1
|
Sharma A, Iruegas-Bocardo F, Bibi S, Chen YC, Kim JG, Abrahamian P, Minsavage GV, Hurlbert JC, Vallad GE, Mudgett MB, Jones JB, Goss EM. Multiple Acquisitions of XopJ2 Effectors in Populations of Xanthomonas perforans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:736-747. [PMID: 39102648 DOI: 10.1094/mpmi-05-24-0048-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Type III effectors (T3Es) are major determinants of Xanthomonas virulence and targets for resistance breeding. XopJ2 (synonym AvrBsT) is a highly conserved YopJ-family T3E acquired by X. perforans, the pathogen responsible for bacterial spot disease of tomato. In this study, we characterized a new variant (XopJ2b) of XopJ2, which is predicted to have a similar three-dimensional (3D) structure as the canonical XopJ2 (XopJ2a) despite sharing only 70% sequence identity. XopJ2b carries an acetyltransferase domain and the critical residues required for its activity, and the positions of these residues are predicted to be conserved in the 3D structure of the proteins. We demonstrated that XopJ2b is a functional T3E and triggers a hypersensitive response (HR) when translocated into pepper cells. Like XopJ2a, XopJ2b triggers HR in Arabidopsis that is suppressed by the deacetylase, SOBER1. We found xopJ2b in genome sequences of X. euvesicatoria, X. citri, X. guizotiae, and X. vasicola strains, suggesting widespread horizontal transfer. In X. perforans, xopJ2b was present in strains collected in North America, Africa, Asia, Australia, and Europe, whereas xopJ2a had a narrower geographic distribution. This study expands the Xanthomonas T3E repertoire, demonstrates functional conservation in T3E evolution, and further supports the importance of XopJ2 in X. perforans fitness on tomato. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anuj Sharma
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
- Gulf Coast Research and Education Center, University of Florida, Gainesville, FL 32611, U.S.A
| | | | - Shaheen Bibi
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Yun-Chu Chen
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Peter Abrahamian
- Gulf Coast Research and Education Center, University of Florida, Gainesville, FL 32611, U.S.A
| | - Gerald V Minsavage
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Jason C Hurlbert
- Department of Chemistry, Physics, and Geology, Winthrop University, Rock Hill, SC 29733, U.S.A
| | - Gary E Vallad
- Gulf Coast Research and Education Center, University of Florida, Gainesville, FL 32611, U.S.A
| | - Mary B Mudgett
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Jeffrey B Jones
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Erica M Goss
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
2
|
Jiménez‐Guerrero I, López‐Baena FJ, Borrero‐de Acuña JM, Pérez‐Montaño F. Membrane vesicle engineering with "à la carte" bacterial-immunogenic molecules for organism-free plant vaccination. Microb Biotechnol 2023; 16:2223-2235. [PMID: 37530752 PMCID: PMC10686165 DOI: 10.1111/1751-7915.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
The United Nations heralds a world population exponential increase exceeding 9.7 billion by 2050. This poses the challenge of covering the nutritional needs of an overpopulated world by the hand of preserving the environment. Extensive agriculture practices harnessed the employment of fertilizers and pesticides to boost crop productivity and prevent economic and harvest yield losses attributed to plagues and diseases. Unfortunately, the concomitant hazardous effects stemmed from such agriculture techniques are cumbersome, that is, biodiversity loss, soils and waters contaminations, and human and animal poisoning. Hence, the so-called 'green agriculture' research revolves around designing novel biopesticides and plant growth-promoting bio-agents to the end of curbing the detrimental effects. In this field, microbe-plant interactions studies offer multiple possibilities for reshaping the plant holobiont physiology to its benefit. Along these lines, bacterial extracellular membrane vesicles emerge as an appealing molecular tool to capitalize on. These nanoparticles convey a manifold of molecules that mediate intricate bacteria-plant interactions including plant immunomodulation. Herein, we bring into the spotlight bacterial extracellular membrane vesicle engineering to encase immunomodulatory effectors into their cargo for their application as biocontrol agents. The overarching goal is achieving plant priming by deploying its innate immune responses thereby preventing upcoming infections.
Collapse
|
3
|
Rufián JS, Rueda-Blanco J, Beuzón CR, Ruiz-Albert J. Suppression of NLR-mediated plant immune detection by bacterial pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6069-6088. [PMID: 37429579 PMCID: PMC10575702 DOI: 10.1093/jxb/erad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
The plant immune system is constituted of two functionally interdependent branches that provide the plant with an effective defense against microbial pathogens. They can be considered separate since one detects extracellular pathogen-associated molecular patterns by means of receptors on the plant surface, while the other detects pathogen-secreted virulence effectors via intracellular receptors. Plant defense depending on both branches can be effectively suppressed by host-adapted microbial pathogens. In this review we focus on bacterially driven suppression of the latter, known as effector-triggered immunity (ETI) and dependent on diverse NOD-like receptors (NLRs). We examine how some effectors secreted by pathogenic bacteria carrying type III secretion systems can be subject to specific NLR-mediated detection, which can be evaded by the action of additional co-secreted effectors (suppressors), implying that virulence depends on the coordinated action of the whole repertoire of effectors of any given bacterium and their complex epistatic interactions within the plant. We consider how ETI activation can be avoided by using suppressors to directly alter compromised co-secreted effectors, modify plant defense-associated proteins, or occasionally both. We also comment on the potential assembly within the plant cell of multi-protein complexes comprising both bacterial effectors and defense protein targets.
Collapse
Affiliation(s)
- José S Rufián
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | | | - Carmen R Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| |
Collapse
|
4
|
Tomar V, Rikkerink EHA, Song J, Sofkova-Bobcheva S, Bus VGM. Structure-Function Characterisation of Eop1 Effectors from the Erwinia-Pantoea Clade Reveals They May Acetylate Their Defence Target through a Catalytic Dyad. Int J Mol Sci 2023; 24:14664. [PMID: 37834112 PMCID: PMC10572645 DOI: 10.3390/ijms241914664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The YopJ group of acetylating effectors from phytopathogens of the genera Pseudomonas and Ralstonia have been widely studied to understand how they modify and suppress their host defence targets. In contrast, studies on a related group of effectors, the Eop1 group, lag far behind. Members of the Eop1 group are widely present in the Erwinia-Pantoea clade of Gram-negative bacteria, which contains phytopathogens, non-pathogens and potential biocontrol agents, implying that they may play an important role in agroecological or pathological adaptations. The lack of research in this group of YopJ effectors has left a significant knowledge gap in their functioning and role. For the first time, we perform a comparative analysis combining AlphaFold modelling, in planta transient expressions and targeted mutational analyses of the Eop1 group effectors from the Erwinia-Pantoea clade, to help elucidate their likely activity and mechanism(s). This integrated study revealed several new findings, including putative binding sites for inositol hexakisphosphate and acetyl coenzyme A and newly postulated target-binding domains, and raises questions about whether these effectors function through a catalytic triad mechanism. The results imply that some Eop1s may use a catalytic dyad acetylation mechanism that we found could be promoted by the electronegative environment around the active site.
Collapse
Affiliation(s)
- Vishant Tomar
- Mt Albert Research Centre, The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
| | - Erik H. A. Rikkerink
- Mt Albert Research Centre, The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Janghoon Song
- Pear Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Naju 58216, Republic of Korea
| | - Svetla Sofkova-Bobcheva
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
| | - Vincent G. M. Bus
- Hawkes Bay Research Centre, The New Zealand Institute for Plant and Food Research Limited, Havelock North 4130, New Zealand;
| |
Collapse
|
5
|
Campos PE, Pruvost O, Boyer K, Chiroleu F, Cao TT, Gaudeul M, Baider C, Utteridge TMA, Becker N, Rieux A, Gagnevin L. Herbarium specimen sequencing allows precise dating of Xanthomonas citri pv. citri diversification history. Nat Commun 2023; 14:4306. [PMID: 37474518 PMCID: PMC10359311 DOI: 10.1038/s41467-023-39950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Herbarium collections are an important source of dated, identified and preserved DNA, whose use in comparative genomics and phylogeography can shed light on the emergence and evolutionary history of plant pathogens. Here, we reconstruct 13 historical genomes of the bacterial crop pathogen Xanthomonas citri pv. citri (Xci) from infected Citrus herbarium specimens. Following authentication based on ancient DNA damage patterns, we compare them with a large set of modern genomes to estimate their phylogenetic relationships, pathogenicity-associated gene content and several evolutionary parameters. Our results indicate that Xci originated in Southern Asia ~11,500 years ago (perhaps in relation to Neolithic climate change and the development of agriculture) and diversified during the beginning of the 13th century, after Citrus diversification and before spreading to the rest of the world (probably via human-driven expansion of citriculture through early East-West trade and colonization).
Collapse
Affiliation(s)
- Paola E Campos
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France
- Institut de Systématique, Évolution, Biodiversité (ISyEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
| | | | - Karine Boyer
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France
| | | | - Thuy Trang Cao
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France
| | - Myriam Gaudeul
- Institut de Systématique, Évolution, Biodiversité (ISyEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
- Herbier national, Muséum national d'Histoire naturelle, CP39, 57 rue Cuvier, 75005, Paris, France
| | - Cláudia Baider
- The Mauritius Herbarium, Agricultural Services, Ministry of Agro-Industry and Food Security, R.E. Vaughan Building (MSIRI Compound), Reduit, 80835, Mauritius
| | | | - Nathalie Becker
- Institut de Systématique, Évolution, Biodiversité (ISyEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
| | - Adrien Rieux
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France.
| | - Lionel Gagnevin
- PHIM Plant Health Institute, Univ. Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.
- CIRAD, UMR PHIM, Montpellier, France.
| |
Collapse
|
6
|
Tokuda R, Iwabuchi N, Kitazawa Y, Nijo T, Suzuki M, Maejima K, Oshima K, Namba S, Yamaji Y. Potential mobile units drive the horizontal transfer of phytoplasma effector phyllogen genes. Front Genet 2023; 14:1132432. [PMID: 37252660 PMCID: PMC10210161 DOI: 10.3389/fgene.2023.1132432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/03/2023] [Indexed: 05/31/2023] Open
Abstract
Phytoplasmas are obligate intracellular plant pathogenic bacteria that can induce phyllody, which is a type of abnormal floral organ development. Phytoplasmas possess phyllogens, which are effector proteins that cause phyllody in plants. Phylogenetic comparisons of phyllogen and 16S rRNA genes have suggested that phyllogen genes undergo horizontal transfer between phytoplasma species and strains. However, the mechanisms and evolutionary implications of this horizontal gene transfer are unclear. Here, we analyzed synteny in phyllogen flanking genomic regions from 17 phytoplasma strains that were related to six 'Candidatus' species, including three strains newly sequenced in this study. Many of the phyllogens were flanked by multicopy genes within potential mobile units (PMUs), which are putative transposable elements found in phytoplasmas. The multicopy genes exhibited two distinct patterns of synteny that correlated with the linked phyllogens. The low level of sequence identities and partial truncations found among these phyllogen flanking genes indicate that the PMU sequences are deteriorating, whereas the highly conserved sequences and functions (e.g., inducing phyllody) of the phyllogens suggest that the latter are important for phytoplasma fitness. Furthermore, although their phyllogens were similar, PMUs in strains related to 'Ca. P. asteris' were often located in different regions of the genome. These findings strongly indicate that PMUs drive the horizontal transfer of phyllogens among phytoplasma species and strains. These insights improve our understanding of how symptom-determinant genes have been shared among phytoplasmas.
Collapse
Affiliation(s)
- Ryosuke Tokuda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takamichi Nijo
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenro Oshima
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Lovelace AH, Dorhmi S, Hulin MT, Li Y, Mansfield JW, Ma W. Effector Identification in Plant Pathogens. PHYTOPATHOLOGY 2023; 113:637-650. [PMID: 37126080 DOI: 10.1094/phyto-09-22-0337-kd] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Effectors play a central role in determining the outcome of plant-pathogen interactions. As key virulence proteins, effectors are collectively indispensable for disease development. By understanding the virulence mechanisms of effectors, fundamental knowledge of microbial pathogenesis and disease resistance have been revealed. Effectors are also considered double-edged swords because some of them activate immunity in disease resistant plants after being recognized by specific immune receptors, which evolved to monitor pathogen presence or activity. Characterization of effector recognition by their cognate immune receptors and the downstream immune signaling pathways is instrumental in implementing resistance. Over the past decades, substantial research effort has focused on effector biology, especially concerning their interactions with virulence targets or immune receptors in plant cells. A foundation of this research is robust identification of the effector repertoire from a given pathogen, which depends heavily on bioinformatic prediction. In this review, we summarize methodologies that have been used for effector mining in various microbial pathogens which use different effector delivery mechanisms. We also discuss current limitations and provide perspectives on how recently developed analytic tools and technologies may facilitate effector identification and hence generation of a more complete vision of host-pathogen interactions. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Sara Dorhmi
- The Sainsbury Laboratory, Norwich, NR4 7UH, U.K
- Department of Microbiology and Plant Pathology, University of California Riverside, CA 92521, U.S.A
| | | | - Yufei Li
- The Sainsbury Laboratory, Norwich, NR4 7UH, U.K
| | - John W Mansfield
- Faculty of Natural Sciences, Imperial College London, London, SW7 2BX, U.K
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich, NR4 7UH, U.K
| |
Collapse
|
8
|
Jerez SA, Plaza N, Bravo V, Urrutia IM, Blondel CJ. Vibrio type III secretion system 2 is not restricted to the Vibrionaceae and encodes differentially distributed repertoires of effector proteins. Microb Genom 2023; 9:mgen000973. [PMID: 37018030 PMCID: PMC10210961 DOI: 10.1099/mgen.0.000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/01/2023] [Indexed: 04/06/2023] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-borne gastroenteritis worldwide. A distinctive feature of the O3:K6 pandemic clone, and its derivatives, is the presence of a second, phylogenetically distinct, type III secretion system (T3SS2) encoded within the genomic island VPaI-7. The T3SS2 allows the delivery of effector proteins directly into the cytosol of infected eukaryotic cells to subvert key host-cell processes, critical for V. parahaemolyticus to colonize and cause disease. Furthermore, the T3SS2 also increases the environmental fitness of V. parahaemolyticus in its interaction with bacterivorous protists; hence, it has been proposed that it contributed to the global oceanic spread of the pandemic clone. Several reports have identified T3SS2-related genes in Vibrio and non-Vibrio species, suggesting that the T3SS2 gene cluster is not restricted to the Vibrionaceae and can mobilize through horizontal gene transfer events. In this work, we performed a large-scale genomic analysis to determine the phylogenetic distribution of the T3SS2 gene cluster and its repertoire of effector proteins. We identified putative T3SS2 gene clusters in 1130 bacterial genomes from 8 bacterial genera, 5 bacterial families and 47 bacterial species. A hierarchical clustering analysis allowed us to define six T3SS2 subgroups (I-VI) with different repertoires of effector proteins, redefining the concepts of T3SS2 core and accessory effector proteins. Finally, we identified a subset of the T3SS2 gene clusters (subgroup VI) that lacks most T3SS2 effector proteins described to date and provided a list of 10 novel effector candidates for this subgroup through bioinformatic analysis. Collectively, our findings indicate that the T3SS2 extends beyond the family Vibrionaceae and suggest that different effector protein repertories could have a differential impact on the pathogenic potential and environmental fitness of each bacterium that has acquired the Vibrio T3SS2 gene cluster.
Collapse
Affiliation(s)
- Sebastian A. Jerez
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Nicolas Plaza
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Veronica Bravo
- Programa Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Italo M. Urrutia
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carlos J. Blondel
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
9
|
Breit-McNally C, Laflamme B, Singh RA, Desveaux D, Guttman DS. ZAR1: Guardian of plant kinases. FRONTIERS IN PLANT SCIENCE 2022; 13:981684. [PMID: 36212348 PMCID: PMC9539561 DOI: 10.3389/fpls.2022.981684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/07/2022] [Indexed: 05/25/2023]
Abstract
A key facet of innate immunity in plants entails the recognition of pathogen "effector" virulence proteins by host Nucleotide-Binding Leucine-Rich Repeat Receptors (NLRs). Among characterized NLRs, the broadly conserved ZAR1 NLR is particularly remarkable due to its capacity to recognize at least six distinct families of effectors from at least two bacterial genera. This expanded recognition spectrum is conferred through interactions between ZAR1 and a dynamic network of two families of Receptor-Like Cytoplasmic Kinases (RLCKs): ZED1-Related Kinases (ZRKs) and PBS1-Like Kinases (PBLs). In this review, we survey the history of functional studies on ZAR1, with an emphasis on how the ZAR1-RLCK network functions to trap diverse effectors. We discuss 1) the dynamics of the ZAR1-associated RLCK network; 2) the specificity between ZRKs and PBLs; and 3) the specificity between effectors and the RLCK network. We posit that the shared protein fold of kinases and the switch-like properties of their interactions make them ideal effector sensors, enabling ZAR1 to act as a broad spectrum guardian of host kinases.
Collapse
Affiliation(s)
- Clare Breit-McNally
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Bradley Laflamme
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Racquel A. Singh
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Bundalovic-Torma C, Lonjon F, Desveaux D, Guttman DS. Diversity, Evolution, and Function of Pseudomonas syringae Effectoromes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:211-236. [PMID: 35537470 DOI: 10.1146/annurev-phyto-021621-121935] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pseudomonas syringae is an evolutionarily diverse bacterial species complex and a preeminent model for the study of plant-pathogen interactions due in part to its remarkably broad host range. A critical feature of P. syringae virulence is the employment of suites of type III secreted effector (T3SE) proteins, which vary widely in composition and function. These effectors act on a variety of plant intracellular targets to promote pathogenesis but can also be avirulence factors when detected by host immune complexes. In this review, we survey the phylogenetic diversity (PD) of the P. syringae effectorome, comprising 70 distinct T3SE families identified to date, and highlight how avoidance of host immune detection has shaped effectorome diversity through functional redundancy, diversification, and horizontal transfer. We present emerging avenues for research and novel insights that can be gained via future investigations of plant-pathogen interactions through the fusion of large-scale interaction screens and phylogenomic approaches.
Collapse
Affiliation(s)
| | - Fabien Lonjon
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Deb S, Gokulan CG, Nathawat R, Patel HK, Sonti RV. Suppression of XopQ-XopX-induced immune responses of rice by the type III effector XopG. MOLECULAR PLANT PATHOLOGY 2022; 23:634-648. [PMID: 35150038 PMCID: PMC8995061 DOI: 10.1111/mpp.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Effectors that suppress effector-triggered immunity (ETI) are an essential part of the arms race in the co-evolution of bacterial pathogens and their host plants. Xanthomonas oryzae pv. oryzae uses multiple type III secretion system (T3SS) secreted effectors such as XopU, XopV, XopP, XopG, and AvrBs2 to suppress rice immune responses that are induced by the interaction of two other effectors, XopQ and XopX. Here we show that each of these five suppressors can interact individually with both XopQ and XopX. One of the suppressors, XopG, is a predicted metallopeptidase that appears to have been introduced into X. oryzae pv. oryzae by horizontal gene transfer. XopQ and XopX interact with each other in the nucleus while interaction with XopG sequesters them in the cytoplasm. The XopG E76A and XopG E85A mutants are defective in interaction with XopQ and XopX, and are also defective in suppression of XopQ-XopX-mediated immune responses. Both mutations individually affect the virulence-promoting ability of XopG. These results indicate that XopG is important for X. oryzae pv. oryzae virulence and provide insights into the mechanisms by which this protein suppresses ETI in rice.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - C. G. Gokulan
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
| | - Rajkanwar Nathawat
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
| | - Hitendra K. Patel
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
| | - Ramesh V. Sonti
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
- Indian Institute of Science Education and Research (IISER) TirupatiTirupatiIndia
| |
Collapse
|
12
|
Jee S, Kang IJ, Bak G, Kang S, Lee J, Heu S, Hwang I. Comparative Genomic Analysis of Pathogenic Factors of Pectobacterium Species Isolated in South Korea Using Whole-Genome Sequencing. THE PLANT PATHOLOGY JOURNAL 2022; 38:12-24. [PMID: 35144358 PMCID: PMC8831359 DOI: 10.5423/ppj.ft.09.2021.0147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
In this study, we conducted whole-genome sequencing with six species of Pectobacterium composed of seven strains, JR1.1, BP201601.1, JK2.1, HNP201719, MYP201603, PZ1, and HC, for the analysis of pathogenic factors associated with the genome of Pectobacterium. The genome sizes ranged from 4,724,337 bp to 5,208,618 bp, with the GC content ranging from 50.4% to 52.3%. The average nucleotide identity was 98% among the two Pectobacterium species and ranged from 88% to 96% among the remaining six species. A similar distribution was observed in the carbohydrate-active enzymes (CAZymes) class and extracellular plant cell wall degrading enzymes (PCWDEs). HC showed the highest number of enzymes in CAZymes and the lowest number in the extracellular PCWDEs. Six strains showed four subsets, and HC demonstrated three subsets, except hasDEF, in type I secretion system, while the type II secretion system of the seven strains was conserved. Components of human pathogens, such as Salmonella pathogenicity island 1 type type III secretion system (T3SS) and effectors, were identified in PZ1; T3SSa was not identified in HC. Two putative effectors, including hrpK, were identified in seven strains along with dspEF. We also identified 13 structural genes, six regulator genes, and five accessory genes in the type VI secretion system (T6SS) gene cluster of six Pectobacterium species, along with the loss of T6SS in PZ1. HC had two subsets, and JK2.1 had three subsets of T6SS. With the GxSxG motif, the phospholipase A gene did locate among tssID and duf4123 genes in the T6SSa cluster of all strains. Important domains were identified in the vgrG/paar islands, including duf4123, duf2235, vrr-nuc, and duf3396.
Collapse
Affiliation(s)
- Samnyu Jee
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342,
Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
| | - In-Jeong Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
- Division of Crop Cultivation and Environment Research, National Institute of Crop Science, Suwon 16613,
Korea
| | - Gyeryeong Bak
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342,
Korea
| | - Sera Kang
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342,
Korea
| | - Jeongtae Lee
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342,
Korea
| | - Sunggi Heu
- Department of Plant Science, College of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
13
|
Massey JH, Newton ILG. Diversity and function of arthropod endosymbiont toxins. Trends Microbiol 2022; 30:185-198. [PMID: 34253453 PMCID: PMC8742837 DOI: 10.1016/j.tim.2021.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023]
Abstract
Bacterial endosymbionts induce dramatic phenotypes in their arthropod hosts, including cytoplasmic incompatibility, feminization, parthenogenesis, male killing, parasitoid defense, and pathogen blocking. The molecular mechanisms underlying these effects remain largely unknown but recent evidence suggests that protein toxins secreted by the endosymbionts play a role. Here, we describe the diversity and function of endosymbiont proteins with homology to known bacterial toxins. We focus on maternally transmitted endosymbionts belonging to the Wolbachia, Rickettsia, Arsenophonus, Hamiltonella, Spiroplasma, and Cardinium genera because of their ability to induce the above phenotypes. We identify at least 16 distinct toxin families with diverse enzymatic activities, including AMPylases, nucleases, proteases, and glycosyltransferases. Notably, several annotated toxins contain domains with homology to eukaryotic proteins, suggesting that arthropod endosymbionts mimic host biochemistry to manipulate host physiology, similar to bacterial pathogens.
Collapse
Affiliation(s)
| | - Irene L. G. Newton
- Department of Biology, Indiana University, Bloomington, Indiana, USA,Corresponding author,
| |
Collapse
|
14
|
Wu Q, Wang Y, Liu LN, Shi K, Li CY. Comparative Genomics and Gene Pool Analysis Reveal the Decrease of Genome Diversity and Gene Number in Rice Blast Fungi by Stable Adaption with Rice. J Fungi (Basel) 2021; 8:jof8010005. [PMID: 35049945 PMCID: PMC8778285 DOI: 10.3390/jof8010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Magnaporthe oryzae caused huge losses in rice and wheat production worldwide. Comparing to long-term co-evolution history with rice, wheat-infecting isolates were new-emerging. To reveal the genetic differences between rice and wheat blast on global genomic scale, 109 whole-genome sequences of M. oryzae from rice, wheat, and other hosts were reanalyzed in this study. We found that the rice lineage had gone through stronger selective sweep and fewer conserved genes than those of Triticum and Lolium lineages, which indicated that rice blast fungi adapted to rice by gene loss and rapid evolution of specific loci. Furthermore, 228 genes associated with host adaptation of M. oryzae were found by presence/absence variation (PAV) analyses. The functional annotation of these genes found that the fine turning of genes gain/loss involved with transport and transcription factor, thiol metabolism, and nucleotide metabolism respectively are major mechanisms for rice adaption. This result implies that genetic base of specific host plant may lead to gene gain/loss variation of pathogens, so as to enhance their adaptability to host. Further characterization of these specific loci and their roles in adaption and evaluation of the fungi may eventually lead to understanding of interaction mechanism and develop new strategies of the disease management.
Collapse
Affiliation(s)
- Qi Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (Y.W.); (L.-N.L.)
- College of Science, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Organic Tea Industry Intelligent Engineering Research Center, Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (Y.W.); (L.-N.L.)
| | - Li-Na Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (Y.W.); (L.-N.L.)
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650201, China
| | - Kai Shi
- School of Foreign Language, Yunnan Agricultural University, Kunming 650201, China;
| | - Cheng-Yun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (Y.W.); (L.-N.L.)
- Correspondence:
| |
Collapse
|
15
|
Abstract
Despite the maintenance of YopP/J alleles throughout the human-pathogenic Yersinia lineage, the benefit of YopP/J-induced phagocyte death for Yersinia pathogenesis in animals is not obvious. To determine how the sequence divergence of YopP/J has impacted Yersinia virulence, we examined protein polymorphisms in this type III secreted effector protein across 17 Yersinia species and tested the consequences of polymorphism in a murine model of subacute systemic yersiniosis. Our evolutionary analysis revealed that codon 177 has been subjected to positive selection; the Yersinia enterocolitica residue had been altered from a leucine to a phenylalanine in nearly all Yersinia pseudotuberculosis and Yersinia pestis strains examined. Despite this change being minor, as both leucine and phenylalanine have hydrophobic side chains, reversion of YopJF177 to the ancestral YopJL177 variant yielded a Y. pseudotuberculosis strain with enhanced cytotoxicity toward macrophages, consistent with previous findings. Surprisingly, expression of YopJF177L in the mildly attenuated ksgA- background rendered the strain completely avirulent in mice. Consistent with this hypothesis that YopJ activity relates indirectly to Yersinia pathogenesis in vivo, ksgA- strains lacking functional YopJ failed to kill macrophages but actually regained virulence in animals. Also, treatment with the antiapoptosis drug suramin prevented YopJ-mediated macrophage cytotoxicity and enhanced Y. pseudotuberculosis virulence in vivo. Our results demonstrate that Yersinia-induced cell death is detrimental for bacterial pathogenesis in this animal model of illness and indicate that positive selection has driven YopJ/P and Yersinia evolution toward diminished cytotoxicity and increased virulence, respectively.
Collapse
|
16
|
Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite-mutualist continuum. Nat Rev Microbiol 2021; 19:623-638. [PMID: 33875863 PMCID: PMC8054256 DOI: 10.1038/s41579-021-00550-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Virtually all plants and animals, including humans, are home to symbiotic microorganisms. Symbiotic interactions can be neutral, harmful or have beneficial effects on the host organism. However, growing evidence suggests that microbial symbionts can evolve rapidly, resulting in drastic transitions along the parasite-mutualist continuum. In this Review, we integrate theoretical and empirical findings to discuss the mechanisms underpinning these evolutionary shifts, as well as the ecological drivers and why some host-microorganism interactions may be stuck at the end of the continuum. In addition to having biomedical consequences, understanding the dynamic life of microorganisms reveals how symbioses can shape an organism's biology and the entire community, particularly in a changing world.
Collapse
Affiliation(s)
| | | | - Kayla C King
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Yuan X, Hulin MT, Sundin GW. Effectors, chaperones, and harpins of the Type III secretion system in the fire blight pathogen Erwinia amylovora: a review. JOURNAL OF PLANT PATHOLOGY 2021; 103:25-39. [PMID: 0 DOI: 10.1007/s42161-020-00623-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 05/20/2023]
|
18
|
Rufián JS, Rueda-Blanco J, López-Márquez D, Macho AP, Beuzón CR, Ruiz-Albert J. The bacterial effector HopZ1a acetylates MKK7 to suppress plant immunity. THE NEW PHYTOLOGIST 2021; 231:1138-1156. [PMID: 33960430 DOI: 10.1111/nph.17442] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The Pseudomonas syringae type III secretion system translocates effector proteins into the host cell cytosol to suppress plant basal immunity. Effector HopZ1a suppresses local and systemic immunity triggered by pathogen-associated molecular patterns (PAMPs) and effectors, through target acetylation. HopZ1a has been shown to target several plant proteins, but none fully substantiates HopZ1a-associated immune suppression. Here, we investigate Arabidopsis thaliana mitogen-activated protein kinase kinases (MKKs) as potential targets, focusing on AtMKK7, a positive regulator of local and systemic immunity. We analyse HopZ1a interference with AtMKK7 by translocation of HopZ1a from bacteria inoculated into Arabidopsis expressing MKK7 from an inducible promoter. Reciprocal phenotypes are analysed on plants expressing a construct quenching MKK7 native expression. We analyse HopZ1a-MKK7 interaction by three independent methods, and the relevance of acetylation by in vitro kinase and in planta functional assays. We demonstrate the AtMKK7 contribution to immune signalling showing MKK7-dependent flg22-induced reactive oxygen species (ROS) burst, MAP kinas (MAPK) activation and callose deposition, plus AvrRpt2-triggered MKK7-dependent signalling. Furthermore, we demonstrate HopZ1a suppression of all MKK7-dependent responses, HopZ1a-MKK7 interaction in planta and HopZ1a acetylation of MKK7 with a lysine required for full kinase activity. We demonstrate that HopZ1a targets AtMKK7 to suppress local and systemic plant immunity.
Collapse
Affiliation(s)
- José S Rufián
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Javier Rueda-Blanco
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
| | - Diego López-Márquez
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Carmen R Beuzón
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
| | - Javier Ruiz-Albert
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
| |
Collapse
|
19
|
Talagrand-Reboul E, Colston SM, Graf J, Lamy B, Jumas-Bilak E. Comparative and Evolutionary Genomics of Isolates Provide Insight into the Pathoadaptation of Aeromonas. Genome Biol Evol 2021; 12:535-552. [PMID: 32196086 PMCID: PMC7250499 DOI: 10.1093/gbe/evaa055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Aeromonads are ubiquitous aquatic bacteria that cause opportunistic infections in humans, but their pathogenesis remains poorly understood. A pathogenomic approach was undertaken to provide insights into the emergence and evolution of pathogenic traits in aeromonads. The genomes of 64 Aeromonas strains representative of the whole genus were analyzed to study the distribution, phylogeny, and synteny of the flanking sequences of 13 virulence-associated genes. The reconstructed evolutionary histories varied markedly depending on the gene analyzed and ranged from vertical evolution, which followed the core genome evolution (alt and colAh), to complex evolution, involving gene loss by insertion sequence-driven gene disruption, horizontal gene transfer, and paraphyly with some virulence genes associated with a phylogroup (aer, ser, and type 3 secretion system components) or no phylogroup (type 3 secretion system effectors, Ast, ExoA, and RtxA toxins). The general pathogenomic overview of aeromonads showed great complexity with diverse evolution modes and gene organization and uneven distribution of virulence genes in the genus; the results provided insights into aeromonad pathoadaptation or the ability of members of this group to emerge as pathogens. Finally, these findings suggest that aeromonad virulence-associated genes should be examined at the population level and that studies performed on type or model strains at the species level cannot be generalized to the whole species.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, University of Montpellier, France.,Laboratoire de Bactériologie, Hôpitaux universitaires de Strasbourg, France
| | - Sophie M Colston
- US Naval Research Laboratory, National Academy of Sciences, National Research Council, Washington, District of Columbia
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut
| | - Brigitte Lamy
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, University of Montpellier, France.,Département de Bactériologie, CHU de Nice and Université Côte d'Azur, INSERM, C3M, Nice, France
| | - Estelle Jumas-Bilak
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, University of Montpellier, France.,Département d'Hygiène Hospitalière, CHRU de Montpellier, France
| |
Collapse
|
20
|
Bi G, Su M, Li N, Liang Y, Dang S, Xu J, Hu M, Wang J, Zou M, Deng Y, Li Q, Huang S, Li J, Chai J, He K, Chen YH, Zhou JM. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 2021; 184:3528-3541.e12. [PMID: 33984278 DOI: 10.1016/j.cell.2021.05.003] [Citation(s) in RCA: 275] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/18/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Nucleotide-binding, leucine-rich repeat receptors (NLRs) are major immune receptors in plants and animals. Upon activation, the Arabidopsis NLR protein ZAR1 forms a pentameric resistosome in vitro and triggers immune responses and cell death in plants. In this study, we employed single-molecule imaging to show that the activated ZAR1 protein can form pentameric complexes in the plasma membrane. The ZAR1 resistosome displayed ion channel activity in Xenopus oocytes in a manner dependent on a conserved acidic residue Glu11 situated in the channel pore. Pre-assembled ZAR1 resistosome was readily incorporated into planar lipid-bilayers and displayed calcium-permeable cation-selective channel activity. Furthermore, we show that activation of ZAR1 in the plant cell led to Glu11-dependent Ca2+ influx, perturbation of subcellular structures, production of reactive oxygen species, and cell death. The results thus support that the ZAR1 resistosome acts as a calcium-permeable cation channel to trigger immunity and cell death.
Collapse
Affiliation(s)
- Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Su
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiachao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meijuan Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jizong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Minxia Zou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China; Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Yanan Deng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijia Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China; Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Jijie Chai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Max-Planck Institute for Plant Breeding Research, Cologne, Germany; Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, 50674 Cologne, Germany.
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yu-Hang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021; 9:1029. [PMID: 34064647 PMCID: PMC8150971 DOI: 10.3390/microorganisms9051029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria possess an arsenal of effector proteins that enable them to subvert host recognition and manipulate the host to promote pathogen fitness. The type III secretion system (T3SS) delivers type III-secreted effector proteins (T3SEs) from bacterial pathogens such as Pseudomonas syringae, Ralstonia solanacearum, and various Xanthomonas species. These T3SEs interact with and modify a range of intracellular host targets to alter their activity and thereby attenuate host immune signaling. Pathogens have evolved T3SEs with diverse biochemical activities, which can be difficult to predict in the absence of structural data. Interestingly, several T3SEs are activated following injection into the host cell. Here, we review T3SEs with documented enzymatic activities, as well as T3SEs that facilitate virulence-promoting processes either indirectly or through non-enzymatic mechanisms. We discuss the mechanisms by which T3SEs are activated in the cell, as well as how T3SEs modify host targets to promote virulence or trigger immunity. These mechanisms may suggest common enzymatic activities and convergent targets that could be manipulated to protect crop plants from infection.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Ilea J. Chau-Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
- Plant Gene Expression Center, United States Department of Agriculture, University of California, Berkeley, CA 94710, USA
| |
Collapse
|
22
|
Chakraborty J. In-silico structural analysis of Pseudomonas syringae effector HopZ3 reveals ligand binding activity and virulence function. JOURNAL OF PLANT RESEARCH 2021; 134:599-611. [PMID: 33730245 DOI: 10.1007/s10265-021-01274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Bacterial acetyltransferase effectors belonging to the Yersinia outer protein J (YopJ) group inhibit multiple immune signaling pathways in human and plants. The present study determines in-silico acetyl-coenzyme A (AcCoA) binding and Arabidopsis immune regulator RPM1-interacting protein4 (RIN4) peptide interactions to YopJ effector hypersensitivity and pathogenesis-dependent outer proteinZ3 (HopZ3) from Pseudomonas syringae. Phylogenetic analysis revealed that HopZ3 was clustered by acetyltransferase effectors from plant bacterial pathogens. Structural juxtaposition shows HopZ3 comprises topology matched closer with HopZ1a than PopP2 effectors, respectively. AcCoA binds HopZ3 at two sites i.e., substrate binding pocket and catalytic site. AcCoA interactions to substrate binding pocket was transient and dissipated upon in-silico mutation of Ser 279 residue whereas, attachment to catalytic site was found to be stable in the presence of inositol hexaphosphate (IP6) as a co-factor. Interface atoms used for measuring hydrogen bond distances, bound or accessible surface area, and root-mean-square fluctuation (RMSF) values, suggests that the HopZ3 complex stabilizes after binding to AcCoA ligand and RIN4 peptide. The few non-conserved polymorphic residues that have been displayed on HopZ3 surface presumably confer intracellular recognitions within hosts. Collectively, homology modeling and interactive docking experiments were used to substantiate Arabidopsis immune 'guardee' interactions to HopZ3.
Collapse
|
23
|
Mooney BC, Mantz M, Graciet E, Huesgen PF. Cutting the line: manipulation of plant immunity by bacterial type III effector proteases. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3395-3409. [PMID: 33640987 DOI: 10.1093/jxb/erab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Pathogens and their hosts are engaged in an evolutionary arms race. Pathogen-derived effectors promote virulence by targeting components of a host's innate immune system, while hosts have evolved proteins that sense effectors and trigger a pathogen-specific immune response. Many bacterial effectors are translocated into host cells using type III secretion systems. Type III effector proteases irreversibly modify host proteins by cleavage of peptide bonds and are prevalent among both plant and animal bacterial pathogens. In plants, the study of model effector proteases has yielded important insights into the virulence mechanisms employed by pathogens to overcome their host's immune response, as well as into the mechanisms deployed by their hosts to detect these effector proteases and counteract their effects. In recent years, the study of a larger number of effector proteases, across a wider range of pathogens, has yielded novel insights into their functions and recognition. One key limitation that remains is the lack of methods to detect protease cleavage at the proteome-wide level. We review known substrates and mechanisms of plant pathogen type III effector proteases and compare their functions with those of known type III effector proteases of mammalian pathogens. Finally, we discuss approaches to uncover their function on a system-wide level.
Collapse
Affiliation(s)
- Brian C Mooney
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Emmanuelle Graciet
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute for Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
24
|
Moon H, Pandey A, Yoon H, Choi S, Jeon H, Prokchorchik M, Jung G, Witek K, Valls M, McCann HC, Kim M, Jones JDG, Segonzac C, Sohn KH. Identification of RipAZ1 as an avirulence determinant of Ralstonia solanacearum in Solanum americanum. MOLECULAR PLANT PATHOLOGY 2021; 22:317-333. [PMID: 33389783 PMCID: PMC7865085 DOI: 10.1111/mpp.13030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/07/2020] [Accepted: 11/23/2020] [Indexed: 05/08/2023]
Abstract
Ralstonia solanacearum causes bacterial wilt disease in many plant species. Type III-secreted effectors (T3Es) play crucial roles in bacterial pathogenesis. However, some T3Es are recognized by corresponding disease resistance proteins and activate plant immunity. In this study, we identified the R. solanacearum T3E protein RipAZ1 (Ralstonia injected protein AZ1) as an avirulence determinant in the black nightshade species Solanum americanum. Based on the S. americanum accession-specific avirulence phenotype of R. solanacearum strain Pe_26, 12 candidate avirulence T3Es were selected for further analysis. Among these candidates, only RipAZ1 induced a cell death response when transiently expressed in a bacterial wilt-resistant S. americanum accession. Furthermore, loss of ripAZ1 in the avirulent R. solanacearum strain Pe_26 resulted in acquired virulence. Our analysis of the natural sequence and functional variation of RipAZ1 demonstrated that the naturally occurring C-terminal truncation results in loss of RipAZ1-triggered cell death. We also show that the 213 amino acid central region of RipAZ1 is sufficient to induce cell death in S. americanum. Finally, we show that RipAZ1 may activate defence in host cell cytoplasm. Taken together, our data indicate that the nucleocytoplasmic T3E RipAZ1 confers R. solanacearum avirulence in S. americanum. Few avirulence genes are known in vascular bacterial phytopathogens and ripAZ1 is the first one in R. solanacearum that is recognized in black nightshades. This work thus opens the way for the identification of disease resistance genes responsible for the specific recognition of RipAZ1, which can be a source of resistance against the devastating bacterial wilt disease.
Collapse
Affiliation(s)
- Hayoung Moon
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Ankita Pandey
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Hayeon Yoon
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Sera Choi
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Hyelim Jeon
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversitySeoulRepublic of Korea
- Plant Immunity Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Maxim Prokchorchik
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Gayoung Jung
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Kamil Witek
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Marc Valls
- Department of GeneticsUniversity of BarcelonaBarcelonaSpain
- Centre for Research in Agricultural Genomics (CSIC‐IRTA‐UAB‐UB)BellaterraSpain
| | - Honour C. McCann
- New Zealand Institute of Advanced StudiesMassey UniversityAucklandNew Zealand
- Max Planck Institute for Developmental BiologyTübingenGermany
| | - Min‐Sung Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
- Division of Integrative Biosciences and BiotechnologyPohang University of Science and TechnologyRepublic of Korea
| | | | - Cécile Segonzac
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversitySeoulRepublic of Korea
- Plant Immunity Research CenterSeoul National UniversitySeoulRepublic of Korea
- Department of Plant Science, Plant Genomics and Breeding InstituteAgricultural Life Science Research InstituteSeoul National UniversitySeoulRepublic of Korea
| | - Kee Hoon Sohn
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and TechnologyPohangRepublic of Korea
| |
Collapse
|
25
|
Baudin M, Martin EC, Sass C, Hassan JA, Bendix C, Sauceda R, Diplock N, Specht CD, Petrescu AJ, Lewis JD. A natural diversity screen in Arabidopsis thaliana reveals determinants for HopZ1a recognition in the ZAR1-ZED1 immune complex. PLANT, CELL & ENVIRONMENT 2021; 44:629-644. [PMID: 33103794 DOI: 10.1111/pce.13927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Pathogen pressure on hosts can lead to the evolution of genes regulating the innate immune response. By characterizing naturally occurring polymorphisms in immune receptors, we can better understand the molecular determinants of pathogen recognition. ZAR1 is an ancient Arabidopsis thaliana NLR (Nucleotide-binding [NB] Leucine-rich-repeat [LRR] Receptor) that recognizes multiple secreted effector proteins from the pathogenic bacteria Pseudomonas syringae and Xanthomonas campestris through its interaction with receptor-like cytoplasmic kinases (RLCKs). ZAR1 was first identified for its role in recognizing P. syringae effector HopZ1a, through its interaction with the RLCK ZED1. To identify additional determinants of HopZ1a recognition, we performed a computational screen for ecotypes from the 1001 Genomes project that were likely to lack HopZ1a recognition, and tested ~300 ecotypes. We identified ecotypes containing polymorphisms in ZAR1 and ZED1. Using our previously established Nicotiana benthamiana transient assay and Arabidopsis ecotypes, we tested for the effect of naturally occurring polymorphisms on ZAR1 interactions and the immune response. We identified key residues in the NB or LRR domain of ZAR1 that impact the interaction with ZED1. We demonstrate that natural diversity combined with functional assays can help define the molecular determinants and interactions necessary to regulate immune induction in response to pathogens.
Collapse
Affiliation(s)
- Maël Baudin
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Eliza C Martin
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Chodon Sass
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Jana A Hassan
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Claire Bendix
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Rolin Sauceda
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Nathan Diplock
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Chelsea D Specht
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, New York, USA
| | - Andrei J Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
- Plant Gene Expression Center, United States Department of Agriculture, Albany, California, USA
| |
Collapse
|
26
|
Laflamme B, Dillon MM, Martel A, Almeida RND, Desveaux D, Guttman DS. The pan-genome effector-triggered immunity landscape of a host-pathogen interaction. Science 2020; 367:763-768. [PMID: 32054757 DOI: 10.1126/science.aax4079] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/18/2019] [Accepted: 01/17/2020] [Indexed: 12/24/2022]
Abstract
Effector-triggered immunity (ETI), induced by host immune receptors in response to microbial effectors, protects plants against virulent pathogens. However, a systematic study of ETI prevalence against species-wide pathogen diversity is lacking. We constructed the Pseudomonas syringae Type III Effector Compendium (PsyTEC) to reduce the pan-genome complexity of 5127 unique effector proteins, distributed among 70 families from 494 strains, to 529 representative alleles. We screened PsyTEC on the model plant Arabidopsis thaliana and identified 59 ETI-eliciting alleles (11.2%) from 19 families (27.1%), with orthologs distributed among 96.8% of P. syringae strains. We also identified two previously undescribed host immune receptors, including CAR1, which recognizes the conserved effectors AvrE and HopAA1, and found that 94.7% of strains harbor alleles predicted to be recognized by either CAR1 or ZAR1.
Collapse
Affiliation(s)
- Bradley Laflamme
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Marcus M Dillon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Alexandre Martel
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Renan N D Almeida
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - David S Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada. .,Center for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
27
|
Tiwari P, Bae H. Horizontal Gene Transfer and Endophytes: An Implication for the Acquisition of Novel Traits. PLANTS (BASEL, SWITZERLAND) 2020; 9:E305. [PMID: 32121565 PMCID: PMC7154830 DOI: 10.3390/plants9030305] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Horizontal gene transfer (HGT), an important evolutionary mechanism observed in prokaryotes, is the transmission of genetic material across phylogenetically distant species. In recent years, the availability of complete genomes has facilitated the comprehensive analysis of HGT and highlighted its emerging role in the adaptation and evolution of eukaryotes. Endophytes represent an ecologically favored association, which highlights its beneficial attributes to the environment, in agriculture and in healthcare. The HGT phenomenon in endophytes, which features an important biological mechanism for their evolutionary adaptation within the host plant and simultaneously confers "novel traits" to the associated microbes, is not yet completely understood. With a focus on the emerging implications of HGT events in the evolution of biological species, the present review discusses the occurrence of HGT in endophytes and its socio-economic importance in the current perspective. To our knowledge, this review is the first report that provides a comprehensive insight into the impact of HGT in the adaptation and evolution of endophytes.
Collapse
Affiliation(s)
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| |
Collapse
|
28
|
Martel A, Lo T, Desveaux D, Guttman DS. A High-Throughput, Seedling Screen for Plant Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:394-401. [PMID: 31851574 DOI: 10.1094/mpmi-10-19-0295-ta] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An understanding of how biological diversity affects plant-microbe interactions is becoming increasingly important, particularly with respect to components of the pathogen effector arsenal and the plant immune system. Although technological improvements have greatly advanced our ability to examine molecular sequences and interactions, relatively few advances have been made that facilitate high-throughput, in vivo pathology screens. Here, we present a high-throughput, microplate-based, nondestructive seedling pathology assay, and apply it to identify Arabidopsis thaliana effector-triggered immunity (ETI) responses against Pseudomonas syringae type III secreted effectors. The assay was carried out in a 48-well microplate format with spray inoculation, and disease symptoms were quantitatively recorded in a semiautomated manner, thereby greatly reducing both time and costs. The assay requires only slight modifications of common labware and uses no proprietary software. We validated the assay by recapitulating known ETI responses induced by P. syringae in Arabidopsis. We also demonstrated that we can quantitatively differentiate responses from a diversity of plant genotypes grown in the same microplate. Finally, we showed that the results obtained from our assay can be used to perform genome-wide association studies to identify host immunity genes, recapitulating results that have been independently obtained with mature plants.
Collapse
Affiliation(s)
- Alexandre Martel
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Timothy Lo
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Ontario, Canada
| | - David S Guttman
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Ontario, Canada
| |
Collapse
|
29
|
Albers P, Üstün S, Witzel K, Kraner M, Börnke F. A Remorin from Nicotiana benthamiana Interacts with the Pseudomonas Type-III Effector Protein HopZ1a and is Phosphorylated by the Immune-Related Kinase PBS1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1229-1242. [PMID: 31012804 DOI: 10.1094/mpmi-04-19-0105-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The plasma membrane (PM) is at the interface of plant-pathogen interactions and, thus, many bacterial type-III effector (T3E) proteins target membrane-associated processes to interfere with immunity. The Pseudomonas syringae T3E HopZ1a is a host cell PM-localized effector protein that has several immunity-associated host targets but also activates effector-triggered immunity in resistant backgrounds. Although HopZ1a has been shown to interfere with early defense signaling at the PM, no dedicated PM-associated HopZ1a target protein has been identified until now. Here, we show that HopZ1a interacts with the PM-associated remorin protein NbREM4 from Nicotiana benthamiana in several independent assays. NbREM4 relocalizes to membrane nanodomains after treatment with the bacterial elicitor flg22 and transient overexpression of NbREM4 in N. benthamiana induces the expression of a subset of defense-related genes. We can further show that NbREM4 interacts with the immune-related receptor-like cytoplasmic kinase avrPphB-susceptible 1 (PBS1) and is phosphorylated by PBS1 on several residues in vitro. Thus, we conclude that NbREM4 is associated with early defense signaling at the PM. The possible relevance of the HopZ1a-NbREM4 interaction for HopZ1a virulence and avirulence functions is discussed.Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Philip Albers
- Plant Metabolism, Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), 14979 Großbeeren, Germany
| | - Suayib Üstün
- Plant Metabolism, Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), 14979 Großbeeren, Germany
| | - Katja Witzel
- Principles of Integrated Pest Management, Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), 14979 Großbeeren, Germany
| | - Max Kraner
- Friedrich-Alexander-Universität, Department of Biology, Division of Biochemistry, 91058 Erlangen, Germany
| | - Frederik Börnke
- Plant Metabolism, Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), 14979 Großbeeren, Germany
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
30
|
Liu C, Cui D, Zhao J, Liu N, Wang B, Liu J, Xu E, Hu Z, Ren D, Tang D, Hu Y. Two Arabidopsis Receptor-like Cytoplasmic Kinases SZE1 and SZE2 Associate with the ZAR1-ZED1 Complex and Are Required for Effector-Triggered Immunity. MOLECULAR PLANT 2019; 12:967-983. [PMID: 30947022 DOI: 10.1016/j.molp.2019.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/10/2019] [Accepted: 03/22/2019] [Indexed: 05/21/2023]
Abstract
Plants utilize intracellular nucleotide-binding leucine-rich repeat domain-containing receptors (NLRs) to recognize pathogen effectors and induce a robust defense response named effector-triggered immunity (ETI). The Arabidopsis NLR protein HOPZ-ACTIVATED RESISTANCE 1 (ZAR1) forms a precomplex with HOPZ-ETI-DEFICIENT 1 (ZED1), a receptor-like cytoplasmic kinase (RLCK) XII-2 subfamily member, to recognize the Pseudomonas syringae effector HopZ1a. We previously described a dominant mutant of Arabidopsis ZED1, zed1-D, which displays temperature-sensitive autoimmunity in a ZAR1-dependent manner. Here, we report that the RLCKs SUPPRESSOR OF ZED1-D1 (SZE1) and SZE2 associate with the ZAR1-ZED1 complex and are required for the ZED1-D-activated autoimmune response and HopZ1a-triggered immunity. We show that SZE1 but not SZE2 has autophosphorylation activity, and that the N-terminal myristoylation of both SZE1 and SZE2 is critical for their plasma membrane localization and ZED1-D-activated autoimmunity. Furthermore, we demonstrate that SZE1 and SZE2 both interact with ZAR1 to form a functional complex and are required for resistance against P. syringae pv. tomato DC3000 expressing HopZ1a. We also provide evidence that SZE1 and SZE2 interact with HopZ1a and function together with ZED1 to change the intramolecular interactions of ZAR1, leading to its activation. Taken together, our results reveal SZE1 and SZE2 as critical signaling components of HopZ1a-triggered immunity.
Collapse
Affiliation(s)
- Cheng Liu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dayong Cui
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; School of Life Sciences, Qilu Normal University, Jinan 250200, China
| | - Jingbo Zhao
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Na Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bo Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing Liu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Enjun Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhubing Hu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dingzhong Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Center for Plant Gene Research, Beijing 100093, China.
| |
Collapse
|
31
|
Identifying Pseudomonas syringae Type III Secreted Effector Function via a Yeast Genomic Screen. G3-GENES GENOMES GENETICS 2019; 9:535-547. [PMID: 30573466 PMCID: PMC6385969 DOI: 10.1534/g3.118.200877] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gram-negative bacterial pathogens inject type III secreted effectors (T3SEs) directly into host cells to promote pathogen fitness by manipulating host cellular processes. Despite their crucial role in promoting virulence, relatively few T3SEs have well-characterized enzymatic activities or host targets. This is in part due to functional redundancy within pathogen T3SE repertoires as well as the promiscuity of individual T3SEs that can have multiple host targets. To overcome these challenges, we generated and characterized a collection of yeast strains stably expressing 75 T3SE constructs from the plant pathogen Pseudomonas syringae. This collection is devised to facilitate heterologous genetic screens in yeast, a non-host organism, to identify T3SEs that target conserved eukaryotic processes. Among 75 T3SEs tested, we identified 16 that inhibited yeast growth on rich media and eight that inhibited growth on stress-inducing media. We utilized Pathogenic Genetic Array (PGA) screens to identify potential host targets of P. syringae T3SEs. We focused on the acetyltransferase, HopZ1a, which interacts with plant tubulin and alters microtubule networks. To uncover putative HopZ1a host targets, we identified yeast genes with genetic interaction profiles most similar (i.e., congruent) to the PGA profile of HopZ1a and performed a functional enrichment analysis of these HopZ1a-congruent genes. We compared the congruence analyses above to previously described HopZ physical interaction datasets and identified kinesins as potential HopZ1a targets. Finally, we demonstrated that HopZ1a can target kinesins by acetylating the plant kinesins HINKEL and MKRP1, illustrating the utility of our T3SE-expressing yeast library to characterize T3SE functions.
Collapse
|
32
|
Recombination of ecologically and evolutionarily significant loci maintains genetic cohesion in the Pseudomonas syringae species complex. Genome Biol 2019; 20:3. [PMID: 30606234 PMCID: PMC6317194 DOI: 10.1186/s13059-018-1606-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 12/06/2018] [Indexed: 01/25/2023] Open
Abstract
Background Pseudomonas syringae is a highly diverse bacterial species complex capable of causing a wide range of serious diseases on numerous agronomically important crops. We examine the evolutionary relationships of 391 agricultural and environmental strains using whole-genome sequencing and evolutionary genomic analyses. Results We describe the phylogenetic distribution of all 77,728 orthologous gene families in the pan-genome, reconstruct the core genome phylogeny using the 2410 core genes, hierarchically cluster the accessory genome, identify the diversity and distribution of type III secretion systems and their effectors, predict ecologically and evolutionary relevant loci, and establish the molecular evolutionary processes operating on gene families. Phylogenetic and recombination analyses reveals that the species complex is subdivided into primary and secondary phylogroups, with the former primarily comprised of agricultural isolates, including all of the well-studied P. syringae strains. In contrast, the secondary phylogroups include numerous environmental isolates. These phylogroups also have levels of genetic diversity typically found among distinct species. An analysis of rates of recombination within and between phylogroups revealed a higher rate of recombination within primary phylogroups than between primary and secondary phylogroups. We also find that “ecologically significant” virulence-associated loci and “evolutionarily significant” loci under positive selection are over-represented among loci that undergo inter-phylogroup genetic exchange. Conclusions While inter-phylogroup recombination occurs relatively rarely, it is an important force maintaining the genetic cohesion of the species complex, particularly among primary phylogroup strains. This level of genetic cohesion, and the shared plant-associated niche, argues for considering the primary phylogroups as a single biological species. Electronic supplementary material The online version of this article (10.1186/s13059-018-1606-y) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Bastedo DP, Lo T, Laflamme B, Desveaux D, Guttman DS. Diversity and Evolution of Type III Secreted Effectors: A Case Study of Three Families. Curr Top Microbiol Immunol 2019; 427:201-230. [DOI: 10.1007/82_2019_165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Effector Gene xopAE of Xanthomonas euvesicatoria 85-10 Is Part of an Operon and Encodes an E3 Ubiquitin Ligase. J Bacteriol 2018; 200:JB.00104-18. [PMID: 29784884 DOI: 10.1128/jb.00104-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/13/2018] [Indexed: 01/08/2023] Open
Abstract
The type III effector XopAE from the Xanthomonas euvesicatoria strain 85-10 was previously shown to inhibit plant immunity and enhance pathogen-induced disease symptoms. Evolutionary analysis of 60 xopAE alleles (AEal) revealed that the xopAE locus is conserved in multiple Xanthomonas species. The majority of xopAE alleles (55 out of 60) comprise a single open reading frame (ORF) (xopAE), while in 5 alleles, including AEal 37 of the X. euvesicatoria 85-10 strain, a frameshift splits the locus into two ORFs (hpaF and a truncated xopAE). To test whether the second ORF of AEal 37 (xopAE85-10 ) is translated, we examined expression of yellow fluorescent protein (YFP) fused downstream to truncated or mutant forms of the locus in Xanthomonas bacteria. YFP fluorescence was detected at maximal levels when the reporter was in proximity to an internal ribosome binding site upstream of a rare ATT start codon in the xopAE85-10 ORF but was severely reduced when these elements were abolished. In agreement with the notion that xopAE85-10 is a functional gene, its protein product was translocated into plant cells by the type III secretion system, and translocation was dependent on its upstream ORF, hpaF Homology modeling predicted that XopAE85-10 contains an E3 ligase XL box domain at the C terminus, and in vitro assays demonstrated that this domain displays monoubiquitination activity. Remarkably, the XL box was essential for XopAE85-10 to inhibit pathogen-associated molecular pattern (PAMP)-induced gene expression in Arabidopsis protoplasts. Together, these results indicate that the xopAE85-10 gene resides in a functional operon, which utilizes the alternative start codon ATT and encodes a novel XL box E3 ligase.IMPORTANCEXanthomonas bacteria utilize a type III secretion system to cause disease in many crops. This study provides insights into the evolution, translocation, and biochemical function of the XopAE type III secreted effector, contributing to the understanding of Xanthomonas-host interactions. We establish XopAE as a core effector of seven Xanthomonas species and elucidate the evolution of the Xanthomonas euvesicatoriaxopAE locus, which contains an operon encoding a truncated effector. Our findings indicate that this operon evolved from the split of a multidomain gene into two ORFs that conserved the original domain function. Analysis of xopAE85-10 translation provides the first evidence for translation initiation from an ATT codon in Xanthomonas Our data demonstrate that XopAE85-10 is an XL box E3 ubiquitin ligase and provide insights into the structure and function of this effector family.
Collapse
|
35
|
Zeng Q, Cui Z, Wang J, Childs KL, Sundin GW, Cooley DR, Yang C, Garofalo E, Eaton A, Huntley RB, Yuan X, Schultes NP. Comparative genomics of Spiraeoideae-infecting Erwinia amylovora strains provides novel insight to genetic diversity and identifies the genetic basis of a low-virulence strain. MOLECULAR PLANT PATHOLOGY 2018; 19:1652-1666. [PMID: 29178620 PMCID: PMC6638132 DOI: 10.1111/mpp.12647] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 05/24/2023]
Abstract
Erwinia amylovora is the causal agent of fire blight, one of the most devastating diseases of apple and pear. Erwinia amylovora is thought to have originated in North America and has now spread to at least 50 countries worldwide. An understanding of the diversity of the pathogen population and the transmission to different geographical regions is important for the future mitigation of this disease. In this research, we performed an expanded comparative genomic study of the Spiraeoideae-infecting (SI) E. amylovora population in North America and Europe. We discovered that, although still highly homogeneous, the genetic diversity of 30 E. amylovora genomes examined was about 30 times higher than previously determined. These isolates belong to four distinct clades, three of which display geographical clustering and one of which contains strains from various geographical locations ('Widely Prevalent' clade). Furthermore, we revealed that strains from the Widely Prevalent clade displayed a higher level of recombination with strains from a clade strictly from the eastern USA, which suggests that the Widely Prevalent clade probably originated from the eastern USA before it spread to other locations. Finally, we detected variations in virulence in the SI E. amylovora strains on immature pear, and identified the genetic basis of one of the low-virulence strains as being caused by a single nucleotide polymorphism in hfq, a gene encoding an important virulence regulator. Our results provide insights into the population structure, distribution and evolution of SI E. amylovora in North America and Europe.
Collapse
Affiliation(s)
- Quan Zeng
- Department of Plant Pathology and EcologyThe Connecticut Agricultural Experiment StationNew Haven 06511CTUSA
| | - Zhouqi Cui
- Department of Plant Pathology and EcologyThe Connecticut Agricultural Experiment StationNew Haven 06511CTUSA
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukee 53211WIUSA
| | - Jie Wang
- Department of Plant BiologyMichigan State UniversityEast Lansing 48824MIUSA
| | - Kevin L. Childs
- Department of Plant BiologyMichigan State UniversityEast Lansing 48824MIUSA
| | - George W. Sundin
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast Lansing 48824MIUSA
| | - Daniel R. Cooley
- Stockbridge School of AgricultureUniversity of MassachusettsAmherst 01003MAUSA
| | - Ching‐Hong Yang
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukee 53211WIUSA
| | - Elizabeth Garofalo
- Stockbridge School of AgricultureUniversity of MassachusettsAmherst 01003MAUSA
| | - Alan Eaton
- Department of Agriculture, Nutrition, and Food SystemsUniversity of New HampshireDurham 03824NHUSA
| | - Regan B. Huntley
- Department of Plant Pathology and EcologyThe Connecticut Agricultural Experiment StationNew Haven 06511CTUSA
| | - Xiaochen Yuan
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukee 53211WIUSA
| | - Neil P. Schultes
- Department of Plant Pathology and EcologyThe Connecticut Agricultural Experiment StationNew Haven 06511CTUSA
| |
Collapse
|
36
|
Durán D, Imperial J, Palacios J, Ruiz-Argüeso T, Göttfert M, Zehner S, Rey L. Characterization of a novel MIIA domain-containing protein (MdcE) in Bradyrhizobium spp. FEMS Microbiol Lett 2018; 365:4769627. [PMID: 29281013 DOI: 10.1093/femsle/fnx276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/20/2017] [Indexed: 11/14/2022] Open
Abstract
Several genes coding for proteins with metal ion-inducible autocleavage (MIIA) domains were identified in type III secretion system tts gene clusters from draft genomes of recently isolated Bradyrhizobium spp. MIIA domains have been first described in the effectors NopE1 and NopE2 of Bradyrhizobium diazoefficiens USDA 110. All identified genes are preceded by tts box promoter motifs. The identified proteins contain one or two MIIA domains. A phylogenetic analysis of 35 MIIA domain sequences from 16 Bradyrhizobium strains revealed four groups. The protein from Bradyrhizobium sp. LmjC strain contains a single MIIA domain and was designated MdcE (MdcELmjC). It was expressed as a fusion to maltose-binding protein (MalE) in Escherichia coli and subsequently purified by affinity chromatography. Recombinant MalE-MdcELmjC-Strep protein exhibited autocleavage in the presence of Ca2+, Cu2+, Cd2+ and Mn2+, but not in the presence of Mg2+, Ni2+ or Co2+. Site-directed mutagenesis at the predicted cleavage site abolished autocleavage activity of MdcELmjC. An LmjC mdcE- mutant was impaired in the ability to nodulate Lupinus angustifolius and Macroptilium atropurpureum.
Collapse
Affiliation(s)
- David Durán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid.,Instituto de Ciencias Agrarias (ICA), Consejo Superior Investigaciones Científicas, Serrano 115, bis, 28006 Madrid, Spain
| | - José Palacios
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| | - Tomás Ruiz-Argüeso
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| | - Michael Göttfert
- Institute of Genetics, Technische Universität Dresden, Helmholtzstrasse 10, 01062 Dresden, Germany
| | - Susanne Zehner
- Institute of Genetics, Technische Universität Dresden, Helmholtzstrasse 10, 01062 Dresden, Germany
| | - Luis Rey
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| |
Collapse
|
37
|
Rufián JS, Lucía A, Rueda-Blanco J, Zumaquero A, Guevara CM, Ortiz-Martín I, Ruiz-Aldea G, Macho AP, Beuzón CR, Ruiz-Albert J. Suppression of HopZ Effector-Triggered Plant Immunity in a Natural Pathosystem. FRONTIERS IN PLANT SCIENCE 2018; 9:977. [PMID: 30154802 PMCID: PMC6103241 DOI: 10.3389/fpls.2018.00977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/15/2018] [Indexed: 05/13/2023]
Abstract
Many type III-secreted effectors suppress plant defenses, but can also activate effector-triggered immunity (ETI) in resistant backgrounds. ETI suppression has been shown for a number of type III effectors (T3Es) and ETI-suppressing effectors are considered part of the arms race model for the co-evolution of bacterial virulence and plant defense. However, ETI suppression activities have been shown mostly between effectors not being naturally expressed within the same strain. Furthermore, evolution of effector families is rarely explained taking into account that selective pressure against ETI-triggering effectors may be compensated by ETI-suppressing effector(s) translocated by the same strain. The HopZ effector family is one of the most diverse, displaying a high rate of loss and gain of alleles, which reflects opposing selective pressures. HopZ effectors trigger defense responses in a variety of crops and some have been shown to suppress different plant defenses. Mutational changes in the sequence of ETI-triggering effectors have been proposed to result in the avoidance of detection by their respective hosts, in a process called pathoadaptation. We analyze how deleting or overexpressing HopZ1a and HopZ3 affects virulence of HopZ-encoding and non-encoding strains. We find that both effectors trigger immunity in their plant hosts only when delivered from heterologous strains, while immunity is suppressed when delivered from their native strains. We carried out screens aimed at identifying the determinant(s) suppressing HopZ1a-triggered and HopZ3-triggered immunity within their native strains, and identified several effectors displaying suppression of HopZ3-triggered immunity. We propose effector-mediated cross-suppression of ETI as an additional force driving evolution of the HopZ family.
Collapse
Affiliation(s)
- José S. Rufián
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ainhoa Lucía
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Javier Rueda-Blanco
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Adela Zumaquero
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Carlos M. Guevara
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Inmaculada Ortiz-Martín
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Gonzalo Ruiz-Aldea
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Carmen R. Beuzón
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Javier Ruiz-Albert
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
- *Correspondence: Javier Ruiz-Albert,
| |
Collapse
|
38
|
Bürger M, Willige BC, Chory J. A hydrophobic anchor mechanism defines a deacetylase family that suppresses host response against YopJ effectors. Nat Commun 2017; 8:2201. [PMID: 29259199 PMCID: PMC5736716 DOI: 10.1038/s41467-017-02347-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 01/09/2023] Open
Abstract
Several Pseudomonas and Xanthomonas species are plant pathogens that infect the model organism Arabidopsis thaliana and important crops such as Brassica. Resistant plants contain the infection by rapid cell death of the infected area through the hypersensitive response (HR). A family of highly related α/β hydrolases is involved in diverse processes in all domains of life. Functional details of their catalytic machinery, however, remained unclear. We report the crystal structures of α/β hydrolases representing two different clades of the family, including the protein SOBER1, which suppresses AvrBsT-incited HR in Arabidopsis. Our results reveal a unique hydrophobic anchor mechanism that defines a previously unknown family of protein deacetylases. Furthermore, this study identifies a lid-loop as general feature for substrate turnover in acyl-protein thioesterases and the described family of deacetylases. Furthermore, we found that SOBER1's biological function is not restricted to Arabidopsis thaliana and not limited to suppress HR induced by AvrBsT.
Collapse
Affiliation(s)
- Marco Bürger
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Björn C Willige
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
39
|
Boamah DK, Zhou G, Ensminger AW, O'Connor TJ. From Many Hosts, One Accidental Pathogen: The Diverse Protozoan Hosts of Legionella. Front Cell Infect Microbiol 2017; 7:477. [PMID: 29250488 PMCID: PMC5714891 DOI: 10.3389/fcimb.2017.00477] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/31/2017] [Indexed: 01/03/2023] Open
Abstract
The 1976 outbreak of Legionnaires' disease led to the discovery of the intracellular bacterial pathogen Legionella pneumophila. Given their impact on human health, Legionella species and the mechanisms responsible for their replication within host cells are often studied in alveolar macrophages, the primary human cell type associated with disease. Despite the potential severity of individual cases of disease, Legionella are not spread from person-to-person. Thus, from the pathogen's perspective, interactions with human cells are accidents of time and space—evolutionary dead ends with no impact on Legionella's long-term survival or pathogenic trajectory. To understand Legionella as a pathogen is to understand its interaction with its natural hosts: the polyphyletic protozoa, a group of unicellular eukaryotes with a staggering amount of evolutionary diversity. While much remains to be understood about these enigmatic hosts, we summarize the current state of knowledge concerning Legionella's natural host range, the diversity of Legionella-protozoa interactions, the factors influencing these interactions, the importance of avoiding the generalization of protozoan-bacterial interactions based on a limited number of model hosts and the central role of protozoa to the biology, evolution, and persistence of Legionella in the environment.
Collapse
Affiliation(s)
- David K Boamah
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Guangqi Zhou
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Public Health Ontario, Toronto, ON, Canada
| | - Tamara J O'Connor
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
40
|
Wininger K, Rank N. Evolutionary dynamics of interactions between plants and their enemies: comparison of herbivorous insects and pathogens. Ann N Y Acad Sci 2017; 1408:46-60. [PMID: 29125186 DOI: 10.1111/nyas.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 01/21/2023]
Abstract
Plants colonized land over 400 million years ago. Shortly thereafter, organisms began to consume terrestrial plant tissue as a nutritional resource. Most plant enemies are plant pathogens or herbivores, and they impose natural selection for plants to evolve defenses. These traits generate selection pressures on enemies. Coevolution between terrestrial plants and their enemies is an important element of the evolutionary history of both groups. However, coevolutionary studies of plant-pathogen interactions have tended to focus on different research topics than plant-herbivore interactions. Specifically, studies of plant-pathogen interactions often adopt a "gene-for-gene" conceptual framework. In contrast, studies of plants and herbivores often investigate escalation or elaboration of plant defense and herbivore adaptations to overcome it. The main exceptions to the general pattern are studies that focus on small, sessile herbivores that share many features with plant pathogens, studies that incorporate both herbivores and pathogens into a single investigation, and studies that test aspects of Thompson's geographic mosaic theory for coevolution. We discuss the implications of these findings for future research.
Collapse
Affiliation(s)
- Kerry Wininger
- Department of Biology, Sonoma State University, Rohnert Park, California
| | - Nathan Rank
- Department of Biology, Sonoma State University, Rohnert Park, California
| |
Collapse
|
41
|
Harms A, Liesch M, Körner J, Québatte M, Engel P, Dehio C. A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella. PLoS Genet 2017; 13:e1007077. [PMID: 29073136 PMCID: PMC5675462 DOI: 10.1371/journal.pgen.1007077] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/07/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022] Open
Abstract
Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP) domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal–the BID (Bep intracellular delivery) domain—similar to the Bartonella effector proteins (Beps) that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping stone in the evolution of host-targeted effector proteins. Many bacterial pathogens use secretion systems to translocate effector proteins into host cells where they manipulate cell functions in favor of the pathogen. It is well-known that these secretion systems evolved from ancestors with functions in genuine bacterial contexts, but the origins of their secreted effectors have largely remained elusive. In this article we studied the evolutionary history of a host-targeting effector secretion system of the mammalian pathogen Bartonella that belongs to a group of machineries descended from secretion systems originally mediating DNA transfer between bacterial cells. Intriguingly, we found that such a DNA transfer machinery closely related to the host-targeting secretion system of Bartonella has recruited a bacterial protein involved in modulating DNA topology as an interbacterial effector protein that is translocated together with the DNA into recipient cells. The overall setup of this interbacterial effector is remarkably similar to the host-targeted effectors of Bartonella, and we propose that it represents an evolutionary missing link on the path from a genuine bacterial protein to effectors that manipulates host cell functioning. Further analyses showed that interbacterial effectors in DNA transfer may be a more common phenomenon and represent an important reservoir for the evolution of new host-targeted effectors.
Collapse
Affiliation(s)
- Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Marius Liesch
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Jonas Körner
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Maxime Québatte
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
42
|
Commensal-to-pathogen transition: One-single transposon insertion results in two pathoadaptive traits in Escherichia coli -macrophage interaction. Sci Rep 2017; 7:4504. [PMID: 28674418 PMCID: PMC5495878 DOI: 10.1038/s41598-017-04081-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023] Open
Abstract
Escherichia coli is both a harmless commensal in the intestines of many mammals, as well as a dangerous pathogen. The evolutionary paths taken by strains of this species in the commensal-to-pathogen transition are complex and can involve changes both in the core genome, as well in the pan-genome. One way to understand the likely paths that a commensal strain of E. coli takes when evolving pathogenicity is through experimentally evolving the strain under the selective pressures that it will have to withstand as a pathogen. Here, we report that a commensal strain, under continuous pressure from macrophages, recurrently acquired a transposable element insertion, which resulted in two key phenotypic changes: increased intracellular survival, through the delay of phagosome maturation and increased ability to escape macrophages. We further show that the acquisition of the pathoadaptive traits was accompanied by small but significant changes in the transcriptome of macrophages upon infection. These results show that under constant pressures from a key component of the host immune system, namely macrophage phagocytosis, commensal E. coli rapidly acquires pathoadaptive mutations that cause transcriptome changes associated to the host-microbe duet.
Collapse
|
43
|
A bacterial acetyltransferase triggers immunity in Arabidopsis thaliana independent of hypersensitive response. Sci Rep 2017; 7:3557. [PMID: 28620210 PMCID: PMC5472582 DOI: 10.1038/s41598-017-03704-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/08/2017] [Indexed: 12/14/2022] Open
Abstract
Type-III secreted effectors (T3Es) play critical roles during bacterial pathogenesis in plants. Plant recognition of certain T3Es can trigger defence, often accompanied by macroscopic cell death, termed the hypersensitive response (HR). Economically important species of kiwifruit are susceptible to Pseudomonas syringae pv. actinidiae (Psa), the causal agent of kiwifruit bacterial canker. Although Psa is non-pathogenic in Arabidopsis thaliana, we observed that a T3E, HopZ5 that is unique to a global outbreak clade of Psa, triggers HR and defence in Arabidopsis accession Ct-1. Ws-2 and Col-0 accessions are unable to produce an HR in response to Pseudomonas-delivered HopZ5. While Ws-2 is susceptible to virulent bacterial strain Pseudomonas syringae pv. tomato DC3000 carrying HopZ5, Col-0 is resistant despite the lack of an HR. We show that HopZ5, like other members of the YopJ superfamily of acetyltransferases that it belongs to, autoacetylates lysine residues. Through comparisons to other family members, we identified an acetyltransferase catalytic activity and demonstrate its requirement for triggering defence in Arabidopsis and Nicotiana species. Collectively, data herein indicate that HopZ5 is a plasma membrane-localized acetyltransferase with autoacetylation activity required for avirulence.
Collapse
|
44
|
Allen AR. One bacillus to rule them all? - Investigating broad range host adaptation in Mycobacterium bovis. INFECTION GENETICS AND EVOLUTION 2017; 53:68-76. [PMID: 28434972 DOI: 10.1016/j.meegid.2017.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/11/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Adrian R Allen
- Agri-Food and Biosciences Institute, AFBI Stormont, Department of Bacteriology, Lamont Building, Stoney Road, Belfast BT4 3SD, United Kingdom.
| |
Collapse
|
45
|
Sun Y, Wang K, Caceres-Moreno C, Jia W, Chen A, Zhang H, Liu R, Macho AP. Genome sequencing and analysis of Ralstonia solanacearum phylotype I strains FJAT-91, FJAT-452 and FJAT-462 isolated from tomato, eggplant, and chili pepper in China. Stand Genomic Sci 2017; 12:29. [PMID: 28428834 PMCID: PMC5393021 DOI: 10.1186/s40793-017-0241-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/07/2017] [Indexed: 11/30/2022] Open
Abstract
Ralstonia solanacearum is an extremely destructive pathogen able to cause disease in a wide range of host plants. Here we report the draft genome sequences of the strains FJAT-91, FJAT-452 and FJAT-462, isolated from tomato, eggplant, and chili pepper, respectively, in China. In addition to the genome annotation, we performed a search for type-III secreted effectors in these strains, providing a detailed annotation of their presence and distinctive features compared to the effector repertoire of the reference phylotype I strain (GMI1000). In this analysis, we found that each strain has a unique effector repertoire, encoding both strain-specific effector variants and variations shared among all three strains. Our study, based on strains isolated from different hosts within the same geographical location, provides insight into effector repertoires sufficient to cause disease in different hosts, and may contribute to the identification of host specificity determinants for R. solanacearum.
Collapse
Affiliation(s)
- Yidan Sun
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Keke Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Carlos Caceres-Moreno
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Wei Jia
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Aojun Chen
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Renyi Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| |
Collapse
|
46
|
Yang B, Wang Q, Jing M, Guo B, Wu J, Wang H, Wang Y, Lin L, Wang Y, Ye W, Dong S, Wang Y. Distinct regions of the Phytophthora essential effector Avh238 determine its function in cell death activation and plant immunity suppression. THE NEW PHYTOLOGIST 2017; 214:361-375. [PMID: 28134441 DOI: 10.1111/nph.14430] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/09/2016] [Indexed: 05/20/2023]
Abstract
Phytophthora pathogens secrete effectors to manipulate host innate immunity, thus facilitating infection. Among the RXLR effectors highly induced during Phytophthora sojae infection, Avh238 not only contributes to pathogen virulence but also triggers plant cell death. However, the detailed molecular basis of Avh238 functions remains largely unknown. We mapped the regions responsible for Avh238 functions in pathogen virulence and plant cell death induction using a strategy that combines investigation of natural variation and large-scale mutagenesis assays. The correlation between cellular localization and Avh238 functions was also evaluated. We found that the 79th residue (histidine or leucine) of Avh238 determined its cell death-inducing activity, and that the 53 amino acids in its C-terminal region are responsible for promoting Phytophthora infection. Transient expression of Avh238 in Nicotiana benthamiana revealed that nuclear localization is essential for triggering cell death, while Avh238-mediated suppression of INF1-triggered cell death requires cytoplasmic localization. Our results demonstrate that a representative example of an essential Phytophthora RXLR effector can evolve to escape recognition by the host by mutating one nucleotide site, and can also retain plant immunosuppressive activity to enhance pathogen virulence in planta.
Collapse
Affiliation(s)
- Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Qunqing Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
- Department of Plant Pathology, Shandong Agricultural University, Taian, 271018, China
| | - Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Baodian Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Jiawei Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Haonan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Yang Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Long Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| |
Collapse
|
47
|
Lo T, Koulena N, Seto D, Guttman DS, Desveaux D. The HopF family of Pseudomonas syringae type III secreted effectors. MOLECULAR PLANT PATHOLOGY 2017; 18:457-468. [PMID: 27061875 PMCID: PMC6638241 DOI: 10.1111/mpp.12412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pseudomonas syringae is a bacterial phytopathogen that utilizes the type III secretion system to inject effector proteins into plant host cells. Pseudomonas syringae can infect a wide range of plant hosts, including agronomically important crops such as tomatoes and beans. The ability of P. syringae to infect such numerous hosts is caused, in part, by the diversity of effectors employed by this phytopathogen. Over 60 different effector families exist in P. syringae; one such family is HopF, which contains over 100 distinct alleles. Despite this diversity, research has focused on only two members of this family: HopF1 from P. syringae pathovar phaseolicola 1449B and HopF2 from P. syringae pathovar tomato DC3000. In this study, we review the research on HopF family members, including their host targets and molecular mechanisms of immunity suppression, and their enzymatic function. We also provide a phylogenetic analysis of this expanding effector family which provides a basis for a proposed nomenclature to guide future research. The extensive genetic diversity that exists within the HopF family presents a great opportunity to study how functional diversification on an effector family contributes to host specialization.
Collapse
Affiliation(s)
- Timothy Lo
- Department of Cell & Systems BiologyUniversity of Toronto25 Willcocks St.TorontoONCanadaM5S 3B2
| | - Noushin Koulena
- Department of Cell & Systems BiologyUniversity of Toronto25 Willcocks St.TorontoONCanadaM5S 3B2
| | - Derek Seto
- Department of Cell & Systems BiologyUniversity of Toronto25 Willcocks St.TorontoONCanadaM5S 3B2
| | - David S. Guttman
- Department of Cell & Systems BiologyUniversity of Toronto25 Willcocks St.TorontoONCanadaM5S 3B2
- Centre for the Analysis of Genome Evolution & FunctionUniversity of TorontoTorontoONCanada
| | - Darrell Desveaux
- Department of Cell & Systems BiologyUniversity of Toronto25 Willcocks St.TorontoONCanadaM5S 3B2
- Centre for the Analysis of Genome Evolution & FunctionUniversity of TorontoTorontoONCanada
| |
Collapse
|
48
|
Choi S, Jayaraman J, Segonzac C, Park HJ, Park H, Han SW, Sohn KH. Pseudomonas syringae pv. actinidiae Type III Effectors Localized at Multiple Cellular Compartments Activate or Suppress Innate Immune Responses in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2017; 8:2157. [PMID: 29326748 PMCID: PMC5742410 DOI: 10.3389/fpls.2017.02157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/06/2017] [Indexed: 05/15/2023]
Abstract
Bacterial phytopathogen type III secreted (T3S) effectors have been strongly implicated in altering the interaction of pathogens with host plants. Therefore, it is useful to characterize the whole effector repertoire of a pathogen to understand the interplay of effectors in plants. Pseudomonas syringae pv. actinidiae is a causal agent of kiwifruit canker disease. In this study, we generated an Agrobacterium-mediated transient expression library of YFP-tagged T3S effectors from two strains of Psa, Psa-NZ V13 and Psa-NZ LV5, in order to gain insight into their mode of action in Nicotiana tabacum and N. benthamiana. Determining the subcellular localization of effectors gives an indication of the possible host targets of effectors. A confocal microscopy assay detecting YFP-tagged Psa effectors revealed that the nucleus, cytoplasm and cell periphery are major targets of Psa effectors. Agrobacterium-mediated transient expression of multiple Psa effectors induced HR-like cell death (HCD) in Nicotiana spp., suggesting that multiple Psa effectors may be recognized by Nicotiana spp.. Virus-induced gene silencing (VIGS) of several known plant immune regulators, EDS1, NDR1, or SGT1 specified the requirement of SGT1 in HCD induced by several Psa effectors in N. benthamiana. In addition, the suppression activity of Psa effectors on HCD-inducing proteins and PTI was assessed. Psa effectors showed differential suppression activities on each HCD inducer or PTI. Taken together, our Psa effector repertoire analysis highlights the great diversity of T3S effector functions in planta.
Collapse
Affiliation(s)
- Sera Choi
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Jay Jayaraman
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Cécile Segonzac
- Plant Science Department, Plant Genomics and Breeding Institute and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hye-Jee Park
- Department of Integrative Plant Science, Chung-Ang University, Anseong, South Korea
| | - Hanbi Park
- Department of Integrative Plant Science, Chung-Ang University, Anseong, South Korea
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong, South Korea
| | - Kee Hoon Sohn
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
- *Correspondence: Kee Hoon Sohn,
| |
Collapse
|
49
|
Nowell RW, Laue BE, Sharp PM, Green S. Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae. MOLECULAR PLANT PATHOLOGY 2016; 17:1409-1424. [PMID: 27145446 PMCID: PMC5132102 DOI: 10.1111/mpp.12423] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The diversification of lineages within Pseudomonas syringae has involved a number of adaptive shifts from herbaceous hosts onto various species of tree, resulting in the emergence of highly destructive diseases such as bacterial canker of kiwi and bleeding canker of horse chestnut. This diversification has involved a high level of gene gain and loss, and these processes are likely to play major roles in the adaptation of individual lineages onto their host plants. In order to better understand the evolution of P. syringae onto woody plants, we have generated de novo genome sequences for 26 strains from the P. syringae species complex that are pathogenic on a range of woody species, and have looked for statistically significant associations between gene presence and host type (i.e. woody or herbaceous) across a phylogeny of 64 strains. We have found evidence for a common set of genes associated with strains that are able to colonize woody plants, suggesting that divergent lineages have acquired similarities in genome composition that may form the genetic basis of their adaptation to woody hosts. We also describe in detail the gain, loss and rearrangement of specific loci that may be functionally important in facilitating this adaptive shift. Overall, our analyses allow for a greater understanding of how gene gain and loss may contribute to adaptation in P. syringae.
Collapse
Affiliation(s)
- Reuben W Nowell
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Ecosystems, Society and Biosecurity, Forest Research, Midlothian EH25 9SY, UK
| | - Bridget E Laue
- Centre for Ecosystems, Society and Biosecurity, Forest Research, Midlothian EH25 9SY, UK
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sarah Green
- Centre for Ecosystems, Society and Biosecurity, Forest Research, Midlothian EH25 9SY, UK
| |
Collapse
|
50
|
YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity. Microbiol Mol Biol Rev 2016; 80:1011-1027. [PMID: 27784797 DOI: 10.1128/mmbr.00032-16] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gram-negative bacterial pathogens rely on the type III secretion system to inject virulence proteins into host cells. These type III secreted "effector" proteins directly manipulate cellular processes to cause disease. Although the effector repertoires in different bacterial species are highly variable, the Yersinia outer protein J (YopJ) effector family is unique in that its members are produced by diverse animal and plant pathogens as well as a nonpathogenic microsymbiont. All YopJ family effectors share a conserved catalytic triad that is identical to that of the C55 family of cysteine proteases. However, an accumulating body of evidence demonstrates that many YopJ effectors modify their target proteins in hosts by acetylating specific serine, threonine, and/or lysine residues. This unique acetyltransferase activity allows the YopJ family effectors to affect the function and/or stability of their targets, thereby dampening innate immunity. Here, we summarize the current understanding of this prevalent and evolutionarily conserved type III effector family by describing their enzymatic activities and virulence functions in animals and plants. In particular, the molecular mechanisms by which representative YopJ family effectors subvert host immunity through posttranslational modification of their target proteins are discussed.
Collapse
|