1
|
Tasnim M, Wahlquist P, Hill JT. Zebrafish: unraveling genetic complexity through duplicated genes. Dev Genes Evol 2024; 234:99-116. [PMID: 39079985 PMCID: PMC11612004 DOI: 10.1007/s00427-024-00720-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/19/2024] [Indexed: 12/06/2024]
Abstract
The zebrafish is an invaluable model organism for genetic, developmental, and disease research. Although its high conservation with humans is often cited as justification for its use, the zebrafish harbors oft-ignored genetic characteristics that may provide unique insights into gene structure and function. Zebrafish, along with other teleost fish, underwent an additional round of whole genome duplication after their split from tetrapods-resulting in an abundance of duplicated genes when compared to other vertebrates. These duplicated genes have evolved in distinct ways over the ensuing 350 million years. Thus, each gene within a duplicated gene pair has nuanced differences that create a unique identity. By investigating both members of the gene pair together, we can elucidate the mechanisms that underly protein structure and function and drive the complex interplay within biological systems, such as signal transduction cascades, genetic regulatory networks, and evolution of tissue and organ function. It is crucial to leverage such studies to explore these molecular dynamics, which could have far-reaching implications for both basic science and therapeutic development. Here, we will review the role of gene duplications and the existing models for gene divergence and retention following these events. We will also highlight examples within each of these models where studies comparing duplicated genes in the zebrafish have yielded key insights into protein structure, function, and regulation.
Collapse
Affiliation(s)
- Maliha Tasnim
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA
| | - Preston Wahlquist
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA
| | - Jonathon T Hill
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA.
| |
Collapse
|
2
|
Mikula Mrstakova S, Kozmik Z. Genetic analysis of medaka fish illuminates conserved and divergent roles of Pax6 in vertebrate eye development. Front Cell Dev Biol 2024; 12:1448773. [PMID: 39512904 PMCID: PMC11541176 DOI: 10.3389/fcell.2024.1448773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
Landmark discovery of eye defects caused by Pax6 gene mutations in humans, rodents, and even fruit flies combined with Pax6 gene expression studies in various phyla, led to the master control gene hypothesis postulating that the gene is required almost universally for animal visual system development. However, this assumption has not been broadly tested in genetically trackable organisms such as vertebrates. Here, to determine the functional role of the fish orthologue of mammalian Pax6 in eye development we analyzed mutants in medaka Pax6.1 gene generated by genome editing. We found that transcription factors implicated in vertebrate lens development (Prox1a, MafB, c-Maf, FoxE3) failed to initiate expression in the presumptive lens tissue of Pax6.1 mutant fish resulting in aphakia, a phenotype observed previously in Pax6 mutant mice. Surprisingly, the overall differentiation potential of Pax6.1-deficient retinal progenitor cells (RPCs) is not severely compromised, and the only cell types affected by the absence of Pax6.1 transcription factor are retinal ganglion cells. This is in stark contrast to the situation in mice where the Pax6 gene is required cell-autonomously for the expansion of RPCs, and the differentiation of all retina cell types. Our results provide novel insight into the conserved and divergent roles of Pax6 gene orthologues in vertebrate eye development indicating that the lens-specific role is more evolutionarily conserved than the role in retina differentiation.
Collapse
Affiliation(s)
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Fan C, Xing X, Murphy SJH, Poursine-Laurent J, Schmidt H, Parikh BA, Yoon J, Choudhary MNK, Saligrama N, Piersma SJ, Yokoyama WM, Wang T. Cis-regulatory evolution of the recently expanded Ly49 gene family. Nat Commun 2024; 15:4839. [PMID: 38844462 PMCID: PMC11156856 DOI: 10.1038/s41467-024-48990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Comparative genomics has revealed the rapid expansion of multiple gene families involved in immunity. Members within each gene family often evolved distinct roles in immunity. However, less is known about the evolution of their epigenome and cis-regulation. Here we systematically profile the epigenome of the recently expanded murine Ly49 gene family that mainly encode either inhibitory or activating surface receptors on natural killer cells. We identify a set of cis-regulatory elements (CREs) for activating Ly49 genes. In addition, we show that in mice, inhibitory and activating Ly49 genes are regulated by two separate sets of proximal CREs, likely resulting from lineage-specific losses of CRE activity. Furthermore, we find that some Ly49 genes are cross-regulated by the CREs of other Ly49 genes, suggesting that the Ly49 family has begun to evolve a concerted cis-regulatory mechanism. Collectively, we demonstrate the different modes of cis-regulatory evolution for a rapidly expanding gene family.
Collapse
Affiliation(s)
- Changxu Fan
- Department of Genetics, Washington University School of Medicine, St. Louis, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, 63110, USA
| | - Samuel J H Murphy
- Department of Neurology, Washington University School of Medicine, St. Louis, 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, 63110, USA
| | - Jennifer Poursine-Laurent
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, 63110, USA
| | - Heather Schmidt
- Department of Genetics, Washington University School of Medicine, St. Louis, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, 63110, USA
| | - Bijal A Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, 63110, USA
| | - Jeesang Yoon
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, 63110, USA
| | - Mayank N K Choudhary
- Department of Genetics, Washington University School of Medicine, St. Louis, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, 63110, USA
| | - Naresha Saligrama
- Department of Neurology, Washington University School of Medicine, St. Louis, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, 63110, USA
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, 63110, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, 63110, USA
| | - Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, 63110, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, 63110, USA.
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, 63110, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, 63110, USA.
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, 63110, USA.
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, 63110, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, 63110, USA.
| |
Collapse
|
4
|
Hung SS, Tsai PS, Po CW, Hou PS. Pax6 isoforms shape eye development: Insights from developmental stages and organoid models. Differentiation 2024; 137:100781. [PMID: 38631141 DOI: 10.1016/j.diff.2024.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Pax6 is a critical transcription factor involved in the development of the central nervous system. However, in humans, mutations in Pax6 predominantly result in iris deficiency rather than neurological phenotypes. This may be attributed to the distinct functions of Pax6 isoforms, Pax6a and Pax6b. In this study, we investigated the spatial and temporal expression patterns of Pax6 isoforms during different stages of mouse eye development. We observed a strong correlation between Pax6a expression and the neuroretina gene Sox2, while Pax6b showed a high correlation with iris-component genes, including the mesenchymal gene Foxc1. During early patterning from E10.5, Pax6b was expressed in the hinge of the optic cup and neighboring mesenchymal cells, whereas Pax6a was absent in these regions. At E14.5, both Pax6a and Pax6b were expressed in the future iris and ciliary body, coinciding with the integration of mesenchymal cells and Mitf-positive cells in the outer region. From E18.5, Pax6 isoforms exhibited distinct expression patterns as lineage genes became more restricted. To further validate these findings, we utilized ESC-derived eye organoids, which recapitulated the temporal and spatial expression patterns of lineage genes and Pax6 isoforms. Additionally, we found that the spatial expression patterns of Foxc1 and Mitf were impaired in Pax6b-mutant ESC-derived eye organoids. This in vitro eye organoids model suggested the involvement of Pax6b-positive local mesodermal cells in iris development. These results provide valuable insights into the regulatory roles of Pax6 isoforms during iris and neuroretina development and highlight the potential of ESC-derived eye organoids as a tool for studying normal and pathological eye development.
Collapse
Affiliation(s)
- Shih-Shun Hung
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist, Taipei, 11221, Taiwan.
| | - Po-Sung Tsai
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist, Taipei, 11221, Taiwan.
| | - Ching-Wen Po
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist, Taipei, 11221, Taiwan; Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Pei-Shan Hou
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist, Taipei, 11221, Taiwan; Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
5
|
Priyadarshana DGCE, Cheon J, Lee Y, Cha SH. Particulate Matter Induced Adverse Effects on Eye Development in Zebrafish ( Danio rerio) Embryos. TOXICS 2024; 12:59. [PMID: 38251014 PMCID: PMC10819941 DOI: 10.3390/toxics12010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Particulate matter (PM) can cause human diseases, particularly respiratory diseases. Since eyes are directly exposed to the air, they might be directly adversely affected by PM. Therefore, we determined the toxicity caused to eye development by PM using zebrafish (Danio rerio) embryos. The PM-induced embryo toxicity was dependent on dose and time and caused significant morphological defects, reducing the total body length and the total eye area. Reactive oxygen species (ROS) overproduction was confirmed in the PM treatment group, and antioxidant genes (cat and sod2), photoreceptor cell development, pigmentation genes (atoh8, vsx1, and rho), eye-embryogenesis genes (pax6a and pax6b), and eye-lens-development genes (cryaa) were downregulated, while eye-development genes (crybb1) were upregulated. In conclusion, PM had a direct adverse effect on the eyes, and zebrafish embryos can be used as a model to evaluate PM-induced eye toxicity in vivo.
Collapse
Affiliation(s)
| | - Jayeon Cheon
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea;
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea
| | - Seon-Heui Cha
- Department of Integrated Bioindustry, Hanseo University, Seosan-si 31962, Republic of Korea
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea;
| |
Collapse
|
6
|
Costa FV, Zabegalov KN, Kolesnikova TO, de Abreu MS, Kotova MM, Petersen EV, Kalueff AV. Experimental models of human cortical malformations: from mammals to 'acortical' zebrafish. Neurosci Biobehav Rev 2023; 155:105429. [PMID: 37863278 DOI: 10.1016/j.neubiorev.2023.105429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Human neocortex controls and integrates cognition, emotions, perception and complex behaviors. Aberrant cortical development can be triggered by multiple genetic and environmental factors, causing cortical malformations. Animal models, especially rodents, are a valuable tool to probe molecular and physiological mechanisms of cortical malformations. Complementing rodent studies, the zebrafish (Danio rerio) is an important model organism in biomedicine. Although the zebrafish (like other fishes) lacks neocortex, here we argue that this species can still be used to model various aspects and brain phenomena related to human cortical malformations. We also discuss novel perspectives in this field, covering both advantages and limitations of using mammalian and zebrafish models in cortical malformation research. Summarizing mounting evidence, we also highlight the importance of translationally-relevant insights into the pathogenesis of cortical malformations from animal models, and discuss future strategies of research in the field.
Collapse
Affiliation(s)
- Fabiano V Costa
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Konstantin N Zabegalov
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Tatiana O Kolesnikova
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | | | - Maria M Kotova
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | | | - Allan V Kalueff
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; Ural Federal University, Yekaterinburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia.
| |
Collapse
|
7
|
Jackson D, Moosajee M. The Genetic Determinants of Axial Length: From Microphthalmia to High Myopia in Childhood. Annu Rev Genomics Hum Genet 2023; 24:177-202. [PMID: 37624667 DOI: 10.1146/annurev-genom-102722-090617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The axial length of the eye is critical for normal visual function by enabling light to precisely focus on the retina. The mean axial length of the adult human eye is 23.5 mm, but the molecular mechanisms regulating ocular axial length remain poorly understood. Underdevelopment can lead to microphthalmia (defined as a small eye with an axial length of less than 19 mm at 1 year of age or less than 21 mm in adulthood) within the first trimester of pregnancy. However, continued overgrowth can lead to axial high myopia (an enlarged eye with an axial length of 26.5 mm or more) at any age. Both conditions show high genetic and phenotypic heterogeneity associated with significant visual morbidity worldwide. More than 90 genes can contribute to microphthalmia, and several hundred genes are associated with myopia, yet diagnostic yields are low. Crucially, the genetic pathways underpinning the specification of eye size are only now being discovered, with evidence suggesting that shared molecular pathways regulate under- or overgrowth of the eye. Improving our mechanistic understanding of axial length determination will help better inform us of genotype-phenotype correlations in both microphthalmia and myopia, dissect gene-environment interactions in myopia, and develop postnatal therapies that may influence overall eye growth.
Collapse
Affiliation(s)
- Daniel Jackson
- Institute of Ophthalmology, University College London, London, United Kingdom;
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, United Kingdom;
- The Francis Crick Institute, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
8
|
Pan Q, Lu K, Luo J, Jiang Y, Xia B, Chen L, Wang M, Dai R, Chen T. Japanese medaka Olpax6.1 mutant as a potential model for spondylo-ocular syndrome. Funct Integr Genomics 2023; 23:168. [PMID: 37204625 DOI: 10.1007/s10142-023-01090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
pax6 is a canonic master gene for eye formation. Knockout of pax6 affects the development of craniofacial skeleton and eye in mice. Whether pax6 affects the development of spinal bone has not been reported yet. In the present study, we used CRISPR/Cas9 system to generate Olpax6.1 mutant in Japanese medaka. Phenotype analysis showed that ocular mutation caused by the Olpax6.1 mutation occurred in the homozygous mutant. The phenotype of heterozygotes is not significantly different from that of wild-type. In addition, knockout Olpax6.1 resulted in severe curvature of the spine in the homozygous F2 generation. Comparative transcriptome analysis and qRT-PCR revealed that the defective Olpax6.1 protein caused a decrease in the expression level of sp7, col10a1a, and bglap, while the expression level of xylt2 did not change significantly. The functional enrichment of differentially expressed genes (DEGs) using the Kyoto Encyclopedia of Genes and Genomes database showed that the DEGs between Olpax6.1 mutation and wild-type were enriched in p53 signaling pathway, extracellular matrix (ECM) -receptor interaction, et al. Our results indicated that the defective Olpax6.1 protein results in the reduction of sp7 expression level and the activation of p53 signaling pathway, which leads to a decrease in the expression of genes encoding ECM protein, such as collagen protein family and bone gamma-carboxyglutamate protein, which further inhibits bone development. Based on the phenotype and molecular mechanism of ocular mutation and spinal curvature induced by Olpax6.1 knockout, we believe that the Olpax6.1-/- mutant could be a potential model for the study of spondylo-ocular syndrome.
Collapse
Affiliation(s)
- Qihua Pan
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ke Lu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Junzhi Luo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuewen Jiang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bilin Xia
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lei Chen
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China
| | - Mengyang Wang
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China
| | - Ronggui Dai
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China
| | - Tiansheng Chen
- Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, Fujian, China.
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
9
|
Pan Q, Luo J, Jiang Y, Wang Z, Lu K, Chen T. Medaka (Oryzias latipes) Olpax6.2 acquires maternal inheritance and germ cells expression, but was functionally degenerated in the eye. Gene 2023; 872:147439. [PMID: 37094695 DOI: 10.1016/j.gene.2023.147439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Gene duplication provides raw material for the evolution of genetic and phenotypic complexity. It has remained a long-standing mystery how duplicated genes evolve into new genes by neofunctionalization via the acquisition of new expression and/or activity and simultaneous loss of the old expression and activity. Fishes have many gene duplicates from whole genome duplication, making them excellent for studying the evolution of gene duplicates. In the fish medaka (Oryzias latipes), an ancestral pax6 gene has given rise to Olpax6.1 and Olpax6.2. Here we report that medaka Olpax6.2 is evolving towards neofunctionalization. A chromosomal syntenic analysis indicated that Olpax6.1 and Olpax6.2 are structurally co-homologous to the single pax6 in other organisms. Interestingly, Olpax6.2 maintains all conserved coding exons but loses the non-coding exons of Olpax6.1, and has 4 promoters versus 8 in Olpax6.1. RT-PCR revealed that Olpax6.2 maintained expression in the brain eye, pancreas as Olpax6.1. Surprisingly, Olpax6.2 also exhibited maternal inheritance and gonadal expression by RT-PCR, in situ hybridization and RNA transcriptome analysis. The expression and distribution of Olpax6.2 is not different from Olpax6.1 in the adult brain, eye and pancreas, but exhibited overlapping and distinct expression in early embryogenesis. We show that ovarian Olpax6.2 expression occurs in female germ cells. Olpax6.2 knockout showed no obvious defect in eye development, while Olpax6.1 F0 mutant have severe defects in eye development. Thus, Olpax6.2 has acquired maternal inheritance and germ cell expression, but was functionally degenerated in the eye, making this gene as an excellent model to study the neofunctionalization of duplicated genes.
Collapse
Affiliation(s)
- Qihua Pan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, China; College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junzhi Luo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuewen Jiang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhi Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ke Lu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tiansheng Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, China; College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Kranert K, Woźny M, Podlasz P, Wąsowicz K, Brzuzan P. MiR92b-3p synthetic analogue impairs zebrafish embryonic development, leading to ocular defects, decreased movement and hatching rate, and increased mortality. J Appl Genet 2023; 64:145-157. [PMID: 36274083 PMCID: PMC9837005 DOI: 10.1007/s13353-022-00732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/04/2022] [Accepted: 10/12/2022] [Indexed: 01/17/2023]
Abstract
The aim of this study was to examine the effect of microRNA 92b-3p (MiR92b-3p) overexpression on the embryonic development of zebrafish. A synthetic MiR92b-3p analogue (mirVana™ mimic, in vivo-ready) was injected at doses up to 5 ng/embryo into the yolk sac of embryos (2-16 cell stage). At 24 h post fertilization (hpf), the locomotor activity of the embryos was measured, and after hatching (72 hpf), the rates of malformation occurrence, hatching, and mortality were determined. Next, the larvae were fixed for histological and molecular examinations. Exposure to the MiR92b-3p mimic impaired embryonic development, leading to increased occurrence of malformations (i.e., pericardial edema, spine curvature, smaller eyes), decreased locomotor activity and hatching rate, and increased mortality. Importantly, the mimic affected retinal differentiation and lens formation during zebrafish embryogenesis, which suggests that MiR92b-3p could be an important factor in the regulation of fish embryogenesis and ocular development. The expression level of MiR92b-3p was substantially higher in the exposed larvae than in the untreated larvae, indicating that the mimic was successfully delivered to the zebrafish. Although screening of potential MiR92b-3p target genes suggested some changes in their expression levels, these results were inconclusive. Together, this study indicates that MiR92b-3p mimic impairs zebrafish embryonic development, and further research is necessary to identify the MiR92b-3p-regulated cell pathways involved in the impairment of the fish's development.
Collapse
Affiliation(s)
- Kilian Kranert
- grid.412607.60000 0001 2149 6795Department of Environmental Biotechnology, Institute of Engineering and Environment Protection, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| | - Maciej Woźny
- grid.412607.60000 0001 2149 6795Department of Environmental Biotechnology, Institute of Engineering and Environment Protection, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| | - Piotr Podlasz
- grid.412607.60000 0001 2149 6795Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - Krzysztof Wąsowicz
- grid.412607.60000 0001 2149 6795Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - Paweł Brzuzan
- grid.412607.60000 0001 2149 6795Department of Environmental Biotechnology, Institute of Engineering and Environment Protection, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| |
Collapse
|
11
|
Abdolkarimi D, Cunha DL, Lahne1 M, Moosajee M. PAX6 disease models for aniridia. Indian J Ophthalmol 2022; 70:4119-4129. [PMID: 36453299 PMCID: PMC9940591 DOI: 10.4103/ijo.ijo_316_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022] Open
Abstract
Aniridia is a pan-ocular genetic developmental eye disorder characterized by complete or partial iris and foveal hypoplasia, for which there is no treatment currently. Progressive sight loss can arise from cataracts, glaucoma, and aniridia-related keratopathy, which can be managed conservatively or through surgical intervention. The vast majority of patients harbor heterozygous mutations involving the PAX6 gene, which is considered the master transcription factor of early eye development. Over the past decades, several disease models have been investigated to gain a better understanding of the molecular pathophysiology, including several mouse and zebrafish strains and, more recently, human-induced pluripotent stem cells (hiPSCs) derived from aniridia patients. The latter provides a more faithful cellular system to study early human eye development. This review outlines the main aniridia-related animal and cellular models used to study aniridia and highlights the key discoveries that are bringing us closer to a therapy for patients.
Collapse
Affiliation(s)
| | - Dulce Lima Cunha
- UCL Institute of Ophthalmology, London, UK
- Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
12
|
Effect of Polydeoxyribonucleotide (PDRN) Treatment on Corneal Wound Healing in Zebrafish ( Danio rerio). Int J Mol Sci 2022; 23:ijms232113525. [PMID: 36362312 PMCID: PMC9659220 DOI: 10.3390/ijms232113525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
This study aimed to develop a corneal epithelial injury model in zebrafish (Danio rerio) and investigate the effectiveness of polydeoxyribonucleotide (PDRN) treatment on in vivo corneal epithelial regeneration and wound healing. Chemical injury to zebrafish cornea was produced by placing a small cotton swab containing 3% acetic acid solution. PDRN treatment was performed by immersing corneal-injured zebrafish in water containing PDRN (2 mg/mL) for 10 min at 0, 24, 48, and 72 h post-injury (hpi). The level of corneal healing was evaluated by fluorescein staining, histological examination, transcriptional profiling, and immunoblotting techniques. Fluorescein staining results demonstrate that PDRN treatment significantly (p < 0.05) reduced the wounded area of the zebrafish eye at 48 and 72 hpi, suggesting that PDRN may accelerate the corneal re-epithelialization. Histopathological evaluation revealed that injured corneal epithelial cells were re-organized at 72 hpi upon PDRN treatment with increased goblet cell density and size. Moreover, transcriptional analysis results demonstrate that PDRN treatment induced the mRNA expression of adora2ab (6.3-fold), pax6a (7.8-fold), pax6b (29.3-fold), klf4 (7.3-fold), and muc2.1 (5.0-fold) after the first treatment. Besides, tnf-α (2.0-fold) and heat-shock proteins (hsp70; 2.8-fold and hsp90ab1; 1.6-fold) have modulated the gene expression following the PDRN treatment. Immunoblotting results convincingly confirmed the modulation of Mmp-9, Hsp70, and Tnf-α expression levels upon PDRN treatment. Overall, our corneal injury model in zebrafish allows for understanding the morphological and molecular events of corneal epithelial healing, and ophthalmic responses for PDRN treatment following acid injury in zebrafish.
Collapse
|
13
|
Shahzad K, Zhang X, Zhang M, Guo L, Qi T, Tang H, Wang H, Mubeen I, Qiao X, Peng R, Wu J, Xing C. Homoeolog gene expression analysis reveals novel expression biases in upland hybrid cotton under intraspecific hybridization. Funct Integr Genomics 2022; 22:757-768. [PMID: 35771309 DOI: 10.1007/s10142-022-00877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hybridization is useful to enhance the yield potential of agronomic crops in the world. Cotton has genome doubling due to the allotetraploid process and hybridization in coordination with duplicated genome can produce more yield and adaptability. Therefore, the expression of homoeologous gene pairs between hybrids and inbred parents is vital to characterize the genetic source of heterosis in cotton. Investigation results of homoeolog gene pairs between two contrasting hybrids and their respective inbred parents identified 36853 homoeolog genes in hybrids. It was observed both high and low hybrids had similar trends in homoeolog gene expression patterns in each tissue under study. An average of 96% of homoeolog genes had no biased expression and their expressions were derived from the equal contribution of both parents. Besides, very few homoeolog genes (an average of 1%) showed no biased or novel expression in both hybrids. The functional analysis described secondary metabolic pathways had a majority of novel biased homoeolog genes in hybrids. These results contribute preliminary knowledge about how hybridization affects expression patterns of homoeolog gene pairs in upland cotton hybrids. Our study also highlights the functional genomics of metabolic genes to explore the genetic mechanism of heterosis in cotton.
Collapse
Affiliation(s)
- Kashif Shahzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Liping Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Huini Tang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Hailin Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Iqra Mubeen
- Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Xiuqin Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Renhai Peng
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China. .,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China.
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China. .,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China. .,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China.
| |
Collapse
|
14
|
Singh NP, Krumlauf R. Diversification and Functional Evolution of HOX Proteins. Front Cell Dev Biol 2022; 10:798812. [PMID: 35646905 PMCID: PMC9136108 DOI: 10.3389/fcell.2022.798812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
Abstract
Gene duplication and divergence is a major contributor to the generation of morphological diversity and the emergence of novel features in vertebrates during evolution. The availability of sequenced genomes has facilitated our understanding of the evolution of genes and regulatory elements. However, progress in understanding conservation and divergence in the function of proteins has been slow and mainly assessed by comparing protein sequences in combination with in vitro analyses. These approaches help to classify proteins into different families and sub-families, such as distinct types of transcription factors, but how protein function varies within a gene family is less well understood. Some studies have explored the functional evolution of closely related proteins and important insights have begun to emerge. In this review, we will provide a general overview of gene duplication and functional divergence and then focus on the functional evolution of HOX proteins to illustrate evolutionary changes underlying diversification and their role in animal evolution.
Collapse
Affiliation(s)
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, United States
- *Correspondence: Robb Krumlauf,
| |
Collapse
|
15
|
van Heyningen V. A Journey Through Genetics to Biology. Annu Rev Genomics Hum Genet 2022; 23:1-27. [PMID: 35567277 DOI: 10.1146/annurev-genom-010622-095109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although my engagement with human genetics emerged gradually, and sometimes serendipitously, it has held me spellbound for decades. Without my teachers, students, postdocs, colleagues, and collaborators, I would not be writing this review of my scientific adventures. Early gene and disease mapping was a satisfying puzzle-solving exercise, but building biological insight was my main goal. The project trajectory was hugely influenced by the evolutionarily conserved nature of the implicated genes and by the pace of progress in genetic technologies. The rich detail of clinical observations, particularly in eye disease, makes humans an excellent model, especially when complemented by the use of multiple other animal species for experimental validation. The contributions of collaborators and rivals also influenced our approach. We are very fortunate to work in this era of unprecedented progress in genetics and genomics. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Veronica van Heyningen
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
16
|
Zosen D, Austdal LPE, Bjørnstad S, Lumor JS, Paulsen RE. Antiepileptic drugs lamotrigine and valproate differentially affect neuronal maturation in the developing chick embryo, yet with PAX6 as a potential common mediator. Neurotoxicol Teratol 2022; 90:107057. [DOI: 10.1016/j.ntt.2021.107057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
|
17
|
Shu L, Xiao N, Qin J, Tian Q, Zhang Y, Li H, Liu J, Li Q, Gu W, Wang P, Wang H, Mao X. The Role of Microtubule Associated Serine/Threonine Kinase 3 Variants in Neurodevelopmental Diseases: Genotype-Phenotype Association. Front Mol Neurosci 2022; 14:775479. [PMID: 35095415 PMCID: PMC8790505 DOI: 10.3389/fnmol.2021.775479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To prove microtubule associated serine/threonine kinase 3 (MAST3) gene is associated with neurodevelopmental diseases (NDD) and the genotype-phenotype correlation.Methods: Trio exome sequencing (trio ES) was performed on four NDD trios. Bioinformatic analysis was conducted based on large-scale genome sequencing data and human brain transcriptomic data. Further in vivo zebrafish studies were performed.Results: In our study, we identified four de novo MAST3 variants (NM_015016.1: c.302C > T:p.Ser101Phe; c.311C > T:p.Ser104Leu; c.1543G > A:p.Gly515Ser; and c.1547T > C:p.Leu516Pro) in four patients with developmental and epileptic encephalopathy (DEE) separately. Clinical heterogeneities were observed in patients carrying variants in domain of unknown function (DUF) and serine-threonine kinase (STK) domain separately. Using the published large-scale exome sequencing data, higher CADD scores of missense variants in DUF domain were found in NDD cohort compared with gnomAD database. In addition, we obtained an excess of missense variants in DUF domain when compared autistic spectrum disorder (ASD) cohort with gnomAD database, similarly an excess of missense variants in STK domain when compared DEE cohort with gnomAD database. Based on Brainspan datasets, we showed that MAST3 expression was significantly upregulated in ASD and DEE-related brain regions and was functionally linked with DEE genes. In zebrafish model, abnormal morphology of central nervous system was observed in mast3a/b crispants.Conclusion: Our results support the possibility that MAST3 is a novel gene associated with NDD which could expand the genetic spectrum for NDD. The genotype-phenotype correlation may contribute to future genetic counseling.
Collapse
Affiliation(s)
- Li Shu
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Department of School of Life Sciences, Central South University, Changsha, China
| | - Neng Xiao
- Department of Pediatric Neurology, Chenzhou First People’s Hospital, Chenzhou, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People’s Hospital, Beijing, China
| | - Qi Tian
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Yanghui Zhang
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Haoxian Li
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | | | - Qinrui Li
- Department of Pediatrics, Peking University People’s Hospital, Beijing, China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, China
| | - Pengchao Wang
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, China
| | - Hua Wang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Hua Wang,
| | - Xiao Mao
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- *Correspondence: Xiao Mao,
| |
Collapse
|
18
|
Ikkala K, Stratoulias V, Michon F. Unilateral zebrafish corneal injury induces bilateral cell plasticity supporting wound closure. Sci Rep 2022; 12:161. [PMID: 34997071 PMCID: PMC8741998 DOI: 10.1038/s41598-021-04086-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/10/2021] [Indexed: 01/19/2023] Open
Abstract
The cornea, transparent and outermost structure of camera-type eyes, is prone to environmental challenges, but has remarkable wound healing capabilities which enables to preserve vision. The manner in which cell plasticity impacts wound healing remains to be determined. In this study, we report rapid wound closure after zebrafish corneal epithelium abrasion. Furthermore, by investigating the cellular and molecular events taking place during corneal epithelial closure, we show the induction of a bilateral response to a unilateral wound. Our transcriptomic results, together with our TGF-beta receptor inhibition experiments, demonstrate conclusively the crucial role of TGF-beta signaling in corneal wound healing. Finally, our results on Pax6 expression and bilateral wound healing, demonstrate the decisive impact of epithelial cell plasticity on the pace of healing. Altogether, our study describes terminally differentiated cell competencies in the healing of an injured cornea. These findings will enhance the translation of research on cell plasticity to organ regeneration.
Collapse
Affiliation(s)
- Kaisa Ikkala
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Vassilis Stratoulias
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.,Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Frederic Michon
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland. .,Institute for Neurosciences of Montpellier, Univ Montpellier, INSERM, Montpellier, France.
| |
Collapse
|
19
|
Strachan EL, Mac White-Begg D, Crean J, Reynolds AL, Kennedy BN, O’Sullivan NC. The Role of Mitochondria in Optic Atrophy With Autosomal Inheritance. Front Neurosci 2021; 15:784987. [PMID: 34867178 PMCID: PMC8634724 DOI: 10.3389/fnins.2021.784987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Optic atrophy (OA) with autosomal inheritance is a form of optic neuropathy characterized by the progressive and irreversible loss of vision. In some cases, this is accompanied by additional, typically neurological, extra-ocular symptoms. Underlying the loss of vision is the specific degeneration of the retinal ganglion cells (RGCs) which form the optic nerve. Whilst autosomal OA is genetically heterogenous, all currently identified causative genes appear to be associated with mitochondrial organization and function. However, it is unclear why RGCs are particularly vulnerable to mitochondrial aberration. Despite the relatively high prevalence of this disorder, there are currently no approved treatments. Combined with the lack of knowledge concerning the mechanisms through which aberrant mitochondrial function leads to RGC death, there remains a clear need for further research to identify the underlying mechanisms and develop treatments for this condition. This review summarizes the genes known to be causative of autosomal OA and the mitochondrial dysfunction caused by pathogenic mutations. Furthermore, we discuss the suitability of available in vivo models for autosomal OA with regards to both treatment development and furthering the understanding of autosomal OA pathology.
Collapse
Affiliation(s)
- Elin L. Strachan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Delphi Mac White-Begg
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John Crean
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alison L. Reynolds
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Niamh C. O’Sullivan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Ezoe A, Shirai K, Hanada K. Degree of Functional Divergence in Duplicates Is Associated with Distinct Roles in Plant Evolution. Mol Biol Evol 2021; 38:1447-1459. [PMID: 33290522 PMCID: PMC8042753 DOI: 10.1093/molbev/msaa302] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Gene duplication is a major mechanism to create new genes. After gene duplication, some duplicated genes undergo functionalization, whereas others largely maintain redundant functions. Duplicated genes comprise various degrees of functional diversification in plants. However, the evolutionary fate of high and low diversified duplicates is unclear at genomic scale. To infer high and low diversified duplicates in Arabidopsis thaliana genome, we generated a prediction method for predicting whether a pair of duplicate genes was subjected to high or low diversification based on the phenotypes of knock-out mutants. Among 4,017 pairs of recently duplicated A. thaliana genes, 1,052 and 600 are high and low diversified duplicate pairs, respectively. The predictions were validated based on the phenotypes of generated knock-down transgenic plants. We determined that the high diversified duplicates resulting from tandem duplications tend to have lineage-specific functions, whereas the low diversified duplicates produced by whole-genome duplications are related to essential signaling pathways. To assess the evolutionary impact of high and low diversified duplicates in closely related species, we compared the retention rates and selection pressures on the orthologs of A. thaliana duplicates in two closely related species. Interestingly, high diversified duplicates resulting from tandem duplications tend to be retained in multiple lineages under positive selection. Low diversified duplicates by whole-genome duplications tend to be retained in multiple lineages under purifying selection. Taken together, the functional diversities determined by different duplication mechanisms had distinct effects on plant evolution.
Collapse
Affiliation(s)
- Akihiro Ezoe
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Kazumasa Shirai
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| |
Collapse
|
21
|
Aase-Remedios ME, Ferrier DEK. Improved Understanding of the Role of Gene and Genome Duplications in Chordate Evolution With New Genome and Transcriptome Sequences. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.703163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Comparative approaches to understanding chordate genomes have uncovered a significant role for gene duplications, including whole genome duplications (WGDs), giving rise to and expanding gene families. In developmental biology, gene families created and expanded by both tandem and WGDs are paramount. These genes, often involved in transcription and signalling, are candidates for underpinning major evolutionary transitions because they are particularly prone to retention and subfunctionalisation, neofunctionalisation, or specialisation following duplication. Under the subfunctionalisation model, duplication lays the foundation for the diversification of paralogues, especially in the context of gene regulation. Tandemly duplicated paralogues reside in the same regulatory environment, which may constrain them and result in a gene cluster with closely linked but subtly different expression patterns and functions. Ohnologues (WGD paralogues) often diversify by partitioning their expression domains between retained paralogues, amidst the many changes in the genome during rediploidisation, including chromosomal rearrangements and extensive gene losses. The patterns of these retentions and losses are still not fully understood, nor is the full extent of the impact of gene duplication on chordate evolution. The growing number of sequencing projects, genomic resources, transcriptomics, and improvements to genome assemblies for diverse chordates from non-model and under-sampled lineages like the coelacanth, as well as key lineages, such as amphioxus and lamprey, has allowed more informative comparisons within developmental gene families as well as revealing the extent of conserved synteny across whole genomes. This influx of data provides the tools necessary for phylogenetically informed comparative genomics, which will bring us closer to understanding the evolution of chordate body plan diversity and the changes underpinning the origin and diversification of vertebrates.
Collapse
|
22
|
Davis ES, Voss G, Miesfeld JB, Zarate-Sanchez J, Voss SR, Glaser T. The rax homeobox gene is mutated in the eyeless axolotl, Ambystoma mexicanum. Dev Dyn 2021; 250:807-821. [PMID: 32864847 PMCID: PMC8907009 DOI: 10.1002/dvdy.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vertebrate eye formation requires coordinated inductive interactions between different embryonic tissue layers, first described in amphibians. A network of transcription factors and signaling molecules controls these steps, with mutations causing severe ocular, neuronal, and craniofacial defects. In eyeless mutant axolotls, eye morphogenesis arrests at the optic vesicle stage, before lens induction, and development of ventral forebrain structures is disrupted. RESULTS We identified a 5-bp deletion in the rax (retina and anterior neural fold homeobox) gene, which was tightly linked to the recessive eyeless (e) axolotl locus in an F2 cross. This frameshift mutation, in exon 2, truncates RAX protein within the homeodomain (P154fs35X). Quantitative RNA analysis shows that mutant and wild-type rax transcripts are equally abundant in E/e embryos. Translation appears to initiate from dual start codons, via leaky ribosome scanning, a conserved feature among gnathostome RAX proteins. Previous data show rax is expressed in the optic vesicle and diencephalon, deeply conserved among metazoans, and required for eye formation in other species. CONCLUSION The eyeless axolotl mutation is a null allele in the rax homeobox gene, with primary defects in neural ectoderm, including the retinal and hypothalamic primordia.
Collapse
Affiliation(s)
- Erik S. Davis
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
| | - Gareth Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
| | - Joel B. Miesfeld
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
| | - Juan Zarate-Sanchez
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
- Davis Senior High School, Davis, California
| | - S. Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
| | - Tom Glaser
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
| |
Collapse
|
23
|
Aase-Remedios ME, Coll-Lladó C, Ferrier DEK. More Than One-to-Four via 2R: Evidence of an Independent Amphioxus Expansion and Two-Gene Ancestral Vertebrate State for MyoD-Related Myogenic Regulatory Factors (MRFs). Mol Biol Evol 2021; 37:2966-2982. [PMID: 32520990 PMCID: PMC7530620 DOI: 10.1093/molbev/msaa147] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolutionary transition from invertebrates to vertebrates involved extensive gene duplication, but understanding precisely how such duplications contributed to this transition requires more detailed knowledge of specific cases of genes and gene families. Myogenic differentiation (MyoD) has long been recognized as a master developmental control gene and member of the MyoD family of bHLH transcription factors (myogenic regulatory factors [MRFs]) that drive myogenesis across the bilaterians. Phylogenetic reconstructions within this gene family are complicated by multiple instances of gene duplication and loss in several lineages. Following two rounds of whole-genome duplication (2R WGD) at the origin of the vertebrates, the ancestral function of MRFs is thought to have become partitioned among the daughter genes, so that MyoD and Myf5 act early in myogenic determination, whereas Myog and Myf6 are expressed later, in differentiating myoblasts. Comparing chordate MRFs, we find an independent expansion of MRFs in the invertebrate chordate amphioxus, with evidence for a parallel instance of subfunctionalization relative to that of vertebrates. Conserved synteny between chordate MRF loci supports the 2R WGD events as a major force in shaping the evolution of vertebrate MRFs. We also resolve vertebrate MRF complements and organization, finding a new type of vertebrate MRF gene in the process, which allowed us to infer an ancestral two-gene state in the vertebrates corresponding to the early- and late-acting types of MRFs. This necessitates a revision of previous conclusions about the simple one-to-four origin of vertebrate MRFs.
Collapse
Affiliation(s)
- Madeleine E Aase-Remedios
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Clara Coll-Lladó
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - David E K Ferrier
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| |
Collapse
|
24
|
Harding P, Cunha DL, Moosajee M. Animal and cellular models of microphthalmia. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:2633004021997447. [PMID: 37181112 PMCID: PMC10032472 DOI: 10.1177/2633004021997447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/02/2021] [Indexed: 05/16/2023]
Abstract
Microphthalmia is a rare developmental eye disorder affecting 1 in 7000 births. It is defined as a small (axial length ⩾2 standard deviations below the age-adjusted mean) underdeveloped eye, caused by disruption of ocular development through genetic or environmental factors in the first trimester of pregnancy. Clinical phenotypic heterogeneity exists amongst patients with varying levels of severity, and associated ocular and systemic features. Up to 11% of blind children are reported to have microphthalmia, yet currently no treatments are available. By identifying the aetiology of microphthalmia and understanding how the mechanisms of eye development are disrupted, we can gain a better understanding of the pathogenesis. Animal models, mainly mouse, zebrafish and Xenopus, have provided extensive information on the genetic regulation of oculogenesis, and how perturbation of these pathways leads to microphthalmia. However, differences exist between species, hence cellular models, such as patient-derived induced pluripotent stem cell (iPSC) optic vesicles, are now being used to provide greater insights into the human disease process. Progress in 3D cellular modelling techniques has enhanced the ability of researchers to study interactions of different cell types during eye development. Through improved molecular knowledge of microphthalmia, preventative or postnatal therapies may be developed, together with establishing genotype-phenotype correlations in order to provide patients with the appropriate prognosis, multidisciplinary care and informed genetic counselling. This review summarises some key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future. Plain language summary Animal and Cellular Models of the Eye Disorder, Microphthalmia (Small Eye) Microphthalmia, meaning a small, underdeveloped eye, is a rare disorder that children are born with. Genetic changes or variations in the environment during the first 3 months of pregnancy can disrupt early development of the eye, resulting in microphthalmia. Up to 11% of blind children have microphthalmia, yet currently no treatments are available. By understanding the genes necessary for eye development, we can determine how disruption by genetic changes or environmental factors can cause this condition. This helps us understand why microphthalmia occurs, and ensure patients are provided with the appropriate clinical care and genetic counselling advice. Additionally, by understanding the causes of microphthalmia, researchers can develop treatments to prevent or reduce the severity of this condition. Animal models, particularly mice, zebrafish and frogs, which can also develop small eyes due to the same genetic/environmental changes, have helped us understand the genes which are important for eye development and can cause birth eye defects when disrupted. Studying a patient's own cells grown in the laboratory can further help researchers understand how changes in genes affect their function. Both animal and cellular models can be used to develop and test new drugs, which could provide treatment options for patients living with microphthalmia. This review summarises the key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future.
Collapse
Affiliation(s)
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, 11-43 Bath
Street, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust,
London, UK
- Great Ormond Street Hospital for Children NHS
Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
25
|
Lee JS, Adams KL. Global insights into duplicated gene expression and alternative splicing in polyploid Brassica napus under heat, cold, and drought stress. THE PLANT GENOME 2020; 13:e20057. [PMID: 33043636 DOI: 10.1002/tpg2.20057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/26/2020] [Accepted: 08/20/2020] [Indexed: 05/21/2023]
Abstract
Polyploidy has been a prevalent process during plant evolution and it has made a major impact on the structure and evolution of plant genomes. Many important crop plants are polyploid. There is considerable interest in expression patterns of duplicated genes in polyploids. Alternative splicing (AS) is a fundamental aspect of gene expression that produces multiple final transcript types from a single type of mRNAs. The effects of abiotic stress conditions on AS in polyploids has received little attention. We conducted a global transcriptome analysis of Brassica napus, an allotetraploid derived from B. rapa (AT ) and B. oleracea (CT ), by RNA-Seq of plants subjected to cold, heat, and drought stress treatments. Analyses of 27,360 pairs of duplicated genes revealed overall AT subgenome biases in gene expression and CT subgenome biases in the extent of alternative splicing under all three stress treatments. More genes increased in expression than decreased in response to the stresses. Negative correlations were found between expression levels and AS frequency for each type of AS. Cold stress produced the greatest changes in gene expression and AS. Cold-induced AS changes were more likely to be shared with those generated by drought than by heat stress. We used homeologs of FLC and CCA1 as case studies to show the dynamics of how duplicates in a polyploid respond to cold stress. Our results suggest that divergence in gene expression and AS patterns between duplicated genes may increase the flexibility of polyploids when responding to abiotic stressors.
Collapse
Affiliation(s)
- Joon Seon Lee
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Keith L Adams
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
26
|
Lavergne A, Tarifeño-Saldivia E, Pirson J, Reuter AS, Flasse L, Manfroid I, Voz ML, Peers B. Pancreatic and intestinal endocrine cells in zebrafish share common transcriptomic signatures and regulatory programmes. BMC Biol 2020; 18:109. [PMID: 32867764 PMCID: PMC7457809 DOI: 10.1186/s12915-020-00840-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Endocrine cells of the zebrafish digestive system play an important role in regulating metabolism and include pancreatic endocrine cells (PECs) clustered in the islets of Langerhans and the enteroendocrine cells (EECs) scattered in the intestinal epithelium. Despite EECs and PECs are being located in distinct organs, their differentiation involves shared molecular mechanisms and transcription factors. However, their degree of relatedness remains unexplored. In this study, we investigated comprehensively the similarity of EECs and PECs by defining their transcriptomic landscape and comparing the regulatory programmes controlled by Pax6b, a key player in both EEC and PEC differentiations. RESULTS RNA sequencing was performed on EECs and PECs isolated from wild-type and pax6b mutant zebrafish. Data mining of wild-type zebrafish EEC data confirmed the expression of orthologues for most known mammalian EEC hormones, but also revealed the expression of three additional neuropeptide hormones (Proenkephalin-a, Calcitonin-a and Adcyap1a) not previously reported to be expressed by EECs in any species. Comparison of transcriptomes from EECs, PECs and other zebrafish tissues highlights a very close similarity between EECs and PECs, with more than 70% of genes being expressed in both endocrine cell types. Comparison of Pax6b-regulated genes in EECs and PECs revealed a significant overlap. pax6b loss-of-function does not affect the total number of EECs and PECs but instead disrupts the balance between endocrine cell subtypes, leading to an increase of ghrelin- and motilin-like-expressing cells in both the intestine and pancreas at the expense of other endocrine cells such as beta and delta cells in the pancreas and pyyb-expressing cells in the intestine. Finally, we show that the homeodomain of Pax6b is dispensable for its action in both EECs and PECs. CONCLUSION We have analysed the transcriptomic landscape of wild-type and pax6b mutant zebrafish EECs and PECs. Our study highlights the close relatedness of EECs and PECs at the transcriptomic and regulatory levels, supporting the hypothesis of a common phylogenetic origin and underscoring the potential implication of EECs in metabolic diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- Arnaud Lavergne
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Estefania Tarifeño-Saldivia
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
- Present Address: Gene Expression and Regulation Laboratory, Department of Biochemistry and Molecular Biology, University of Concepción, Concepción, Chile
| | - Justine Pirson
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Anne-Sophie Reuter
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Lydie Flasse
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Isabelle Manfroid
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Marianne L. Voz
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Bernard Peers
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| |
Collapse
|
27
|
Tsujimura T. Mechanistic insights into the evolution of the differential expression of tandemly arrayed cone opsin genes in zebrafish. Dev Growth Differ 2020; 62:465-475. [PMID: 32712957 DOI: 10.1111/dgd.12690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022]
Abstract
The genome of many organisms contains several loci consisting of duplicated genes that are arrayed in tandem. The daughter genes produced by duplication typically exhibit differential expression patterns with each other or otherwise experience pseudogenization. Remarkably, opsin genes in fish are preserved after many duplications in different lineages. This fact indicates that fish opsin genes are characterized by a regulatory mechanism that could intrinsically facilitate the differentiation of the expression patterns. However, little is known about the mechanisms that underlie the differential expression patterns or how they were established during evolution. The loci of green (RH2)- and red (LWS)-sensitive cone opsin genes in zebrafish have been used as model systems to study the differential regulation of tandemly arrayed opsin genes. Over a decade of studies have uncovered several mechanistic features that might have assisted the differentiation and preservation of duplicated genes. Furthermore, recent progress in the understanding of the transcriptional process in general has added essential insights. In this article, the current understanding of the transcriptional regulation of differentially expressed tandemly arrayed cone opsin genes in zebrafish is summarized and a possible evolutionary scenario that could achieve this differentiation is discussed.
Collapse
Affiliation(s)
- Taro Tsujimura
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Yasuoka Y. Enhancer evolution in chordates: Lessons from functional analyses of cephalochordate cis‐regulatory modules. Dev Growth Differ 2020; 62:279-300. [DOI: 10.1111/dgd.12684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis RIKEN Center for Integrative Medical Sciences Tsurumi‐ku Japan
| |
Collapse
|
29
|
Takamiya M, Stegmaier J, Kobitski AY, Schott B, Weger BD, Margariti D, Cereceda Delgado AR, Gourain V, Scherr T, Yang L, Sorge S, Otte JC, Hartmann V, van Wezel J, Stotzka R, Reinhard T, Schlunck G, Dickmeis T, Rastegar S, Mikut R, Nienhaus GU, Strähle U. Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. PLoS Genet 2020; 16:e1008774. [PMID: 32555736 PMCID: PMC7323998 DOI: 10.1371/journal.pgen.1008774] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 06/29/2020] [Accepted: 04/09/2020] [Indexed: 01/11/2023] Open
Abstract
Cranial neural crest (NC) contributes to the developing vertebrate eye. By multidimensional, quantitative imaging, we traced the origin of the ocular NC cells to two distinct NC populations that differ in the maintenance of sox10 expression, Wnt signalling, origin, route, mode and destination of migration. The first NC population migrates to the proximal and the second NC cell group populates the distal (anterior) part of the eye. By analysing zebrafish pax6a/b compound mutants presenting anterior segment dysgenesis, we demonstrate that Pax6a/b guide the two NC populations to distinct proximodistal locations. We further provide evidence that the lens whose formation is pax6a/b-dependent and lens-derived TGFβ signals contribute to the building of the anterior segment. Taken together, our results reveal multiple roles of Pax6a/b in the control of NC cells during development of the anterior segment.
Collapse
Affiliation(s)
- Masanari Takamiya
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Johannes Stegmaier
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Andrei Yu Kobitski
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Benjamin Schott
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Benjamin D. Weger
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dimitra Margariti
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Angel R. Cereceda Delgado
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Victor Gourain
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tim Scherr
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Lixin Yang
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sebastian Sorge
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jens C. Otte
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Volker Hartmann
- Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jos van Wezel
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Rainer Stotzka
- Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Thomas Reinhard
- Eye Center, Freiburg University Medical Center, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Freiburg University Medical Center, Freiburg, Germany
| | - Thomas Dickmeis
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Uwe Strähle
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
30
|
Novel eye genes systematically discovered through an integrated analysis of mouse transcriptomes and phenome. Comput Struct Biotechnol J 2019; 18:73-82. [PMID: 31934309 PMCID: PMC6951830 DOI: 10.1016/j.csbj.2019.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/04/2019] [Accepted: 12/14/2019] [Indexed: 01/23/2023] Open
Abstract
In the last few decades, reverse genetic and high throughput approaches have been frequently applied to the mouse (Mus musculus) to understand how genes function in tissues/organs and during development in a mammalian system. Despite these efforts, the associated phenotypes for the majority of mouse genes remained to be fully characterized. Here, we performed an integrated transcriptome-phenome analysis by identifying coexpressed gene modules based on tissue transcriptomes profiled with each of various platforms and functionally interpreting these modules using the mouse phenotypic data. Consequently, >15,000 mouse genes were linked with at least one of the 47 tissue functions that were examined. Specifically, our approach predicted >50 genes previously unknown to be involved in mice (Mus musculus) visual functions. Fifteen genes were selected for further analysis based on their potential biomedical relevance and compatibility with further experimental validation. Gene-specific morpholinos were introduced into zebrafish (Danio rerio) to target their corresponding orthologs. Quantitative assessments of phenotypes of developing eyes confirmed predicted eye-related functions of 13 out of the 15 genes examined. These novel eye genes include: Adal, Ankrd33, Car14, Ccdc126, Dhx32, Dkk3, Fam169a, Grifin, Kcnj14, Lrit2, Ppef2, Ppm1n, and Wdr17. The results highlighted the potential for this phenome-based approach to assist the experimental design of mutating and phenotyping mouse genes that aims to fully reveal the functional landscape of mammalian genomes.
Collapse
|
31
|
Klann M, Seaver EC. Functional role of pax6 during eye and nervous system development in the annelid Capitella teleta. Dev Biol 2019; 456:86-103. [PMID: 31445008 DOI: 10.1016/j.ydbio.2019.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022]
Abstract
The transcription factor Pax6 is an important regulator of early animal development. Loss of function mutations of pax6 in a range of animals result in a reduction or complete loss of the eye, a reduction of a subset of neurons, and defects in axon growth. There are no studies focusing on the role of pax6 during development of any lophotrochozoan representative, however, expression of pax6 in the developing eye and nervous system in a number of species suggest that pax6 plays a highly conserved role in eye and nervous system formation. We investigated the functional role of pax6 during development of the marine annelid Capitella teleta. Expression of pax6 transcripts in C. teleta larvae is similar to patterns found in other animals, with distinct subdomains in the brain and ventral nerve cord as well as in the larval and juvenile eye. To perturb pax6 function, two different splice-blocking morpholinos and a translation-blocking morpholino were used. Larvae resulting from microinjections with either splice-blocking morpholino show a reduction of the pax6 transcript. Development of both the larval eyes and the central nervous system architecture are highly disrupted following microinjection of each of the three morpholinos. The less severe phenotype observed when only the homeodomain is disrupted suggests that presence of the paired domain is sufficient for partial function of the Pax6 protein. Preliminary downstream target analysis confirms disruption in expression of some components of the retinal gene regulatory network, as well as disruption of genes involved in nervous system development. Results from this study, taken together with studies from other species, reveal an evolutionarily conserved role for pax6 in eye and neural specification and development.
Collapse
Affiliation(s)
- Marleen Klann
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, Fl, 32080, USA
| | - Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, Fl, 32080, USA.
| |
Collapse
|
32
|
Li H, Zhao F, Cao F, Teng M, Yang Y, Qiu L. Mitochondrial dysfunction-based cardiotoxicity and neurotoxicity induced by pyraclostrobin in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:203-211. [PMID: 31078959 DOI: 10.1016/j.envpol.2019.04.122] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Pyraclostrobin is widely used to control crop diseases, and was reported to be highly toxic to aquatic organisms. The molecular target of pyraclostrobin to fungus is the mitochondrion, but its effect on mitochondria of aquatic organisms has rarely been investigated. In this study, zebrafish larvae at 4 days post fertilization (dpf) were exposed to a range of pyraclostrobin for 96 h to assess its acute toxicity and effects on mitochondria. Pyraclostrobin at 36 μg/L or higher concentrations caused significant influences on larval heart and brain including pericardial edema, brain damage malformations, histological and mitochondrial structural damage of the two organs. The results of RNA-Seq revealed that the transcripts of genes related to oxidative phosphorylation, cardiac muscle contraction, mitochondrion, nervous system development and glutamate receptor activity were significantly influenced by 36 μg/L pyraclostrobin. Further tests showed that pyraclostrobin at 18 and 36 μg/L reduced the concentrations of proteins related to cardiac muscle contraction, impaired cardiac function, inhibited glutamate receptors activities and suppressed locomotor behavior of zebrafish larvae. Negative changes in mitochondrial complex activities, as well as reduced ATP content were also observed in larvae treated with 18 and 36 μg/L pyraclostrobin. These results suggested that pyraclostrobin exposure caused cardiotoxicity and neurotoxicity in zebrafish larvae and mitochondrial dysfunction might be the underlying mechanism of pyraclostrobin toxicity.
Collapse
Affiliation(s)
- Hui Li
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Feng Zhao
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Fangjie Cao
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Miaomiao Teng
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Yang Yang
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Lihong Qiu
- College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
33
|
An update on the genetics of ocular coloboma. Hum Genet 2019; 138:865-880. [PMID: 31073883 DOI: 10.1007/s00439-019-02019-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 04/19/2019] [Indexed: 01/04/2023]
Abstract
Ocular coloboma is an uncommon, but often severe, sight-threatening condition that can be identified from birth. This congenital anomaly is thought to be caused by maldevelopment of optic fissure closure during early eye morphogenesis. It has been causally linked to both inherited (genetic) and environmental influences. In particular, as a consequence of work to identify genetic causes of coloboma, new molecular pathways that control optic fissure closure have now been identified. Many more regulatory mechanisms still await better understanding to inform on the development of potential therapies for patients with this malformation. This review provides an update of known coloboma genes, the pathways they influence and how best to manage the condition. In the age of precision medicine, determining the underlying genetic cause in any given patient is of high importance.
Collapse
|
34
|
Gonadal, Not Maternal, Acquisition of Duplicated pax6 Orthologs in Megalobrama Amblycephala. Int J Mol Sci 2019; 20:ijms20071710. [PMID: 30959850 PMCID: PMC6480603 DOI: 10.3390/ijms20071710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 01/12/2023] Open
Abstract
: The highly conserved transcription factor Pax6 is involved in the development of the eyes, brain, and pancreas in vertebrates and invertebrates, whereas the additional expression pattern in other organs is still elusive. In this study, we cloned and characterized two pax6 homologs in blunt snout bream (Megalobrama amblycephala), named Mapax6a and Mapax6b. The protein alignment and phylogenetic tree showed that Mapax6a and Mapax6b were highly conserved compared with their counterparts in other species. Genomic information analysis revealed that the synteny conservation of Wilms tumor, Aniridia, genitourinary abnormalities, and mental retardation loci was also maintained in this species. By reverse transcription polymerase chain reaction, the expression of Mapax6a was later than that of Mapax6b which was found in the blastula stage, while the expression of Mapax6a started from the somite stage, and both of them persisted in a subsequent stage during the embryonic development. By RNA and protein detection, Mapax6a and Mapax6b were detected in the eye and brain as canonic patterns, and most importantly, they were also enriched in germ cells of the testis and ovary. Therefore, our findings validate the duplication of pax6 in fish, confirm the classical expression patterns in the brain and eye, and, for the first time, present a new acquisition of Mapax6a and Mapax6b in gonadal germ cells in particular. Therefore, our results enrich the expression pattern and evolutionary relationship of pax6 by suggesting that duplicated Mapax6 is involved in gametogenesis in Megalobrama amblycephala.
Collapse
|
35
|
Pushchina EV, Varaksin AA. Neurolin expression in the optic nerve and immunoreactivity of Pax6-positive niches in the brain of rainbow trout ( Oncorhynchus mykiss) after unilateral eye injury. Neural Regen Res 2019; 14:156-171. [PMID: 30531090 PMCID: PMC6263006 DOI: 10.4103/1673-5374.243721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In contrast to astrocytes in mammals, fish astrocytes promote axon regeneration after brain injury and actively participate in the regeneration process. Neurolin, a regeneration-associated, Zn8-labeled protein, is involved in the repair of damaged optic nerve in goldfish. At 1 week after unilateral eye injury, the expression of neurolin in the optic nerve and chiasm, and the expression of Pax6 that influences nervous system development in various brain regions in the rainbow trout (Oncorhynchus mykiss) were detected. Immunohistochemical staining revealed that the number of Zn8+ cells in the optic nerve head and intraorbital segment was obviously increased, and the increase in Zn8+ cells was also observed in the proximal and distal parts of injured optic nerve. This suggests that Zn8+ astrocytes participate in optic nerve regeneration. ELISA results revealed that Pax6 protein increased obviously at 1 week post-injury. Immunohistochemical staining revealed the appearance of Pax6+ neurogenic niches and a larger number of neural precursor cells, which are mainly from Pax6+ radial glia cells, in the nuclei of the diencephalon and optic tectum of rainbow trout (Oncorhynchus mykiss). Taken together, unilateral eye injury can cause optic nerve reaction, and the formation of neurogenic niches is likely a compensation phenomenon during the repair process of optic nerve injury in rainbow trout (Oncorhynchus mykiss).
Collapse
Affiliation(s)
- Evgeniya V Pushchina
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia; A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Anatoly A Varaksin
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
36
|
Baudouin-Gonzalez L, Santos MA, Tempesta C, Sucena É, Roch F, Tanaka K. Diverse Cis-Regulatory Mechanisms Contribute to Expression Evolution of Tandem Gene Duplicates. Mol Biol Evol 2018; 34:3132-3147. [PMID: 28961967 PMCID: PMC5850857 DOI: 10.1093/molbev/msx237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pairs of duplicated genes generally display a combination of conserved expression patterns inherited from their unduplicated ancestor and newly acquired domains. However, how the cis-regulatory architecture of duplicated loci evolves to produce these expression patterns is poorly understood. We have directly examined the gene-regulatory evolution of two tandem duplicates, the Drosophila Ly6 genes CG9336 and CG9338, which arose at the base of the drosophilids between 40 and 60 Ma. Comparing the expression patterns of the two paralogs in four Drosophila species with that of the unduplicated ortholog in the tephritid Ceratitis capitata, we show that they diverged from each other as well as from the unduplicated ortholog. Moreover, the expression divergence appears to have occurred close to the duplication event and also more recently in a lineage-specific manner. The comparison of the tissue-specific cis-regulatory modules (CRMs) controlling the paralog expression in the four Drosophila species indicates that diverse cis-regulatory mechanisms, including the novel tissue-specific enhancers, differential inactivation, and enhancer sharing, contributed to the expression evolution. Our analysis also reveals a surprisingly variable cis-regulatory architecture, in which the CRMs driving conserved expression domains change in number, location, and specificity. Altogether, this study provides a detailed historical account that uncovers a highly dynamic picture of how the paralog expression patterns and their underlying cis-regulatory landscape evolve. We argue that our findings will encourage studying cis-regulatory evolution at the whole-locus level to understand how interactions between enhancers and other regulatory levels shape the evolution of gene expression.
Collapse
Affiliation(s)
- Luís Baudouin-Gonzalez
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | | | - Camille Tempesta
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Élio Sucena
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Fernando Roch
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | | |
Collapse
|
37
|
Sindelka R, Abaffy P, Qu Y, Tomankova S, Sidova M, Naraine R, Kolar M, Peuchen E, Sun L, Dovichi N, Kubista M. Asymmetric distribution of biomolecules of maternal origin in the Xenopus laevis egg and their impact on the developmental plan. Sci Rep 2018; 8:8315. [PMID: 29844480 PMCID: PMC5974320 DOI: 10.1038/s41598-018-26592-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/08/2018] [Indexed: 12/24/2022] Open
Abstract
Asymmetric cell division is a ubiquitous feature during the development of higher organisms. Asymmetry is achieved by differential localization or activities of biological molecules such as proteins, and coding and non-coding RNAs. Here, we present subcellular transcriptomic and proteomic analyses along the animal-vegetal axis of Xenopus laevis eggs. More than 98% of the maternal mRNAs could be categorized into four localization profile groups: animal, vegetal, extremely vegetal, and a newly described group of mRNAs that we call extremely animal, which are mRNAs enriched in the animal cortex region. 3′UTRs of localized mRNAs were analyzed for localization motifs. Several putative motifs were discovered for vegetal and extremely vegetal mRNAs, while no distinct conserved motifs for the extremely animal mRNAs were identified, suggesting different localization mechanisms. Asymmetric profiles were also found for proteins, with correlation to those of corresponding mRNAs. Based on unexpected observation of the profiles of the homoeologous genes exd2 we propose a possible mechanism of genetic evolution.
Collapse
Affiliation(s)
- Radek Sindelka
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic.
| | - Pavel Abaffy
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Yanyan Qu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Silvie Tomankova
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Monika Sidova
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Ravindra Naraine
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Michal Kolar
- Institute of Molecular Genetics, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Elizabeth Peuchen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Norman Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Mikael Kubista
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic.,TATAA Biocenter, Odinsgatan 28, Göteborg, 411 03, Sweden
| |
Collapse
|
38
|
Zebrafish Models of Rare Hereditary Pediatric Diseases. Diseases 2018; 6:diseases6020043. [PMID: 29789451 PMCID: PMC6023479 DOI: 10.3390/diseases6020043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances in sequencing technologies have made it significantly easier to find the genetic roots of rare hereditary pediatric diseases. These novel methods are not panaceas, however, and they often give ambiguous results, highlighting multiple possible causative mutations in affected patients. Furthermore, even when the mapping results are unambiguous, the affected gene might be of unknown function. In these cases, understanding how a particular genotype can result in a phenotype also needs carefully designed experimental work. Model organism genetics can offer a straightforward experimental setup for hypothesis testing. Containing orthologs for over 80% of the genes involved in human diseases, zebrafish (Danio rerio) has emerged as one of the top disease models over the past decade. A plethora of genetic tools makes it easy to create mutations in almost any gene of the zebrafish genome and these mutant strains can be used in high-throughput preclinical screens for active molecules. As this small vertebrate species offers several other advantages as well, its popularity in biomedical research is bound to increase, with “aquarium to bedside” drug development pipelines taking a more prevalent role in the near future.
Collapse
|
39
|
Lacomme M, Medevielle F, Bourbon HM, Thierion E, Kleinjan DJ, Roussat M, Pituello F, Bel-Vialar S. A long range distal enhancer controls temporal fine-tuning of PAX6 expression in neuronal precursors. Dev Biol 2018; 436:94-107. [PMID: 29486153 DOI: 10.1016/j.ydbio.2018.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Proper embryonic development relies on a tight control of spatial and temporal gene expression profiles in a highly regulated manner. One good example is the ON/OFF switching of the transcription factor PAX6 that governs important steps of neurogenesis. In the neural tube PAX6 expression is initiated in neural progenitors through the positive action of retinoic acid signaling and downregulated in neuronal precursors by the bHLH transcription factor NEUROG2. How these two regulatory inputs are integrated at the molecular level to properly fine tune temporal PAX6 expression is not known. In this study we identified and characterized a 940-bp long distal cis-regulatory module (CRM), located far away from the PAX6 transcription unit and which conveys positive input from RA signaling pathway and indirect repressive signal(s) from NEUROG2. These opposing regulatory signals are integrated through HOMZ, a 94 bp core region within E940 which is evolutionarily conserved in distant organisms such as the zebrafish. We show that within HOMZ, NEUROG2 and RA exert their opposite temporal activities through a short 60 bp region containing a functional RA-responsive element (RARE). We propose a model in which retinoic acid receptors (RARs) and NEUROG2 repressive target(s) compete on the same DNA motif to fine tune temporal PAX6 expression during the course of spinal neurogenesis.
Collapse
Affiliation(s)
- Marine Lacomme
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France; Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, Québec, Canada
| | - François Medevielle
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Henri-Marc Bourbon
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Elodie Thierion
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Dirk-Jan Kleinjan
- 1UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Mélanie Roussat
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Fabienne Pituello
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Sophie Bel-Vialar
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
40
|
Posner M, Murray KL, McDonald MS, Eighinger H, Andrew B, Drossman A, Haley Z, Nussbaum J, David LL, Lampi KJ. The zebrafish as a model system for analyzing mammalian and native α-crystallin promoter function. PeerJ 2017; 5:e4093. [PMID: 29201567 PMCID: PMC5708185 DOI: 10.7717/peerj.4093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 11/04/2017] [Indexed: 12/24/2022] Open
Abstract
Previous studies have used the zebrafish to investigate the biology of lens crystallin proteins and their roles in development and disease. However, little is known about zebrafish α-crystallin promoter function, how it compares to that of mammals, or whether mammalian α-crystallin promoter activity can be assessed using zebrafish embryos. We injected a variety of α-crystallin promoter fragments from each species combined with the coding sequence for green fluorescent protein (GFP) into zebrafish zygotes to determine the resulting spatiotemporal expression patterns in the developing embryo. We also measured mRNA levels and protein abundance for all three zebrafish α-crystallins. Our data showed that mouse and zebrafish αA-crystallin promoters generated similar GFP expression in the lens, but with earlier onset when using mouse promoters. Expression was also found in notochord and skeletal muscle in a smaller percentage of embryos. Mouse αB-crystallin promoter fragments drove GFP expression primarily in zebrafish skeletal muscle, with less common expression in notochord, lens, heart and in extraocular regions of the eye. A short fragment containing only a lens-specific enhancer region increased lens and notochord GFP expression while decreasing muscle expression, suggesting that the influence of mouse promoter control regions carries over into zebrafish embryos. The two paralogous zebrafish αB-crystallin promoters produced subtly different expression profiles, with the aBa promoter driving expression equally in notochord and skeletal muscle while the αBb promoter resulted primarily in skeletal muscle expression. Messenger RNA for zebrafish αA increased between 1 and 2 days post fertilization (dpf), αBa increased between 4 and 5 dpf, but αBb remained at baseline levels through 5 dpf. Parallel reaction monitoring (PRM) mass spectrometry was used to detect αA, aBa, and αBb peptides in digests of zebrafish embryos. In whole embryos, αA-crystallin was first detected by 2 dpf, peaked in abundance by 4–5 dpf, and was localized to the eye. αBa was detected in whole embryo at nearly constant levels from 1–6 dpf, was also localized primarily to the eye, and its abundance in extraocular tissues decreased from 4–7 dpf. In contrast, due to its low abundance, no αBb protein could be detected in whole embryo, or dissected eye and extraocular tissues. Our results show that mammalian α-crystallin promoters can be efficiently screened in zebrafish embryos and that their controlling regions are well conserved. An ontogenetic shift in zebrafish aBa-crystallin promoter activity provides an interesting system for examining the evolution and control of tissue specificity. Future studies that combine these promoter based approaches with the expanding ability to engineer the zebrafish genome via techniques such as CRISPR/Cas9 will allow the manipulation of protein expression to test hypotheses about lens crystallin function and its relation to lens biology and disease.
Collapse
Affiliation(s)
- Mason Posner
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Kelly L Murray
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Matthew S McDonald
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Hayden Eighinger
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Brandon Andrew
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Amy Drossman
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Zachary Haley
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Justin Nussbaum
- Department of Biology, Lakeland Community College, Kirtland, OH, United States of America
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR, United States of America
| | - Kirsten J Lampi
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, OR, United States of America
| |
Collapse
|
41
|
Chen T, Cavari B, Schartl M, Hong Y. Identification and Expression of Conserved and Novel RNA Variants of Medakapax6bGene. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:412-422. [PMID: 28547909 DOI: 10.1002/jez.b.22742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/18/2017] [Accepted: 03/24/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Tiansheng Chen
- Key Laboratory of Freshwater Animal Breeding; Ministry of Agriculture and College of Fisheries; Huazhong Agricultural University; Wuhan Hubei China
| | - Benzion Cavari
- Israel Oceanographic and Limnological Research; Tel Shikmona; Halfa Israel
| | - Manfred Schartl
- Department of Physiological Chemistry I, Biocenter; University of Würzburg; Würzburg Germany
| | - Yunhan Hong
- Department of Biological Sciences; National University of Singapore; Singapore
| |
Collapse
|
42
|
Ochi H, Kawaguchi A, Tanouchi M, Suzuki N, Kumada T, Iwata Y, Ogino H. Co-accumulation of cis-regulatory and coding mutations during the pseudogenization of the Xenopus laevis homoeologs six6.L and six6.S. Dev Biol 2017; 427:84-92. [PMID: 28501477 DOI: 10.1016/j.ydbio.2017.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 04/29/2017] [Accepted: 05/08/2017] [Indexed: 01/01/2023]
Abstract
Common models for the evolution of duplicated genes after genome duplication are subfunctionalization, neofunctionalization, and pseudogenization. Although the crucial roles of cis-regulatory mutations in subfunctionalization are well-documented, their involvement in pseudogenization and/or neofunctionalization remains unclear. We addressed this issue by investigating the evolution of duplicated homeobox genes, six6.L and six6.S, in the allotetraploid frog Xenopus laevis. Based on a comparative expression analysis, we observed similar eye-specific expression patterns for the two loci and their single ortholog in the ancestral-type diploid species Xenopus tropicalis. However, we detected lower levels of six6.S expression than six6.L expression. The six6.S enhancer sequence was more highly diverged from the orthologous enhancer of X. tropicalis than the six6.L enhancer, and showed weaker activity in a transgenic reporter assay. Based on a phylogenetic analysis of the protein sequences, we observed greater divergence between X. tropicalis Six6 and Six6.S than between X. tropicalis Six6 and Six6.L, and the observed mutations were reminiscent of a microphthalmia mutation in human SIX6. Misexpression experiments showed that six6.S has weaker eye-enlarging activity than six6.L, and targeted disruption of six6.L reduced the eye size more significantly than that of six6.S. These results suggest that enhancer attenuation stimulates the accumulation of hypomorphic coding mutations, or vice versa, in one duplicated gene copy and facilitates pseudogenization. We also underscore the value of the allotetraploid genome of X. laevis as a resource for studying latent pathogenic mutations.
Collapse
Affiliation(s)
- Haruki Ochi
- Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata Prefecture 990-9585, Japan
| | - Akane Kawaguchi
- Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Mikio Tanouchi
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Nanoka Suzuki
- Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata Prefecture 990-9585, Japan
| | - Tatsuki Kumada
- Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata Prefecture 990-9585, Japan
| | - Yui Iwata
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Hajime Ogino
- Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan; Amphibian Research Center, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
43
|
Asymmetrically reduced expression of hand1 homeologs involving a single nucleotide substitution in a cis -regulatory element. Dev Biol 2017; 425:152-160. [DOI: 10.1016/j.ydbio.2017.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 01/28/2023]
|
44
|
Zheng GD, Zhou CX, Lin ST, Chen J, Jiang XY, Zou SM. Two grass carp (Ctenopharyngodon idella) insulin-like growth factor-binding protein 5 genes exhibit different yet conserved functions in development and growth. Comp Biochem Physiol B Biochem Mol Biol 2016; 204:69-76. [PMID: 27913274 DOI: 10.1016/j.cbpb.2016.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/25/2022]
Abstract
Insulin-like growth factor binding-protein 5 (igfbp5), the most conserved member of the IGFBP family in vertebrates, plays a critical role in controlling cell survival, growth, differentiation, and apoptosis. Here, we characterized the expression patterns of igfbp5a and igfbp5b in grass carp (Ctenopharyngodon idella), which are retained in many fish species, likely from the teleost-specific whole-genome duplication. Both igfbp5a and igfbp5b encode 268- and 263-aa peptides, respectively, which share a sequence identity of 71%. Their mRNAs are not detected in zygotes. At 14hpf, grass carp igfbp5b mRNA was detected in the somites, while igfbp5a mRNA has some possible signal around the eye and head region. At 24hpf, both igfbp5a and igfbp5b mRNA appear to be limited to the presomitic mesoderm. At 36hpf, igfbp5a mRNA was only detected in the midbrain, while igfbp5b mRNA was detected in both the midbrain and notochord. Overall, both mRNAs were expressed in most adult tissues. igfbp5a and igfbp5b were significantly upregulated in the muscle and liver after injection of 10μg per kilogram body weight of zebrafish growth hormone (zGH), while their hepatic expression was downregulated by 50μg zGH. During fasting, both igfbp5a and igfbp5b mRNAs were significantly downregulated in the muscle but upregulated in the liver. Collectively, the results suggest that the two igfbp5 genes play important but different roles in the regulation of growth and development in grass carp.
Collapse
Affiliation(s)
- Guo-Dong Zheng
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Chun-Xue Zhou
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Si-Tong Lin
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Jie Chen
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Xia-Yun Jiang
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Shu-Ming Zou
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China.
| |
Collapse
|
45
|
Abstract
NMD is a highly conserved pathway that degrades specific subsets of RNAs. There is increasing evidence for roles of NMD in development. In this commentary, we focus on spermatogenesis, a process dramatically impeded upon loss or disruption of NMD. NMD requires strict regulation for normal spermatogenesis, as loss of a newly discovered NMD repressor, UPF3A, also causes spermatogenic defects, most prominently during meiosis. We discuss the unusual evolution of UPF3A, whose paralog, UPF3B, has the opposite biochemical function and acts in brain development. We also discuss the regulation of NMD during germ cell development, including in chromatoid bodies, which are specifically found in haploid germ cells. The ability of NMD to coordinately degrade batteries of RNAs in a regulated fashion during development is akin to the action of transcriptional pathways, yet has the advantage of driving rapid changes in gene expression.
Collapse
Affiliation(s)
- Samantha H Jones
- a Department of Reproductive Medicine , School of Medicine, University of California, San Diego , La Jolla , CA , USA
| | - Miles Wilkinson
- a Department of Reproductive Medicine , School of Medicine, University of California, San Diego , La Jolla , CA , USA.,b Institute of Genomic Medicine, University of California , San Diego, La Jolla , CA , USA
| |
Collapse
|
46
|
Long HK, Prescott SL, Wysocka J. Ever-Changing Landscapes: Transcriptional Enhancers in Development and Evolution. Cell 2016; 167:1170-1187. [PMID: 27863239 PMCID: PMC5123704 DOI: 10.1016/j.cell.2016.09.018] [Citation(s) in RCA: 601] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/24/2016] [Accepted: 09/07/2016] [Indexed: 12/27/2022]
Abstract
A class of cis-regulatory elements, called enhancers, play a central role in orchestrating spatiotemporally precise gene-expression programs during development. Consequently, divergence in enhancer sequence and activity is thought to be an important mediator of inter- and intra-species phenotypic variation. Here, we give an overview of emerging principles of enhancer function, current models of enhancer architecture, genomic substrates from which enhancers emerge during evolution, and the influence of three-dimensional genome organization on long-range gene regulation. We discuss intricate relationships between distinct elements within complex regulatory landscapes and consider their potential impact on specificity and robustness of transcriptional regulation.
Collapse
Affiliation(s)
- Hannah K Long
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sara L Prescott
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
47
|
Richardson R, Tracey-White D, Webster A, Moosajee M. The zebrafish eye-a paradigm for investigating human ocular genetics. Eye (Lond) 2016; 31:68-86. [PMID: 27612182 DOI: 10.1038/eye.2016.198] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/17/2016] [Indexed: 01/13/2023] Open
Abstract
Although human epidemiological and genetic studies are essential to elucidate the aetiology of normal and aberrant ocular development, animal models have provided us with an understanding of the pathogenesis of multiple developmental ocular malformations. Zebrafish eye development displays in depth molecular complexity and stringent spatiotemporal regulation that incorporates developmental contributions of the surface ectoderm, neuroectoderm and head mesenchyme, similar to that seen in humans. For this reason, and due to its genetic tractability, external fertilisation, and early optical clarity, the zebrafish has become an invaluable vertebrate system to investigate human ocular development and disease. Recently, zebrafish have been at the leading edge of preclinical therapy development, with their amenability to genetic manipulation facilitating the generation of robust ocular disease models required for large-scale genetic and drug screening programmes. This review presents an overview of human and zebrafish ocular development, genetic methodologies employed for zebrafish mutagenesis, relevant models of ocular disease, and finally therapeutic approaches, which may have translational leads in the future.
Collapse
Affiliation(s)
- R Richardson
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - D Tracey-White
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - A Webster
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - M Moosajee
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
48
|
Wang J, Tao F, Marowsky NC, Fan C. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes. PLANT PHYSIOLOGY 2016; 172:427-40. [PMID: 27485883 PMCID: PMC5074645 DOI: 10.1104/pp.16.01177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/01/2016] [Indexed: 05/02/2023]
Abstract
Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes.
Collapse
Affiliation(s)
- Jun Wang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Feng Tao
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Nicholas C Marowsky
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Chuanzhu Fan
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
49
|
Wang J, Tao F, Marowsky NC, Fan C. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes. PLANT PHYSIOLOGY 2016. [PMID: 27485883 DOI: 10.1104/pp.l6.01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes.
Collapse
Affiliation(s)
- Jun Wang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Feng Tao
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Nicholas C Marowsky
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Chuanzhu Fan
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
50
|
Wong KSY, Arenas-Mena C. Expression ofGATAandPOUtranscription factors during the development of the planktotrophic trochophore of the polychaete serpulidHydroides elegans. Evol Dev 2016; 18:254-66. [DOI: 10.1111/ede.12196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Kimberly Suk-Ying Wong
- Department of Biology; San Diego State University; 5500 Campanile Drive San Diego CA 92182-4614 USA
| | - Cesar Arenas-Mena
- Department of Biology, College of Staten Island and Graduate Center; The City University of New York (CUNY); Staten Island NY 10314 USA
| |
Collapse
|