1
|
Szlanka T, Lukacsovich T, Bálint É, Virágh E, Szabó K, Hajdu I, Molnár E, Lin YH, Zvara Á, Kelemen-Valkony I, Méhi O, Török I, Hegedűs Z, Kiss B, Ramasz B, Magdalena LM, Puskás L, Mechler BM, Fónagy A, Asztalos Z, Steinbach G, Žurovec M, Boros I, Kiss I. Dominant suppressor genes of p53-induced apoptosis in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae149. [PMID: 38985658 PMCID: PMC11373661 DOI: 10.1093/g3journal/jkae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/06/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024]
Abstract
One of the major functions of programmed cell death (apoptosis) is the removal of cells that suffered oncogenic mutations, thereby preventing cancerous transformation. By making use of a Double-Headed-EP (DEP) transposon, a P element derivative made in our laboratory, we made an insertional mutagenesis screen in Drosophila melanogaster to identify genes that, when overexpressed, suppress the p53-activated apoptosis. The DEP element has Gal4-activatable, outward-directed UAS promoters at both ends, which can be deleted separately in vivo. In the DEP insertion mutants, we used the GMR-Gal4 driver to induce transcription from both UAS promoters and tested the suppression effect on the apoptotic rough eye phenotype generated by an activated UAS-p53 transgene. By DEP insertions, 7 genes were identified, which suppressed the p53-induced apoptosis. In 4 mutants, the suppression effect resulted from single genes activated by 1 UAS promoter (Pka-R2, Rga, crol, and Spt5). In the other 3 (Orct2, Polr2M, and stg), deleting either UAS promoter eliminated the suppression effect. In qPCR experiments, we found that the genes in the vicinity of the DEP insertion also showed an elevated expression level. This suggested an additive effect of the nearby genes on suppressing apoptosis. In the eukaryotic genomes, there are coexpressed gene clusters. Three of the DEP insertion mutants are included, and 2 are in close vicinity of separate coexpressed gene clusters. This raises the possibility that the activity of some of the genes in these clusters may help the suppression of the apoptotic cell death.
Collapse
Affiliation(s)
- Tamás Szlanka
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Tamás Lukacsovich
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Éva Bálint
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Erika Virágh
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Kornélia Szabó
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Department of Developmental Genetics, German Cancer Research Centre, 69120 Heidelberg, Germany
| | - Ildikó Hajdu
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Enikő Molnár
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Yu-Hsien Lin
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Ágnes Zvara
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Ildikó Kelemen-Valkony
- Cellular Imaging Laboratory, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Orsolya Méhi
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - István Török
- Department of Developmental Genetics, German Cancer Research Centre, 69120 Heidelberg, Germany
| | - Zoltán Hegedűs
- Bioinformatics Laboratory, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Brigitta Kiss
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Beáta Ramasz
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Laura M Magdalena
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - László Puskás
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Bernard M Mechler
- Department of Developmental Genetics, German Cancer Research Centre, 69120 Heidelberg, Germany
| | - Adrien Fónagy
- Centre for Agricultural Sciences, Plant Protection Institute, 1022 Budapest, Hungary
| | - Zoltán Asztalos
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Aktogen Hungary Ltd., 6726 Szeged, Hungary
| | - Gábor Steinbach
- Cellular Imaging Laboratory, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Michal Žurovec
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Imre Boros
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - István Kiss
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| |
Collapse
|
2
|
Abbas H, Derkaoui DK, Jeammet L, Adicéam E, Tiollier J, Sicard H, Braun T, Poyet JL. Apoptosis Inhibitor 5: A Multifaceted Regulator of Cell Fate. Biomolecules 2024; 14:136. [PMID: 38275765 PMCID: PMC10813780 DOI: 10.3390/biom14010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Apoptosis, or programmed cell death, is a fundamental process that maintains tissue homeostasis, eliminates damaged or infected cells, and plays a crucial role in various biological phenomena. The deregulation of apoptosis is involved in many human diseases, including cancer. One of the emerging players in the intricate regulatory network of apoptosis is apoptosis inhibitor 5 (API5), also called AAC-11 (anti-apoptosis clone 11) or FIF (fibroblast growth factor-2 interacting factor). While it may not have yet the same level of notoriety as some other cancer-associated proteins, API5 has garnered increasing attention in the cancer field in recent years, as elevated API5 levels are often associated with aggressive tumor behavior, resistance to therapy, and poor patient prognosis. This review aims to shed light on the multifaceted functions and regulatory mechanisms of API5 in cell fate decisions as well as its interest as therapeutic target in cancer.
Collapse
Affiliation(s)
- Hafsia Abbas
- Université Oran 1, Ahmed Ben Bella, Oran 31000, Algeria; (H.A.); (D.K.D.)
| | | | - Louise Jeammet
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Emilie Adicéam
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Jérôme Tiollier
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Hélène Sicard
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Thorsten Braun
- Laboratoire de Transfert des Leucémies, EA3518, Institut de Recherche Saint Louis, Hôpital Saint Louis, Université de Paris, 75010 Paris, France;
- AP-HP, Service d’Hématologie Clinique, Hôpital Avicenne, Université Paris XIII, 93000 Bobigny, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, 75010 Paris, France
| | - Jean-Luc Poyet
- INSERM UMRS976, Institut de Recherche Saint Louis, Hôpital Saint Louis, 75010 Paris, France
- Université Paris Cité, 75015 Paris, France
| |
Collapse
|
3
|
Yu T, Ning J, Chen M, Wang F, Liu G, Wang Q, Xu X, Wang C, Lu X. Potential Involvement of DNA Methylation in Hybrid Sterility in Hermaphroditic Argopecten Scallops. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:701-717. [PMID: 37548862 DOI: 10.1007/s10126-023-10233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
DNA methylation is an important epigenetic modification factor in regulating fertility. Corresponding process remains poorly investigated in hermaphroditic scallops. The interspecific F1 hybrids between the hermaphroditic bay scallops (Argopecten irradians) and Peruvian scallops (Argopecten purpuratus) exhibited significant heterosis in yield, but sterility in hybrids obstructs the utilization of the genetic resources. However, the determination mechanism of hybrid sterility in the hermaphroditic Argopecten scallops is still unclear. In this study, the effect of DNA methylation in the hybrid sterility of hermaphroditic Argopecten scallops was explored. The results showed that the mean methylation level was higher in sterile hybrids than fertile hybrids, especially on chromosome 11 of the paternal parent. A total of 61,062 differentially methylated regions (DMRs) were identified, containing 3619 differentially methylated genes (DMGs) and 1165 differentially methylated promoters that are located in the DMRs of CG sequence context. The hyper-methylated genes were enriched into five KEGG pathways, including ubiquitin-mediated proteolysis, ECM-receptor interaction, non-homologous end-joining, notch signaling, and the mismatch repair pathways. The DMGs might induce hybrid sterility by inhibition of oogenesis and egg maturation, induction of apoptosis, increased ROS, and insufficient ATP supply. Our results would enrich the determination mechanism of hybrid sterility and provide new insights into the utilization of the genetic resources of the interspecific hybrids.
Collapse
Affiliation(s)
- Tieying Yu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhao Ning
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China
| | - Min Chen
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China
| | - Fukai Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, 266109, Qingdao, Shandong, China
| | - Guilong Liu
- Yantai Spring-Sea AquaSeed, Ltd., 264006, Yantai, China
| | - Quanchao Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China
| | - Xin Xu
- Yantai Spring-Sea AquaSeed, Ltd., 264006, Yantai, China
| | - Chunde Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China
- College of Marine Science and Engineering, Qingdao Agricultural University, 266109, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Lu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China.
| |
Collapse
|
4
|
Jørgensen D, Ropstad EO, Meuwissen T, Lingaas F. Genomic analysis and prediction of genomic values for distichiasis in Staffordshire bull terriers. Canine Med Genet 2023; 10:9. [PMID: 37488637 PMCID: PMC10367371 DOI: 10.1186/s40575-023-00132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Distichiasis is a condition characterized by aberrant hairs along the eyelid margins. The symptoms are usually mild but can lead to ulcerations and lesions of the cornea in severe cases. It is the most frequently noted ocular disorder in Norwegian Staffordshire bull terriers (SBT), with a prevalence above 18% in the adult population. A complex inheritance is assumed, but there is sparse knowledge about the genetic background of distichiasis in dogs. We have performed a genome-wide association study of distichiasis in SBT and used genomic data in an attempt to predict genomic values for the disorder. RESULTS We identified four genetic regions on CFA1, CFA18, CFA32 and CFA34 using a mixed linear model association analysis and a Bayesian mixed model analysis. Genomic values were predicted using GBLUP and a Bayesian approach, BayesR. The genomic prediction showed that the 1/4 of dogs with predicted values most likely to acquire distichiasis had a 3.9 -4.0 times higher risk of developing distichiasis compared to the quarter (1/4) of dogs least likely to acquire the disease. There was no significant difference between the two methods used. CONCLUSION Four genomic regions associated with distichiasis were discovered in the association analysis, suggesting that distichiasis in SBT is a complex trait involving numerous loci. The four associated regions need to be confirmed in an independent sample. We also used all 95 K SNPs for genomic prediction and showed that genomic prediction can be a helpful tool in selective breeding schemes at breed level aiming at reducing the prevalence of distichiasis in SBTs in the future, even if the predictive value of single dogs may be low.
Collapse
Affiliation(s)
- Dina Jørgensen
- Medical Genetics Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. box 5003, 1432, Ås, Norway.
| | | | - Theodorus Meuwissen
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. box 5003, 1432, Ås, Norway
| | - Frode Lingaas
- Medical Genetics Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. box 5003, 1432, Ås, Norway
| |
Collapse
|
5
|
Kuttanamkuzhi A, Panda D, Malaviya R, Gaidhani G, Lahiri M. Altered expression of anti-apoptotic protein Api5 affects breast tumorigenesis. BMC Cancer 2023; 23:374. [PMID: 37095445 PMCID: PMC10127332 DOI: 10.1186/s12885-023-10866-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Apoptosis or programmed cell death plays a vital role in maintaining homeostasis and, therefore, is a tightly regulated process. Deregulation of apoptosis signalling can favour carcinogenesis. Apoptosis inhibitor 5 (Api5), an inhibitor of apoptosis, is upregulated in cancers. Interestingly, Api5 is shown to regulate both apoptosis and cell proliferation. To address the precise functional significance of Api5 in carcinogenesis here we investigate the role of Api5 in breast carcinogenesis. METHODS Initially, we carried out in silico analyses using TCGA and GENT2 datasets to understand expression pattern of API5 in breast cancer patients followed by investigating the protein expression in Indian breast cancer patient samples. To investigate the functional importance of Api5 in breast carcinogenesis, we utilised MCF10A 3D breast acinar cultures and spheroid cultures of malignant breast cells with altered Api5 expression. Various phenotypic and molecular changes induced by altered Api5 expression were studied using these 3D culture models. Furthermore, in vivo tumorigenicity studies were used to confirm the importance of Api5 in breast carcinogenesis. RESULTS In-silico analysis revealed elevated levels of Api5 transcript in breast cancer patients which correlated with poor prognosis. Overexpression of Api5 in non-tumorigenic breast acinar cultures resulted in increased proliferation and cells exhibited a partial EMT-like phenotype with higher migratory potential and disruption in cell polarity. Furthermore, during acini development, the influence of Api5 is mediated via the combined action of FGF2 activated PDK1-Akt/cMYC signalling and Ras-ERK pathways. Conversely, Api5 knock-down downregulated FGF2 signalling leading to reduced proliferation and diminished in vivo tumorigenic potential of the breast cancer cells. CONCLUSION Taken together, our study identifies Api5 as a central player involved in regulating multiple events during breast carcinogenesis including proliferation, and apoptosis through deregulation of FGF2 signalling pathway.
Collapse
Affiliation(s)
- Abhijith Kuttanamkuzhi
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Debiprasad Panda
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Radhika Malaviya
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Gautami Gaidhani
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
- The School of Chemistry and Molecular Biology, St. Lucia Campus, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India.
| |
Collapse
|
6
|
Aria H, Rezaei M. Immunogenic cell death inducer peptides: A new approach for cancer therapy, current status and future perspectives. Biomed Pharmacother 2023; 161:114503. [PMID: 36921539 DOI: 10.1016/j.biopha.2023.114503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Immunogenic Cell Death (ICD) is a type of cell death that kills tumor cells by stimulating the adaptive immune response against other tumor cells. ICD depends on the endoplasmic reticulum (ER) stress and the secretion of Damage-Associated Molecular Patterns (DAMP) by the dying tumor cell. DAMPs recruit innate immune cells such as Dendritic Cells (DC), triggering a cancer-specific immune response such as cytotoxic T lymphocytes (CTLs) to eliminate remaining cancer cells. ICD is accompanied by several hallmarks in dying cells, such as surface translocation of ER chaperones, calreticulin (CALR), and extracellular secretion of DAMPs such as high mobility group protein B1 (HMGB1) and adenosine triphosphate (ATP). Therapeutic peptides can kill bacteria and tumor cells thus affecting the immune system. They have high specificity and affinity for their targets, small size, appropriate cell membrane penetration, short half-life, and simple production processes. Peptides are interesting agents for immunomodulation since they may overcome the limitations of other therapeutics. Thus, the development of peptides affecting the TME and active antitumoral immunity has been actively pursued. On the other hand, several peptides have been recently identified to trigger ICD and anti-cancer responses. In the present review, we review previous studies on peptide-induced ICD, their mechanism, their targets, and markers. They include anti-microbial peptides (AMPs), cationic or mitochondrial targeting, checkpoint inhibitors, antiapoptotic inhibitors, and "don't eat me" inhibitor peptides. Also, peptides will be investigated potentially inducing ICD that is divided into ER stressors, ATPase inhibitors, and anti-microbial peptides.
Collapse
Affiliation(s)
- Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Bernardini I, Fabrello J, Vecchiato M, Ferraresso S, Babbucci M, Peruzza L, Rovere GD, Masiero L, Marin MG, Bargelloni L, Gambaro A, Patarnello T, Matozzo V, Milan M. Effects of environmental concentrations of the fragrance amyl salicylate on the mediterranean mussel Mytilus galloprovincialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119502. [PMID: 35605833 DOI: 10.1016/j.envpol.2022.119502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Amyl salicylate (AS) is a fragrance massively used as a personal care product and following the discharged in wastewaters may end up in the aquatic environment representing a potential threat for the ecosystem and living organisms. AS was recently detected in water of the Venice Lagoon, a vulnerable area continuously subjected to the income of anthropogenic chemicals. The lagoon is a relevant area for mollusc farming, including the Mediterranean mussels (Mytilus galloprovincialis) having an important economic and ecological role. Despite high levels of AS occurred in water of the Lagoon of Venice, no studies investigated the possible consequences of AS exposures on species inhabiting this ecosystem to date. For the first time, we applied a multidisciplinary approach to investigate the potential effects of the fragrance AS on Mediterranean mussels. To reach such a goal, bioaccumulation, cellular, biochemical, and molecular analyses (RNA-seq and microbiota characterization) were measured in mussels treated for 7 and 14 days with different AS Venice lagoon environmental levels (0.1 and 0.5 μg L-1). Despite chemical investigations suggested low AS bioaccumulation capability, cellular and molecular analyses highlighted the disruption of several key cellular processes after the prolonged exposures to the high AS concentration. Among them, potential immunotoxicity and changes in transcriptional regulation of pathways involved in energy metabolism, stress response, apoptosis and cell death regulations have been observed. Conversely, exposure to the low AS concentration demonstrated weak transcriptional changes and transient increased representation of opportunistic pathogens, as Arcobacter genus and Vibrio aestuarianus. Summarizing, this study provides the first overview on the effects of AS on one of the most widely farmed mollusk species.
Collapse
Affiliation(s)
- I Bernardini
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - J Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, 35131, Padova, Italy
| | - M Vecchiato
- Institute of Polar Sciences - National Research Council (ISP-CNR), Via Torino 155, 30172, Venezia-Mestre, Venice, Italy; Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia-Mestre, Venice, Italy
| | - S Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - M Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - L Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - G Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - L Masiero
- Department of Biology, University of Padova, Via Bassi 58/B, 35131, Padova, Italy
| | - M G Marin
- Department of Biology, University of Padova, Via Bassi 58/B, 35131, Padova, Italy
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - A Gambaro
- Institute of Polar Sciences - National Research Council (ISP-CNR), Via Torino 155, 30172, Venezia-Mestre, Venice, Italy; Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia-Mestre, Venice, Italy
| | - T Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - V Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131, Padova, Italy.
| | - M Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
8
|
Wang H, Li W, Zheng SJ. Advances on Innate Immune Evasion by Avian Immunosuppressive Viruses. Front Immunol 2022; 13:901913. [PMID: 35634318 PMCID: PMC9133627 DOI: 10.3389/fimmu.2022.901913] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 01/12/2023] Open
Abstract
Innate immunity is not only the first line of host defense against pathogenic infection, but also the cornerstone of adaptive immune response. Upon pathogenic infection, pattern recognition receptors (PRRs) of host engage pathogen-associated molecular patterns (PAMPs) of pathogens, which initiates IFN production by activating interferon regulatory transcription factors (IRFs), nuclear factor-kappa B (NF-κB), and/or activating protein-1 (AP-1) signal transduction pathways in host cells. In order to replicate and survive, pathogens have evolved multiple strategies to evade host innate immune responses, including IFN-I signal transduction, autophagy, apoptosis, necrosis, inflammasome and/or metabolic pathways. Some avian viruses may not be highly pathogenic but they have evolved varied strategies to evade or suppress host immune response for survival, causing huge impacts on the poultry industry worldwide. In this review, we focus on the advances on innate immune evasion by several important avian immunosuppressive viruses (infectious bursal disease virus (IBDV), Marek’s disease virus (MDV), avian leukosis virus (ALV), etc.), especially their evasion of PRRs-mediated signal transduction pathways (IFN-I signal transduction pathway) and IFNAR-JAK-STAT signal pathways. A comprehensive understanding of the mechanism by which avian viruses evade or suppress host immune responses will be of help to the development of novel vaccines and therapeutic reagents for the prevention and control of infectious diseases in chickens.
Collapse
Affiliation(s)
- Hongnuan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Shijun J. Zheng,
| |
Collapse
|
9
|
Liu S, Chen M, Liu X, Zheng K, Liu B, Wu W, Pang Q. DjApi5 is required for homeostasis in planarian Dugesia japonica. Biochem Biophys Res Commun 2022; 597:140-146. [PMID: 35144177 DOI: 10.1016/j.bbrc.2022.01.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/30/2022] [Indexed: 11/25/2022]
Abstract
Orchestrated apoptosis in planarian Dugesia japonica is very important for its degrowth and regeneration. Apoptosis Inhibitor-5 (API5) is an anti-apoptotic factor that negatively regulates cell apoptosis. We characterized the conserved structure of DjApi5, however, the biological function of DjApi5 in planarians needs further investigation. In this study, we found that DjApi5 and its interacting molecular DjAcinus are required for planarian homeostasis, which may be correlated with their specific localization in neoblasts in addition to their anti-apoptosis functions. We further demonstrated the increased expression of DjApi5 during planarian regeneration, and DjApi5 deficiency affects normal regeneration processes. These results indicated new functions of DjApi5 in development.
Collapse
Affiliation(s)
- Shuo Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China.
| | - Meishan Chen
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China.
| | - Xi Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China.
| | - Kang Zheng
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China.
| | - Baohua Liu
- Shenzhen University of Health Science Center, Shenzhen, 518060, China.
| | - Weiwei Wu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China.
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China; Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, China.
| |
Collapse
|
10
|
Gui R, Chen Q. Molecular Events Involved in Influenza A Virus-Induced Cell Death. Front Microbiol 2022; 12:797789. [PMID: 35069499 PMCID: PMC8777062 DOI: 10.3389/fmicb.2021.797789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Viral infection usually leads to cell death. Moderate cell death is a protective innate immune response. By contrast, excessive, uncontrolled cell death causes tissue destruction, cytokine storm, or even host death. Thus, the struggle between the host and virus determines whether the host survives. Influenza A virus (IAV) infection in humans can lead to unbridled hyper-inflammatory reactions and cause serious illnesses and even death. A full understanding of the molecular mechanisms and regulatory networks through which IAVs induce cell death could facilitate the development of more effective antiviral treatments. In this review, we discuss current progress in research on cell death induced by IAV infection and evaluate the role of cell death in IAV replication and disease prognosis.
Collapse
Affiliation(s)
- Rui Gui
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
11
|
Alimba CG, Rudrashetti AP, Sivanesan S, Krishnamurthi K. Landfill soil leachates from Nigeria and India induced DNA damage and alterations in genes associated with apoptosis in Jurkat cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5256-5268. [PMID: 34417692 DOI: 10.1007/s11356-021-15985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Landfill soil leachates, containing myriad of xenobiotics, increase genotoxic and cytotoxic stress-induced cell death. However, the underlying mechanism involved in the elimination of the damaged cells is yet to be fully elucidated. This study investigated the apoptotic processes induced in lymphoma (Jurkat) cells by landfill soil leachates from Olusosun (OSL, Nigeria) and Nagpur (NPL, India). Jurkat was incubated with sub-lethal concentrations of OSL and NPL for 24 h and analyzed for DNA fragmentation and apoptosis using agarose gel electrophoresis and Hoechst 33258-PI staining, respectively. Complementary DNA expression profiling of some pro-apoptotic and anti-apoptotic genes regulating apoptosis was also analyzed using real-time PCR (RT-PCR) method. Agarose gel electrophoresis revealed DNA fragmentations in OSL and NPL-treated cells. Hoecsht-33258 - Propidium Iodide (PI) based apoptotic analysis confirmed apoptotic cell death in exposed Jurkat. RT-PCR analysis revealed different fold changes in the pro- and anti-apoptotic genes in OSL and NPL-treated Jurkat. There was significant increase in fold change of the up-regulated genes; apoptosis inducing factor mitochondrion-associated 2 (AIFM2), Fas-associated death domain (FADD), Caspase-2, Caspase-6, BH3 interacting domain death agonist (BID), tumor suppressor (p53), and BCL2 associated agonist of cell death (BAD) and down-regulation of apoptosis inhibitor 5 (API5). Results suggest that OSL and NPL elicited genotoxic stress-related apoptosis in Jurkat. The dysregulation in the expression of genes involved in apoptotic processes in wildlife and human exposed to landfill emissions may increase aetiology of various pathological diseases including cancer.
Collapse
Affiliation(s)
- Chibuisi G Alimba
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria.
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139, Dortmund, Germany.
| | - Ashwinkumar P Rudrashetti
- Environmental Biotechnology and Genomic Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Saravanadevi Sivanesan
- Health and Toxicity Cell (HTC), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
- Academy of Scientific, Innovative Research (AcSIR), Ghaziabad, U.P., India
| | - Kannan Krishnamurthi
- Health and Toxicity Cell (HTC), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
- Academy of Scientific, Innovative Research (AcSIR), Ghaziabad, U.P., India.
| |
Collapse
|
12
|
Sharma VK, Lahiri M. Interplay between p300 and HDAC1 regulate acetylation and stability of Api5 to regulate cell proliferation. Sci Rep 2021; 11:16427. [PMID: 34385547 PMCID: PMC8361156 DOI: 10.1038/s41598-021-95941-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Api5, is a known anti-apoptotic and nuclear protein that is responsible for inhibiting cell death in serum-starved conditions. The only known post-translational modification of Api5 is acetylation at lysine 251 (K251). K251 acetylation of Api5 is responsible for maintaining its stability while the de-acetylated form of Api5 is unstable. This study aimed to find out the enzymes regulating acetylation and deacetylation of Api5 and the effect of acetylation on its function. Our studies suggest that acetylation of Api5 at lysine 251 is mediated by p300 histone acetyltransferase while de-acetylation is carried out by HDAC1. Inhibition of acetylation by p300 leads to a reduction in Api5 levels while inhibition of deacetylation by HDAC1 results in increased levels of Api5. This dynamic switch between acetylation and deacetylation regulates the localisation of Api5 in the cell. This study also demonstrates that the regulation of acetylation and deacetylation of Api5 is an essential factor for the progression of the cell cycle.
Collapse
Affiliation(s)
- Virender Kumar Sharma
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India.
| |
Collapse
|
13
|
Abstract
SUMOylation is a reversible posttranslational modification involved in the regulation of diverse biological processes. Growing evidence suggests that virus infection can interfere with the SUMOylation system. In the present study, we discovered that apoptosis inhibitor 5 (API5) is a SUMOylated protein. Amino acid substitution further identified that Lys404 of API5 was the critical residue for SUMO3 conjugation. Moreover, we found that Avibirnavirus infectious bursal disease virus (IBDV) infection significantly decreased SUMOylation of API5. In addition, our results further revealed that viral protein VP3 inhibited the SUMOylation of API5 by targeting API5 and promoting UBC9 proteasome-dependent degradation through binding to the ubiquitin E3 ligase TRAF3. Furthermore, we revealed that wild-type but not K404R mutant API5 inhibited IBDV replication by enhancing MDA5-dependent IFN-β production. Taken together, our data demonstrate that API5 is a UBC9-dependent SUMOylated protein and deSUMOylation of API5 by viral protein VP3 aids in viral replication.
Collapse
|
14
|
Chen M, Wu W, Liu D, Lv Y, Deng H, Gao S, Gu Y, Huang M, Guo X, Liu B, Zhao B, Pang Q. Evolution and Structure of API5 and Its Roles in Anti-Apoptosis. Protein Pept Lett 2021; 28:612-622. [PMID: 33319655 DOI: 10.2174/0929866527999201211195551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022]
Abstract
Apoptosis, also named programmed cell death, is a highly conserved physiological mechanism. Apoptosis plays crucial roles in many life processes, such as tissue development, organ formation, homeostasis maintenance, resistance against external aggression, and immune responses. Apoptosis is regulated by many genes, among which Apoptosis Inhibitor-5 (API5) is an effective inhibitor, though the structure of API5 is completely different from the other known Inhibitors of Apoptosis Proteins (IAPs). Due to its high expression in many types of tumors, API5 has received extensive attention, and may be an effective target for cancer treatment. In order to comprehensively and systematically understand the biological roles of API5, we summarized the evolution and structure of API5 and its roles in anti-apoptosis in this review.
Collapse
Affiliation(s)
- Meishan Chen
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Weiwei Wu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Dongwu Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yanhua Lv
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, China
| | - Hongkuan Deng
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Sijia Gao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yaqi Gu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Mujie Huang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Xiao Guo
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Baohua Liu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Bosheng Zhao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Qiuxiang Pang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| |
Collapse
|
15
|
Abstract
E2F transcription factor 2 (E2F2) is a member of the E2F family of transcription factors. The classical view is that some E2Fs act as "activators" and others "inhibitors" of cell cycle gene expression. However, the so-called "activator" E2F2 is particularly enigmatic, with seemingly contradictory roles in the cell cycle, proliferation, apoptosis, inflammation, and cell migration and invasion. How can we rationalize the apparently opposing functions of E2F2 in different situations? This is difficult because different methods of studying E2F2 have yielded conflicting results, so extrapolating mechanisms from an observed endpoint is challenging. This review will attempt to summarize and clarify these issues. This review focuses on genetic studies that have helped elucidate the biological functions of E2F2 and that have enhanced our understanding of how E2F2 is integrated into pathways controlling the cell cycle, proliferation, apoptosis, inflammation, and cell migration and invasion. This review will also discuss the function of E2F2 in cancer and other diseases. This review provides a strong basis for further research on the biological function and clinical potential of E2F2.
Collapse
Affiliation(s)
- Luwen Li
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China.,Key Lab for Biotech-Drugs of National Health Commission, Ji'nan, China.,Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
| | - Shiguan Wang
- Medical College, Shandong University, Ji'nan, China
| | - Yihang Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China.,Key Lab for Biotech-Drugs of National Health Commission, Ji'nan, China.,Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
| | - Jihong Pan
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Ji'nan, China.,Key Lab for Biotech-Drugs of National Health Commission, Ji'nan, China.,Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University, Ji'nan, China
| |
Collapse
|
16
|
Interactions between tumor-derived proteins and Toll-like receptors. Exp Mol Med 2020; 52:1926-1935. [PMID: 33299138 PMCID: PMC8080774 DOI: 10.1038/s12276-020-00540-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are danger signals (or alarmins) alerting immune cells through pattern recognition receptors (PRRs) to begin defense activity. Moreover, DAMPs are host biomolecules that can initiate a noninflammatory response to infection, and pathogen-associated molecular pattern (PAMPs) perpetuate the inflammatory response to infection. Many DAMPs are proteins that have defined intracellular functions and are released from dying cells after tissue injury or chemo-/radiotherapy. In the tumor microenvironment, DAMPs can be ligands for Toll-like receptors (TLRs) expressed on immune cells and induce cytokine production and T-cell activation. Moreover, DAMPs released from tumor cells can directly activate tumor-expressed TLRs that induce chemoresistance, migration, invasion, and metastasis. Furthermore, DAMP-induced chronic inflammation in the tumor microenvironment causes an increase in immunosuppressive populations, such as M2 macrophages, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs). Therefore, regulation of DAMP proteins can reduce excessive inflammation to create an immunogenic tumor microenvironment. Here, we review tumor-derived DAMP proteins as ligands of TLRs and discuss their association with immune cells, tumors, and the composition of the tumor microenvironment. Tumor cells killed by radiotherapy or chemotherapy release signaling molecules that stimulate both immune response and tumor aggressiveness; regulating these molecules could improve treatment efficacy. Tae Heung Kang, Yeong-Min Park, and co-workers at Konkuk University, Seoul, South Korea, have reviewed the role of damage-associated molecular patterns (DAMPs) in immunity and cancer. These signaling molecules act as danger signals, activating immune cells by binding to specific receptors. However, tumor cells have the same receptors, and DAMPs binding triggers chemoresistance and increases invasiveness. The researchers report that although DAMPs can trigger a helpful immune response, they can also cause chronic inflammation, which in turn promotes an immune suppression response, allowing tumors to escape immune detection. Improving our understanding of the functions of different DAMPs could improve our ability to boost the immune response and decrease tumor aggressiveness.
Collapse
|
17
|
Coates LC, Mahoney J, Ramsey JS, Warwick E, Johnson R, MacCoss MJ, Krasnoff SB, Howe KJ, Moulton K, Saha S, Mueller LA, Hall DG, Shatters RG, Heck ML, Slupsky CM. Development on Citrus medica infected with 'Candidatus Liberibacter asiaticus' has sex-specific and -nonspecific impacts on adult Diaphorina citri and its endosymbionts. PLoS One 2020; 15:e0239771. [PMID: 33022020 PMCID: PMC7537882 DOI: 10.1371/journal.pone.0239771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Huanglongbing (HLB) is a deadly, incurable citrus disease putatively caused by the unculturable bacterium, 'Candidatus Liberibacter asiaticus' (CLas), and transmitted by Diaphorina citri. Prior studies suggest D. citri transmits CLas in a circulative and propagative manner; however, the precise interactions necessary for CLas transmission remain unknown, and the impact of insect sex on D. citri-CLas interactions is poorly understood despite reports of sex-dependent susceptibilities to CLas. We analyzed the transcriptome, proteome, metabolome, and microbiome of male and female adult D. citri reared on healthy or CLas-infected Citrus medica to determine shared and sex-specific responses of D. citri and its endosymbionts to CLas exposure. More sex-specific than shared D. citri responses to CLas were observed, despite there being no difference between males and females in CLas density or relative abundance. CLas exposure altered the abundance of proteins involved in immunity and cellular and oxidative stress in a sex-dependent manner. CLas exposure impacted cuticular proteins and enzymes involved in chitin degradation, as well as energy metabolism and abundance of the endosymbiont 'Candidatus Profftella armatura' in both sexes similarly. Notably, diaphorin, a toxic Profftella-derived metabolite, was more abundant in both sexes with CLas exposure. The responses reported here resulted from a combination of CLas colonization of D. citri as well as the effect of CLas infection on C. medica. Elucidating these impacts on D. citri and their endosymbionts contributes to our understanding of the HLB pathosystem and identifies the responses potentially critical to limiting or promoting CLas acquisition and propagation in both sexes.
Collapse
Affiliation(s)
- Laurynne C. Coates
- Department of Food Science and Technology, University of California, Davis, California, United States of America
| | - Jaclyn Mahoney
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - John S. Ramsey
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York, United States of America
| | - EricaRose Warwick
- Plant Pathology, University of Florida Citrus Research and Education Center, Lake Alfred, Florida, United States of America
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Stuart B. Krasnoff
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York, United States of America
| | - Kevin J. Howe
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York, United States of America
| | - Kathy Moulton
- U.S. Horticultural Research Laboratory, Unit of Subtropical Insects and Horticulture, USDA Agricultural Research Service, Fort Pierce, Florida, United States of America
| | - Surya Saha
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Lukas A. Mueller
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - David G. Hall
- U.S. Horticultural Research Laboratory, Unit of Subtropical Insects and Horticulture, USDA Agricultural Research Service, Fort Pierce, Florida, United States of America
| | - Robert G. Shatters
- U.S. Horticultural Research Laboratory, Unit of Subtropical Insects and Horticulture, USDA Agricultural Research Service, Fort Pierce, Florida, United States of America
| | - Michelle L. Heck
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York, United States of America
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| | - Carolyn M. Slupsky
- Department of Food Science and Technology, University of California, Davis, California, United States of America
| |
Collapse
|
18
|
Bong SM, Bae SH, Song B, Gwak H, Yang SW, Kim S, Nam S, Rajalingam K, Oh SJ, Kim TW, Park S, Jang H, Lee BI. Regulation of mRNA export through API5 and nuclear FGF2 interaction. Nucleic Acids Res 2020; 48:6340-6352. [PMID: 32383752 PMCID: PMC7293033 DOI: 10.1093/nar/gkaa335] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/13/2023] Open
Abstract
API5 (APoptosis Inhibitor 5) and nuclear FGF2 (Fibroblast Growth Factor 2) are upregulated in various human cancers and are correlated with poor prognosis. Although their physical interaction has been identified, the function related to the resulting complex is unknown. Here, we determined the crystal structure of the API5–FGF2 complex and identified critical residues driving the protein interaction. These findings provided a structural basis for the nuclear localization of the FGF2 isoform lacking a canonical nuclear localization signal and identified a cryptic nuclear localization sequence in FGF2. The interaction between API5 and FGF2 was important for mRNA nuclear export through both the TREX and eIF4E/LRPPRC mRNA export complexes, thus regulating the export of bulk mRNA and specific mRNAs containing eIF4E sensitivity elements, such as c-MYC and cyclin D1. These data show the newly identified molecular function of API5 and nuclear FGF2, and provide a clue to understanding the dynamic regulation of mRNA export.
Collapse
Affiliation(s)
- Seoung Min Bong
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Seung-Hyun Bae
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Bomin Song
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - HyeRan Gwak
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Seung-Won Yang
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Sunshin Kim
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Seungyoon Nam
- Department of Life Sciences, College of BioNano Technology and Department of Genome Medicine and Science, Graduate School of Medicine, Gachon University, Incheon 21565, Republic of Korea
| | | | - Se Jin Oh
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Tae Woo Kim
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - SangYoun Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Hyonchol Jang
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Byung Il Lee
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi 10408, Republic of Korea
| |
Collapse
|
19
|
Bertucci JI, Malala Irugal Bandaralage S, Hecker M. Assessing the cytotoxic effect of hexabromocyclododecane (HBCD) on liver tissue cultures from fathead minnow (Pimephales promelas). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105523. [PMID: 32531534 DOI: 10.1016/j.aquatox.2020.105523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/08/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Hexabromocyclododecane (HBCD) is a ubiquitous environmental contaminant of current concern despite its global ban in 2013 due to its characteristics as a persistent organic pollutant. While the toxicity of HBDC in vertebrates has been extensively studied, the specific molecular mechanisms underlying its toxicity in fish are not fully understood to date. Therefore, the aim of this work was to determine the in vitro cytotoxicity of HBCD in the fathead minnow (Pimephales promelas) using liver explants, and to investigate the molecular mechanisms underlying these effects. Explants were incubated with nine different concentrations of HBCD (0.00032, 0.0016, 0.008, 0.04, 0.2, 1, 5, 25 and 125 mg HBCD/L) for 6 and 24 h, and cytotoxicity was tested by using the Lactate Dehydrogenase (LDH) assay. The expression of genes with a key role in the regulation of apoptosis, oxidative stress, cryoprotective responses to reactive oxygen species (ROS), and xenobiotic metabolism was also measured in liver explants after exposure to 0.00032, 0.0016, 0.008, 0.2, and 25 mg HBCD/L. After 6 h, a concentration-dependent significant increase in cytotoxicity was found between 0.008 and 1 mg/L HBCD, followed by a decrease between 1 and 25 mg/L. Cytotoxicity reached 100 % at a concentration of 125 mg/L HBCD. After 24 h, HBCD showed a biphasic response with a concentration-dependent decrease in cytotoxicity between 0.0016 and 1 mg/L that returned to baseline levels at 5 mg/L. Then, cytotoxicity increased at concentrations greater than 5 mg/L to reach a maximum value at 125 mg/L. Changes in the expression of genes related to apoptosis (apoEn, apoIn, caspase2, caspase9 and bax) were also time- and concentration-dependent. Genes related to antioxidant responses such as gst and catalase were generally decreased after 6 h of incubation and increased after 24 h. The same pattern was observed for cyp1a and cyp3a, both related to xenobiotic metabolism. The expression of genes related to cryoprotective responses anti ROS (akt and pi3k) decreased at almost all HBCD concentrations tested after 6 h but remained unaltered after 24 h. Overall, we demonstrated that the cytotoxic effect of HBCD in fathead minnow liver explant was not proportional to its concentration in the culture media. Cytotoxicity was highly dynamic and did not follow a typical concentration-response pattern, complicating its toxicological characterization.
Collapse
Affiliation(s)
- J I Bertucci
- Toxicology Centre, University of Saskatchewan. Saskatoon, Saskatchewan, Canada
| | | | - M Hecker
- Toxicology Centre, University of Saskatchewan. Saskatoon, Saskatchewan, Canada; School of the Environment and Sustainability, University of Saskatchewan. Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
20
|
Mikhailova A, Valle-Casuso JC, David A, Monceaux V, Volant S, Passaes C, Elfidha A, Müller-Trutwin M, Poyet JL, Sáez-Cirión A. Antiapoptotic Clone 11-Derived Peptides Induce In Vitro Death of CD4 + T Cells Susceptible to HIV-1 Infection. J Virol 2020; 94:e00611-20. [PMID: 32350074 PMCID: PMC7343195 DOI: 10.1128/jvi.00611-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 02/08/2023] Open
Abstract
HIV-1 successfully establishes long-term infection in its target cells despite viral cytotoxic effects. We have recently shown that cell metabolism is an important factor driving CD4+ T cell susceptibility to HIV-1 and the survival of infected cells. We show here that expression of antiapoptotic clone 11 (AAC-11), an antiapoptotic factor upregulated in many cancers, increased with progressive CD4+ T cell memory differentiation in association with the expression of cell cycle, activation, and metabolism genes and was correlated with susceptibility to HIV-1 infection. Synthetic peptides based on the LZ domain sequence of AAC-11, responsible for its interaction with molecular partners, were previously shown to be cytotoxic to cancer cells. Here, we observed that these peptides also blocked HIV-1 infection by inducing the death of HIV-1-susceptible primary CD4+ T cells across all T cell subsets. The peptides targeted metabolically active cells and had the greatest effect on effector and transitional CD4+ T cell memory subsets. Our results suggest that the AAC-11 survival pathway is potentially involved in the survival of HIV-1-infectible cells and provide proof of principle that some cellular characteristics can be targeted to eliminate the cells offering the best conditions to sustain HIV-1 replication.IMPORTANCE Although antiretroviral treatment efficiently blocks HIV multiplication, it cannot eliminate cells already carrying integrated proviruses. In the search for an HIV cure, the identification of new potential targets to selectively eliminate infected cells is of the outmost importance. We show here that peptides derived from antiapoptotic clone 11 (AAC-11), whose expression levels correlated with susceptibility to HIV-1 infection of CD4+ T cells, induced cytotoxicity in CD4+ T cells showing the highest levels of activation and metabolic activity, conditions known to favor HIV-1 infection. Accordingly, CD4+ T cells that survived the cytotoxic action of the AAC-11 peptides were resistant to HIV-1 replication. Our results identify a new potential molecular pathway to target HIV-1 infection.
Collapse
Affiliation(s)
- Anastassia Mikhailova
- Institut Pasteur, Unité HIV Inflammation et Persistance, Paris, France
- Université Paris Diderot, Université de Paris, Paris, France
| | | | - Annie David
- Institut Pasteur, Unité HIV Inflammation et Persistance, Paris, France
| | - Valérie Monceaux
- Institut Pasteur, Unité HIV Inflammation et Persistance, Paris, France
| | - Stevenn Volant
- Institut Pasteur, Hub Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, Paris, France
| | - Caroline Passaes
- Institut Pasteur, Unité HIV Inflammation et Persistance, Paris, France
| | - Amal Elfidha
- Institut Pasteur, Unité HIV Inflammation et Persistance, Paris, France
- Université Paris Descartes, Université de Paris, Paris, France
| | | | - Jean-Luc Poyet
- INSERM UMRS976, Institut de Recherche Saint Louis, Hôpital Saint Louis, Paris, France
| | - Asier Sáez-Cirión
- Institut Pasteur, Unité HIV Inflammation et Persistance, Paris, France
| |
Collapse
|
21
|
Bousquet G, Feugeas JP, Gu Y, Leboeuf C, Bouchtaoui ME, Lu H, Espié M, Janin A, Benedetto MD. High expression of apoptosis protein (Api-5) in chemoresistant triple-negative breast cancers: an innovative target. Oncotarget 2019; 10:6577-6588. [PMID: 31762939 PMCID: PMC6859922 DOI: 10.18632/oncotarget.27312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/26/2019] [Indexed: 11/25/2022] Open
Abstract
Anti-apoptotic protein-5 (API-5) is a survival protein interacting with the protein acinus, preventing its cleavage by caspase-3 and thus inhibiting apoptosis. We studied the effect of targeting API-5 in chemoresistant triple negative breast cancers (TNBCs), to reverse chemoresistance. 78 TNBC biopsies from patients with different responses to chemotherapy were analysed for API-5 expression before any treatment. Further studies on API-5 expression and inhibition were performed on patient-derived TNBC xenografts, one highly sensitive to chemotherapies (XBC-S) and the other resistant to most tested drugs (XBC-R). In situ assessments of necrosis, cell proliferation, angiogenesis, and apoptosis in response to anti-API-5 peptide were performed on the TNBC xenografts. Clinical analyses of the 78 TNBC biopsies revealed that API-5 was more markedly expressed in endothelial cells before any treatment among patients with chemoresistant TNBC, and this was associated with greater micro-vessel density. A transcriptomic analysis of xenografted tumors showed an involvement of anti-apoptotic genes in the XBC-R model, and API-5 expression was higher in XBC-R endothelial cells. API-5 expression was also correlated with hypoxic stress conditions both in vitro and in vivo. 28 days of anti-API-5 peptide efficiently inhibited the XBC-R xenograft via caspase-3 apoptosis. This inhibition was associated with major inhibition of angiogenesis associated with necrosis and apoptosis. API-5 protein could be a valid therapeutic target in chemoresistant metastatic TNBC.
Collapse
Affiliation(s)
- Guilhem Bousquet
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 1165, F-75010, Paris, France.,INSERM, U942, F-75010, Paris, France.,Université Paris 13, Sorbonne Paris Cite, F-93000, Villetaneuse, France.,AP-HP, Hôpital Avicenne, Medical Oncology, F-93000, Bobigny, France
| | | | - Yuchen Gu
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 1165, F-75010, Paris, France
| | - Christophe Leboeuf
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 1165, F-75010, Paris, France.,INSERM, U942, F-75010, Paris, France
| | | | - He Lu
- INSERM, U942, F-75010, Paris, France
| | - Marc Espié
- AP-HP, Hôpital Saint-Louis, Centre des Maladies du Sein, F-75010, Université Paris Diderot, Sorbonne Paris Cité, INSERM CNRS UMR7212, Paris, France
| | - Anne Janin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 1165, F-75010, Paris, France.,INSERM, U942, F-75010, Paris, France.,AP-HP, Hôpital Saint-Louis, Laboratoire de Pathologie, F-75010, Paris, France
| | - Melanie Di Benedetto
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 1165, F-75010, Paris, France.,INSERM, U942, F-75010, Paris, France.,Université Paris 13, Sorbonne Paris Cite, F-93000, Villetaneuse, France
| |
Collapse
|
22
|
Ray M, Lakhotia SC. Activated Ras/JNK driven Dilp8 in imaginal discs adversely affects organismal homeostasis during early pupal stage in Drosophila, a new checkpoint for development. Dev Dyn 2019; 248:1211-1231. [PMID: 31415125 DOI: 10.1002/dvdy.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 08/08/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Dilp8-mediated inhibition of ecdysone synthesis and pupation in holometabolous insects maintains developmental homeostasis through stringent control of timing and strength of molting signals. We examined reasons for normal pupation but early pupal death observed in certain cases. RESULTS Overexpression of activated Ras in developing eye/wing discs inhibited Ptth expression in brain via upregulated JNK signaling mediated Dilp8 secretion from imaginal discs, which inhibited ecdysone synthesis in prothoracic gland after pupariation, leading to death of ~25- to 30-hour-old pupae. Inhibition of elevated Ras signaling completely rescued early pupal death while post-pupation administration of ecdysone to organisms with elevated Ras signaling in eye discs partially rescued their early pupal death. Unlike the earlier known Dilp8 action in delaying pupation, hyperactivated Ras mediated elevation of pJNK signaling in imaginal discs caused Dilp8 secretion after pupariation. Ectopic expression of certain other transgene causing pupal lethality similarly enhanced pJNK and early pupal Dilp8 levels. Suboptimal ecdysone levels after 8 hours of pupation prevented the early pupal metamorphic changes and caused organismal death. CONCLUSIONS Our results reveal early pupal stage as a novel Dilp8 mediated post-pupariation checkpoint and provide further evidence for interorgan signaling during development, wherein a peripheral tissue influences the CNS driven endocrine function.
Collapse
Affiliation(s)
- Mukulika Ray
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
23
|
Pasquereau-Kotula E, Hosten B, Hontonnou F, Vignal N, Antoni F, Poyet JL, Rizzo-Padoin N, Sarda-Mantel L. Evaluation of planar bioluminescence imaging and microPET/CT for therapy monitoring in a mouse model of pigmented metastatic melanoma. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2018; 8:397-406. [PMID: 30697459 PMCID: PMC6334212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Bioluminescence imaging (BLI) is widely used for in-vivo monitoring of anti-cancer therapy in mice. [18F]MEL050 is a Positron Emission Tomography (PET) radiotracer which specifically targets melanin. We evaluated planar BLI and [18F]MEL050-PET/CT for therapy (pro-apoptotic peptide LZDP) monitoring in a mouse model of metastatic pigmented melanoma. Twelve B6-albino mice were intravenously injected with B16-F10-luc2 cells on day 0 (D0). The mice received daily from D2 to D17 either an inactive peptide (G1, n=6), or LZDP (G2, n=6). They underwent both BLI and [18F]MEL050-PET/CT imaging on D2, D8 and D17. The number of visible tumors was determined on BLI and PET/CT. [18F]MEL050 uptake in tumor sites was quantified on PET/CT. After sacrifice (D17), the number of black tumors was counted ex-vivo. On D2, BLI and PET/CT images were visually negative. On D8, BLI detected 8 tumor sites in 4/6 mice of G1 vs 5 in 3/6 mice of G2 (NS); PET/CT was visually negative. On D17, BLI detected 17 tumor sites in 5/6 mice of G1 vs 10 in 4/6 mice of G2 (NS). PET/CT detected 18 tumor sites in 4/4 mice of G1 vs 14 in 3/4 mice of G2 (NS). Mean %ID/g of [18F]MEL050 in tumor sites was lower in G2 than in G1 on D17 (P<0.001), whereas bioluminescence intensity was not different between the 2 groups. Ex-vivo examination confirmed lower number of tumors in G2 (P<0.03). In the small number of animals tested in this study, [18F]MEL050-PET/CT and ex-vivo examination could affirm anti-tumoral effect of LZDP, but not BLI.
Collapse
Affiliation(s)
- Ewa Pasquereau-Kotula
- Inserm UMR-S1160, Institut Universitaire d’Hématologie, Hôpital St-LouisParis, France
| | - Benoit Hosten
- Unité Claude Kellershohn, Institut Universitaire d’Hématologie, Hôpital St-LouisParis, France
- Inserm UMR-S1144, Faculté de Pharmacie, Université Paris DescartesParis, France
| | - Fortune Hontonnou
- Unité Claude Kellershohn, Institut Universitaire d’Hématologie, Hôpital St-LouisParis, France
- Université Paris DiderotParis, France
| | - Nicolas Vignal
- Unité Claude Kellershohn, Institut Universitaire d’Hématologie, Hôpital St-LouisParis, France
- Inserm UMR-S1144, Faculté de Pharmacie, Université Paris DescartesParis, France
| | - Florent Antoni
- Unité Claude Kellershohn, Institut Universitaire d’Hématologie, Hôpital St-LouisParis, France
| | - Jean-Luc Poyet
- Inserm UMR-S1160, Institut Universitaire d’Hématologie, Hôpital St-LouisParis, France
| | - Nathalie Rizzo-Padoin
- Unité Claude Kellershohn, Institut Universitaire d’Hématologie, Hôpital St-LouisParis, France
- Inserm UMR-S1144, Faculté de Pharmacie, Université Paris DescartesParis, France
| | - Laure Sarda-Mantel
- Unité Claude Kellershohn, Institut Universitaire d’Hématologie, Hôpital St-LouisParis, France
- Université Paris DiderotParis, France
- Inserm UMR-S942, Hôpital LariboisièreParis, France
| |
Collapse
|
24
|
Genetic assessment of inbred chicken lines indicates genomic signatures of resistance to Marek's disease. J Anim Sci Biotechnol 2018; 9:65. [PMID: 30221000 PMCID: PMC6136188 DOI: 10.1186/s40104-018-0281-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/25/2018] [Indexed: 11/10/2022] Open
Abstract
Background Marek’s disease (MD) is a highly contagious pathogenic and oncogenic disease primarily affecting chickens. However, the mechanisms of genetic resistance for MD are complex and not fully understood. MD-resistant line 63 and MD-susceptible line 72 are two highly inbred progenitor lines of White Leghorn. Recombinant Congenic Strains (RCS) were developed from these two lines, which show varied susceptibility to MD. Results We investigated genetic structure and genomic signatures across the genome, including the line 63 and line 72, six RCSs, and two reciprocally crossed flocks between the lines 63 and 72 (F1 63 × 72 and F1 72 × 63) using Affymetrix® Axiom® HD 600 K genotyping array. We observed 18 chickens from RCS lines were specifically clustered into resistance sub-groups distributed around line 63. Additionally, homozygosity analysis was employed to explore potential genetic components related to MD resistance, while runs of homozygosity (ROH) are regions of the genome where the identical haplotypes are inherited from each parent. We found several genes including SIK, SOX1, LIG4, SIK1 and TNFSF13B were contained in ROH region identified in resistant group (line 63 and RCS), and these genes have been reported that are contribute to immunology and survival. Based on FST based population differential analysis, we also identified important genes related to cell death and anti-apoptosis, including AKT1, API5, CDH13, CFDP and USP15, which could be involved in divergent selection during inbreeding process. Conclusions Our findings offer valuable insights for understanding the genetic mechanism of resistance to MD and the identified genes could be considered as candidate biomarkers in further evaluation. Electronic supplementary material The online version of this article (10.1186/s40104-018-0281-x) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Kim YS, Park HJ, Park JH, Hong EJ, Jang GY, Jung ID, Han HD, Lee SH, Vo MC, Lee JJ, Yang A, Farmer E, Wu TC, Kang TH, Park YM. A novel function of API5 (apoptosis inhibitor 5), TLR4-dependent activation of antigen presenting cells. Oncoimmunology 2018; 7:e1472187. [PMID: 30288341 DOI: 10.1080/2162402x.2018.1472187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/10/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022] Open
Abstract
Dendritic cell (DC)-based vaccines are recognized as a promising immunotherapeutic strategy against cancer. Various adjuvants are often incorporated to enhance the modest immunogenicity of DC vaccines. More specifically, many of the commonly used adjuvants are derived from bacteria. In the current study, we evaluate the use of apoptosis inhibitor 5 (API5), a damage-associated molecular pattern expressed by many human cancer cells, as a novel DC vaccine adjuvant. We showed that API5 can prompt activation and maturation of DCs and activate NFkB by stimulating the Toll-like receptor signaling pathway. We also demonstrated that vaccination with API5-treated DCs pulsed with OVA, E7, or AH1-A5 peptides led to the generation of OVA, E7, or AH1-A5-specific CD8 + T cells and memory T cells, which is associated with long term tumor protection and antitumor effects in mice, against EG.7, TC-1, and CT26 tumors. Additionally, we determined that API5-mediated DC activation and immune stimulation are dependent on TLR4. Lastly, we showed that the API5 protein sequence fragment that is proximal to its leucine zipper motif is responsible for the adjuvant effects exerted by API5. Our data provide evidence that support the use of API5 as a promising adjuvant for DC-based therapies, which can be applied in combination with other cancer therapies. Most notably, our results further support the continued investigation of human-based adjuvants.
Collapse
Affiliation(s)
- Young Seob Kim
- Department of Immunology KU Open Innovation Center, School of Medicine, Konkuk University, Chungju, South Korea
| | - Hyun Jin Park
- Department of Immunology KU Open Innovation Center, School of Medicine, Konkuk University, Chungju, South Korea
| | - Jung Hwa Park
- Department of Immunology KU Open Innovation Center, School of Medicine, Konkuk University, Chungju, South Korea
| | - Eun Ji Hong
- Department of Immunology KU Open Innovation Center, School of Medicine, Konkuk University, Chungju, South Korea
| | - Gun-Young Jang
- Department of Immunology KU Open Innovation Center, School of Medicine, Konkuk University, Chungju, South Korea
| | - In Duk Jung
- Department of Immunology KU Open Innovation Center, School of Medicine, Konkuk University, Chungju, South Korea
| | - Hee Dong Han
- Department of Immunology KU Open Innovation Center, School of Medicine, Konkuk University, Chungju, South Korea
| | - Seung-Hyun Lee
- Department of Microbiology, KU Open Innovation Center, School of Medicine, Konkuk University, Chungju, South Korea
| | - Manh-Cuong Vo
- Hematology-Oncology, Chonnam National University Hwasun Hospital, Jeollanam-do, Korea
| | - Je-Jung Lee
- Hematology-Oncology, Chonnam National University Hwasun Hospital, Jeollanam-do, Korea
| | - Andrew Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Emily Farmer
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - T-C Wu
- Department of Pathology, Department of Obstetrics and Gynecology, Department of Molecular Microbiology and Immunology, and Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Tae Heung Kang
- Department of Immunology KU Open Innovation Center, School of Medicine, Konkuk University, Chungju, South Korea
| | - Yeong-Min Park
- Department of Immunology KU Open Innovation Center, School of Medicine, Konkuk University, Chungju, South Korea
| |
Collapse
|
26
|
Ortea I, González-Fernández MJ, Ramos-Bueno RP, Guil-Guerrero JL. Proteomics Study Reveals That Docosahexaenoic and Arachidonic Acids Exert Different In Vitro Anticancer Activities in Colorectal Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6003-6012. [PMID: 29804451 DOI: 10.1021/acs.jafc.8b00915] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two polyunsaturated fatty acids, docosahexaenoic acid (DHA) and arachidonic acid (ARA), as well as derivatives, such as eicosanoids, regulate different activities, affecting transcription factors and, therefore, DNA transcription, being a critical step for the functioning of fatty-acid-derived signaling. This work has attempted to determine the in vitro anticancer activities of these molecules linked to the gene transcription regulation of HT-29 colorectal cancer cells. We applied the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test along with lactate dehydrogenase and caspase-3 assays; proteome changes were assessed by "sequential windowed acquisition of all theoretical mass spectra" quantitative proteomics, followed by pathway analysis, to determine the affected molecular mechanisms. In all assays, DHA inhibited cell proliferation of HT-29 cells to a higher extent than ARA and acted primarily by downregulating proteasome particles, while ARA presented a dramatic effect on all six DNA replication helicase particles. The results indicated that both DHA and ARA are potential chemopreventive agent candidates.
Collapse
Affiliation(s)
- Ignacio Ortea
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía , Universidad de Córdoba , E14004 Córdoba , Spain
| | - María José González-Fernández
- Food Technology Division, Agrifood Campus of International Excellence (ceiA3) , University of Almería , E40120 Almería , Spain
| | - Rebeca P Ramos-Bueno
- Food Technology Division, Agrifood Campus of International Excellence (ceiA3) , University of Almería , E40120 Almería , Spain
| | - José Luis Guil-Guerrero
- Food Technology Division, Agrifood Campus of International Excellence (ceiA3) , University of Almería , E40120 Almería , Spain
| |
Collapse
|
27
|
Mapping Second Chromosome Mutations to Defined Genomic Regions in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2018; 8:9-16. [PMID: 29066472 PMCID: PMC5765369 DOI: 10.1534/g3.117.300289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hundreds of Drosophila melanogaster stocks are currently maintained at the Bloomington Drosophila Stock Center with mutations that have not been associated with sequence-defined genes. They have been preserved because they have interesting loss-of-function phenotypes. The experimental value of these mutations would be increased by tying them to specific genomic intervals so that geneticists can more easily associate them with annotated genes. Here, we report the mapping of 85 second chromosome complementation groups in the Bloomington collection to specific, small clusters of contiguous genes or individual genes in the sequenced genome. This information should prove valuable to Drosophila geneticists interested in processes associated with particular phenotypes and those searching for mutations affecting specific sequence-defined genes.
Collapse
|
28
|
Zhang P, Pei C, Wang X, Xiang J, Sun BF, Cheng Y, Qi X, Marchetti M, Xu JW, Sun YP, Edgar BA, Yuan Z. A Balance of Yki/Sd Activator and E2F1/Sd Repressor Complexes Controls Cell Survival and Affects Organ Size. Dev Cell 2018; 43:603-617.e5. [PMID: 29207260 PMCID: PMC5722641 DOI: 10.1016/j.devcel.2017.10.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/17/2017] [Accepted: 10/29/2017] [Indexed: 01/03/2023]
Abstract
The Hippo/Yki and RB/E2F pathways both regulate tissue growth by affecting cell proliferation and survival, but interactions between these parallel control systems are poorly defined. In this study, we demonstrate that interaction between Drosophila E2F1 and Sd disrupts Yki/Sd complex formation and thereby suppresses Yki target gene expression. RBF modifies these effects by reducing E2F1/Sd interaction. This regulation has significant effects on apoptosis, organ size, and progenitor cell proliferation. Using a combination of DamID-seq and RNA-seq, we identified a set of Yki targets that play a diversity of roles during development and are suppressed by E2F1. Further, we found that human E2F1 competes with YAP for TEAD1 binding, affecting YAP activity, indicating that this mode of cross-regulation is conserved. In sum, our study uncovers a previously unknown mechanism in which RBF and E2F1 modify Hippo signaling responses to modulate apoptosis, organ growth, and homeostasis. RBF/E2F1 regulates the Hippo pathway by modulating formation of Yki/Sd complexes E2F1 releases Yki:Sd association and suppresses a set of Yki target expression Human E2F1 competes with YAP for TEAD1 binding and affects YAP activity
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; German Cancer Research Center (DKFZ) & Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), 69120 Heidelberg, Germany; Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Chunli Pei
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; The Brain Science Center, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | - Xi Wang
- German Cancer Research Center (DKFZ) & Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), 69120 Heidelberg, Germany
| | - Jinyi Xiang
- German Cancer Research Center (DKFZ) & Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), 69120 Heidelberg, Germany
| | - Bao-Fa Sun
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongsheng Cheng
- German Cancer Research Center (DKFZ) & Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), 69120 Heidelberg, Germany
| | - Xiaolong Qi
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; The Brain Science Center, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | - Marco Marchetti
- German Cancer Research Center (DKFZ) & Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), 69120 Heidelberg, Germany; Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jia-Wei Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Bruce A Edgar
- German Cancer Research Center (DKFZ) & Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), 69120 Heidelberg, Germany; Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100069, China.
| |
Collapse
|
29
|
Cloning, expression pattern, and potential role of apoptosis inhibitor 5 in the termination of embryonic diapause and early embryo development of Artemia sinica. Gene 2017; 628:170-179. [DOI: 10.1016/j.gene.2017.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 06/28/2017] [Accepted: 07/08/2017] [Indexed: 02/05/2023]
|
30
|
Basset C, Bonnet-Magnaval F, Navarro MGJ, Touriol C, Courtade M, Prats H, Garmy-Susini B, Lacazette E. Api5 a new cofactor of estrogen receptor alpha involved in breast cancer outcome. Oncotarget 2017; 8:52511-52526. [PMID: 28881748 PMCID: PMC5581047 DOI: 10.18632/oncotarget.17281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/10/2017] [Indexed: 01/31/2023] Open
Abstract
Api5 (Apoptosis inhibitor 5) is an anti-apoptotic factor that confers resistance to genotoxic stress in human cancer. Api5 is also expressed in endothelial cells and participates to the Estrogen Receptor α (ERα) signaling to promote cell migration. In this study, we found an over expression of Api5 in human breast cancer. Given that we show that high expression of Api5 in breast cancer patients is associated with shorter recurrence free survival, we investigated the relationship between ERα and Api5 at the molecular level. We found that Api5 Nuclear Receptor box (NR box) drives a direct interaction with the C domain of ERα. Furthermore, Api5 participates to gene transcription activation of ERα target genes upon estrogen treatment. Besides, Api5 expression favors tumorigenicity and migration and is necessary for tumor growth in vivo in mice xenografted model of breast cancer cell line. These finding suggest that Api5 is a new cofactor of ERα that functionally participates to the tumorigenic phenotype of breast cancer cells. In ERα breast cancer patients, Api5 overexpression is associated with poor survival, and may be used as a predictive marker of breast cancer recurrence free survival.
Collapse
Affiliation(s)
- Céline Basset
- U1037-CRCT, INSERM, Université Toulouse, F-31037, Toulouse, France.,Laboratoire d'Histologie-Embryologie, Faculté de Médecine Rangueil, F-31062, Toulouse, France
| | | | | | | | - Monique Courtade
- U1037-CRCT, INSERM, Université Toulouse, F-31037, Toulouse, France.,Laboratoire d'Histologie-Embryologie, Faculté de Médecine Rangueil, F-31062, Toulouse, France
| | - Hervé Prats
- U1037-CRCT, INSERM, Université Toulouse, F-31037, Toulouse, France
| | | | - Eric Lacazette
- UMR 1048-I2MC, INSERM, Université Toulouse, F-31432, Toulouse, France
| |
Collapse
|
31
|
Imre G, Berthelet J, Heering J, Kehrloesser S, Melzer IM, Lee BI, Thiede B, Dötsch V, Rajalingam K. Apoptosis inhibitor 5 is an endogenous inhibitor of caspase-2. EMBO Rep 2017; 18:733-744. [PMID: 28336776 DOI: 10.15252/embr.201643744] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 11/09/2022] Open
Abstract
Caspases are key enzymes responsible for mediating apoptotic cell death. Across species, caspase-2 is the most conserved caspase and stands out due to unique features. Apart from cell death, caspase-2 also regulates autophagy, genomic stability and ageing. Caspase-2 requires dimerization for its activation which is primarily accomplished by recruitment to high molecular weight protein complexes in cells. Here, we demonstrate that apoptosis inhibitor 5 (API5/AAC11) is an endogenous and direct inhibitor of caspase-2. API5 protein directly binds to the caspase recruitment domain (CARD) of caspase-2 and impedes dimerization and activation of caspase-2. Interestingly, recombinant API5 directly inhibits full length but not processed caspase-2. Depletion of endogenous API5 leads to an increase in caspase-2 dimerization and activation. Consistently, loss of API5 sensitizes cells to caspase-2-dependent apoptotic cell death. These results establish API5/AAC-11 as a direct inhibitor of caspase-2 and shed further light onto mechanisms driving the activation of this poorly understood caspase.
Collapse
Affiliation(s)
- Gergely Imre
- MSU-FZI, Institute of Immunology, University Medical Center Mainz, JGU, Mainz, Germany
| | - Jean Berthelet
- MSU-FZI, Institute of Immunology, University Medical Center Mainz, JGU, Mainz, Germany
| | - Jan Heering
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Sebastian Kehrloesser
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Inga Maria Melzer
- MSU-FZI, Institute of Immunology, University Medical Center Mainz, JGU, Mainz, Germany
| | - Byung Il Lee
- Division of Convergence Technology, Biomolecular Function Research Branch, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Krishnaraj Rajalingam
- MSU-FZI, Institute of Immunology, University Medical Center Mainz, JGU, Mainz, Germany .,UCT, Mainz, German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
32
|
API5 confers cancer stem cell-like properties through the FGF2-NANOG axis. Oncogenesis 2017; 6:e285. [PMID: 28092370 PMCID: PMC5294250 DOI: 10.1038/oncsis.2016.87] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022] Open
Abstract
Immune selection drives the evolution of tumor cells toward an immune-resistant and cancer stem cell (CSC)-like phenotype. We reported that apoptosis inhibitor-5 (API5) acts as an immune escape factor, which has a significant role in controlling immune resistance to antigen-specific T cells, but its functional association with CSC-like properties remains largely unknown. In this study, we demonstrated for the first time that API5 confers CSC-like properties, including NANOG expression, the frequency of CD44-positive cells and sphere-forming capacity. Critically, these CSC-like properties mediated by API5 are dependent on FGFR1 signaling, which is triggered by E2F1-dependent FGF2 expression. Furthermore, we uncovered the FGF2-NANOG molecular axis as a downstream component of API5 signaling that is conserved in cervical cancer patients. Finally, we found that the blockade of FGFR signaling is an effective strategy to control API5high human cancer. Thus, our findings reveal a crucial role of API5 in linking immune resistance and CSC-like properties, and provide the rationale for its therapeutic application for the treatment of API5+ refractory tumors.
Collapse
|
33
|
Zhao H, Cheng Y, Wang J, Lin P, Yi L, Sun Y, Ren J, Tong M, Cao Z, Li J, Deng J, Cheng S. Profiling of Host Cell Response to Successive Canine Parvovirus Infection Based on Kinetic Proteomic Change Identification. Sci Rep 2016; 6:29560. [PMID: 27406444 PMCID: PMC4942776 DOI: 10.1038/srep29560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/20/2016] [Indexed: 01/15/2023] Open
Abstract
Canine parvovirus (CPV) reproduces by co-opting the resources of host cells, inevitably causing cytotoxic effects to the host cells. Feline kidney F81 cells are sensitive to CPV infection and show disparate growing statuses at different time points post-infection. This study analysed the response of F81 cells to CPV infection at successive infection time points by iTRAQ-based quantitative proteomics. Differentially expressed proteins (DEPs) during 60 h of infection and at selected time points post-infection were identified by an analysis of variance test and a two-tailed unpaired t test, respectively. DEPs with similar quantitative changes were clustered by hierarchical clustering and analysed by gene ontology enrichment, revealing that 12 h and 60 h post-infection were the optimal times to analyse the autonomous parvovirus replication and apoptosis processes, respectively. Using the MetacoreTM database, 29 DEPs were enriched in a network involved in p53 regulation. Besides, a significantly enriched pathway suggests that the CPV-induced cytopathic effect was probably due to the deficiency of functional CFTR caused by CPV infection. This study uncovered the systemic changes in key cellular factors involved in CPV infection and help to understand the molecular mechanisms of the anti-cancer activity of CPV and the cytopathic effects induced by CPV infection.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yuening Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jianke Wang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Peng Lin
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Li Yi
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yaru Sun
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jingqiang Ren
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Mingwei Tong
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Zhigang Cao
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jiawei Li
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jinliang Deng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Shipeng Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| |
Collapse
|
34
|
Jagot-Lacoussiere L, Kotula E, Villoutreix BO, Bruzzoni-Giovanelli H, Poyet JL. A Cell-Penetrating Peptide Targeting AAC-11 Specifically Induces Cancer Cells Death. Cancer Res 2016; 76:5479-90. [DOI: 10.1158/0008-5472.can-16-0302] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/24/2016] [Indexed: 11/16/2022]
|
35
|
Rosa Fernandes L, Stern ACB, Cavaglieri RDC, Nogueira FCS, Domont G, Palmisano G, Bydlowski SP. 7-Ketocholesterol overcomes drug resistance in chronic myeloid leukemia cell lines beyond MDR1 mechanism. J Proteomics 2016; 151:12-23. [PMID: 27343758 DOI: 10.1016/j.jprot.2016.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/23/2016] [Accepted: 06/10/2016] [Indexed: 12/14/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease with a characteristic BCR-ABL tyrosine kinase (TK) fusion protein. Despite the clinical efficacy accomplished by TKIs therapies, disease progression may affect patient response rate to these inhibitors due to a multitude of factors that could lead to development of a mechanism known as multidrug resistance (MDR). 7-Ketocholesterol (7KC) is an oxidized cholesterol derivative that has been extensively reported to cause cell death in a variety of cancer models. In this study, we showed the in vitro efficacy of 7KC against MDR leukemia cell line, Lucena. 7KC treatment induced reduction in cell viability, together with apoptosis-mediated cell death. Moreover, downregulation of MDR protein caused intracellular drug accumulation and 7KC co-incubation with either Daunorubicin or Vincristine reduced cell viability compared to the use of each drug alone. Additionally, quantitative label-free mass spectrometry-based protein quantification showed alteration of different molecular pathways involved in cell cycle arrest, induction of apoptosis and misfolded protein response. Conclusively, this study highlights the effect of 7KC as a sensitizing agent of multidrug resistance CML and elucidates its molecular mechanisms. SIGNIFICANCE CML patients treated with tyrosine kinase inhibitors (TKIs) have showed a 5-year estimated overall survival of 89%, with cumulative complete cytogenetic response of 87%. However, development of drug resistance is a common feature of the disease progression. This study aimed at showing the effect of 7KC as a cytotoxic and sensitizing agent of multidrug resistance CML cell lines. The cellular and molecular basis of this compound were elucidated using a comprehensive strategy based on quantitative proteomic and cell biology assays. We showed that 7KC induced cell death and overcomes drug resistance in CML through mechanisms that go beyond the classical MDR1 pathways.
Collapse
Affiliation(s)
- Lívia Rosa Fernandes
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo Medical School (FMUSP), São Paulo, Brazil
| | - Ana Carolina Bassi Stern
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo Medical School (FMUSP), São Paulo, Brazil
| | - Rita de Cássia Cavaglieri
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo Medical School (FMUSP), São Paulo, Brazil
| | | | - Gilberto Domont
- Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of Sao Paulo, Brazil.
| | - Sérgio Paulo Bydlowski
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo Medical School (FMUSP), São Paulo, Brazil.
| |
Collapse
|
36
|
Song KH, Kim SH, Noh KH, Bae HC, Kim JH, Lee HJ, Song J, Kang TH, Kim DW, Oh SJ, Jeon JH, Kim TW. Apoptosis Inhibitor 5 Increases Metastasis via Erk-mediated MMP expression. BMB Rep 2016; 48:330-5. [PMID: 25248562 PMCID: PMC4578619 DOI: 10.5483/bmbrep.2015.48.6.139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Indexed: 11/20/2022] Open
Abstract
Apoptosis inhibitor 5 (API5) has recently been identified as a tumor metastasis-regulating gene in cervical cancer cells. However, the precise mechanism of action for API5 is poorly understood. Here, we show that API5 increases the metastatic capacity of cervical cancer cells in vitro and in vivo via up-regulation of MMP-9. Interestingly, API5-mediated metastasis was strongly dependent on the Erk signaling pathway. Conversely, knock-down of API5 via siRNA technology decreased the level of phospho-Erk, the activity of the MMPs, in vitro invasion, and in vivo pulmonary metastasis. Moreover, the Erk-mediated metastatic action was abolished by the mutation of leucine into arginine within the heptad leucine repeat region, which affects protein-protein interactions. Thus, API5 increases the metastatic capacity of tumor cells by up-regulating MMP levels via activation of the Erk signaling pathway.
Collapse
Affiliation(s)
- Kwon-Ho Song
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Ansan 425-707; Department of Biochemistry, Korea University College of Medicine, Seoul 136-705, Korea
| | - Seok-Ho Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience & Biothechnology (KRIBB), Daejeon 305-806, Korea
| | - Kyung Hee Noh
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Ansan 425-707; Department of Biochemistry, Korea University College of Medicine, Seoul 136-705, Korea
| | - Hyun Cheol Bae
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Ansan 425-707, Korea
| | - Jin Hee Kim
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Ansan 425-707, Korea
| | - Hyo-Jung Lee
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Ansan 425-707; Department of Biochemistry, Korea University College of Medicine, Seoul 136-705, Korea
| | - Jinhoi Song
- Immunotherapy Research Center, Korea Research Institute of Bioscience & Biothechnology (KRIBB), Daejeon 305-806, Korea
| | - Tae Heung Kang
- Department of Immunology, School of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-779, Korea
| | - Se-Jin Oh
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Ansan 425-707; Department of Biochemistry, Korea University College of Medicine, Seoul 136-705, Korea
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University, College of Medicine, Seoul 110-779, Korea
| | - Tae Woo Kim
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Ansan 425-707; Department of Biochemistry, Korea University College of Medicine, Seoul 136-705, Korea
| |
Collapse
|
37
|
Ray M, Lakhotia SC. The commonly used eye-specific sev-GAL4 and GMR-GAL4 drivers in Drosophila melanogaster are expressed in tissues other than eyes also. J Genet 2016; 94:407-16. [PMID: 26440079 DOI: 10.1007/s12041-015-0535-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The binary GAL4-UAS system of conditional gene expression is widely used by Drosophila geneticists to target expression of the desired transgene in tissue of interest. In many studies, a preferred target tissue is the Drosophila eye, for which the sev-GAL4 and GMR-GAL4 drivers are most widely used since they are believed to be expressed exclusively in the developing eye cells. However, several reports have noted lethality following expression of certain transgenes under these GAL4 drivers notwithstanding the fact that eye is not essential for survival of the fly. Therefore, to explore the possibility that these drivers may also be active in tissues other than eye, we examined the expression of UAS-GFP reporter driven by the sev-GAL4 or GMR-GAL4 drivers. We found that both these drivers are indeed expressed in additional tissues, including a common set of specific neuronal cells in larval and pupal ventral and cerebral ganglia. Neither sev nor glass gene has so far been reported to be expressed in these neuronal cells. Expression pattern of sev-GAL4 driver parallels that of the endogenous Sevenless protein. In addition to cells in which sev-GAL4 is expressed, the GMR-GAL4 is expressed in several other larval cell types also. Further, two different GMR-GAL4 lines also show some specific differences in their expression domains outside the eye discs. These findings emphasize the need for a careful confirmation of the expression domains of a GAL4 driver being used in a given study, rather than relying only on the empirically claimed expression domains.
Collapse
Affiliation(s)
- Mukulika Ray
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India.
| | | |
Collapse
|
38
|
Long Noncoding RNA LOC100129973 Suppresses Apoptosis by Targeting miR-4707-5p and miR-4767 in Vascular Endothelial Cells. Sci Rep 2016; 6:21620. [PMID: 26887505 PMCID: PMC4757888 DOI: 10.1038/srep21620] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/26/2016] [Indexed: 01/16/2023] Open
Abstract
Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) are key regulators of multiple biological processes by altering gene expression at various levels. Apoptosis in vascular endothelial cells (VECs) is closely linked to numerous cardiovascular diseases, such as arteriosclerosis, thrombus formation and plaque erosion. However, studies on lncRNAs in the cardiovascular system are just beginning. And thus far, no anti-apoptosis lncRNAs have been identified in VECs. Here, we focused on the anti-apoptosis roles of lncRNAs in the serum and FGF-2 starvation-induced apoptosis of VECs. Using microarray analysis, we found a novel lncRNA LOC100129973 which acted as an apoptosis inhibitor in VECs. Through sponging miR-4707-5p and miR-4767, lncRNA LOC100129973 upregulated the expression of two apoptosis repressors gene, Apoptosis Inhibitor 5 (API5) and BCL2 like 12 (BCL2L12), and thus alleviated the serum and FGF-2 starvation-induced apoptosis in VECs. This evidence suggests that lncRNA LOC100129973 is an attractive target to improve endothelial function and for therapy of apoptosis related cardiovascular diseases.
Collapse
|
39
|
Mayank AK, Sharma S, Nailwal H, Lal SK. Nucleoprotein of influenza A virus negatively impacts antiapoptotic protein API5 to enhance E2F1-dependent apoptosis and virus replication. Cell Death Dis 2015; 6:e2018. [PMID: 26673663 PMCID: PMC4720893 DOI: 10.1038/cddis.2015.360] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 12/02/2022]
Abstract
Apoptosis of host cells profoundly influences virus propagation and dissemination, events that are integral to influenza A virus (IAV) pathogenesis. The trigger for activation of apoptosis is regulated by an intricate interplay between cellular and viral proteins, with a strong bearing on IAV replication. Though the knowledge of viral proteins and mechanisms employed by IAV to induce apoptosis has advanced considerably of late, we know relatively little about the repertoire of host factors targeted by viral proteins. Thus, identification of cellular proteins that are hijacked by the virus will help us not only to understand the molecular underpinnings of IAV-induced apoptosis, but also to design future antiviral therapies. Here we show that the nucleoprotein (NP) of IAV directly interacts with and suppresses the expression of API5, a host antiapoptotic protein that antagonizes E2F1-dependent apoptosis. siRNA-mediated depletion of API5, in NP-overexpressed as well as IAV-infected cells, leads to upregulation of apoptotic protease activating factor 1 (APAF1), a downstream modulator of E2F1-mediated apoptosis, and cleavage of caspases 9 and 3, although a reciprocal pattern of these events was observed on ectopic overexpression of API5. In concordance with these observations, annexin V and 7AAD staining assays exhibit downregulation of early and late apoptosis in IAV-infected or NP-transfected cells on overexpression of API5. Most significantly, while overexpression of API5 decreases viral titers, cellular NP protein as well as mRNA levels in IAV-infected A549 cells, silencing of API5 expression causes a steep rise in the same parameters. From the data reported in this manuscript, we propose a proapoptotic role for NP in IAV pathogenesis, whereby it suppresses expression of antiapoptotic factor API5, thus potentiating the E2F1-dependent apoptotic pathway and ensuring viral replication.
Collapse
Affiliation(s)
- A K Mayank
- Virology Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Road, New Delhi 110067, India
| | - S Sharma
- Virology Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Road, New Delhi 110067, India
| | - H Nailwal
- School of Science, Monash University, Bandar Sunway, Petaling Jaya, Selangor DE 47500, Malaysia
| | - S K Lal
- School of Science, Monash University, Bandar Sunway, Petaling Jaya, Selangor DE 47500, Malaysia
| |
Collapse
|
40
|
Sun Y, Hu B, Fan C, Jia L, Zhang Y, Du A, Zheng X, Zhou J. iTRAQ-based quantitative subcellular proteomic analysis of Avibirnavirus-infected cells. Electrophoresis 2015; 36:1596-611. [PMID: 25929241 PMCID: PMC7163642 DOI: 10.1002/elps.201500014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 11/19/2022]
Abstract
Infectious bursal disease virus (IBDV) enters the host cells via endocytic pathway to achieve viral replication in the cytoplasm. Here, we performed LC-MS/MS coupled with isobaric tags for relative and absolute quantification labeling of differentially abundant proteins of IBDV-infected cells using a subcellular fractionation strategy. We show that the viral infection regulates the abundance and/or subcellular localization of 3211 proteins during early infection. In total, 23 cellular proteins in the cytoplasmic proteome and 34 in the nuclear proteome were significantly altered after virus infection. These differentially abundant proteins are involved in such biological processes as immune response, signal transduction, RNA processing, macromolecular biosynthesis, energy metabolism, virus binding, and cellular apoptosis. Moreover, transcriptional profiles of the 25 genes corresponding to the identified proteins were analyzed by quantitative real-time RT-PCR. Ingenuity Pathway Analysis clustered the differentially abundant proteins primarily into the mTOR pathway, PI3K/Akt pathway, and interferon-β signaling cascades. Confocal microscopy showed colocalization of the viral protein VP3 with host proteins heterogeneous nuclear ribonucleoprotein H1, nuclear factor 45, apoptosis inhibitor 5, nuclear protein localization protein 4 and DEAD-box RNA helicase 42 during the virus infection. Together, these identified subcellular constituents provide important information for understanding host-IBDV interactions and underlying mechanisms of IBDV infection and pathogenesis.
Collapse
Affiliation(s)
- Yanting Sun
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
| | - Boli Hu
- College of Veterinary MedicineNanjing Agricultural UniversityNanjingP. R. China
| | - Chengfei Fan
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
| | - Lu Jia
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
| | - Yina Zhang
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
| | - Aifang Du
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
| | - Xiaojuan Zheng
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang UniversityHangzhouP. R. China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
- College of Veterinary MedicineNanjing Agricultural UniversityNanjingP. R. China
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang UniversityHangzhouP. R. China
| |
Collapse
|
41
|
Jiang X, Nevins JR, Shats I, Chi JT. E2F1-Mediated Induction of NFYB Attenuates Apoptosis via Joint Regulation of a Pro-Survival Transcriptional Program. PLoS One 2015; 10:e0127951. [PMID: 26039627 PMCID: PMC4454684 DOI: 10.1371/journal.pone.0127951] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/22/2015] [Indexed: 11/18/2022] Open
Abstract
The E2F1 transcription factor regulates cell proliferation and apoptosis through the control of a considerable variety of target genes. Previous work has detailed the role of other transcription factors in mediating the specificity of E2F function. Here we identify the NF-YB transcription factor as a novel direct E2F1 target. Genome-wide expression analysis of the effects of NFYB knockdown on E2F1-mediated transcription identified a large group of genes that are co-regulated by E2F1 and NFYB. We also provide evidence that knockdown of NFYB enhances E2F1-induced apoptosis, suggesting a pro-survival function of the NFYB/E2F1 joint transcriptional program. Bioinformatic analysis suggests that deregulation of these NFY-dependent E2F1 target genes might play a role in sarcomagenesis as well as drug resistance.
Collapse
Affiliation(s)
- Xiaolei Jiang
- Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Joseph Roy Nevins
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Igor Shats
- Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JTC); (IS)
| | - Jen-Tsan Chi
- Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
- * E-mail: (JTC); (IS)
| |
Collapse
|
42
|
Peng D, Wang J, Zhang R, Jiang F, Tang S, Chen M, Yan J, Sun X, Wang S, Wang T, Yan D, Bao Y, Hu C, Jia W. Common variants in or near ZNRF1, COLEC12, SCYL1BP1 and API5 are associated with diabetic retinopathy in Chinese patients with type 2 diabetes. Diabetologia 2015; 58:1231-8. [PMID: 25819896 DOI: 10.1007/s00125-015-3569-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS Three recent genome-wide association studies (GWAS) identified several single-nucleotide polymorphisms (SNPs) with modest effects on diabetic retinopathy in Mexican-American and white patients with diabetes. This study aimed to evaluate the effects of these variants on diabetic retinopathy in Chinese patients with type 2 diabetes. METHODS A total of 1,972 patients with type 2 diabetes were recruited to this study, including 819 patients with diabetic retinopathy and 1,153 patients with diabetes of ≥5 years duration but without retinopathy. Forty SNPs associated with diabetic retinopathy in three GWAS were genotyped. Fundus photography was performed to diagnose and classify diabetic retinopathy. RESULTS rs17684886 in ZNRF1 and rs599019 near COLEC12 were associated with diabetic retinopathy (OR 0.812, p = 0.0039 and OR 0.835, p = 0.0116, respectively) and with the severity of diabetic retinopathy (p = 0.0365 and p = 0.0252, respectively, for trend analysis). Sub-analysis in patients with diabetic retinopathy revealed that rs6427247 near SCYL1BP1 (also known as GORAB) and rs899036 near API5 were associated with severe diabetic retinopathy (OR 1.368, p = 0.0333 and OR 0.340, p = 0.0005, respectively). The associations between rs6427247 and rs899036 and severe diabetic retinopathy became more evident after a meta-analysis of published GWAS data (OR 1.577, p = 2.01 × 10(-4) for rs6427247; OR 0.330, p = 5.84 × 10(-7) for rs899036). CONCLUSIONS/INTERPRETATION We determined that rs17684886 and rs599019 are associated with diabetic retinopathy and that rs6427247 and rs899036 are associated with severe diabetic retinopathy in Chinese patients with type 2 diabetes.
Collapse
Affiliation(s)
- Danfeng Peng
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Siu MK, Abou-Kheir W, Yin JJ, Chang YS, Barrett B, Suau F, Casey O, Chen WY, Fang L, Hynes P, Hsieh YY, Liu YN, Huang J, Kelly K. Loss of EGFR signaling regulated miR-203 promotes prostate cancer bone metastasis and tyrosine kinase inhibitors resistance. Oncotarget 2015; 5:3770-84. [PMID: 25004126 PMCID: PMC4116519 DOI: 10.18632/oncotarget.1994] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation of EGFR signaling pathway leads to prostate cancer bone metastasis; however, therapies targeting EGFR have demonstrated limited effectiveness and led to drug resistance. miR-203 levels are down-regulated in clinical samples of primary prostate cancer and further reduced in metastatic prostate cancer. Here we show that ectopic miR-203 expression displayed reduced bone metastasis and induced sensitivity to tyrosine kinase inhibitors (TKIs) treatment in a xenograft model. Our results demonstrate that the induction of bone metastasis and TKI resistance require miR-203 down regulation, activation of the EGFR pathway via altered expression of EGFR ligands (EREG and TGFA) and anti-apoptotic proteins (API5, BIRC2, and TRIAP1). Importantly, a sufficient reconstitution of invasiveness and resistance to TKIs treatment was observed in cells transfected with anti-miR-203. In prostate cancer patients, our data showed that miR-203 levels were inversely correlated with the expression of two EGFR ligands, EREG and TGFA, and an EGFR dependent gene signature. Our results support the existence of a miR-203, EGFR, TKIs resistance regulatory network in prostate cancer progression. We propose that the loss of miR-203 is a molecular link in the progression of prostate cancer metastasis and TKIs resistance characterized by high EGFR ligands output and anti-apoptotic proteins activation.
Collapse
Affiliation(s)
- Man Kit Siu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center of Excellence for Cancer Research, Wan Fang Hospital, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | |
Collapse
|
44
|
Wakasa K, Kawabata R, Nakao S, Hattori H, Taguchi K, Uchida J, Yamanaka T, Maehara Y, Fukushima M, Oda S. Dynamic modulation of thymidylate synthase gene expression and fluorouracil sensitivity in human colorectal cancer cells. PLoS One 2015; 10:e0123076. [PMID: 25881233 PMCID: PMC4400010 DOI: 10.1371/journal.pone.0123076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/27/2015] [Indexed: 11/18/2022] Open
Abstract
Biomarkers have revolutionized cancer chemotherapy. However, many biomarker candidates are still in debate. In addition to clinical studies, a priori experimental approaches are needed. Thymidylate synthase (TS) expression is a long-standing candidate as a biomarker for 5-fluorouracil (5-FU) treatment of cancer patients. Using the Tet-OFF system and a human colorectal cancer cell line, DLD-1, we first constructed an in vitro system in which TS expression is dynamically controllable. Quantitative assays have elucidated that TS expression in the transformant was widely modulated, and that the dynamic range covered 15-fold of the basal level. 5-FU sensitivity of the transformant cells significantly increased in response to downregulated TS expression, although being not examined in the full dynamic range because of the doxycycline toxicity. Intriguingly, our in vitro data suggest that there is a linear relationship between TS expression and the 5-FU sensitivity in cells. Data obtained in a mouse model using transformant xenografts were highly parallel to those obtained in vitro. Thus, our in vitro and in vivo observations suggest that TS expression is a determinant of 5-FU sensitivity in cells, at least in this specific genetic background, and, therefore, support the possibility of TS expression as a biomarker for 5-FU-based cancer chemotherapy.
Collapse
Affiliation(s)
- Kentaro Wakasa
- Clinical Research Institute, National Kyushu Cancer Center, Fukuoka, Japan
| | - Rumi Kawabata
- Tokushima Research Center, Taiho Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Seiki Nakao
- Clinical Research Institute, National Kyushu Cancer Center, Fukuoka, Japan
| | | | - Kenichi Taguchi
- Clinical Research Institute, National Kyushu Cancer Center, Fukuoka, Japan
| | - Junji Uchida
- Tokushima Research Center, Taiho Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Takeharu Yamanaka
- Department of Biostatistics, Yokohama City University, Yokohama, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masakazu Fukushima
- Clinical Research Institute, National Kyushu Cancer Center, Fukuoka, Japan
| | - Shinya Oda
- Clinical Research Institute, National Kyushu Cancer Center, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
45
|
Kovács L, Nagy O, Pál M, Udvardy A, Popescu O, Deák P. Role of the deubiquitylating enzyme DmUsp5 in coupling ubiquitin equilibrium to development and apoptosis in Drosophila melanogaster. PLoS One 2015; 10:e0120875. [PMID: 25806519 PMCID: PMC4373725 DOI: 10.1371/journal.pone.0120875] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/27/2015] [Indexed: 01/07/2023] Open
Abstract
Protein ubiquitylation is a dynamic process that affects the function and stability of proteins and controls essential cellular processes ranging from cell proliferation to cell death. This process is regulated through the balanced action of E3 ubiquitin ligases and deubiquitylating enzymes (DUB) which conjugate ubiquitins to, and remove them from target proteins, respectively. Our genetic analysis has revealed that the deubiquitylating enzyme DmUsp5 is required for maintenance of the ubiquitin equilibrium, cell survival and normal development in Drosophila. Loss of the DmUsp5 function leads to late larval lethality accompanied by the induction of apoptosis. Detailed analyses at a cellular level demonstrated that DmUsp5 mutants carry multiple abnormalities, including a drop in the free monoubiquitin level, the excessive accumulation of free polyubiquitins, polyubiquitylated proteins and subunits of the 26S proteasome. A shortage in free ubiquitins results in the induction of a ubiquitin stress response previously described only in the unicellular budding yeast. It is characterized by the induction of the proteasome-associated deubiquitylase DmUsp14 and sensitivity to cycloheximide. Removal of DmUsp5 also activates the pro-apoptotic machinery thereby resulting in widespread apoptosis, indicative of an anti-apoptotic role of DmUsp5. Collectively, the pleiotropic effects of a loss of DmUsp5 function can be explained in terms of the existence of a limited pool of free monoubiquitins which makes the ubiquitin-dependent processes mutually interdependent.
Collapse
Affiliation(s)
- Levente Kovács
- Department of Genetics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Olga Nagy
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Margit Pál
- Department of Genetics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Andor Udvardy
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Octavian Popescu
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Péter Deák
- Department of Genetics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
46
|
Zheng CQ, Jeswin J, Shen KL, Lablche M, Wang KJ, Liu HP. Detrimental effect of CO2-driven seawater acidification on a crustacean brine shrimp, Artemia sinica. FISH & SHELLFISH IMMUNOLOGY 2015; 43:181-190. [PMID: 25555807 DOI: 10.1016/j.fsi.2014.12.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
The effects of the decline in ocean pH, termed as ocean acidification due to the elevated carbon dioxide in the atmosphere, on calcifying organisms such as marine crustacean are unclear. To understand the possible effects of ocean acidification on the physiological responses of a marine model crustacean brine shrimp, Artemia sinica, three groups of the cysts or animals were raised at different pH levels (8.2 as control; 7.8 and 7.6 as acidification stress according to the predictions for the end of this century and next century accordingly) for 24 h or two weeks, respectively, followed by examination of their hatching success, morphological appearance such as deformity and microstructure of animal body, growth (i.e. body length), survival rate, expression of selected genes (involved in development, immunity and cellular activity etc), and biological activity of several key enzymes (participated in antioxidant responses and physiological reactions etc). Our results clearly demonstrated that the cysts hatching rate, growth at late stage of acidification stress, and animal survival rate of brine shrimp were all reduced due to lower pH level (7.6 & 7.8) on comparison to the control group (pH 8.2), but no obvious change in deformity or microstructure of brine shrimp was present under these acidification stress by microscopy observation and section analysis. In addition, the animals subjected to a lower pH level of seawater underwent changes on their gene expressions, including Spätzle, MyD88, Notch, Gram-negative bacteria binding protein, prophenoloxidase, Apoptosis inhibitor 5, Trachealess, Caveolin-1 and Cyclin K. Meanwhile, several key enzyme activities, including superoxide dismutase, catalase, peroxidase, alkaline phosphatase and acid phosphatase, were also affected by acidified seawater stress. Taken together, our findings supports the idea that CO2-driven seawater acidification indeed has a detrimental effect, in case of hatching success, growth and survival, on a model crustacean brine shrimp, which will increase the risk of juvenile brine shrimp and possibly also other crustaceans, as important live feeds for aquaculture being introduced in the ecosystem especially the marine food webs.
Collapse
Affiliation(s)
- Chao-qun Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Joseph Jeswin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Kai-li Shen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Meghan Lablche
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Ke-jian Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China
| | - Hai-peng Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China.
| |
Collapse
|
47
|
Pekow J, Meckel K, Dougherty U, Butun F, Mustafi R, Lim J, Crofton C, Chen X, Joseph L, Bissonnette M. Tumor suppressors miR-143 and miR-145 and predicted target proteins API5, ERK5, K-RAS, and IRS-1 are differentially expressed in proximal and distal colon. Am J Physiol Gastrointest Liver Physiol 2015; 308:G179-87. [PMID: 25477374 PMCID: PMC4312953 DOI: 10.1152/ajpgi.00208.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The colon differs regionally in local luminal environment, excretory function, and gene expression. Polycistronic microRNA (miR)-143 and miR-145 are downregulated early in colon cancer. We asked if these microRNAs (miRNAs) might be differentially expressed in the proximal vs. the distal colon, contributing to regional differences in protein expression. Primary transcripts and mature miR-143 and miR-145 were quantified by real-time PCR, putative targets were measured by Western blotting, and DNA methylation was assessed by sequencing bisulfite-treated DNA in proximal and distal normal colonic mucosa as well as colon cancers. Putative targets of these miRNAs were assessed following transfection with miR-143 or miR-145. Mean expression of mature miR-143 and miR-145 was 2.0-fold (P < 0.001) and 1.8-fold (P = 0.03) higher, respectively, in proximal than distal colon. DNA methylation or primary transcript expression of these miRNAs did not differ by location. In agreement with increased expression of miR-143 and miR-145 in proximal colon, predicted targets of these miRNAs, apoptosis inhibitor 5 (API5), ERK5, K-RAS, and insulin receptor substrate 1 (IRS-1), which are cell cycle and survival regulators, were expressed at a lower level in proximal than distal colon. Transfection of HCA-7 colon cancer cells with miR-145 downregulated IRS-1, and transfection of HT-29 colon cancer cells with miR-143 decreased K-RAS and ERK5 expression. In conclusion, miR-143 and miR-145 and the predicted target proteins API5, ERK5, K-RAS, and IRS-1 display regional differences in expression in the colon. We speculate that differences in these tumor suppressors might contribute to regional differences in normal colonic gene expression and modulate site-specific differences in malignant predisposition.
Collapse
Affiliation(s)
- Joel Pekow
- Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, Illinois; and
| | - Katherine Meckel
- 1Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, Illinois; and
| | - Urszula Dougherty
- 1Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, Illinois; and
| | - Fatma Butun
- 1Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, Illinois; and
| | - Reba Mustafi
- 1Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, Illinois; and
| | - John Lim
- 1Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, Illinois; and
| | - Charis Crofton
- 1Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, Illinois; and
| | - Xindi Chen
- 1Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, Illinois; and
| | - Loren Joseph
- 2Department of Pathology, University of Chicago, Chicago, Illinois
| | - Marc Bissonnette
- 1Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, Illinois; and
| |
Collapse
|
48
|
Baxter PA, Lin Q, Mao H, Kogiso M, Zhao X, Liu Z, Huang Y, Voicu H, Gurusiddappa S, Su JM, Adesina AM, Perlaky L, Dauser RC, Leung HCE, Muraszko KM, Heth JA, Fan X, Lau CC, Man TK, Chintagumpala M, Li XN. Silencing BMI1 eliminates tumor formation of pediatric glioma CD133+ cells not by affecting known targets but by down-regulating a novel set of core genes. Acta Neuropathol Commun 2014; 2:160. [PMID: 25526772 PMCID: PMC4289398 DOI: 10.1186/s40478-014-0160-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/30/2014] [Indexed: 01/08/2023] Open
Abstract
Clinical outcome of children with malignant glioma remains dismal. Here, we examined the role of over-expressed BMI1, a regulator of stem cell self-renewal, in sustaining tumor formation in pediatric glioma stem cells. Our investigation revealed BMI1 over-expression in 29 of 54 (53.7%) pediatric gliomas, 8 of 8 (100%) patient derived orthotopic xenograft (PDOX) mouse models, and in both CD133+ and CD133− glioma cells. We demonstrated that lentiviral-shRNA mediated silencing of suppressed cell proliferation in vitro in cells derived from 3 independent PDOX models and eliminated tumor-forming capacity of CD133+ and CD133− cells derived from 2 PDOX models in mouse brains. Gene expression profiling showed that most of the molecular targets of BMI1 ablation in CD133+ cells were different from that in CD133- cells. Importantly, we found that silencing BMI1 in CD133+ cells derived from 3 PDOX models did not affect most of the known genes previously associated with the activated BMI1, but modulated a novel set of core genes, including RPS6KA2, ALDH3A2, FMFB, DTL, API5, EIF4G2, KIF5c, LOC650152, C20ORF121, LOC203547, LOC653308, and LOC642489, to mediate the elimination of tumor formation. In summary, we identified the over-expressed BMI1 as a promising therapeutic target for glioma stem cells, and suggest that the signaling pathways associated with activated BMI1 in promoting tumor growth may be different from those induced by silencing BMI1 in blocking tumor formation. These findings highlighted the importance of careful re-analysis of the affected genes following the inhibition of abnormally activated oncogenic pathways to identify determinants that can potentially predict therapeutic efficacy.
Collapse
|
49
|
Riggi N, Knoechel B, Gillespie SM, Rheinbay E, Boulay G, Suvà ML, Rossetti NE, Boonseng WE, Oksuz O, Cook EB, Formey A, Patel A, Gymrek M, Thapar V, Deshpande V, Ting DT, Hornicek FJ, Nielsen GP, Stamenkovic I, Aryee MJ, Bernstein BE, Rivera MN. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 2014; 26:668-681. [PMID: 25453903 PMCID: PMC4492343 DOI: 10.1016/j.ccell.2014.10.004] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/14/2014] [Accepted: 10/06/2014] [Indexed: 01/10/2023]
Abstract
The aberrant transcription factor EWS-FLI1 drives Ewing sarcoma, but its molecular function is not completely understood. We find that EWS-FLI1 reprograms gene regulatory circuits in Ewing sarcoma by directly inducing or repressing enhancers. At GGAA repeat elements, which lack evolutionary conservation and regulatory potential in other cell types, EWS-FLI1 multimers induce chromatin opening and create de novo enhancers that physically interact with target promoters. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild-type ETS transcription factors. These divergent chromatin-remodeling patterns repress tumor suppressors and mesenchymal lineage regulators while activating oncogenes and potential therapeutic targets, such as the kinase VRK1. Our findings demonstrate how EWS-FLI1 establishes an oncogenic regulatory program governing both tumor survival and differentiation.
Collapse
Affiliation(s)
- Nicolò Riggi
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Birgit Knoechel
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shawn M Gillespie
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Esther Rheinbay
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gaylor Boulay
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nikki E Rossetti
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wannaporn E Boonseng
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ozgur Oksuz
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward B Cook
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Aurélie Formey
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Anoop Patel
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Neurosurgery Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Melissa Gymrek
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Vishal Thapar
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David T Ting
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Francis J Hornicek
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ivan Stamenkovic
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Martin J Aryee
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bradley E Bernstein
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Miguel N Rivera
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
50
|
Georgiadi EC, Dimtsas GS, Vassilakopoulos TP, Pangalis GA, Kittas C, Doussis-Anagnostopoulou IA. Functional p53 can modulate the relationship between E2F-1 expression and tumor kinetics in Hodgkin lymphoma. Leuk Lymphoma 2014; 56:748-54. [DOI: 10.3109/10428194.2014.930850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|