:102591. [PMID: 37075535 DOI: 10.1016/j.sbi.2023.102591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/21/2023]
Abstract
High-speed atomic force microscopy (HS-AFM) allows direct observation of biological molecules in dynamic action. However, HS-AFM has no atomic resolution. This article reviews recent progress of computational methods to infer high-resolution information, including the construction of 3D atomistic structures, from experimentally acquired resolution-limited HS-AFM images.
Collapse
Affiliation(s)
- Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
22
|
Liu X, Xu Y, Luo D, Xu G, Xiong N, Chen XB. The secure judgment of graphic similarity against malicious adversaries and its applications. Sci Rep 2023; 13:4617. [PMID: 36944671 PMCID: PMC10030665 DOI: 10.1038/s41598-023-30741-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
With the advent of the era of big data, privacy computing analyzes and calculates data on the premise of protecting data privacy, to achieve data 'available and invisible'. As an important branch of secure multi-party computation, the geometric problem can solve practical problems in the military, national defense, finance, life, and other fields, and has important research significance. In this paper, we study the similarity problem of geometric graphics. First, this paper proposes the adjacency matrix vector coding method of isomorphic graphics, and use the Paillier variant encryption cryptography to solve the problem of isomorphic graphics confidentiality under the semi-honest model. Using cryptography tools such as elliptic curve cryptosystem, zero-knowledge proof, and cut-choose method, this paper designs a graphic similarity security decision protocol that can resist malicious adversary attacks. The analysis shows that the protocol has high computational efficiency and has wide application value in terrain matching, mechanical parts, biomolecules, face recognition, and other fields.
Collapse
Affiliation(s)
- Xin Liu
- Computer Department, Tianjin Ren'ai College, Tianjin, 301636, China
- School of Information Engineering, Inner Mongolia university of science and technology, Baotou, 014010, China
| | - Yang Xu
- School of Information Engineering, Inner Mongolia university of science and technology, Baotou, 014010, China
| | - Dan Luo
- Computer Department, Tianjin Ren'ai College, Tianjin, 301636, China.
| | - Gang Xu
- School of Information Science and Technology, North China University of Technology, Beijing, 100144, China
| | - Neal Xiong
- Department of Computer Science and Mathematics, Sul Ross State University, Alpine, TX, 79830, USA
| | - Xiu-Bo Chen
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, 100088, China
| |
Collapse
|
23
|
Puppulin L, Ishikawa J, Sumino A, Marchesi A, Flechsig H, Umeda K, Kodera N, Nishimasu H, Shibata M. Dynamics of Target DNA Binding and Cleavage by Staphylococcus aureus Cas9 as Revealed by High-Speed Atomic Force Microscopy. ACS NANO 2023; 17:4629-4641. [PMID: 36848598 DOI: 10.1021/acsnano.2c10709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Programmable DNA binding and cleavage by CRISPR-Cas9 has revolutionized the life sciences. However, the off-target cleavage observed in DNA sequences with some homology to the target still represents a major limitation for a more widespread use of Cas9 in biology and medicine. For this reason, complete understanding of the dynamics of DNA binding, interrogation and cleavage by Cas9 is crucial to improve the efficiency of genome editing. Here, we use high-speed atomic force microscopy (HS-AFM) to investigate Staphylococcus aureus Cas9 (SaCas9) and its dynamics of DNA binding and cleavage. Upon binding to single-guide RNA (sgRNA), SaCas9 forms a close bilobed structure that transiently and flexibly adopts also an open configuration. The SaCas9-mediated DNA cleavage is characterized by release of cleaved DNA and immediate dissociation, confirming that SaCas9 operates as a multiple turnover endonuclease. According to present knowledge, the process of searching for target DNA is mainly governed by three-dimensional diffusion. Independent HS-AFM experiments show a potential long-range attractive interaction between SaCas9-sgRNA and its target DNA. The interaction precedes the formation of the stable ternary complex and is observed exclusively in the vicinity of the protospacer-adjacent motif (PAM), up to distances of several nanometers. The direct visualization of the process by sequential topographic images suggests that SaCas9-sgRNA binds to the target sequence first, while the following binding of the PAM is accompanied by local DNA bending and formation of the stable complex. Collectively, our HS-AFM data reveal a potential and unexpected behavior of SaCas9 during the search for DNA targets.
Collapse
Affiliation(s)
- Leonardo Puppulin
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Junichiro Ishikawa
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Ayumi Sumino
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Arin Marchesi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Via Tronto, 10/A Torrette di Ancona, 60126, Ancona, Italy
| | - Holger Flechsig
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Nishimasu
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Inamori Research Institute for Science, Shimogyo-ku, Kyoto 600-8411, Japan
| | - Mikihiro Shibata
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
24
|
Amyot R, Kodera N, Flechsig H. BioAFMviewer software for simulation atomic force microscopy of molecular structures and conformational dynamics. J Struct Biol X 2023; 7:100086. [PMID: 36865763 PMCID: PMC9972558 DOI: 10.1016/j.yjsbx.2023.100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Atomic force microscopy (AFM) and high-speed scanning have significantly advanced real time observation of biomolecular dynamics, with applications ranging from single molecules to the cellular level. To facilitate the interpretation of resolution-limited imaging, post-experimental computational analysis plays an increasingly important role to understand AFM measurements. Data-driven simulation of AFM, computationally emulating experimental scanning, and automatized fitting has recently elevated the understanding of measured AFM topographies by inferring the underlying full 3D atomistic structures. Providing an interactive user-friendly interface for simulation AFM, the BioAFMviewer software has become an established tool within the Bio-AFM community, with a plethora of applications demonstrating how the obtained full atomistic information advances molecular understanding beyond topographic imaging. This graphical review illustrates the BioAFMviewer capacities and further emphasizes the importance of simulation AFM to complement experimental observations.
Collapse
Affiliation(s)
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
25
|
Lim K, Nishide G, Sajidah ES, Yamano T, Qiu Y, Yoshida T, Kobayashi A, Hazawa M, Ando T, Hanayama R, Wong RW. Nanoscopic Assessment of Anti-SARS-CoV-2 Spike Neutralizing Antibody Using High-Speed AFM. NANO LETTERS 2023; 23:619-628. [PMID: 36641798 PMCID: PMC9881159 DOI: 10.1021/acs.nanolett.2c04270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Anti-spike neutralizing antibodies (S NAbs) have been developed for prevention and treatment against COVID-19. The nanoscopic characterization of the dynamic interaction between spike proteins and S NAbs remains difficult. By using high-speed atomic force microscopy (HS-AFM), we elucidate the molecular property of an S NAb and its interaction with spike proteins. The S NAb appeared as monomers with a Y conformation at low density and formed hexameric oligomers at high density. The dynamic S NAb-spike protein interaction at RBD induces neither RBD opening nor S1 subunit shedding. Furthermore, the interaction was stable at endosomal pH. These findings indicated that the S NAb could have a negligible risk of antibody-dependent enhancement. Dynamic movement of spike proteins on small extracellular vesicles (S sEV) resembled that on SARS-CoV-2. The sensitivity of variant S sEVs to S NAb could be evaluated using HS-AFM. Altogether, we demonstrate a nanoscopic assessment platform for evaluating the binding property of S NAbs.
Collapse
Affiliation(s)
- Keesiang Lim
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Goro Nishide
- Division
of Nano Life Science in the Graduate School of Frontier Science Initiative,
WISE Program for Nano-Precision Medicine, Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Elma Sakinatus Sajidah
- Division
of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Tomoyoshi Yamano
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department
of Immunology, Kanazawa University Graduate
School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yujia Qiu
- Division
of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Takeshi Yoshida
- Department
of Immunology, Kanazawa University Graduate
School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Akiko Kobayashi
- Cell-Bionomics
Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University,
Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masaharu Hazawa
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics
Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University,
Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Toshio Ando
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Rikinari Hanayama
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department
of Immunology, Kanazawa University Graduate
School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Richard W. Wong
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics
Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University,
Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
26
|
Matusovsky OS, Månsson A, Rassier DE. Cooperativity of myosin II motors in the non-regulated and regulated thin filaments investigated with high-speed AFM. J Gen Physiol 2023; 155:213801. [PMID: 36633585 PMCID: PMC9859764 DOI: 10.1085/jgp.202213190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/09/2022] [Accepted: 11/23/2022] [Indexed: 01/13/2023] Open
Abstract
Skeletal myosins II are non-processive molecular motors that work in ensembles to produce muscle contraction while binding to the actin filament. Although the molecular properties of myosin II are well known, there is still debate about the collective work of the motors: is there cooperativity between myosin motors while binding to the actin filaments? In this study, we use high-speed AFM to evaluate this issue. We observed that the initial binding of small arrays of myosin heads to the non-regulated actin filaments did not affect the cooperative probability of subsequent bindings and did not lead to an increase in the fractional occupancy of the actin binding sites. These results suggest that myosin motors are independent force generators when connected in small arrays, and that the binding of one myosin does not alter the kinetics of other myosins. In contrast, the probability of binding of myosin heads to regulated thin filaments under activating conditions (at high Ca2+ concentration in the presence of 2 μM ATP) was increased with the initial binding of one myosin, leading to a larger occupancy of available binding sites at the next half-helical pitch of the filament. The result suggests that myosin cooperativity is observed over five pseudo-repeats and defined by the activation status of the thin filaments.
Collapse
Affiliation(s)
- Oleg S. Matusovsky
- Department of Kinesiology and Physical Education, McGill University, Montreal, Québec, Canada
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Dilson E. Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Québec, Canada,Correspondence to Dilson E. Rassier:
| |
Collapse
|
27
|
Decoding of the ubiquitin code for clearance of colliding ribosomes by the RQT complex. Nat Commun 2023; 14:79. [PMID: 36627279 PMCID: PMC9831982 DOI: 10.1038/s41467-022-35608-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
The collision sensor Hel2 specifically recognizes colliding ribosomes and ubiquitinates the ribosomal protein uS10, leading to noncanonical subunit dissociation by the ribosome-associated quality control trigger (RQT) complex. Although uS10 ubiquitination is essential for rescuing stalled ribosomes, its function and recognition steps are not fully understood. Here, we show that the RQT complex components Cue3 and Rqt4 interact with the K63-linked ubiquitin chain and accelerate the recruitment of the RQT complex to the ubiquitinated colliding ribosome. The CUE domain of Cue3 and the N-terminal domain of Rqt4 bind independently to the K63-linked ubiquitin chain. Their deletion abolishes ribosomal dissociation mediated by the RQT complex. High-speed atomic force microscopy (HS-AFM) reveals that the intrinsically disordered regions of Rqt4 enable the expansion of the searchable area for interaction with the ubiquitin chain. These findings provide mechanistic insight into the decoding of the ubiquitin code for clearance of colliding ribosomes by the RQT complex.
Collapse
|
28
|
End-to-end differentiable blind tip reconstruction for noisy atomic force microscopy images. Sci Rep 2023; 13:129. [PMID: 36599879 DOI: 10.1038/s41598-022-27057-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Observing the structural dynamics of biomolecules is vital to deepening our understanding of biomolecular functions. High-speed (HS) atomic force microscopy (AFM) is a powerful method to measure biomolecular behavior at near physiological conditions. In the AFM, measured image profiles on a molecular surface are distorted by the tip shape through the interactions between the tip and molecule. Once the tip shape is known, AFM images can be approximately deconvolved to reconstruct the surface geometry of the sample molecule. Thus, knowing the correct tip shape is an important issue in the AFM image analysis. The blind tip reconstruction (BTR) method developed by Villarrubia (J Res Natl Inst Stand Technol 102:425, 1997) is an algorithm that estimates tip shape only from AFM images using mathematical morphology operators. While the BTR works perfectly for noise-free AFM images, the algorithm is susceptible to noise. To overcome this issue, we here propose an alternative BTR method, called end-to-end differentiable BTR, based on a modern machine learning approach. In the method, we introduce a loss function including a regularization term to prevent overfitting to noise, and the tip shape is optimized with automatic differentiation and backpropagations developed in deep learning frameworks. Using noisy pseudo-AFM images of myosin V motor domain as test cases, we show that our end-to-end differentiable BTR is robust against noise in AFM images. The method can also detect a double-tip shape and deconvolve doubled molecular images. Finally, application to real HS-AFM data of myosin V walking on an actin filament shows that the method can reconstruct the accurate surface geometry of actomyosin consistent with the structural model. Our method serves as a general post-processing for reconstructing hidden molecular surfaces from any AFM images. Codes are available at https://github.com/matsunagalab/differentiable_BTR .
Collapse
|
29
|
Development of hidden Markov modeling method for molecular orientations and structure estimation from high-speed atomic force microscopy time-series images. PLoS Comput Biol 2022; 18:e1010384. [PMID: 36580448 PMCID: PMC9833559 DOI: 10.1371/journal.pcbi.1010384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/11/2023] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
High-speed atomic force microscopy (HS-AFM) is a powerful technique for capturing the time-resolved behavior of biomolecules. However, structural information in HS-AFM images is limited to the surface geometry of a sample molecule. Inferring latent three-dimensional structures from the surface geometry is thus important for getting more insights into conformational dynamics of a target biomolecule. Existing methods for estimating the structures are based on the rigid-body fitting of candidate structures to each frame of HS-AFM images. Here, we extend the existing frame-by-frame rigid-body fitting analysis to multiple frames to exploit orientational correlations of a sample molecule between adjacent frames in HS-AFM data due to the interaction with the stage. In the method, we treat HS-AFM data as time-series data, and they are analyzed with the hidden Markov modeling. Using simulated HS-AFM images of the taste receptor type 1 as a test case, the proposed method shows a more robust estimation of molecular orientations than the frame-by-frame analysis. The method is applicable in integrative modeling of conformational dynamics using HS-AFM data.
Collapse
|
30
|
Yamada R, Trang TN, Flechsig H, Takeda T, Kodera N, Konno H. Importance of annexin V N-terminus for 2D crystal formation and quick purification protocol of recombinant annexin V. PLoS One 2022; 17:e0278553. [PMID: 36548224 PMCID: PMC9778525 DOI: 10.1371/journal.pone.0278553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
Annexin V forms trimeric structures which further assemble into two-dimensional crystal (2D crystal) lattices on negatively charged phospholipid bilayer in a Ca2+-dependent manner. It is also known that annexin V 2D crystals show two types of symmetric patterns with six-fold symmetry (p6) and three-fold symmetry (p3). The p6 lattice also contains additional trimers in the gaps between the p6 axes, which are also referred to as non-p6 trimers because they do not participate in the formation of the p6 lattice. We here show that the annexin V N-terminal has significant influence on 2D crystal formation using high-speed atomic force microscopy (HS-AFM) observations. We also present a quick purification method to purify recombinant annexin V without any residual affinity tag after protein purification in ~3h.
Collapse
Affiliation(s)
- Ryusei Yamada
- College of Science and Engineering, School of Biological Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Tran Ngoc Trang
- Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Holger Flechsig
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Toshiki Takeda
- College of Science and Engineering, School of Natural System, Kanazawa University, Kanazawa, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- * E-mail:
| |
Collapse
|
31
|
Ishimura R, El-Gowily AH, Noshiro D, Komatsu-Hirota S, Ono Y, Shindo M, Hatta T, Abe M, Uemura T, Lee-Okada HC, Mohamed TM, Yokomizo T, Ueno T, Sakimura K, Natsume T, Sorimachi H, Inada T, Waguri S, Noda NN, Komatsu M. The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3. Nat Commun 2022; 13:7857. [PMID: 36543799 PMCID: PMC9772183 DOI: 10.1038/s41467-022-35501-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Protein modification by ubiquitin-like proteins (UBLs) amplifies limited genome information and regulates diverse cellular processes, including translation, autophagy and antiviral pathways. Ubiquitin-fold modifier 1 (UFM1) is a UBL covalently conjugated with intracellular proteins through ufmylation, a reaction analogous to ubiquitylation. Ufmylation is involved in processes such as endoplasmic reticulum (ER)-associated protein degradation, ribosome-associated protein quality control at the ER and ER-phagy. However, it remains unclear how ufmylation regulates such distinct ER-related functions. Here we identify a UFM1 substrate, NADH-cytochrome b5 reductase 3 (CYB5R3), that localizes on the ER membrane. Ufmylation of CYB5R3 depends on the E3 components UFL1 and UFBP1 on the ER, and converts CYB5R3 into its inactive form. Ufmylated CYB5R3 is recognized by UFBP1 through the UFM1-interacting motif, which plays an important role in the further uyfmylation of CYB5R3. Ufmylated CYB5R3 is degraded in lysosomes, which depends on the autophagy-related protein Atg7- and the autophagy-adaptor protein CDK5RAP3. Mutations of CYB5R3 and genes involved in the UFM1 system cause hereditary developmental disorders, and ufmylation-defective Cyb5r3 knock-in mice exhibit microcephaly. Our results indicate that CYB5R3 ufmylation induces ER-phagy, which is indispensable for brain development.
Collapse
Affiliation(s)
- Ryosuke Ishimura
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Afnan H El-Gowily
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Daisuke Noshiro
- Division of Biological Molecular Mechanisms, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Satoko Komatsu-Hirota
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yasuko Ono
- Calpain Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Mayumi Shindo
- Advanced Technical Support Department, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tomohisa Hatta
- National Institutes of Advanced Industrial Science and Technology, Biological Information Research Center (JBIRC), Kohtoh-ku, Tokyo, 135-0064, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata, 951-8585, Japan
| | - Takefumi Uemura
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Hikarigaoka, Fukshima, 960-1295, Japan
| | - Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takashi Ueno
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata, 951-8585, Japan
| | - Tohru Natsume
- National Institutes of Advanced Industrial Science and Technology, Biological Information Research Center (JBIRC), Kohtoh-ku, Tokyo, 135-0064, Japan
| | - Hiroyuki Sorimachi
- Calpain Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, 108-8639, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Hikarigaoka, Fukshima, 960-1295, Japan
| | - Nobuo N Noda
- Division of Biological Molecular Mechanisms, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
32
|
Ray KK, Verma AR, Gonzalez RL, Kinz-Thompson CD. Inferring the shape of data: a probabilistic framework for analysing experiments in the natural sciences. Proc Math Phys Eng Sci 2022; 478:20220177. [PMID: 37767180 PMCID: PMC10521765 DOI: 10.1098/rspa.2022.0177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 09/26/2022] [Indexed: 09/29/2023] Open
Abstract
A critical step in data analysis for many different types of experiments is the identification of features with theoretically defined shapes in N -dimensional datasets; examples of this process include finding peaks in multi-dimensional molecular spectra or emitters in fluorescence microscopy images. Identifying such features involves determining if the overall shape of the data is consistent with an expected shape; however, it is generally unclear how to quantitatively make this determination. In practice, many analysis methods employ subjective, heuristic approaches, which complicates the validation of any ensuing results-especially as the amount and dimensionality of the data increase. Here, we present a probabilistic solution to this problem by using Bayes' rule to calculate the probability that the data have any one of several potential shapes. This probabilistic approach may be used to objectively compare how well different theories describe a dataset, identify changes between datasets and detect features within data using a corollary method called Bayesian Inference-based Template Search; several proof-of-principle examples are provided. Altogether, this mathematical framework serves as an automated 'engine' capable of computationally executing analysis decisions currently made by visual inspection across the sciences.
Collapse
Affiliation(s)
- Korak Kumar Ray
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Anjali R. Verma
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
33
|
Multistep orthophosphate release tunes actomyosin energy transduction. Nat Commun 2022; 13:4575. [PMID: 35931685 PMCID: PMC9356070 DOI: 10.1038/s41467-022-32110-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
Muscle contraction and a range of critical cellular functions rely on force-producing interactions between myosin motors and actin filaments, powered by turnover of adenosine triphosphate (ATP). The relationship between release of the ATP hydrolysis product ortophosphate (Pi) from the myosin active site and the force-generating structural change, the power-stroke, remains enigmatic despite its central role in energy transduction. Here, we present a model with multistep Pi-release that unifies current conflicting views while also revealing additional complexities of potential functional importance. The model is based on our evidence from kinetics, molecular modelling and single molecule fluorescence studies of Pi binding outside the active site. It is also consistent with high-speed atomic force microscopy movies of single myosin II molecules without Pi at the active site, showing consecutive snapshots of pre- and post-power stroke conformations. In addition to revealing critical features of energy transduction by actomyosin, the results suggest enzymatic mechanisms of potentially general relevance. Release of the ATP hydrolysis product orthophosphate (Pi) from the myosin active site is central in force generation but is poorly understood. Here, Moretto et al. present evidence for multistep Pi-release reconciling apparently contradictory results.
Collapse
|
34
|
Biyani M, Yasuda K, Isogai Y, Okamoto Y, Weilin W, Kodera N, Flechsig H, Sakaki T, Nakajima M, Biyani M. Novel DNA Aptamer for CYP24A1 Inhibition with Enhanced Antiproliferative Activity in Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18064-18078. [PMID: 35436103 DOI: 10.1021/acsami.1c22965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Overexpression of the vitamin D3-inactivating enzyme CYP24A1 (cytochrome P450 family 24 subfamily and hereafter referred to as CYP24) can cause chronic kidney diseases, osteoporosis, and several types of cancers. Therefore, CYP24 inhibition has been considered a potential therapeutic approach. Vitamin D3 mimetics and small molecule inhibitors have been shown to be effective, but nonspecific binding, drug resistance, and potential toxicity limit their effectiveness. We have identified a novel 70-nt DNA aptamer-based inhibitor of CYP24 by utilizing the competition-based aptamer selection strategy, taking CYP24 as the positive target protein and CYP27B1 (the enzyme catalyzing active vitamin D3 production) as the countertarget protein. One of the identified aptamers, Apt-7, showed a 5.8-fold higher binding affinity with CYP24 than the similar competitor CYP27B1. Interestingly, Apt-7 selectively inhibited CYP24 (the relative CYP24 activity decreased by 39.1 ± 3% and showed almost no inhibition of CYP27B1). Furthermore, Apt-7 showed cellular internalization in CYP24-overexpressing A549 lung adenocarcinoma cells via endocytosis and induced endogenous CYP24 inhibition-based antiproliferative activity in cancer cells. We also employed high-speed atomic force microscopy experiments and molecular docking simulations to provide a single-molecule explanation of the aptamer-based CYP24 inhibition mechanism. The novel aptamer identified in this study presents an opportunity to generate a new probe for the recognition and inhibition of CYP24 for biomedical research and could assist in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Madhu Biyani
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhiro Isogai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yuki Okamoto
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Wei Weilin
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Miki Nakajima
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Manish Biyani
- BioSeeds Corporation, JAIST venture business laboratory, Ishikawa Create Labo, Asahidai 2-13, Nomi City, Ishikawa 923-1211, Japan
| |
Collapse
|
35
|
Amyot R, Marchesi A, Franz CM, Casuso I, Flechsig H. Simulation atomic force microscopy for atomic reconstruction of biomolecular structures from resolution-limited experimental images. PLoS Comput Biol 2022; 18:e1009970. [PMID: 35294442 PMCID: PMC8959186 DOI: 10.1371/journal.pcbi.1009970] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/28/2022] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Atomic force microscopy (AFM) can visualize the dynamics of single biomolecules under near-physiological conditions. However, the scanning tip probes only the molecular surface with limited resolution, missing details required to fully deduce functional mechanisms from imaging alone. To overcome such drawbacks, we developed a computational framework to reconstruct 3D atomistic structures from AFM surface scans, employing simulation AFM and automatized fitting to experimental images. We provide applications to AFM images ranging from single molecular machines, protein filaments, to large-scale assemblies of 2D protein lattices, and demonstrate how the obtained full atomistic information advances the molecular understanding beyond the original topographic AFM image. We show that simulation AFM further allows for quantitative molecular feature assignment within measured AFM topographies. Implementation of the developed methods into the versatile interactive interface of the BioAFMviewer software, freely available at www.bioafmviewer.com, presents the opportunity for the broad Bio-AFM community to employ the enormous amount of existing structural and modeling data to facilitate the interpretation of resolution-limited AFM images.
Collapse
Affiliation(s)
- Romain Amyot
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Arin Marchesi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
| | - Clemens M. Franz
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
| | - Ignacio Casuso
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
- * E-mail:
| |
Collapse
|
36
|
Hall D, Foster AS. Practical considerations for feature assignment in high-speed AFM of live cell membranes. Biophys Physicobiol 2022; 19:1-21. [PMID: 35797405 PMCID: PMC9173863 DOI: 10.2142/biophysico.bppb-v19.0016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/13/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University
| | | |
Collapse
|
37
|
Lim K, Nishide G, Yoshida T, Watanabe‐Nakayama T, Kobayashi A, Hazawa M, Hanayama R, Ando T, Wong RW. Millisecond dynamic of SARS-CoV-2 spike and its interaction with ACE2 receptor and small extracellular vesicles. J Extracell Vesicles 2021; 10:e12170. [PMID: 34874124 PMCID: PMC8650025 DOI: 10.1002/jev2.12170] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/21/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 spike protein (S) binds to human angiotensin-converting enzyme 2 (hACE2), allowing virus to dock on cell membrane follow by viral entry. Here, we use high-speed atomic force microscopy (HS-AFM) for real-time visualization of S, and its interaction with hACE2 and small extracellular vesicles (sEVs). Results show conformational heterogeneity of S, flexibility of S stalk and receptor-binding domain (RBD), and pH/temperature-induced conformational change of S. S in an S-ACE2 complex appears as an all-RBD up conformation. The complex acquires a distinct topology upon acidification. S and S2 subunit demonstrate different membrane docking mechanisms on sEVs. S-hACE2 interaction facilitates S to dock on sEVs, implying the feasibility of ACE2-expressing sEVs for viral neutralization. In contrary, S2 subunit docks on lipid layer and enters sEV using its fusion peptide, mimicking the viral entry scenario. Altogether, our study provides a platform that is suitable for real-time visualization of various entry inhibitors, neutralizing antibodies, and sEV-based decoy in blocking viral entry. Teaser: Comprehensive observation of SARS-CoV-2 spike and its interaction with receptor ACE2 and sEV-based decoy in real time using HS-AFM.
Collapse
Affiliation(s)
- Keesiang Lim
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Goro Nishide
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeWISE Program for Nano‐Precision MedicineScience and TechnologyKanazawa UniversityKanazawaIshikawaJapan
| | - Takeshi Yoshida
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Department of ImmunologyKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | | | - Akiko Kobayashi
- Cell‐Bionomics Research UnitInstitute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Masaharu Hazawa
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Cell‐Bionomics Research UnitInstitute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Rikinari Hanayama
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Department of ImmunologyKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Toshio Ando
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Richard W. Wong
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Cell‐Bionomics Research UnitInstitute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
38
|
Dasgupta B, Miyashita O, Uchihashi T, Tama F. Reconstruction of Three-Dimensional Conformations of Bacterial ClpB from High-Speed Atomic-Force-Microscopy Images. Front Mol Biosci 2021; 8:704274. [PMID: 34422905 PMCID: PMC8376356 DOI: 10.3389/fmolb.2021.704274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/13/2021] [Indexed: 11/14/2022] Open
Abstract
ClpB belongs to the cellular disaggretase machinery involved in rescuing misfolded or aggregated proteins during heat or other cellular shocks. The function of this protein relies on the interconversion between different conformations in its native condition. A recent high-speed-atomic-force-microscopy (HS-AFM) experiment on ClpB from Thermus thermophilus shows four predominant conformational classes, namely, open, closed, spiral, and half-spiral. Analyses of AFM images provide only partial structural information regarding the molecular surface, and thus computational modeling of three-dimensional (3D) structures of these conformations should help interpret dynamical events related to ClpB functions. In this study, we reconstruct 3D models of ClpB from HS-AFM images in different conformational classes. We have applied our recently developed computational method based on a low-resolution representation of 3D structure using a Gaussian mixture model, combined with a Monte-Carlo sampling algorithm to optimize the agreement with target AFM images. After conformational sampling, we obtained models that reflect conformational variety embedded within the AFM images. From these reconstructed 3D models, we described, in terms of relative domain arrangement, the different types of ClpB oligomeric conformations observed by HS-AFM experiments. In particular, we highlighted the slippage of the monomeric components around the seam. This study demonstrates that such details of information, necessary for annotating the different conformational states involved in the ClpB function, can be obtained by combining HS-AFM images, even with limited resolution, and computational modeling.
Collapse
Affiliation(s)
- Bhaskar Dasgupta
- Computational Structural Biology Research Team, RIKEN-Center for Computational Science, Kobe, Japan
| | - Osamu Miyashita
- Computational Structural Biology Research Team, RIKEN-Center for Computational Science, Kobe, Japan
| | - Takayuki Uchihashi
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Florence Tama
- Computational Structural Biology Research Team, RIKEN-Center for Computational Science, Kobe, Japan.,Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan.,Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| |
Collapse
|
39
|
Niina T, Matsunaga Y, Takada S. Rigid-body fitting to atomic force microscopy images for inferring probe shape and biomolecular structure. PLoS Comput Biol 2021; 17:e1009215. [PMID: 34283829 PMCID: PMC8323932 DOI: 10.1371/journal.pcbi.1009215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/30/2021] [Accepted: 06/26/2021] [Indexed: 12/01/2022] Open
Abstract
Atomic force microscopy (AFM) can visualize functional biomolecules near the physiological condition, but the observed data are limited to the surface height of specimens. Since the AFM images highly depend on the probe tip shape, for successful inference of molecular structures from the measurement, the knowledge of the probe shape is required, but is often missing. Here, we developed a method of the rigid-body fitting to AFM images, which simultaneously finds the shape of the probe tip and the placement of the molecular structure via an exhaustive search. First, we examined four similarity scores via twin-experiments for four test proteins, finding that the cosine similarity score generally worked best, whereas the pixel-RMSD and the correlation coefficient were also useful. We then applied the method to two experimental high-speed-AFM images inferring the probe shape and the molecular placement. The results suggest that the appropriate similarity score can differ between target systems. For an actin filament image, the cosine similarity apparently worked best. For an image of the flagellar protein FlhAC, we found the correlation coefficient gave better results. This difference may partly be attributed to the flexibility in the target molecule, ignored in the rigid-body fitting. The inferred tip shape and placement results can be further refined by other methods, such as the flexible fitting molecular dynamics simulations. The developed software is publicly available. Observation of functional dynamics of individual biomolecules is important to understand molecular mechanisms of cellular phenomena. High-speed (HS) atomic force microscopy (AFM) is a powerful tool that enables us to visualize the real-time dynamics of working biomolecules under near-physiological conditions. However, the information available by the AFM images is limited to the two-dimensional surface shape detected via the force to the probe. While the surface information is affected by the shape of the probe tip, the probe shape itself cannot be directly measured before each AFM measurement. To overcome this problem, we have developed a computational method to simultaneously infer the probe tip shape and the molecular placement from an AFM image. We show that our method successfully estimates the effective AFM tip shape and visualizes a structure with a more accurate placement. The estimation of a molecular placement with the correct probe tip shape enables us to obtain more insights into functional dynamics of the molecule from HS-AFM images.
Collapse
Affiliation(s)
- Toru Niina
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yasuhiro Matsunaga
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
40
|
Synthetic Data in Quantitative Scanning Probe Microscopy. NANOMATERIALS 2021; 11:nano11071746. [PMID: 34361132 PMCID: PMC8308173 DOI: 10.3390/nano11071746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022]
Abstract
Synthetic data are of increasing importance in nanometrology. They can be used for development of data processing methods, analysis of uncertainties and estimation of various measurement artefacts. In this paper we review methods used for their generation and the applications of synthetic data in scanning probe microscopy, focusing on their principles, performance, and applicability. We illustrate the benefits of using synthetic data on different tasks related to development of better scanning approaches and related to estimation of reliability of data processing methods. We demonstrate how the synthetic data can be used to analyse systematic errors that are common to scanning probe microscopy methods, either related to the measurement principle or to the typical data processing paths.
Collapse
|
41
|
Marchesi A, Umeda K, Komekawa T, Matsubara T, Flechsig H, Ando T, Watanabe S, Kodera N, Franz CM. An ultra-wide scanner for large-area high-speed atomic force microscopy with megapixel resolution. Sci Rep 2021; 11:13003. [PMID: 34155261 PMCID: PMC8217563 DOI: 10.1038/s41598-021-92365-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/09/2021] [Indexed: 11/11/2022] Open
Abstract
High-speed atomic force microscopy (HS-AFM) is a powerful tool for visualizing the dynamics of individual biomolecules. However, in single-molecule HS-AFM imaging applications, x,y-scanner ranges are typically restricted to a few hundred nanometers, preventing overview observation of larger molecular assemblies, such as 2-dimensional protein crystal growth or fibrillar aggregation. Previous advances in scanner design using mechanical amplification of the piezo-driven x,y-positioning system have extended the size of HS-AFM image frames to several tens of micrometer, but these large scanners may suffer from mechanical instabilities at high scan speeds and only record images with limited pixel numbers and comparatively low lateral resolutions (> 20–100 nm/pixel), complicating single-molecule analysis. Thus, AFM systems able to image large sample areas at high speeds and with nanometer resolution have still been missing. Here, we describe a HS-AFM sample-scanner system able to record large topographic images (≤ 36 × 36 µm2) containing up to 16 megapixels, providing molecular resolution throughout the image frame. Despite its large size, the flexure-based scanner features a high resonance frequency (> 2 kHz) and delivers stable operation even at high scans speeds of up to 7.2 mm/s, minimizing the time required for recording megapixel scans. We furthermore demonstrate that operating this high-speed scanner in time-lapse mode can simultaneously identify areas of spontaneous 2-dimensional Annexin A5 crystal growth, resolve the angular orientation of large crystalline domains, and even detect rare crystal lattice defects, all without changing scan frame size or resolution. Dynamic processes first identified from overview scans can then be further imaged at increased frame rates in reduced scan areas after switching to conventional HS-AFM scanning. The added ability to collect large-area, high-resolution images of complex samples within biological-relevant time frames extends the capabilities of HS-AFM from single-molecule imaging to the study of large dynamic molecular arrays. Moreover, large-area HS-AFM scanning can generate detailed structural data sets from a single scan, aiding the quantitative analysis of structurally heterogenous samples, including cellular surfaces.
Collapse
Affiliation(s)
- Arin Marchesi
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Kenichi Umeda
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takumi Komekawa
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takeru Matsubara
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Holger Flechsig
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Toshio Ando
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shinji Watanabe
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Clemens M Franz
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
42
|
Fuchigami S, Niina T, Takada S. Case Report: Bayesian Statistical Inference of Experimental Parameters via Biomolecular Simulations: Atomic Force Microscopy. Front Mol Biosci 2021; 8:636940. [PMID: 33778008 PMCID: PMC7987833 DOI: 10.3389/fmolb.2021.636940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The atomic force microscopy (AFM) is a powerful tool for imaging structures of molecules bound on surfaces. To gain high-resolution structural information, one often superimposes structure models on the measured images. Motivated by high flexibility of biomolecules, we previously developed a flexible-fitting molecular dynamics (MD) method that allows protein structural changes upon superimposing. Since the AFM image largely depends on the AFM probe tip geometry, the fitting process requires accurate estimation of the parameters related to the tip geometry. Here, we performed a Bayesian statistical inference to estimate a tip radius of the AFM probe from a given AFM image via flexible-fitting molecular dynamics (MD) simulations. We first sampled conformations of the nucleosome that fit well the reference AFM image by the flexible-fitting with various tip radii. We then estimated an optimal tip parameter by maximizing the conditional probability density of the AFM image produced from the fitted structure.
Collapse
Affiliation(s)
- Sotaro Fuchigami
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|