1
|
Pereira de Castro KL, Abril JM, Liao KC, Hao H, Donohue JP, Russell WK, Fagg WS. An ancient competition for the conserved branchpoint sequence influences physiological and evolutionary outcomes in splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617384. [PMID: 39416098 PMCID: PMC11483029 DOI: 10.1101/2024.10.09.617384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Recognition of the intron branchpoint during spliceosome assembly is a multistep process that defines both mRNA structure and amount. A branchpoint sequence motif UACUAAC is variably conserved in eukaryotic genomes, but in some organisms more than one protein can recognize it. Here we show that SF1 and Quaking (QKI) compete for a subset of intron branchpoints with the sequence ACUAA. SF1 activates exon inclusion through this sequence, but QKI represses the inclusion of alternatively spliced exons with this intron branchpoint sequence. Using mutant reporters derived from a natural intron with two branchpoint-like sequences, we find that when either branchpoint sequence is mutated, the other is used as a branchpoint, but when both are present, neither is used due to high affinity binding and strong splicing repression by QKI. QKI occupancy at the dual branchpoint site directly prevents SF1 binding and subsequent recruitment of spliceosome-associated factors. Finally, the ectopic expression of QKI in budding yeast (which lacks QKI) is lethal, due at least in part to widespread splicing repression. In conclusion, QKI can function as a splicing repressor by directly competing with SF1/BBP for a subset of branchpoint sequences that closely mirror its high affinity binding site. This suggests that QKI and degenerate branchpoint sequences may have co-evolved as a means through which specific gene expression patterns could be maintained in QKI-expressing or non-expressing cells in metazoans, plants, and animals.
Collapse
Affiliation(s)
| | - Jose M. Abril
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Kuo-Chieh Liao
- RNA Genomics and Structure, Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR) Singapore
| | - Haiping Hao
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - John Paul Donohue
- Sinsheimer Labs, RNA Center for Molecular Biology, Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - W. Samuel Fagg
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
2
|
Mikina W, Hałakuc P, Milanowski R. Transposon-derived introns as an element shaping the structure of eukaryotic genomes. Mob DNA 2024; 15:15. [PMID: 39068498 PMCID: PMC11282704 DOI: 10.1186/s13100-024-00325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
The widely accepted hypothesis postulates that the first spliceosomal introns originated from group II self-splicing introns. However, it is evident that not all spliceosomal introns in the nuclear genes of modern eukaryotes are inherited through vertical transfer of intronic sequences. Several phenomena contribute to the formation of new introns but their most common origin seems to be the insertion of transposable elements. Recent analyses have highlighted instances of mass gains of new introns from transposable elements. These events often coincide with an increase or change in the spliceosome's tolerance to splicing signals, including the acceptance of noncanonical borders. Widespread acquisitions of transposon-derived introns occur across diverse evolutionary lineages, indicating convergent processes. These events, though independent, likely require a similar set of conditions. These conditions include the presence of transposon elements with features enabling their removal at the RNA level as introns and/or the existence of a splicing mechanism capable of excising unusual sequences that would otherwise not be recognized as introns by standard splicing machinery. Herein we summarize those mechanisms across different eukaryotic lineages.
Collapse
Affiliation(s)
- Weronika Mikina
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw, 02‑089, Poland
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw, 02‑089, Poland
| | - Rafał Milanowski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw, 02‑089, Poland.
| |
Collapse
|
3
|
Gao P, Zhao Y, Xu G, Zhong Y, Sun C. Unique features of conventional and nonconventional introns in Euglena gracilis. BMC Genomics 2024; 25:595. [PMID: 38872102 PMCID: PMC11170887 DOI: 10.1186/s12864-024-10495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Nuclear introns in Euglenida have been understudied. This study aimed to investigate nuclear introns in Euglenida by identifying a large number of introns in Euglena gracilis (E. gracilis), including cis-spliced conventional and nonconventional introns, as well as trans-spliced outrons. We also examined the sequence characteristics of these introns. RESULTS A total of 28,337 introns and 11,921 outrons were identified. Conventional and nonconventional introns have distinct splice site features; the former harbour canonical GT/C-AG splice sites, whereas the latter are capable of forming structured motifs with their terminal sequences. We observed that short introns had a preference for canonical GT-AG introns. Notably, conventional introns and outrons in E. gracilis exhibited a distinct cytidine-rich polypyrimidine tract, in contrast to the thymidine-rich tracts observed in other organisms. Furthermore, the SL-RNAs in E. gracilis, as well as in other trans-splicing species, can form a recently discovered motif called the extended U6/5' ss duplex with the respective U6s. We also describe a novel type of alternative splicing pattern in E. gracilis. The tandem repeat sequences of introns in this protist were determined, and their contents were comparable to those in humans. CONCLUSIONS Our findings highlight the unique features of E. gracilis introns and provide insights into the splicing mechanism of these introns, as well as the genomics and evolution of Euglenida.
Collapse
Affiliation(s)
- Pingwei Gao
- Scientific Research Center, Chengdu Medical College, Chengdu, 610500, China
| | - Yali Zhao
- Scientific Research Center, Chengdu Medical College, Chengdu, 610500, China
| | - Guangjie Xu
- Scientific Research Center, Chengdu Medical College, Chengdu, 610500, China
| | - Yujie Zhong
- Clinical Laboratory Department, Zigong Hospital of Women's and Children's Healthcare, Zigong, 643002, China.
| | - Chengfu Sun
- Scientific Research Center, Chengdu Medical College, Chengdu, 610500, China.
| |
Collapse
|
4
|
Jin D, Li C, Chen X, Wang Y, Al-Rasheid KAS, Stover NA, Shao C, Zhang T. Decryption of the survival "black box": gene family expansion promotes the encystment in ciliated protists. BMC Genomics 2024; 25:286. [PMID: 38500030 PMCID: PMC10946202 DOI: 10.1186/s12864-024-10207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Encystment is an important survival strategy extensively employed by microbial organisms to survive unfavorable conditions. Single-celled ciliated protists (ciliates) are popular model eukaryotes for studying encystment, whereby these cells degenerate their ciliary structures and develop cyst walls, then reverse the process under more favorable conditions. However, to date, the evolutionary basis and mechanism for encystment in ciliates is largely unknown. With the rapid development of high-throughput sequencing technologies, genome sequencing and comparative genomics of ciliates have become effective methods to provide insights into above questions. RESULTS Here, we profiled the MAC genome of Pseudourostyla cristata, a model hypotrich ciliate for encystment studies. Like other hypotrich MAC genomes, the P. cristata MAC genome is extremely fragmented with a single gene on most chromosomes, and encodes introns that are generally small and lack a conserved branch point for pre-mRNA splicing. Gene family expansion analyses indicate that multiple gene families involved in the encystment are expanded during the evolution of P. cristata. Furthermore, genomic comparisons with other five representative hypotrichs indicate that gene families of phosphorelay sensor kinase, which play a role in the two-component signal transduction system that is related to encystment, show significant expansion among all six hypotrichs. Additionally, cyst wall-related chitin synthase genes have experienced structural changes that increase them from single-exon to multi-exon genes during evolution. These genomic features potentially promote the encystment in hypotrichs and enhance their ability to survive in adverse environments during evolution. CONCLUSIONS We systematically investigated the genomic structure of hypotrichs and key evolutionary phenomenon, gene family expansion, for encystment promotion in ciliates. In summary, our results provided insights into the evolutionary mechanism of encystment in ciliates.
Collapse
Affiliation(s)
- Didi Jin
- Laboratory of Biodiversity and Evolution of Protozoa in Wetland, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Chao Li
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China
- Suzhou Research Institute, Shandong University, Suzhou, 215123, China
| | - Yurui Wang
- Laboratory of Biodiversity and Evolution of Protozoa in Wetland, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria, 61625, USA
| | - Chen Shao
- Laboratory of Biodiversity and Evolution of Protozoa in Wetland, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Tengteng Zhang
- Laboratory of Biodiversity and Evolution of Protozoa in Wetland, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
5
|
Hunter O, Talkish J, Quick-Cleveland J, Igel H, Tan A, Kuersten S, Katzman S, Donohue JP, S Jurica M, Ares M. Broad variation in response of individual introns to splicing inhibitors in a humanized yeast strain. RNA (NEW YORK, N.Y.) 2024; 30:149-170. [PMID: 38071476 PMCID: PMC10798247 DOI: 10.1261/rna.079866.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Intron branchpoint (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect the binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after the addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during cotranscriptional splicing in Plad-B using single-molecule intron tracking to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between the binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten the characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.
Collapse
Affiliation(s)
- Oarteze Hunter
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Jason Talkish
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Jen Quick-Cleveland
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Asako Tan
- Illumina, Inc., Madison, Wisconsin 53719, USA
| | | | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - John Paul Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Melissa S Jurica
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
6
|
Wu K, Sun Q, Liu D, Lu J, Wen D, Zang X, Gao L. Alternative Splicing Landscape of Head and Neck Squamous Cell Carcinoma. Technol Cancer Res Treat 2024; 23:15330338241272051. [PMID: 39113534 PMCID: PMC11307358 DOI: 10.1177/15330338241272051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Head and neck malignancies are a significant global health concern, with head and neck squamous cell carcinoma (HNSCC) being the sixth most common cancer worldwide accounting for > 90% of cases. In recent years, there has been growing recognition of the potential role of alternative splicing (AS) in the etiology of cancer. Increasing evidence suggests that AS is associated with various aspects of cancer progression, including tumor occurrence, invasion, metastasis, and drug resistance. Additionally, AS is involved in shaping the tumor microenvironment, which plays a crucial role in tumor development and response to therapy. AS can influence the expression of factors involved in angiogenesis, immune response, and extracellular matrix remodeling, all of which contribute to the formation of a supportive microenvironment for tumor growth. Exploring the mechanism of AS events in HNSCC could provide insights into the development and progression of this cancer, as well as its interaction with the tumor microenvironment. Understanding how AS contributes to the molecular changes in HNSCC cells and influences the tumor microenvironment could lead to the identification of new therapeutic targets. Targeted chemotherapy and immunotherapy strategies tailored to the specific AS patterns in HNSCC could potentially improve treatment outcomes and reduce side effects. This review explores the concept, types, processes, and technological advancements of AS, focusing on its role in the initiation, progression, treatment, and prognosis of HNSCC.
Collapse
Affiliation(s)
- Kehan Wu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Qianhui Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Dongxu Liu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Jiayi Lu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Deyu Wen
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiyan Zang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Li Gao
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| |
Collapse
|
7
|
Hunter O, Talkish J, Quick-Cleveland J, Igel H, Tan A, Kuersten S, Katzman S, Donohue JP, Jurica M, Ares M. Broad variation in response of individual introns to splicing inhibitors in a humanized yeast strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.560965. [PMID: 37873484 PMCID: PMC10592967 DOI: 10.1101/2023.10.05.560965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Intron branch point (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during co-transcriptional splicing in Plad-B using single-molecule intron tracking (SMIT) to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.
Collapse
Affiliation(s)
- Oarteze Hunter
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Jason Talkish
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Jen Quick-Cleveland
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | | | | | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - John Paul Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Melissa Jurica
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| |
Collapse
|
8
|
Xie J, Wang L, Lin RJ. Variations of intronic branchpoint motif: identification and functional implications in splicing and disease. Commun Biol 2023; 6:1142. [PMID: 37949953 PMCID: PMC10638238 DOI: 10.1038/s42003-023-05513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
The branchpoint (BP) motif is an essential intronic element for spliceosomal pre-mRNA splicing. In mammals, its sequence composition, distance to the downstream exon, and number of BPs per 3´ splice site are highly variable, unlike the GT/AG dinucleotides at the intron ends. These variations appear to provide evolutionary advantages for fostering alternative splicing, satisfying more diverse cellular contexts, and promoting resilience to genetic changes, thus contributing to an extra layer of complexity for gene regulation. Importantly, variants in the BP motif itself or in genes encoding BP-interacting factors cause human genetic diseases or cancers, highlighting the critical function of BP motif and the need to precisely identify functional BPs for faithful interpretation of their roles in splicing. In this perspective, we will succinctly summarize the major findings related to BP motif variations, discuss the relevant issues/challenges, and provide our insights.
Collapse
Affiliation(s)
- Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| | - Ren-Jang Lin
- Center for RNA Biology & Therapeutics, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
9
|
Choi S, Cho N, Kim EM, Kim KK. The role of alternative pre-mRNA splicing in cancer progression. Cancer Cell Int 2023; 23:249. [PMID: 37875914 PMCID: PMC10594706 DOI: 10.1186/s12935-023-03094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Alternative pre-mRNA splicing is a critical mechanism that generates multiple mRNA from a single gene, thereby increasing the diversity of the proteome. Recent research has highlighted the significance of specific splicing isoforms in cellular processes, particularly in regulating cell numbers. In this review, we examine the current understanding of the role of alternative splicing in controlling cancer cell growth and discuss specific splicing factors and isoforms and their molecular mechanisms in cancer progression. These isoforms have been found to intricately control signaling pathways crucial for cell cycle progression, proliferation, and apoptosis. Furthermore, studies have elucidated the characteristics and functional importance of splicing factors that influence cell numbers. Abnormal expression of oncogenic splicing isoforms and splicing factors, as well as disruptions in splicing caused by genetic mutations, have been implicated in the development and progression of tumors. Collectively, these findings provide valuable insights into the complex interplay between alternative splicing and cell proliferation, thereby suggesting the potential of alternative splicing as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
10
|
Beusch I, Rao B, Studer MK, Luhovska T, Šukytė V, Lei S, Oses-Prieto J, SeGraves E, Burlingame A, Jonas S, Madhani HD. Targeted high-throughput mutagenesis of the human spliceosome reveals its in vivo operating principles. Mol Cell 2023; 83:2578-2594.e9. [PMID: 37402368 PMCID: PMC10484158 DOI: 10.1016/j.molcel.2023.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/15/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023]
Abstract
The spliceosome is a staggeringly complex machine, comprising, in humans, 5 snRNAs and >150 proteins. We scaled haploid CRISPR-Cas9 base editing to target the entire human spliceosome and investigated the mutants using the U2 snRNP/SF3b inhibitor, pladienolide B. Hypersensitive substitutions define functional sites in the U1/U2-containing A complex but also in components that act as late as the second chemical step after SF3b is dissociated. Viable resistance substitutions map not only to the pladienolide B-binding site but also to the G-patch domain of SUGP1, which lacks orthologs in yeast. We used these mutants and biochemical approaches to identify the spliceosomal disassemblase DHX15/hPrp43 as the ATPase ligand for SUGP1. These and other data support a model in which SUGP1 promotes splicing fidelity by triggering early spliceosome disassembly in response to kinetic blocks. Our approach provides a template for the analysis of essential cellular machines in humans.
Collapse
Affiliation(s)
- Irene Beusch
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, USA
| | - Beiduo Rao
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, USA
| | - Michael K Studer
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Tetiana Luhovska
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Viktorija Šukytė
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Susan Lei
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, USA
| | - Juan Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, USA
| | - Em SeGraves
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, USA
| | - Stefanie Jonas
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, USA.
| |
Collapse
|
11
|
Wong DK, Grisdale CJ, Slat VA, Rader SD, Fast NM. The evolution of pre-mRNA splicing and its machinery revealed by reduced extremophilic red algae. J Eukaryot Microbiol 2023; 70:e12927. [PMID: 35662328 DOI: 10.1111/jeu.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Cyanidiales are a group of mostly thermophilic and acidophilic red algae that thrive near volcanic vents. Despite their phylogenetic relationship, the reduced genomes of Cyanidioschyzon merolae and Galdieria sulphuraria are strikingly different with respect to pre-mRNA splicing, a ubiquitous eukaryotic feature. Introns are rare and spliceosomal machinery is extremely reduced in C. merolae, in contrast to G. sulphuraria. Previous studies also revealed divergent spliceosomes in the mesophilic red alga Porphyridium purpureum and the red algal derived plastid of Guillardia theta (Cryptophyta), along with unusually high levels of unspliced transcripts. To further examine the evolution of splicing in red algae, we compared C. merolae and G. sulphuraria, investigating splicing levels, intron position, intron sequence features, and the composition of the spliceosome. In addition to identifying 11 additional introns in C. merolae, our transcriptomic analysis also revealed typical eukaryotic splicing in G. sulphuraria, whereas most transcripts in C. merolae remain unspliced. The distribution of intron positions within their host genes was examined to provide insight into patterns of intron loss in red algae. We observed increasing variability of 5' splice sites and branch donor regions with increasing intron richness. We also found these relationships to be connected to reductions in and losses of corresponding parts of the spliceosome. Our findings highlight patterns of intron and spliceosome evolution in related red algae under the pressures of genome reduction.
Collapse
Affiliation(s)
- Donald K Wong
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Cameron J Grisdale
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Viktor A Slat
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Stephen D Rader
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Naomi M Fast
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Li H. Protein-to-genome alignment with miniprot. Bioinformatics 2023; 39:btad014. [PMID: 36648328 PMCID: PMC9869432 DOI: 10.1093/bioinformatics/btad014] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/25/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
MOTIVATION Protein-to-genome alignment is critical to annotating genes in non-model organisms. While there are a few tools for this purpose, all of them were developed over 10 years ago and did not incorporate the latest advances in alignment algorithms. They are inefficient and could not keep up with the rapid production of new genomes and quickly growing protein databases. RESULTS Here, we describe miniprot, a new aligner for mapping protein sequences to a complete genome. Miniprot integrates recent techniques such as k-mer sketch and vectorized dynamic programming. It is tens of times faster than existing tools while achieving comparable accuracy on real data. AVAILABILITY AND IMPLEMENTATION https://github.com/lh3/miniport.
Collapse
Affiliation(s)
- Heng Li
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
You Y, Clark MB, Shim H. NanoSplicer: Accurate identification of splice junctions using Oxford Nanopore sequencing. Bioinformatics 2022; 38:3741-3748. [PMID: 35639973 PMCID: PMC9344838 DOI: 10.1093/bioinformatics/btac359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/02/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Motivation Long-read sequencing methods have considerable advantages for characterizing RNA isoforms. Oxford Nanopore sequencing records changes in electrical current when nucleic acid traverses through a pore. However, basecalling of this raw signal (known as a squiggle) is error prone, making it challenging to accurately identify splice junctions. Existing strategies include utilizing matched short-read data and/or annotated splice junctions to correct nanopore reads but add expense or limit junctions to known (incomplete) annotations. Therefore, a method that could accurately identify splice junctions solely from nanopore data would have numerous advantages. Results We developed ‘NanoSplicer’ to identify splice junctions using raw nanopore signal (squiggles). For each splice junction, the observed squiggle is compared to candidate squiggles representing potential junctions to identify the correct candidate. Measuring squiggle similarity enables us to compute the probability of each candidate junction and find the most likely one. We tested our method using (i) synthetic mRNAs with known splice junctions and (ii) biological mRNAs from a lung-cancer cell-line. The results from both datasets demonstrate NanoSplicer improves splice junction identification, especially when the basecalling error rate near the splice junction is elevated. Availability and implementation NanoSplicer is available at https://github.com/shimlab/NanoSplicer and archived at https://doi.org/10.5281/zenodo.6403849. Data is available from ENA: ERS7273757 and ERS7273453. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yupei You
- School of Mathematics and Statistics/Melbourne Integrative Genomics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Michael B Clark
- Centre for Stem Cell Systems, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Heejung Shim
- School of Mathematics and Statistics/Melbourne Integrative Genomics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
14
|
Abstract
Recognition of the intron branch site (BS) by the U2 small nuclear ribonucleoprotein (snRNP) is a critical event during spliceosome assembly. In mammals, BS sequences are poorly conserved, and unambiguous intron recognition cannot be achieved solely through a base-pairing mechanism. We isolated human 17S U2 snRNP and reconstituted in vitro its adenosine 5´-triphosphate (ATP)–dependent remodeling and binding to the pre–messenger RNA substrate. We determined a series of high-resolution (2.0 to 2.2 angstrom) structures providing snapshots of the BS selection process. The substrate-bound U2 snRNP shows that SF3B6 stabilizes the BS:U2 snRNA duplex, which could aid binding of introns with poor sequence complementarity. ATP-dependent remodeling uncoupled from substrate binding captures U2 snRNA in a conformation that competes with BS recognition, providing a selection mechanism based on branch helix stability.
Collapse
Affiliation(s)
- Jonas Tholen
- European Molecular Biology Laboratory; 71 Avenue des Martyrs, 38042 Grenoble, France
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Michal Razew
- European Molecular Biology Laboratory; 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Felix Weis
- European Molecular Biology Laboratory, Structural and Computational Biology Unit; Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Wojciech P. Galej
- European Molecular Biology Laboratory; 71 Avenue des Martyrs, 38042 Grenoble, France
| |
Collapse
|
15
|
Sales-Lee J, Perry DS, Bowser BA, Diedrich JK, Rao B, Beusch I, Yates JR, Roy SW, Madhani HD. Coupling of spliceosome complexity to intron diversity. Curr Biol 2021; 31:4898-4910.e4. [PMID: 34555349 DOI: 10.1016/j.cub.2021.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
We determined that over 40 spliceosomal proteins are conserved between many fungal species and humans but were lost during the evolution of S. cerevisiae, an intron-poor yeast with unusually rigid splicing signals. We analyzed null mutations in a subset of these factors, most of which had not been investigated previously, in the intron-rich yeast Cryptococcus neoformans. We found they govern splicing efficiency of introns with divergent spacing between intron elements. Importantly, most of these factors also suppress usage of weak nearby cryptic/alternative splice sites. Among these, orthologs of GPATCH1 and the helicase DHX35 display correlated functional signatures and copurify with each other as well as components of catalytically active spliceosomes, identifying a conserved G patch/helicase pair that promotes splicing fidelity. We propose that a significant fraction of spliceosomal proteins in humans and most eukaryotes are involved in limiting splicing errors, potentially through kinetic proofreading mechanisms, thereby enabling greater intron diversity.
Collapse
Affiliation(s)
- Jade Sales-Lee
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniela S Perry
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bradley A Bowser
- Department of Molecular and Cellular Biology, University of California, Merced, Merced, CA 95343, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Beiduo Rao
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Irene Beusch
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Scott W Roy
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA.
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
16
|
Nguyen H, Das U, Xie J. Genome-wide evolution of wobble base-pairing nucleotides of branchpoint motifs with increasing organismal complexity. RNA Biol 2019; 17:311-324. [PMID: 31814500 DOI: 10.1080/15476286.2019.1697548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
How have the branchpoint motifs evolved in organisms of different complexity? Here we identified and examined the consensus motifs (R1C2T3R4A5Y6, R: A or G, Y: C or T) of 898 fungal genomes. In Ascomycota unicellular yeasts, the G4/A4 ratio is mostly (98%) below 0.125 but increases sharply in multicellular species by about 40 times on average, and in the more complex Basidiomycota, it increases further by about 7 times. The global G4 increase is consistent with A4 to G4 transitions in evolution. Of the G4/A4-interacting amino acids of the branchpoint binding protein MSL5 (SF1) and the HSH155 (SF3B1), as well as the 5' splice sites (SS) and U2 snRNA genes, the 5' SS G3/A3 co-vary with the G4 to some extent. However, corresponding increase of the G4-complementary GCAGTA-U2 gene is rare, suggesting wobble-base pairing between the G4-containing branchpoint motif and GTAGTA-U2 in most of these species. Interestingly, the G4/A4 ratio correlates well with the abundance of alternative splicing in the two phyla, and G4 enriched significantly at the alternative 3' SS of genes in RNA metabolism, kinases and membrane proteins. Similar wobble nucleotides also enriched at the 3' SS of multicellular fungi with only thousands of protein-coding genes. Thus, branchpoint motifs have evolved U2-complementarity in unicellular Ascomycota yeasts, but have gradually gained more wobble base-pairing nucleotides in fungi of higher complexity, likely to destabilize branchpoint motif-U2 interaction and/or branchpoint A protrusion for alternative splicing. This implies an important role of relaxing the branchpoint signals in the multicellularity and further complexity of fungi.
Collapse
Affiliation(s)
- Hai Nguyen
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Department of Applied Computer Sciences, University of Winnipeg, Winnipeg, Canada
| | - Urmi Das
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
17
|
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2019; 34:3094-3100. [PMID: 29750242 DOI: 10.1093/bioinformatics/bty191] [Citation(s) in RCA: 6161] [Impact Index Per Article: 1232.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 05/04/2018] [Indexed: 12/30/2022] Open
Abstract
Motivation Recent advances in sequencing technologies promise ultra-long reads of ∼100 kb in average, full-length mRNA or cDNA reads in high throughput and genomic contigs over 100 Mb in length. Existing alignment programs are unable or inefficient to process such data at scale, which presses for the development of new alignment algorithms. Results Minimap2 is a general-purpose alignment program to map DNA or long mRNA sequences against a large reference database. It works with accurate short reads of ≥100 bp in length, ≥1 kb genomic reads at error rate ∼15%, full-length noisy Direct RNA or cDNA reads and assembly contigs or closely related full chromosomes of hundreds of megabases in length. Minimap2 does split-read alignment, employs concave gap cost for long insertions and deletions and introduces new heuristics to reduce spurious alignments. It is 3-4 times as fast as mainstream short-read mappers at comparable accuracy, and is ≥30 times faster than long-read genomic or cDNA mappers at higher accuracy, surpassing most aligners specialized in one type of alignment. Availability and implementation https://github.com/lh3/minimap2. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Heng Li
- Department of Medical Population Genetics Program, Broad Institute, Cambridge, MA, USA
| |
Collapse
|
18
|
Burke JE, Longhurst AD, Merkurjev D, Sales-Lee J, Rao B, Moresco JJ, Yates JR, Li JJ, Madhani HD. Spliceosome Profiling Visualizes Operations of a Dynamic RNP at Nucleotide Resolution. Cell 2019; 173:1014-1030.e17. [PMID: 29727661 DOI: 10.1016/j.cell.2018.03.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/19/2018] [Accepted: 03/07/2018] [Indexed: 11/28/2022]
Abstract
Tools to understand how the spliceosome functions in vivo have lagged behind advances in the structural biology of the spliceosome. Here, methods are described to globally profile spliceosome-bound pre-mRNA, intermediates, and spliced mRNA at nucleotide resolution. These tools are applied to three yeast species that span 600 million years of evolution. The sensitivity of the approach enables the detection of canonical and non-canonical events, including interrupted, recursive, and nested splicing. This application of statistical modeling uncovers independent roles for the size and position of the intron and the number of introns per transcript in substrate progression through the two catalytic stages. These include species-specific inputs suggestive of spliceosome-transcriptome coevolution. Further investigations reveal the ATP-dependent discard of numerous endogenous substrates after spliceosome assembly in vivo and connect this discard to intron retention, a form of splicing regulation. Spliceosome profiling is a quantitative, generalizable global technology used to investigate an RNP central to eukaryotic gene expression.
Collapse
Affiliation(s)
- Jordan E Burke
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam D Longhurst
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daria Merkurjev
- Department of Statistics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jade Sales-Lee
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beiduo Rao
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James J Moresco
- Department of Molecular Medicine, the Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, the Scripps Research Institute, La Jolla, CA, USA
| | - Jingyi Jessica Li
- Department of Statistics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
19
|
Wang SE, Amir AS, Nguyen T, Poole AM, Simoes-Barbosa A. Spliceosomal introns in Trichomonas vaginalis revisited. Parasit Vectors 2018; 11:607. [PMID: 30482228 PMCID: PMC6260720 DOI: 10.1186/s13071-018-3196-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022] Open
Abstract
Background The human protozoan parasite Trichomonas vaginalis is an organism of interest for understanding eukaryotic evolution. Despite having an unusually large genome and a rich gene repertoire among protists, spliceosomal introns in T. vaginalis appear rare: only 62 putative introns have been annotated in this genome, and little or no experimental evidence exists to back up these predictions. Results This study revisited the 62 annotated introns of T. vaginalis derived from the genome sequencing plus previous publications. After experimental validation and a new genome-wide search, we confirmed the presence of introns in 32 genes and 18 others were concluded to be intronless. Sequence analyses classified the validated introns into two types, based on distinctive features such as length and conservation of splice site motifs. Conclusions Our study provides an updated list of intron-containing genes in the genome of T. vaginalis. Our findings suggests the existence of two intron ‘families’ spread among T. vaginalis protein-coding genes. Additional studies are needed to understand the functional separation of these two classes of introns and to assess the existence of further introns in the T. vaginalis genome. Electronic supplementary material The online version of this article (10.1186/s13071-018-3196-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuqi E Wang
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Abdul S Amir
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Tai Nguyen
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony M Poole
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
20
|
Grau-Bové X, Ruiz-Trillo I, Irimia M. Origin of exon skipping-rich transcriptomes in animals driven by evolution of gene architecture. Genome Biol 2018; 19:135. [PMID: 30223879 PMCID: PMC6142364 DOI: 10.1186/s13059-018-1499-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/01/2018] [Indexed: 11/30/2022] Open
Abstract
Background Alternative splicing, particularly through intron retention and exon skipping, is a major layer of pre-translational regulation in eukaryotes. While intron retention is believed to be the most prevalent mode across non-animal eukaryotes, animals have unusually high rates of exon skipping. However, when and how this high prevalence of exon skipping evolved is unknown. Since exon skipping can greatly expand proteomes, answering these questions sheds light on the evolution of higher organismal complexity in metazoans. Results We used RNA-seq data to quantify exon skipping and intron retention frequencies across 65 eukaryotic species, with particular focus on early branching animals and unicellular holozoans. We found that only bilaterians have significantly increased their exon skipping frequencies compared to all other eukaryotic groups. Unlike in other eukaryotes, however, exon skipping in nearly all animals, including non-bilaterians, is strongly enriched for frame-preserving sequences, suggesting that exon skipping involvement in proteome expansion predated the increase in frequency. We also identified architectural features consistently associated with higher exon skipping rates within all studied eukaryotic genomes. Remarkably, these architectures became more prevalent during animal evolution, indicating co-evolution between genome architectures and exon skipping frequencies. Conclusion We suggest that the increase of exon skipping rates in animals followed a two-step process. First, exon skipping in early animals became enriched for frame-preserving events. Second, bilaterian ancestors dramatically increased their exon skipping frequencies, likely driven by the interplay between a shift in their genome architectures towards more exon definition and recruitment of frame-preserving exon skipping events to functionally diversify their cell-specific proteomes. Electronic supplementary material The online version of this article (10.1186/s13059-018-1499-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Universitat de Barelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. .,Departament de Genètica, Microbiologia i Estadística, Universitat de Barelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain. .,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Catalonia, Spain.
| | - Manuel Irimia
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain. .,Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10-12, 08002, Barcelona, Catalonia, Spain.
| |
Collapse
|
21
|
Wong DK, Grisdale CJ, Fast NM. Evolution and Diversity of Pre-mRNA Splicing in Highly Reduced Nucleomorph Genomes. Genome Biol Evol 2018; 10:1573-1583. [PMID: 29860351 PMCID: PMC6009652 DOI: 10.1093/gbe/evy111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic genes are interrupted by introns that are removed in a conserved process known as pre-mRNA splicing. Though well-studied in select model organisms, we are only beginning to understand the variation and diversity of this process across the tree of eukaryotes. We explored pre-mRNA splicing and other features of transcription in nucleomorphs, the highly reduced remnant nuclei of secondary endosymbionts. Strand-specific transcriptomes were sequenced from the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans, whose plastids are derived from red and green algae, respectively. Both organisms exhibited elevated nucleomorph antisense transcription and gene expression relative to their respective nuclei, suggesting unique properties of gene regulation and transcriptional control in nucleomorphs. Marked differences in splicing were observed between the two nucleomorphs: the few introns of the G. theta nucleomorph were largely retained in mature transcripts, whereas the many short introns of the B. natans nucleomorph are spliced at typical eukaryotic levels (>90%). These differences in splicing levels could be reflecting the ancestries of the respective plastids, the different intron densities due to independent genome reduction events, or a combination of both. In addition to extending our understanding of the diversity of pre-mRNA splicing across eukaryotes, our study also indicates potential links between splicing, antisense transcription, and gene regulation in reduced genomes.
Collapse
Affiliation(s)
- Donald K Wong
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cameron J Grisdale
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Naomi M Fast
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Costa M, Walbott H, Monachello D, Westhof E, Michel F. Crystal structures of a group II intron lariat primed for reverse splicing. Science 2017; 354:354/6316/aaf9258. [PMID: 27934709 DOI: 10.1126/science.aaf9258] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022]
Abstract
The 2'-5' branch of nuclear premessenger introns is believed to have been inherited from self-splicing group II introns, which are retrotransposons of bacterial origin. Our crystal structures at 3.4 and 3.5 angstrom of an excised group II intron in branched ("lariat") form show that the 2'-5' branch organizes a network of active-site tertiary interactions that position the intron terminal 3'-hydroxyl group into a configuration poised to initiate reverse splicing, the first step in retrotransposition. Moreover, the branchpoint and flanking helices must undergo a base-pairing switch after branch formation. A group II-based model of the active site of the nuclear splicing machinery (the spliceosome) is proposed. The crucial role of the lariat conformation in active-site assembly and catalysis explains its prevalence in modern splicing.
Collapse
Affiliation(s)
- Maria Costa
- Group II introns as ribozymes and retrotransposons, Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), University Paris-Sud, University Paris-Saclay, 1 Avenue de la Terrasse, Bâtiment 26, 91198 Gif-sur-Yvette cedex, France.
| | - Hélène Walbott
- Structure and Dynamics of RNA, I2BC, UMR 9198 CNRS, CEA, University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Dario Monachello
- Group II introns as ribozymes and retrotransposons, Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), University Paris-Sud, University Paris-Saclay, 1 Avenue de la Terrasse, Bâtiment 26, 91198 Gif-sur-Yvette cedex, France
| | - Eric Westhof
- Architecture and Reactivity of RNA, Institute of Molecular and Cellular Biology of the CNRS, University of Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - François Michel
- Group II introns as ribozymes and retrotransposons, Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), University Paris-Sud, University Paris-Saclay, 1 Avenue de la Terrasse, Bâtiment 26, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
23
|
Slabodnick MM, Ruby JG, Reiff SB, Swart EC, Gosai S, Prabakaran S, Witkowska E, Larue GE, Fisher S, Freeman RM, Gunawardena J, Chu W, Stover NA, Gregory BD, Nowacki M, Derisi J, Roy SW, Marshall WF, Sood P. The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell. Curr Biol 2017; 27:569-575. [PMID: 28190732 DOI: 10.1016/j.cub.2016.12.057] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/17/2016] [Accepted: 12/28/2016] [Indexed: 01/01/2023]
Abstract
The giant, single-celled organism Stentor coeruleus has a long history as a model system for studying pattern formation and regeneration in single cells. Stentor [1, 2] is a heterotrichous ciliate distantly related to familiar ciliate models, such as Tetrahymena or Paramecium. The primary distinguishing feature of Stentor is its incredible size: a single cell is 1 mm long. Early developmental biologists, including T.H. Morgan [3], were attracted to the system because of its regenerative abilities-if large portions of a cell are surgically removed, the remnant reorganizes into a normal-looking but smaller cell with correct proportionality [2, 3]. These biologists were also drawn to Stentor because it exhibits a rich repertoire of behaviors, including light avoidance, mechanosensitive contraction, food selection, and even the ability to habituate to touch, a simple form of learning usually seen in higher organisms [4]. While early microsurgical approaches demonstrated a startling array of regenerative and morphogenetic processes in this single-celled organism, Stentor was never developed as a molecular model system. We report the sequencing of the Stentor coeruleus macronuclear genome and reveal key features of the genome. First, we find that Stentor uses the standard genetic code, suggesting that ciliate-specific genetic codes arose after Stentor branched from other ciliates. We also discover that ploidy correlates with Stentor's cell size. Finally, in the Stentor genome, we discover the smallest spliceosomal introns reported for any species. The sequenced genome opens the door to molecular analysis of single-cell regeneration in Stentor.
Collapse
Affiliation(s)
- Mark M Slabodnick
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - J Graham Ruby
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sarah B Reiff
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Estienne C Swart
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Sager Gosai
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ewa Witkowska
- Department of Ob/Gyn, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Graham E Larue
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Susan Fisher
- Department of Ob/Gyn, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert M Freeman
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - William Chu
- Department of Biology, Bradley University, Peoria, IL 61625, USA
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria, IL 61625, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Joseph Derisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Scott W Roy
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA.
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Pranidhi Sood
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
24
|
Canzler S, Stadler PF, Hertel J. Evolution of Fungal U3 snoRNAs: Structural Variation and Introns. Noncoding RNA 2017; 3:ncrna3010003. [PMID: 29657275 PMCID: PMC5832005 DOI: 10.3390/ncrna3010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 11/25/2022] Open
Abstract
The U3 small nucleolar RNA (snoRNA) is an essential player in the initial steps of ribosomal RNA biogenesis which is ubiquitously present in Eukarya. It is exceptional among the small nucleolar RNAs in its size, the presence of multiple conserved sequence boxes, a highly conserved secondary structure core, its biogenesis as an independent gene transcribed by polymerase III, and its involvement in pre-rRNA cleavage rather than chemical modification. Fungal U3 snoRNAs share many features with their sisters from other eukaryotic kingdoms but differ from them in particular in their 5’ regions, which in fungi has a distinctive consensus structure and often harbours introns. Here we report on a comprehensive homology search and detailed analysis of the evolution of sequence and secondary structure features covering the entire kingdom Fungi.
Collapse
Affiliation(s)
- Sebastian Canzler
- Bioinformatics Group, Department Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
| | - Peter F Stadler
- Bioinformatics Group, Department Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, University Leipzig, D-04107 Leipzig, Germany.
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, D-04103 Leipzig, Germany.
- Department of Theoretical Chemistry of the University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria.
- Center for RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark.
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
| | - Jana Hertel
- Helmholtz Centre for Environmental Research-UFZ, Young Investigators Group Bioinformatics and Transcriptomics Permoserstraße 15, D-04318 Leipzig, Germany.
| |
Collapse
|
25
|
Canzler S, Stadler PF, Hertel J. U6 snRNA intron insertion occurred multiple times during fungi evolution. RNA Biol 2016; 13:119-27. [PMID: 26828373 DOI: 10.1080/15476286.2015.1132139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
U6 small nuclear RNAs are part of the splicing machinery. They exhibit several unique features setting them appart from other snRNAs. Reports of introns in structured non-coding RNAs have been very rare. U6 genes, however, were found to be interrupted by an intron in several Schizosaccharomyces species and in 2 Basidiomycota. We conducted a homology search across 147 currently available fungal genome and identified the U6 genes in all but 2 of them. A detailed comparison of their sequences and predicted secondary structures showed that intron insertion events in the U6 snRNA were much more common in the fungal lineage than previously thought. Their positional distribution across the entire mature snRNA strongly suggests a large number of independent events. All the intron sequences reported here show canonical splice site and branch site motifs indicating that they require the splicesomal pathway for their removal.
Collapse
Affiliation(s)
- Sebastian Canzler
- a Bioinformatics Group , Department of Computer Science,and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18 , D-04107 Leipzig , Germany
| | - Peter F Stadler
- a Bioinformatics Group , Department of Computer Science,and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18 , D-04107 Leipzig , Germany.,b Computational EvoDevo Group , Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18 , D-04107 Leipzig , Germany.,c LIFE - Leipzig Research Center for Civilization Diseases, Universität Leipzig , Germany.,d Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22 , D-04103 Leipzig , Germany.,e Fraunhofer Institut für Zelltherapie und Immunologie - IZI Perlickstraße 1 , D-04103 Leipzig , Germany.,f Department of Theoretical Chemistry , University of Vienna, Währingerstraße 17, A-1090 Wien , Austria.,g Center for non-coding RNA in Technology and Health , University of Copenhagen, Grønnegårdsvej 3 , DK-1870 Frederiksberg C, Denmark.,h Santa Fe Institute; 1399 Hyde Park Rd. ; Santa Fe ; NM 87501 , USA
| | - Jana Hertel
- a Bioinformatics Group , Department of Computer Science,and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18 , D-04107 Leipzig , Germany.,i Department of Proteomics , Helmholtz Centre for Environmental Research - UFZ , Permoserstrabe 15, 04318 Leipzig , Germany
| |
Collapse
|
26
|
Ma MY, Lan XR, Niu DK. Intron gain by tandem genomic duplication: a novel case in a potato gene encoding RNA-dependent RNA polymerase. PeerJ 2016; 4:e2272. [PMID: 27547574 PMCID: PMC4974935 DOI: 10.7717/peerj.2272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/29/2016] [Indexed: 01/15/2023] Open
Abstract
The origin and subsequent accumulation of spliceosomal introns are prominent events in the evolution of eukaryotic gene structure. However, the mechanisms underlying intron gain remain unclear because there are few proven cases of recently gained introns. In an RNA-dependent RNA polymerase (RdRp) gene, we found that a tandem duplication occurred after the divergence of potato and its wild relatives among other Solanum plants. The duplicated sequence crosses the intron-exon boundary of the first intron and the second exon. A new intron was detected at this duplicated region, and it includes a small previously exonic segment of the upstream copy of the duplicated sequence and the intronic segment of the downstream copy of the duplicated sequence. The donor site of this new intron was directly obtained from the small previously exonic segment. Most of the splicing signals were inherited directly from the parental intron/exon structure, including a putative branch site, the polypyrimidine tract, the 3' splicing site, two putative exonic splicing enhancers, and the GC contents differed between the intron and exon. In the widely cited model of intron gain by tandem genomic duplication, the duplication of an AGGT-containing exonic segment provides the GT and AG splicing sites for the new intron. Our results illustrate that the tandem duplication model of intron gain should be diverse in terms of obtaining the proper splicing signals.
Collapse
Affiliation(s)
- Ming-Yue Ma
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing , China
| | - Xin-Ran Lan
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing , China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing , China
| |
Collapse
|
27
|
Zhou K, Salamov A, Kuo A, Aerts AL, Kong X, Grigoriev IV. Alternative splicing acting as a bridge in evolution. Stem Cell Investig 2015; 2:19. [PMID: 27358887 DOI: 10.3978/j.issn.2306-9759.2015.10.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Alternative splicing (AS) regulates diverse cellular and developmental functions through alternative protein structures of different isoforms. Alternative exons dominate AS in vertebrates; however, very little is known about the extent and function of AS in lower eukaryotes. To understand the role of introns in gene evolution, we examined AS from a green algal and five fungal genomes using a novel EST-based gene-modeling algorithm (COMBEST). METHODS AS from each genome was classified with COMBEST that maps EST sequences to genomes to build gene models. Various aspects of AS were analyzed through statistical methods. The interplay of intron 3n length, phase, coding property, and intron retention (RI) were examined with Chi-square testing. RESULTS With 3 to 834 times EST coverage, we identified up to 73% of AS in intron-containing genes and found preponderance of RI among 11 types of AS. The number of exons, expression level, and maximum intron length correlated with number of AS per gene (NAG), and intron-rich genes suppressed AS. Genes with AS were more ancient, and AS was conserved among fungal genomes. Among stopless introns, non-retained introns (NRI) avoided, but major RI preferred 3n length. In contrast, stop-containing introns showed uniform distribution among 3n, 3n+1, and 3n+2 lengths. We found a clue to the intron phase enigma: it was the coding function of introns involved in AS that dictates the intron phase bias. CONCLUSIONS Majority of AS is non-functional, and the extent of AS is suppressed for intron-rich genes. RI through 3n length, stop codon, and phase bias bridges the transition from functionless to functional alternative isoforms.
Collapse
Affiliation(s)
- Kemin Zhou
- 1 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA ; 2 Roche Molecular Diagnostics, 4300 Hacienda Drive, Pleasanton, CA 94588, USA ; 3 Department of Clinical Medicine, Kunming University of Science and Technology, Kunming 650031, China
| | - Asaf Salamov
- 1 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA ; 2 Roche Molecular Diagnostics, 4300 Hacienda Drive, Pleasanton, CA 94588, USA ; 3 Department of Clinical Medicine, Kunming University of Science and Technology, Kunming 650031, China
| | - Alan Kuo
- 1 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA ; 2 Roche Molecular Diagnostics, 4300 Hacienda Drive, Pleasanton, CA 94588, USA ; 3 Department of Clinical Medicine, Kunming University of Science and Technology, Kunming 650031, China
| | - Andrea L Aerts
- 1 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA ; 2 Roche Molecular Diagnostics, 4300 Hacienda Drive, Pleasanton, CA 94588, USA ; 3 Department of Clinical Medicine, Kunming University of Science and Technology, Kunming 650031, China
| | - Xiangyang Kong
- 1 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA ; 2 Roche Molecular Diagnostics, 4300 Hacienda Drive, Pleasanton, CA 94588, USA ; 3 Department of Clinical Medicine, Kunming University of Science and Technology, Kunming 650031, China
| | - Igor V Grigoriev
- 1 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA ; 2 Roche Molecular Diagnostics, 4300 Hacienda Drive, Pleasanton, CA 94588, USA ; 3 Department of Clinical Medicine, Kunming University of Science and Technology, Kunming 650031, China
| |
Collapse
|
28
|
Abstract
Introns in protein-coding genes are very rare in hemiascomycetous yeast genomes. It has been suggested that these species have experienced extensive intron loss during their evolution from the postulated intron-rich fungal ancestor. However, no intron-devoid yeast species have been identified and some of the introns remaining within the genomes of intron-poor species, such as Saccharomyces cerevisiae, appear to be beneficial during growth under stress conditions. In order to reveal the pattern of intron retention within intron-poor yeast species and better understand the mechanisms of intron evolution, we generated a comprehensive set of 250 orthologous introns in the 20 species that comprise the Saccharomycetaceae, by analyzing RNA deep-sequencing data and alignments of intron-containing genes. Analysis of these intron sets shows that intron loss is at least two orders of magnitude more frequent than intron gain. Fine mapping of intron positions shows that intron sliding is rare, and that introns are almost always removed without changing the primary sequence of the encoded protein. The latter finding is consistent with the prevailing view that homologous recombination between reverse-transcribed mature mRNAs and the corresponding genomic locus is the primary mechanism of intron loss. However, we also find evidence that loss of a small number of introns is mediated by micro-homology, and that the number of intron losses is diminished in yeast species that have lost the microhomology end joining and nonhomologous end joining machinery.
Collapse
Affiliation(s)
- Katarzyna B. Hooks
- Faculty of Life Sciences, University of Manchester, United Kingdom
- U1053 INSERM, Université de Bordeaux, France
| | - Daniela Delneri
- Faculty of Life Sciences, University of Manchester, United Kingdom
| | - Sam Griffiths-Jones
- Faculty of Life Sciences, University of Manchester, United Kingdom
- *Corresponding author: E-mail:
| |
Collapse
|
29
|
Structure-guided U2AF65 variant improves recognition and splicing of a defective pre-mRNA. Proc Natl Acad Sci U S A 2014; 111:17420-5. [PMID: 25422459 DOI: 10.1073/pnas.1412743111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purine interruptions of polypyrimidine (Py) tract splice site signals contribute to human genetic diseases. The essential splicing factor U2AF(65) normally recognizes a Py tract consensus sequence preceding the major class of 3' splice sites. We found that neurofibromatosis- or retinitis pigmentosa-causing mutations in the 5' regions of Py tracts severely reduce U2AF(65) affinity. Conversely, we identified a preferred binding site of U2AF(65) for purine substitutions in the 3' regions of Py tracts. Based on a comparison of new U2AF(65) structures bound to either A- or G-containing Py tracts with previously identified pyrimidine-containing structures, we expected to find that a D231V amino acid change in U2AF(65) would specify U over other nucleotides. We found that the crystal structure of the U2AF(65)-D231V variant confirms favorable packing between the engineered valine and a target uracil base. The D231V amino acid change restores U2AF(65) affinity for two mutated splice sites that cause human genetic diseases and successfully promotes splicing of a defective retinitis pigmentosa-causing transcript. We conclude that reduced U2AF(65) binding is a molecular consequence of disease-relevant mutations, and that a structure-guided U2AF(65) variant is capable of manipulating gene expression in eukaryotic cells.
Collapse
|
30
|
Verhelst B, Van de Peer Y, Rouzé P. The complex intron landscape and massive intron invasion in a picoeukaryote provides insights into intron evolution. Genome Biol Evol 2014; 5:2393-401. [PMID: 24273312 PMCID: PMC3879977 DOI: 10.1093/gbe/evt189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genes in pieces and spliceosomal introns are a landmark of eukaryotes, with intron invasion usually assumed to have happened early on in evolution. Here, we analyze the intron landscape of Micromonas, a unicellular green alga in the Mamiellophyceae lineage, demonstrating the coexistence of several classes of introns and the occurrence of recent massive intron invasion. This study focuses on two strains, CCMP1545 and RCC299, and their related individuals from ocean samplings, showing that they not only harbor different classes of introns depending on their location in the genome, as for other Mamiellophyceae, but also uniquely carry several classes of repeat introns. These introns, dubbed introner elements (IEs), are found at novel positions in genes and have conserved sequences, contrary to canonical introns. This IE invasion has a huge impact on the genome, doubling the number of introns in the CCMP1545 strain. We hypothesize that each IE class originated from a single ancestral IE that has been colonizing the genome after strain divergence by inserting copies of itself into genes by intron transposition, likely involving reverse splicing. Along with similar cases recently observed in other organisms, our observations in Micromonas strains shed a new light on the evolution of introns, suggesting that intron gain is more widespread than previously thought.
Collapse
Affiliation(s)
- Bram Verhelst
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium
| | | | | |
Collapse
|
31
|
Abstract
In this work we review the current knowledge on the prehistory, origins, and evolution of spliceosomal introns. First, we briefly outline the major features of the different types of introns, with particular emphasis on the nonspliceosomal self-splicing group II introns, which are widely thought to be the ancestors of spliceosomal introns. Next, we discuss the main scenarios proposed for the origin and proliferation of spliceosomal introns, an event intimately linked to eukaryogenesis. We then summarize the evidence that suggests that the last eukaryotic common ancestor (LECA) had remarkably high intron densities and many associated characteristics resembling modern intron-rich genomes. From this intron-rich LECA, the different eukaryotic lineages have taken very distinct evolutionary paths leading to profoundly diverged modern genome structures. Finally, we discuss the origins of alternative splicing and the qualitative differences in alternative splicing forms and functions across lineages.
Collapse
Affiliation(s)
- Manuel Irimia
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S3E1, Canada
| | - Scott William Roy
- Department of Biology, San Francisco State University, San Francisco, California 94132
| |
Collapse
|
32
|
Abstract
An unexpectedly large fraction of genes in metazoans (human, mouse, zebrafish, worm, fruit fly) express high levels of circularized RNAs containing canonical exons. Here we report that circular RNA isoforms are found in diverse species whose most recent common ancestor existed more than one billion years ago: fungi (Schizosaccharomyces pombe and Saccharomyces cerevisiae), a plant (Arabidopsis thaliana), and protists (Plasmodium falciparum and Dictyostelium discoideum). For all species studied to date, including those in this report, only a small fraction of the theoretically possible circular RNA isoforms from a given gene are actually observed. Unlike metazoans, Arabidopsis, D. discoideum, P. falciparum, S. cerevisiae, and S. pombe have very short introns (∼100 nucleotides or shorter), yet they still produce circular RNAs. A minority of genes in S. pombe and P. falciparum have documented examples of canonical alternative splicing, making it unlikely that all circular RNAs are by-products of alternative splicing or ‘piggyback’ on signals used in alternative RNA processing. In S. pombe, the relative abundance of circular to linear transcript isoforms changed in a gene-specific pattern during nitrogen starvation. Circular RNA may be an ancient, conserved feature of eukaryotic gene expression programs.
Collapse
|
33
|
Abstract
The intron-exon structures of eukaryotic nuclear genomes exhibit tremendous diversity across different species. The availability of many genomes from diverse eukaryotic species now allows for the reconstruction of the evolutionary history of this diversity. Consideration of spliceosomal systems in comparative context reveals a surprising and very complex portrait: in contrast to many expectations, gene structures in early eukaryotic ancestors were highly complex and "animal or plant-like" in many of their spliceosomal structures has occurred; pronounced simplification of gene structures, splicing signals, and spliceosomal machinery occurring independently in many lineages. In addition, next-generation sequencing of transcripts has revealed that alternative splicing is more common across eukaryotes than previously thought. However, much alternative splicing in diverse eukaryotes appears to play a regulatory role: alternative splicing fulfilling the most famous role for alternative splicing-production of multiple different proteins from a single gene-appears to be much more common in animal species than in nearly any other lineage.
Collapse
Affiliation(s)
- Scott William Roy
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | | |
Collapse
|
34
|
Gene invasion in distant eukaryotic lineages: discovery of mutually exclusive genetic elements reveals marine biodiversity. ISME JOURNAL 2013; 7:1764-74. [PMID: 23635865 PMCID: PMC3749507 DOI: 10.1038/ismej.2013.70] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/08/2013] [Accepted: 03/13/2013] [Indexed: 01/06/2023]
Abstract
Inteins are rare, translated genetic parasites mainly found in bacteria and archaea, while spliceosomal introns are distinctly eukaryotic features abundant in most nuclear genomes. Using targeted metagenomics, we discovered an intein in an Atlantic population of the photosynthetic eukaryote, Bathycoccus, harbored by the essential spliceosomal protein PRP8 (processing factor 8 protein). Although previously thought exclusive to fungi, we also identified PRP8 inteins in parasitic (Capsaspora) and predatory (Salpingoeca) protists. Most new PRP8 inteins were at novel insertion sites that, surprisingly, were not in the most conserved regions of the gene. Evolutionarily, Dikarya fungal inteins at PRP8 insertion site a appeared more related to the Bathycoccus intein at a unique insertion site, than to other fungal and opisthokont inteins. Strikingly, independent analyses of Pacific and Atlantic samples revealed an intron at the same codon as the Bathycoccus PRP8 intein. The two elements are mutually exclusive and neither was found in cultured Bathycoccus or other picoprasinophyte genomes. Thus, wild Bathycoccus contain one of few non-fungal eukaryotic inteins known and a rare polymorphic intron. Our data indicate at least two Bathycoccus ecotypes exist, associated respectively with oceanic or mesotrophic environments. We hypothesize that intein propagation is facilitated by marine viruses; and, while intron gain is still poorly understood, presence of a spliceosomal intron where a locus lacks an intein raises the possibility of new, intein-primed mechanisms for intron gain. The discovery of nucleus-encoded inteins and associated sequence polymorphisms in uncultivated marine eukaryotes highlights their diversity and reveals potential sexual boundaries between populations indistinguishable by common marker genes.
Collapse
|
35
|
Grisdale CJ, Bowers LC, Didier ES, Fast NM. Transcriptome analysis of the parasite Encephalitozoon cuniculi: an in-depth examination of pre-mRNA splicing in a reduced eukaryote. BMC Genomics 2013; 14:207. [PMID: 23537046 PMCID: PMC3629993 DOI: 10.1186/1471-2164-14-207] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/18/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The microsporidian Encephalitozoon cuniculi possesses one of the most reduced and compacted eukaryotic genomes. Reduction in this intracellular parasite has affected major cellular machinery, including the loss of over fifty core spliceosomal components compared to S. cerevisiae. To identify expression changes throughout the parasite's life cycle and also to assess splicing in the context of this reduced system, we examined the transcriptome of E. cuniculi using Illumina RNA-seq. RESULTS We observed that nearly all genes are expressed at three post-infection time-points examined. A large fraction of genes are differentially expressed between the first and second (37.7%) and first and third (43.8%) time-points, while only four genes are differentially expressed between the latter two. Levels of intron splicing are very low, with 81% of junctions spliced at levels below 50%. This is dramatically lower than splicing levels found in two other fungal species examined. We also describe the first case of alternative splicing in a microsporidian, an unexpected complexity given the reduction in spliceosomal components. CONCLUSIONS Low levels of splicing observed are likely the result of an inefficient spliceosome; however, at least in one case, splicing appears to be playing a functional role. Although several RNA decay genes are encoded in E. cuniculi, the lack of a few key players could be reducing decay levels and therefore increasing the proportion of unspliced transcripts. Significant proportions of genes are differentially expressed in the first forty-eight hours but not after, indicative of genetic changes that precede the intracellular to infective stage transition.
Collapse
Affiliation(s)
- Cameron J Grisdale
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
36
|
Jenkins JL, Agrawal AA, Gupta A, Green MR, Kielkopf CL. U2AF65 adapts to diverse pre-mRNA splice sites through conformational selection of specific and promiscuous RNA recognition motifs. Nucleic Acids Res 2013; 41:3859-73. [PMID: 23376934 PMCID: PMC3616741 DOI: 10.1093/nar/gkt046] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Degenerate splice site sequences mark the intron boundaries of pre-mRNA transcripts in multicellular eukaryotes. The essential pre-mRNA splicing factor U2AF65 is faced with the paradoxical tasks of accurately targeting polypyrimidine (Py) tracts preceding 3′ splice sites while adapting to both cytidine and uridine nucleotides with nearly equivalent frequencies. To understand how U2AF65 recognizes degenerate Py tracts, we determined six crystal structures of human U2AF65 bound to cytidine-containing Py tracts. As deoxy-ribose backbones were required for co-crystallization with these Py tracts, we also determined two baseline structures of U2AF65 bound to the deoxy-uridine counterparts and compared the original, RNA-bound structure. Local structural changes suggest that the N-terminal RNA recognition motif 1 (RRM1) is more promiscuous for cytosine-containing Py tracts than the C-terminal RRM2. These structural differences between the RRMs were reinforced by the specificities of wild-type and site-directed mutant U2AF65 for region-dependent cytosine- and uracil-containing RNA sites. Small-angle X-ray scattering analyses further demonstrated that Py tract variations select distinct inter-RRM spacings from a pre-existing ensemble of U2AF65 conformations. Our results highlight both local and global conformational selection as a means for universal 3′ splice site recognition by U2AF65.
Collapse
Affiliation(s)
- Jermaine L Jenkins
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
37
|
Koonin EV, Csuros M, Rogozin IB. Whence genes in pieces: reconstruction of the exon-intron gene structures of the last eukaryotic common ancestor and other ancestral eukaryotes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:93-105. [PMID: 23139082 DOI: 10.1002/wrna.1143] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In eukaryotes, protein-coding sequences are interrupted by non-coding sequences known as introns. During mRNA maturation, introns are excised by the spliceosome and the coding regions, exons, are spliced to form the mature coding region. The intron densities widely differ between eukaryotic lineages, from 6 to 7 introns per kb of coding sequence in vertebrates, some invertebrates and green plants, to only a few introns across the entire genome in many unicellular eukaryotes. Evolutionary reconstructions using maximum likelihood methods suggest intron-rich ancestors for each major group of eukaryotes. For the last common ancestor of animals, the highest intron density of all extant and extinct eukaryotes was inferred, at 120-130% of the human intron density. Furthermore, an intron density within 53-74% of the human values was inferred for the last eukaryotic common ancestor. Accordingly, evolution of eukaryotic genes in all lines of descent involved primarily intron loss, with substantial gain only at the bases of several branches including plants and animals. These conclusions have substantial biological implications indicating that the common ancestor of all modern eukaryotes was a complex organism with a gene architecture resembling those in multicellular organisms. Alternative splicing most likely initially appeared as an inevitable result of splicing errors and only later was employed to generate structural and functional diversification of proteins.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information NLM/NIH, Bethesda, MD, USA.
| | | | | |
Collapse
|
38
|
Pérez-Valle J, Vilardell J. Intronic features that determine the selection of the 3' splice site. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:707-17. [PMID: 22807288 DOI: 10.1002/wrna.1131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Most eukaryotic primary transcripts include segments, or introns, that will be accurately removed during RNA biogenesis. This process, known as pre-messenger RNA splicing, is catalyzed by the spliceosome, accurately selecting a set of intronic marks from others apparently equivalent. This identification is critical, as incorrectly spliced RNAs can be toxic for the organism. One of these marks, the dinucleotide AG, signals the intronic 3' end, or 3' splice site (ss). In this review we will focus on those intronic features that have an impact on 3' ss selection. These include the location and type of neighboring sequences, and their distance to the 3' end. We will see that their interplay is needed to select the right intronic end, and that this can be modulated by additional intronic elements that contribute to alternative splicing, whereby diverse RNAs can be generated from identical precursors. This complexity, still poorly understood, is fundamental for the accuracy of gene expression. In addition, a clear knowledge of 3' ss selection is needed to fully decipher the coding potential of genomes.
Collapse
Affiliation(s)
- Jorge Pérez-Valle
- Department of Molecular Genòmics, Institute of Molecular Biology of Barcelona (IBMB), Barcelona, Spain
| | | |
Collapse
|
39
|
Rogozin IB, Carmel L, Csuros M, Koonin EV. Origin and evolution of spliceosomal introns. Biol Direct 2012; 7:11. [PMID: 22507701 PMCID: PMC3488318 DOI: 10.1186/1745-6150-7-11] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/15/2012] [Indexed: 12/31/2022] Open
Abstract
Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers’ Reports section.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information NLM/NIH, 8600 Rockville Pike, Bldg, 38A, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The recent explosion of genome sequences from all major phylogenetic groups has unveiled an unexpected wealth of cases of recurrent evolution of strikingly similar genomic features in different lineages. Here, we review the diverse known types of recurrent evolution in eukaryotic genomes, with a special focus on metazoans, ranging from reductive genome evolution to origins of splice-leader trans-splicing, from tandem exon duplications to gene family expansions. We first propose a general classification scheme for evolutionary recurrence at the genomic level, based on the type of driving force-mutation or selection-and the environmental and genomic circumstances underlying these forces. We then discuss various cases of recurrent genomic evolution under this scheme. Finally, we provide a broader context for repeated genomic evolution, including the unique relationship of genomic recurrence with the genotype-phenotype map, and the ways in which the study of recurrent genomic evolution can be used to understand fundamental evolutionary processes.
Collapse
Affiliation(s)
- Ignacio Maeso
- Department of Zoology, University of Oxford, United Kingdom
| | - Scott William Roy
- Department of Biology, Stanford University
- Department of Biology, San Francisco State University
| | - Manuel Irimia
- Department of Biology, Stanford University
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Canada
| |
Collapse
|
41
|
Nuclear export as a key arbiter of "mRNA identity" in eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:566-77. [PMID: 22248619 DOI: 10.1016/j.bbagrm.2011.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/23/2011] [Accepted: 12/29/2011] [Indexed: 01/15/2023]
Abstract
Over the past decade, various studies have indicated that most of the eukaryotic genome is transcribed at some level. The pervasiveness of transcription might seem surprising when one considers that only a quarter of the human genome comprises genes (including exons and introns) and less than 2% codes for protein. This conundrum is partially explained by the unique evolutionary pressures that are imposed on species with small population sizes, such as eukaryotes. These conditions promote the expansion of introns and non-functional intergenic DNA, and the accumulation of cryptic transcriptional start sites. As a result, the eukaryotic gene expression machinery must effectively evaluate whether or not a transcript has all the hallmarks of a protein-coding mRNA. If a transcript contains these features, then positive feedback loops are activated to further stimulate its transcription, processing, nuclear export and ultimately, translation. However if a transcript lacks features associated with "mRNA identity", then the RNA is degraded and/or used to inhibit further transcription and translation of the gene. Here we discuss how mRNA identity is assessed by the nuclear export machinery in order to extract meaningful information from the eukaryotic genome. In the process, we provide an explanation of why certain sequences that are enriched in protein-coding genes, such as the signal sequence coding region, promote mRNA nuclear export in vertebrates. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
|
42
|
Branch point identification and sequence requirements for intron splicing in Plasmodium falciparum. EUKARYOTIC CELL 2011; 10:1422-8. [PMID: 21926333 DOI: 10.1128/ec.05193-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Splicing of mRNA is an ancient and evolutionarily conserved process in eukaryotic organisms, but intron-exon structures vary. Plasmodium falciparum has an extreme AT nucleotide bias (>80%), providing a unique opportunity to investigate how evolutionary forces have acted on intron structures. In this study, we developed an in vivo luciferase reporter splicing assay and employed it in combination with lariat isolation and sequencing to characterize 5' and 3' splicing requirements and experimentally determine the intron branch point in P. falciparum. This analysis indicates that P. falciparum mRNAs have canonical 5' and 3' splice sites. However, the 5' consensus motif is weakly conserved and tolerates nucleotide substitution, including the fifth nucleotide in the intron, which is more typically a G nucleotide in most eukaryotes. In comparison, the 3' splice site has a strong eukaryotic consensus sequence and adjacent polypyrimidine tract. In four different P. falciparum pre-mRNAs, multiple branch points per intron were detected, with some at U instead of the typical A residue. A weak branch point consensus was detected among 18 identified branch points. This analysis indicates that P. falciparum retains many consensus eukaryotic splice site features, despite having an extreme codon bias, and possesses flexibility in branch point nucleophilic attack.
Collapse
|
43
|
Gahura O, Hammann C, Valentová A, Půta F, Folk P. Secondary structure is required for 3' splice site recognition in yeast. Nucleic Acids Res 2011; 39:9759-67. [PMID: 21893588 PMCID: PMC3239191 DOI: 10.1093/nar/gkr662] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Higher order RNA structures can mask splicing signals, loop out exons, or constitute riboswitches all of which contributes to the complexity of splicing regulation. We identified a G to A substitution between branch point (BP) and 3′ splice site (3′ss) of Saccharomyces cerevisiae COF1 intron, which dramatically impaired its splicing. RNA structure prediction and in-line probing showed that this mutation disrupted a stem in the BP-3′ss region. Analyses of various COF1 intron modifications revealed that the secondary structure brought about the reduction of BP to 3′ss distance and masked potential 3′ss. We demonstrated the same structural requisite for the splicing of UBC13 intron. Moreover, RNAfold predicted stable structures for almost all distant BP introns in S. cerevisiae and for selected examples in several other Saccharomycotina species. The employment of intramolecular structure to localize 3′ss for the second splicing step suggests the existence of pre-mRNA structure-based mechanism of 3′ss recognition.
Collapse
Affiliation(s)
- Ondřej Gahura
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
44
|
Koonin EV, Wolf YI. Constraints and plasticity in genome and molecular-phenome evolution. Nat Rev Genet 2011; 11:487-98. [PMID: 20548290 DOI: 10.1038/nrg2810] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Multiple constraints variously affect different parts of the genomes of diverse life forms. The selective pressures that shape the evolution of viral, archaeal, bacterial and eukaryotic genomes differ markedly, even among relatively closely related animal and bacterial lineages; by contrast, constraints affecting protein evolution seem to be more universal. The constraints that shape the evolution of genomes and phenomes are complemented by the plasticity and robustness of genome architecture, expression and regulation. Taken together, these findings are starting to reveal complex networks of evolutionary processes that must be integrated to attain a new synthesis of evolutionary biology.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | |
Collapse
|
45
|
Genome diversity in the smallest marine photosynthetic eukaryotes. Res Microbiol 2011; 162:570-7. [PMID: 21540104 DOI: 10.1016/j.resmic.2011.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 02/04/2023]
Abstract
Unicellular algae of the class Mamiellophyceae are widespread in our oceans and their apparent uniformity conceals an impressive array of biologically distinct species. Each of the five complete genomes analysed so far reveals densely packed coding sequences, with strong evolutionary divergence from its nearest phylogenetically defined neighbours. These species lie at the base of the green lineage, but various metabolic processes reflect their marine life-styles and distinguish them from land plants, including a high proportion of selenoprotein enzymes and C4 photosynthesis. They all possess two unusual chromosomes, with lower GC content and atypical gene content, whose function so far remains enigmatic.
Collapse
|
46
|
Gupta A, Kielkopf CL. Purification, crystallization and preliminary X-ray crystallographic analysis of a central domain of human splicing factor 1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:486-90. [PMID: 21505248 PMCID: PMC3080157 DOI: 10.1107/s1744309111004623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 02/07/2011] [Indexed: 11/11/2022]
Abstract
Pre-mRNA splicing is an essential source of genetic diversity in eukaryotic organisms. In the early stages of splicing, splicing factor 1 (SF1) recognizes the pre-mRNA splice site as a complex with its partner, U2 auxiliary factor 65 kDa subunit (U2AF(65)). A central `mystery' domain of SF1 (SF1md) lacks detectable homology with known structures, yet is the region of highest phylogenetic sequence conservation among SF1 homologues. Here, steps towards determining the SF1md structure are described. Firstly, SF1md was expressed and purified. The presence of regular secondary structure was verified using circular dichroism spectroscopy and the SF1md protein was then crystallized. A native data set was collected and processed to 2.5 Å resolution. The SF1md crystals belonged to space group C2 and have most probable solvent contents of 64, 52 or 39% with three, four or five molecules per asymmetric unit, respectively. Mutually perpendicular peaks on the κ = 180° section of the self-rotation function support the presence of four molecules in the asymmetric unit.
Collapse
Affiliation(s)
- Ankit Gupta
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Clara L. Kielkopf
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
47
|
DNA double-strand break repair and the evolution of intron density. Trends Genet 2010; 27:1-6. [PMID: 21106271 PMCID: PMC3020277 DOI: 10.1016/j.tig.2010.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/18/2010] [Accepted: 10/18/2010] [Indexed: 01/23/2023]
Abstract
The density of introns is both an important feature of genome architecture and a highly variable trait across eukaryotes. This heterogeneity has posed an evolutionary puzzle for the last 30 years. Recent evidence is consistent with novel introns being the outcome of the error-prone repair of DNA double-stranded breaks (DSBs) via non-homologous end joining (NHEJ). Here we suggest that deletion of pre-existing introns could occur via the same pathway. We propose a novel framework in which species-specific differences in the activity of NHEJ and homologous recombination (HR) during the repair of DSBs underlie changes in intron density.
Collapse
|
48
|
Bridges HR, Fearnley IM, Hirst J. The subunit composition of mitochondrial NADH:ubiquinone oxidoreductase (complex I) from Pichia pastoris. Mol Cell Proteomics 2010; 9:2318-26. [PMID: 20610779 PMCID: PMC2953923 DOI: 10.1074/mcp.m110.001255] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Respiratory complex I (NADH:quinone oxidoreductase) is an entry point to the electron transport chain in the mitochondria of many eukaryotes. It is a large, multisubunit enzyme with a hydrophilic domain in the matrix and a hydrophobic domain in the mitochondrial inner membrane. Here we present a comprehensive analysis of the protein composition and post-translational modifications of complex I from Pichia pastoris, using a combination of proteomic and bioinformatic approaches. Forty-one subunits were identified in P. pastoris complex I, comprising the 14 core (conserved) subunits and 27 supernumerary subunits; seven of the core subunits are mitochondrial encoded. Three of the supernumerary subunits (named NUSM, NUTM, and NUUM) have not been observed previously in any species of complex I. However, homologues to all three of them are present in either Yarrowia lipolytica or Pichia angusta complex I. P. pastoris complex I has 39 subunits in common with Y. lipolytica complex I, 37 in common with N. crassa complex I, and 35 in common with the bovine enzyme. The mitochondrial encoded subunits (translated by the mold mitochondrial genetic code) retain their N-α-formyl methionine residues. At least eight subunits are N-α-acetylated, but the N-terminal modifications of the nuclear encoded subunits are not well-conserved. A combination of two methods of protein separation (SDS-PAGE and HPLC) and three different mass spectrometry techniques (peptide mass fingerprinting, tandem MS and molecular mass measurements) were required to define the protein complement of P. pastoris complex I. This requirement highlights the need for inclusive and comprehensive strategies for the characterization of challenging membrane-bound protein complexes containing both hydrophilic and hydrophobic components.
Collapse
Affiliation(s)
- Hannah R Bridges
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | |
Collapse
|
49
|
Mekouar M, Blanc-Lenfle I, Ozanne C, Da Silva C, Cruaud C, Wincker P, Gaillardin C, Neuvéglise C. Detection and analysis of alternative splicing in Yarrowia lipolytica reveal structural constraints facilitating nonsense-mediated decay of intron-retaining transcripts. Genome Biol 2010; 11:R65. [PMID: 20573210 PMCID: PMC2911113 DOI: 10.1186/gb-2010-11-6-r65] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/15/2010] [Accepted: 06/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background Hemiascomycetous yeasts have intron-poor genomes with very few cases of alternative splicing. Most of the reported examples result from intron retention in Saccharomyces cerevisiae and some have been shown to be functionally significant. Here we used transcriptome-wide approaches to evaluate the mechanisms underlying the generation of alternative transcripts in Yarrowia lipolytica, a yeast highly divergent from S. cerevisiae. Results Experimental investigation of Y. lipolytica gene models identified several cases of alternative splicing, mostly generated by intron retention, principally affecting the first intron of the gene. The retention of introns almost invariably creates a premature termination codon, as a direct consequence of the structure of intron boundaries. An analysis of Y. lipolytica introns revealed that introns of multiples of three nucleotides in length, particularly those without stop codons, were underrepresented. In other organisms, premature termination codon-containing transcripts are targeted for degradation by the nonsense-mediated mRNA decay (NMD) machinery. In Y. lipolytica, homologs of S. cerevisiae UPF1 and UPF2 genes were identified, but not UPF3. The inactivation of Y. lipolytica UPF1 and UPF2 resulted in the accumulation of unspliced transcripts of a test set of genes. Conclusions Y. lipolytica is the hemiascomycete with the most intron-rich genome sequenced to date, and it has several unusual genes with large introns or alternative transcription start sites, or introns in the 5' UTR. Our results suggest Y. lipolytica intron structure is subject to significant constraints, leading to the under-representation of stop-free introns. Consequently, intron-containing transcripts are degraded by a functional NMD pathway.
Collapse
Affiliation(s)
- Meryem Mekouar
- INRA UMR1319 Micalis - AgroParisTech, Biologie intégrative du métabolisme lipidique microbien, Bât, CBAI, 78850 Thiverval-Grignon, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bidard F, Imbeaud S, Reymond N, Lespinet O, Silar P, Clavé C, Delacroix H, Berteaux-Lecellier V, Debuchy R. A general framework for optimization of probes for gene expression microarray and its application to the fungus Podospora anserina. BMC Res Notes 2010; 3:171. [PMID: 20565839 PMCID: PMC2908635 DOI: 10.1186/1756-0500-3-171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 06/18/2010] [Indexed: 01/16/2023] Open
Abstract
Background The development of new microarray technologies makes custom long oligonucleotide arrays affordable for many experimental applications, notably gene expression analyses. Reliable results depend on probe design quality and selection. Probe design strategy should cope with the limited accuracy of de novo gene prediction programs, and annotation up-dating. We present a novel in silico procedure which addresses these issues and includes experimental screening, as an empirical approach is the best strategy to identify optimal probes in the in silico outcome. Findings We used four criteria for in silico probe selection: cross-hybridization, hairpin stability, probe location relative to coding sequence end and intron position. This latter criterion is critical when exon-intron gene structure predictions for intron-rich genes are inaccurate. For each coding sequence (CDS), we selected a sub-set of four probes. These probes were included in a test microarray, which was used to evaluate the hybridization behavior of each probe. The best probe for each CDS was selected according to three experimental criteria: signal-to-noise ratio, signal reproducibility, and representative signal intensities. This procedure was applied for the development of a gene expression Agilent platform for the filamentous fungus Podospora anserina and the selection of a single 60-mer probe for each of the 10,556 P. anserina CDS. Conclusions A reliable gene expression microarray version based on the Agilent 44K platform was developed with four spot replicates of each probe to increase statistical significance of analysis.
Collapse
Affiliation(s)
- Frédérique Bidard
- Univ Paris-Sud 11, Institut de Génétique et Microbiologie UMR8621, F- 91405 Orsay, France.
| | | | | | | | | | | | | | | | | |
Collapse
|