1
|
Wang Z, Wang W, Zhao D, Song Y, Lin X, Shen M, Chi C, Xu B, Zhao J, Deng XW, Wang J. Light-induced remodeling of phytochrome B enables signal transduction by phytochrome-interacting factor. Cell 2024; 187:6235-6250.e19. [PMID: 39317197 DOI: 10.1016/j.cell.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
Phytochrome B (phyB) and phytochrome-interacting factors (PIFs) constitute a well-established signaling module critical for plants adapting to ambient light. However, mechanisms underlying phyB photoactivation and PIF binding for signal transduction remain elusive. Here, we report the cryo-electron microscopy (cryo-EM) structures of the photoactivated phyB or the constitutively active phyBY276H mutant in complex with PIF6, revealing a similar trimer. The light-induced configuration switch of the chromophore drives a conformational transition of the nearby tongue signature within the phytochrome-specific (PHY) domain of phyB. The resulting α-helical PHY tongue further disrupts the head-to-tail dimer of phyB in the dark-adapted state. These structural remodelings of phyB facilitate the induced-fit recognition of PIF6, consequently stabilizing the N-terminal extension domain and a head-to-head dimer of activated phyB. Interestingly, the phyB dimer exhibits slight asymmetry, resulting in the binding of only one PIF6 molecule. Overall, our findings solve a key question with respect to how light-induced remodeling of phyB enables PIF signaling in phytochrome research.
Collapse
Affiliation(s)
- Zhengdong Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China; Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, China
| | - Wenfeng Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Didi Zhao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Yanping Song
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China; Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoli Lin
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Meng Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Chi
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Bin Xu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Jun Zhao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China; Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, China.
| | - Jizong Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Jeon J, Rahman MM, Yang HW, Kim J, Gam HJ, Song JY, Jeong SW, Kim JI, Choi MG, Shin DH, Choi G, Shim D, Jung JH, Lee IJ, Jeon JS, Park YI. Modulation of warm temperature-sensitive growth using a phytochrome B dark reversion variant, phyB[G515E], in Arabidopsis and rice. J Adv Res 2024; 63:57-72. [PMID: 37926145 PMCID: PMC11379985 DOI: 10.1016/j.jare.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023] Open
Abstract
INTRODUCTION Ambient temperature-induced hypocotyl elongation in Arabidopsis seedlings is sensed by the epidermis-localized phytochrome B (phyB) and transduced into auxin biosynthesis via a basic helix-loop-helix transcription factor, phytochrome-interacting factor 4 (PIF4). Once synthesized, auxin travels down from the cotyledons to the hypocotyl, triggering hypocotyl cell elongation. Thus, the phyB-PIF4 module involved in thermosensing and signal transduction is a potential genetic target for engineering warm temperature-insensitive plants. OBJECTIVES This study aims to manipulate warm temperature-induced elongation of plants at the post-translational level using phyB variants with dark reversion, the expression of which is subjected to heat stress. METHODS The thermosensitive growth response of Arabidopsis was manipulated by expressing the single amino acid substitution variant of phyB (phyB[G515E]), which exhibited a lower dark reversion rate than wild-type phyB. Other variants with slow (phyB[G564E]) or rapid (phyB[S584F]) dark reversion or light insensitivity (phyB[G767R]) were also included in this study for comparison. Warming-induced transient expression of phyB variants was achieved using heat shock-inducible promoters. Arabidopsis PHYB[G515E] and PHYB[G564E] were also constitutively expressed in rice in an attempt to manipulate the heat sensitivity of a monocotyledonous plant species. RESULTS At an elevated temperature, Arabidopsis seedlings transiently expressing PHYB[G515E] under the control of a heat shock-inducible promoter exhibited shorter hypocotyls than those expressing PHYB and other PHYB variant genes. This warm temperature-insensitive growth was related to the lowered PIF4 and auxin responses. In addition, transgenic rice seedlings expressing Arabidopsis PHYB[G515E] and PHYB[G564E] showed warm temperature-insensitive shoot growth. CONCLUSION Transient expression of phyB variants with altered dark reversion rates could serve as an effective optogenetic technique for manipulating PIF4-auxin-mediated thermomorphogenic responses in plants.
Collapse
Affiliation(s)
- Jin Jeon
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Md Mizanor Rahman
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hee Wook Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaewook Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ho-Jun Gam
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji Young Song
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seok Won Jeong
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong-Il Kim
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Myoung-Goo Choi
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Dong-Ho Shin
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae-Hoon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
3
|
Hughes J, Winkler A. New Insight Into Phytochromes: Connecting Structure to Function. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:153-183. [PMID: 39038250 DOI: 10.1146/annurev-arplant-070623-110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Red and far-red light-sensing phytochromes are widespread in nature, occurring in plants, algae, fungi, and prokaryotes. Despite at least a billion years of evolution, their photosensory modules remain structurally and functionally similar. Conversely, nature has found remarkably different ways of transmitting light signals from the photosensor to diverse physiological responses. We summarize key features of phytochrome structure and function and discuss how these are correlated, from how the bilin environment affects the chromophore to how light induces cellular signals. Recent advances in the structural characterization of bacterial and plant phytochromes have resulted in paradigm changes in phytochrome research that we discuss in the context of present-day knowledge. Finally, we highlight questions that remain to be answered and suggest some of the benefits of understanding phytochrome structure and function.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Plant Physiology, Justus Liebig University, Giessen, Germany;
- Department of Physics, Free University of Berlin, Berlin, Germany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Graz, Austria;
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
4
|
Willige BC, Yoo CY, Saldierna Guzmán JP. What is going on inside of phytochrome B photobodies? THE PLANT CELL 2024; 36:2065-2085. [PMID: 38511271 PMCID: PMC11132900 DOI: 10.1093/plcell/koae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 03/22/2024]
Abstract
Plants exhibit an enormous phenotypic plasticity to adjust to changing environmental conditions. For this purpose, they have evolved mechanisms to detect and measure biotic and abiotic factors in their surroundings. Phytochrome B exhibits a dual function, since it serves as a photoreceptor for red and far-red light as well as a thermosensor. In 1999, it was first reported that phytochromes not only translocate into the nucleus but also form subnuclear foci upon irradiation by red light. It took more than 10 years until these phytochrome speckles received their name; these foci were coined photobodies to describe unique phytochrome-containing subnuclear domains that are regulated by light. Since their initial discovery, there has been much speculation about the significance and function of photobodies. Their presumed roles range from pure experimental artifacts to waste deposits or signaling hubs. In this review, we summarize the newest findings about the meaning of phyB photobodies for light and temperature signaling. Recent studies have established that phyB photobodies are formed by liquid-liquid phase separation via multivalent interactions and that they provide diverse functions as biochemical hotspots to regulate gene expression on multiple levels.
Collapse
Affiliation(s)
- Björn Christopher Willige
- Department of Soil and Crop Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Chan Yul Yoo
- School of Biological Sciences, University of Utah, UT 84112, USA
| | - Jessica Paola Saldierna Guzmán
- Department of Soil and Crop Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
5
|
Mukherjee P, Agarwal S, Mallick SB, Dasgupta J. PAS domain of flagellar histidine kinase FlrB has a unique architecture and binds heme as a sensory ligand in an unconventional fashion. Structure 2024; 32:200-216.e5. [PMID: 38157857 DOI: 10.1016/j.str.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Phosphorylation of the σ54-dependent transcription activator FlrC by the sensor histidine kinase FlrB is essential for flagellar synthesis of Vibrio cholerae. Despite that, the structure, sensory signal, and mechanistic basis of function of FlrB were elusive. Here, we report the crystal structure of the sensory PAS domain of FlrB in its functional dimeric state that exhibits a unique architecture. Series of biochemical/biophysical experiments on different constructs and mutants established that heme binds hydrophobically as sensory ligand in the shallow ligand-binding cleft of FlrB-PAS without axial coordination. Intriguingly, ATP binding to the C-terminal ATP-binding (CA) domain assists PAS domain to bind heme, vis-à-vis, heme binding to the PAS facilitates ATP binding to the CA domain. We hypothesize that synergistic binding of heme and ATP triggers conformational signaling in FlrB, leading to downstream flagellar gene transcription. Enhanced swimming motility of V. cholerae with increased heme uptake supports this proposition.
Collapse
Affiliation(s)
- Peeali Mukherjee
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata 700016, India
| | - Shubhangi Agarwal
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata 700016, India
| | - Sritapa Basu Mallick
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata 700016, India
| | - Jhimli Dasgupta
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata 700016, India.
| |
Collapse
|
6
|
Kim C, Kwon Y, Jeong J, Kang M, Lee GS, Moon JH, Lee HJ, Park YI, Choi G. Phytochrome B photobodies are comprised of phytochrome B and its primary and secondary interacting proteins. Nat Commun 2023; 14:1708. [PMID: 36973259 PMCID: PMC10042835 DOI: 10.1038/s41467-023-37421-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Phytochrome B (phyB) is a plant photoreceptor that forms a membraneless organelle called a photobody. However, its constituents are not fully known. Here, we isolated phyB photobodies from Arabidopsis leaves using fluorescence-activated particle sorting and analyzed their components. We found that a photobody comprises ~1,500 phyB dimers along with other proteins that could be classified into two groups: The first includes proteins that directly interact with phyB and localize to the photobody when expressed in protoplasts, while the second includes proteins that interact with the first group proteins and require co-expression of a first-group protein to localize to the photobody. As an example of the second group, TOPLESS interacts with PHOTOPERIODIC CONTROL OF HYPOCOTYL 1 (PCH1) and localizes to the photobody when co-expressed with PCH1. Together, our results support that phyB photobodies include not only phyB and its primary interacting proteins but also its secondary interacting proteins.
Collapse
Affiliation(s)
- Chanhee Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Yongmin Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Jaehoon Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Minji Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Ga Seul Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28160, Korea
| | - Jeong Hee Moon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Korea
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea.
| |
Collapse
|
7
|
Ruiz-Diaz MJ, Matsusaka D, Cascales J, Sánchez DH, Sánchez-Lamas M, Cerdán PD, Botto JF. Functional analysis of PHYB polymorphisms in Arabidopsis thaliana collected in Patagonia. FRONTIERS IN PLANT SCIENCE 2022; 13:952214. [PMID: 36161012 PMCID: PMC9490419 DOI: 10.3389/fpls.2022.952214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Arabidopsis thaliana shows a wide range of natural genetic variation in light responses. Shade avoidance syndrome is a strategy of major adaptive significance that includes seed germination, elongation of vegetative structures, leaf hyponasty, and acceleration of flowering. Previously, we found that the southernmost Arabidopsis accession, collected in the south of Patagonia (Pat), is hyposensitive to light and displays a reduced response to shade light. This work aimed to explore the genetic basis of the shade avoidance response (SAR) for hypocotyl growth by QTL mapping in a recently developed 162 RIL population between Col-0 and Pat. We mapped four QTL for seedling hypocotyl growth: WL1 and WL2 QTL in white light, SHADE1 QTL in shade light, and SAR1 QTL for the SAR. PHYB is the strongest candidate gene for SAR1 QTL. Here we studied the function of two polymorphic indels in the promoter region, a GGGR deletion, and three non-synonymous polymorphisms on the PHYB coding region compared with the Col-0 reference genome. To decipher the contribution and relevance of each PHYB-Pat polymorphism, we constructed transgenic lines with single or double polymorphisms by using Col-0 as a reference genome. We found that single polymorphisms in the coding region of PHYB have discrete functions in seed germination, seedling development, and shade avoidance response. These results suggest distinct functions for each PHYB polymorphism to the adjustment of plant development to variable light conditions.
Collapse
Affiliation(s)
- María Jimena Ruiz-Diaz
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Matsusaka
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Cascales
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego H. Sánchez
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Pablo D. Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Javier F. Botto
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Direct photoresponsive inhibition of a p53-like transcription activation domain in PIF3 by Arabidopsis phytochrome B. Nat Commun 2021; 12:5614. [PMID: 34556672 PMCID: PMC8460787 DOI: 10.1038/s41467-021-25909-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022] Open
Abstract
Photoactivated phytochrome B (PHYB) binds to antagonistically acting PHYTOCHROME-INTERACTING transcription FACTORs (PIFs) to regulate hundreds of light responsive genes in Arabidopsis by promoting PIF degradation. However, whether PHYB directly controls the transactivation activity of PIFs remains ambiguous. Here we show that the prototypic PIF, PIF3, possesses a p53-like transcription activation domain (AD) consisting of a hydrophobic activator motif flanked by acidic residues. A PIF3mAD mutant, in which the activator motif is replaced with alanines, fails to activate PIF3 target genes in Arabidopsis, validating the functions of the PIF3 AD in vivo. Intriguingly, the N-terminal photosensory module of PHYB binds immediately adjacent to the PIF3 AD to repress PIF3’s transactivation activity, demonstrating a novel PHYB signaling mechanism through direct interference of the transactivation activity of PIF3. Our findings indicate that PHYB, likely also PHYA, controls the stability and activity of PIFs via structurally separable dual signaling mechanisms. Photoactivated phytochrome B regulates gene expression by interacting with PIF transcription factors. Here the authors show that PIF3 contains a p53-like transcription activation domain (AD) and that PHYB can directly suppress PIF3 transactivation activity by binding adjacent to the AD.
Collapse
|
9
|
Pardi SA, Nusinow DA. Out of the Dark and Into the Light: A New View of Phytochrome Photobodies. FRONTIERS IN PLANT SCIENCE 2021; 12:732947. [PMID: 34531891 PMCID: PMC8438518 DOI: 10.3389/fpls.2021.732947] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/05/2021] [Indexed: 05/27/2023]
Abstract
Light is a critical environmental stimulus for plants, serving as an energy source via photosynthesis and a signal for developmental programming. Plants perceive light through various light-responsive proteins, termed photoreceptors. Phytochromes are red-light photoreceptors that are highly conserved across kingdoms. In the model plant Arabidopsis thaliana, phytochrome B serves as a light and thermal sensor, mediating physiological processes such as seedling germination and establishment, hypocotyl growth, chlorophyll biogenesis, and flowering. In response to red light, phytochromes convert to a biologically active form, translocating from the cytoplasm into the nucleus and further compartmentalizes into subnuclear compartments termed photobodies. PhyB photobodies regulate phytochrome-mediated signaling and physiological outputs. However, photobody function, composition, and biogenesis remain undefined since their discovery. Based on photobody cellular dynamics and the properties of internal components, photobodies have been suggested to undergo liquid-liquid phase separation, a process by which some membraneless compartments form. Here, we explore photobodies as environmental sensors, examine the role of their protein constituents, and outline the biophysical perspective that photobodies may be undergoing liquid-liquid phase separation. Understanding the molecular, cellular, and biophysical processes that shape how plants perceive light will help in engineering improved sunlight capture and fitness of important crops.
Collapse
Affiliation(s)
- Sarah A. Pardi
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Dmitri A. Nusinow
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
10
|
Ikeda H, Suzuki T, Oka Y, Gustafsson ALS, Brochmann C, Mochizuki N, Nagatani A. Divergence in red light responses associated with thermal reversion of phytochrome B between high- and low-latitude species. THE NEW PHYTOLOGIST 2021; 231:75-84. [PMID: 33817798 DOI: 10.1111/nph.17381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Phytochromes play a central role in mediating adaptive responses to light and temperature throughout plant life cycles. Despite evidence for adaptive importance of natural variation in phytochromes, little information is known about molecular mechanisms that modulate physiological responses of phytochromes in nature. We show evolutionary divergence in physiological responses relevant to thermal stability of a physiologically active form of phytochrome (Pfr) between two sister species of Brassicaceae growing at different latitudes. The higher latitude species (Cardamine bellidifolia; Cb) responded more strongly to light-limited conditions compared with its lower latitude sister (C. nipponica; Cn). Moreover, CbPHYB conferred stronger responses to both light-limited and warm conditions in the phyB-deficient mutant of Arabidopsis thaliana than CnPHYB: that is Pfr CbphyB was more stable in nuclei than CnphyB. Our findings suggest that fine tuning Pfr stability is a fundamental mechanism for plants to optimise phytochrome-related traits in their evolution and adapt to spatially varying environments, and open a new avenue to understand molecular mechanisms that fine tune phytochrome responses in nature.
Collapse
Affiliation(s)
- Hajime Ikeda
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Tomomi Suzuki
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Yoshito Oka
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - A Lovisa S Gustafsson
- Natural History Museum, University of Oslo, PO Box 1172, Blindern, Oslo, NO-0318, Norway
| | - Christian Brochmann
- Natural History Museum, University of Oslo, PO Box 1172, Blindern, Oslo, NO-0318, Norway
| | - Nobuyoshi Mochizuki
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Akira Nagatani
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto, 606-8502, Japan
| |
Collapse
|
11
|
Liu B, Weng J, Guan D, Zhang Y, Niu Q, López-Juez E, Lai Y, Garcia-Mas J, Huang D. A domestication-associated gene, CsLH, encodes a phytochrome B protein that regulates hypocotyl elongation in cucumber. MOLECULAR HORTICULTURE 2021; 1:3. [PMID: 37789471 PMCID: PMC10509825 DOI: 10.1186/s43897-021-00005-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/15/2021] [Indexed: 10/05/2023]
Affiliation(s)
- Bin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Dongchuan Road, Shanghai, 200240, China
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Jinyang Weng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Dongchuan Road, Shanghai, 200240, China
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Yan Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Qingliang Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Dongchuan Road, Shanghai, 200240, China
| | - Enrique López-Juez
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Yunsong Lai
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, P.R. China
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
12
|
Quian-Ulloa R, Stange C. Carotenoid Biosynthesis and Plastid Development in Plants: The Role of Light. Int J Mol Sci 2021; 22:1184. [PMID: 33530294 PMCID: PMC7866012 DOI: 10.3390/ijms22031184] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/23/2022] Open
Abstract
Light is an important cue that stimulates both plastid development and biosynthesis of carotenoids in plants. During photomorphogenesis or de-etiolation, photoreceptors are activated and molecular factors for carotenoid and chlorophyll biosynthesis are induced thereof. In fruits, light is absorbed by chloroplasts in the early stages of ripening, which allows a gradual synthesis of carotenoids in the peel and pulp with the onset of chromoplasts' development. In roots, only a fraction of light reaches this tissue, which is not required for carotenoid synthesis, but it is essential for root development. When exposed to light, roots start greening due to chloroplast development. However, the colored taproot of carrot grown underground presents a high carotenoid accumulation together with chromoplast development, similar to citrus fruits during ripening. Interestingly, total carotenoid levels decrease in carrots roots when illuminated and develop chloroplasts, similar to normal roots exposed to light. The recent findings of the effect of light quality upon the induction of molecular factors involved in carotenoid synthesis in leaves, fruit, and roots are discussed, aiming to propose consensus mechanisms in order to contribute to the understanding of carotenoid synthesis regulation by light in plants.
Collapse
Affiliation(s)
| | - Claudia Stange
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| |
Collapse
|
13
|
Isaksson L, Gustavsson E, Persson C, Brath U, Vrhovac L, Karlsson G, Orekhov V, Westenhoff S. Signaling Mechanism of Phytochromes in Solution. Structure 2020; 29:151-160.e3. [PMID: 32916102 DOI: 10.1016/j.str.2020.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/19/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022]
Abstract
Phytochrome proteins guide the red/far-red photoresponse of plants, fungi, and bacteria. Crystal structures suggest that the mechanism of signal transduction from the chromophore to the output domains involves refolding of the so-called PHY tongue. It is currently not clear how the two other notable structural features of the phytochrome superfamily, the so-called helical spine and a knot in the peptide chain, are involved in photoconversion. Here, we present solution NMR data of the complete photosensory core module from Deinococcus radiodurans. Photoswitching between the resting and the active states induces changes in amide chemical shifts, residual dipolar couplings, and relaxation dynamics. All observables indicate a photoinduced structural change in the knot region and lower part of the helical spine. This implies that a conformational signal is transduced from the chromophore to the helical spine through the PAS and GAF domains. The discovered pathway underpins functional studies of plant phytochromes and may explain photosensing by phytochromes under biological conditions.
Collapse
Affiliation(s)
- Linnéa Isaksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Emil Gustavsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Cecilia Persson
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Ulrika Brath
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Lidija Vrhovac
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Göran Karlsson
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Vladislav Orekhov
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden.
| |
Collapse
|
14
|
Nagano S, Guan K, Shenkutie SM, Feiler C, Weiss M, Kraskov A, Buhrke D, Hildebrandt P, Hughes J. Structural insights into photoactivation and signalling in plant phytochromes. NATURE PLANTS 2020; 6:581-588. [PMID: 32366982 DOI: 10.1038/s41477-020-0638-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/16/2020] [Indexed: 05/11/2023]
Abstract
Plant phytochromes are red/far-red photochromic photoreceptors that act as master regulators of development, controlling the expression of thousands of genes. Here, we describe the crystal structures of four plant phytochrome sensory modules, three at about 2 Å resolution or better, including the first of an A-type phytochrome. Together with extensive spectral data, these structures provide detailed insight into the structure and function of plant phytochromes. In the Pr state, the substitution of phycocyanobilin and phytochromobilin cofactors has no structural effect, nor does the amino-terminal extension play a significant functional role. Our data suggest that the chromophore propionates and especially the phytochrome-specific domain tongue act differently in plant and prokaryotic phytochromes. We find that the photoproduct in period-ARNT-single-minded (PAS)-cGMP-specific phosphodiesterase-adenylyl cyclase-FhlA (GAF) bidomains might represent a novel intermediate between MetaRc and Pfr. We also discuss the possible role of a likely nuclear localization signal specific to and conserved in the phytochrome A lineage.
Collapse
Affiliation(s)
- Soshichiro Nagano
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Gießen, Germany
| | - Kaoling Guan
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Gießen, Germany
| | | | - Christian Feiler
- BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Manfred Weiss
- BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Anastasia Kraskov
- Institut für Chemie, Sekr. PC14, Technische Universität, Berlin, Germany
| | - David Buhrke
- Institut für Chemie, Sekr. PC14, Technische Universität, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Sekr. PC14, Technische Universität, Berlin, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Gießen, Germany.
| |
Collapse
|
15
|
Biswas S, Adhikari A, Mukherjee A, Das S, Adak S. Regulation of Leishmania major PAS domain-containing phosphoglycerate kinase by cofactor Mg 2+ ion at neutral pH. FEBS J 2020; 287:5183-5195. [PMID: 32196942 DOI: 10.1111/febs.15305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/12/2020] [Accepted: 03/18/2020] [Indexed: 11/26/2022]
Abstract
Recently, we described the PAS domain-containing phosphoglycerate kinase (PGK) from Leishmania major (LmPAS-PGK) that shows acidic pH (5.5)-dependent optimum catalytic activity. The PAS domain of LmPAS-PGK is expected to regulate PGK activity during catalysis, but the mechanism of regulation by PAS domain at the molecular level is uncharacterized. In this work, we have utilized the full-length, PAS domain-deleted, and mutant enzymes to measure the enzymatic activity in the presence of divalent cation at various pH values. Catalytic activity measurement indicates that Mg2+ binding through PAS domain inhibits the PGK activity at pH 7.5, and this inhibition is withdrawn at pH 5.5. To identify the Mg2+ binding residues of the PAS domain, we exploited a systematic mutational analysis of all (four) His residues in the PAS domain for potential divalent cation binding. Replacement of His-57 with alanine resulted in depression in the presence of Mg2+ at pH 7.5, but H71A, H89A, and H111A showed similar characteristics with respect to the wild-type protein. Fluorescence and isothermal titration calorimetry studies revealed that H57 is responsible for Mg2+ binding in the absence of substrates. Thus, the protonated form of His57 at acidic pH 5.5 destabilizes the Mg2+ binding in the PAS domain, which is an essential requirement in the wild-type LmPAS-PGK for a conformational alteration in the sensor domain that, sequentially, activates the PGK domain, resulting in the synthesis of higher amounts of ATP.
Collapse
Affiliation(s)
- Saroj Biswas
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ayan Adhikari
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Aditi Mukherjee
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sumit Das
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subrata Adak
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
16
|
Klose C, Nagy F, Schäfer E. Thermal Reversion of Plant Phytochromes. MOLECULAR PLANT 2020; 13:386-397. [PMID: 31812690 DOI: 10.1016/j.molp.2019.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/21/2019] [Accepted: 12/03/2019] [Indexed: 05/18/2023]
Abstract
Phytochromes are red/far-red reversible photoreceptors essential for plant growth and development. Phytochrome signaling is mediated by the physiologically active far-red-absorbing Pfr form that can be inactivated to the red-absorbing Pr ground state by light-dependent photoconversion or by light-independent thermal reversion, also termed dark reversion. Although the term "dark reversion" is justified by historical reasons and frequently used in the literature, "thermal reversion" more appropriately describes the process of light-independent but temperature-regulated Pfr relaxation that not only occurs in darkness but also in light and is used throughout the review. Thermal reversion is a critical parameter for the light sensitivity of phytochrome-mediated responses and has been studied for decades, often resulting in contradictory findings. Thermal reversion is an intrinsic property of the phytochrome molecules but can be modulated by intra- and intermolecular interactions, as well as biochemical modifications, such as phosphorylation. In this review, we outline the research history of phytochrome thermal reversion, highlighting important predictions that have been made before knowing the molecular basis. We further summarize and discuss recent findings about the molecular mechanisms regulating phytochrome thermal reversion and its functional roles in light and temperature sensing in plants.
Collapse
Affiliation(s)
- Cornelia Klose
- Institute of Biology II, University of Freiburg, 79104 Freiburg, Germany.
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Eberhard Schäfer
- Institute of Biology II, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
17
|
Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat Commun 2019; 10:5219. [PMID: 31745087 PMCID: PMC6864062 DOI: 10.1038/s41467-019-13045-0] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 10/17/2019] [Indexed: 11/08/2022] Open
Abstract
Phytochromes are bilin-binding photosensory receptors which control development over a broad range of environmental conditions and throughout the whole plant life cycle. Light-induced conformational changes enable phytochromes to interact with signaling partners, in particular transcription factors or proteins that regulate them, resulting in large-scale transcriptional reprograming. Phytochromes also regulate promoter usage, mRNA splicing and translation through less defined routes. In this review we summarize our current understanding of plant phytochrome signaling, emphasizing recent work performed in Arabidopsis. We compare and contrast phytochrome responses and signaling mechanisms among land plants and highlight open questions in phytochrome research.
Collapse
|
18
|
Modular Diversity of the BLUF Proteins and Their Potential for the Development of Diverse Optogenetic Tools. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Organisms can respond to varying light conditions using a wide range of sensory photoreceptors. These photoreceptors can be standalone proteins or represent a module in multidomain proteins, where one or more modules sense light as an input signal which is converted into an output response via structural rearrangements in these receptors. The output signals are utilized downstream by effector proteins or multiprotein clusters to modulate their activity, which could further affect specific interactions, gene regulation or enzymatic catalysis. The blue-light using flavin (BLUF) photosensory module is an autonomous unit that is naturally distributed among functionally distinct proteins. In this study, we identified 34 BLUF photoreceptors of prokaryotic and eukaryotic origin from available bioinformatics sequence databases. Interestingly, our analysis shows diverse BLUF-effector arrangements with a functional association that was previously unknown or thought to be rare among the BLUF class of sensory proteins, such as endonucleases, tet repressor family (tetR), regulators of G-protein signaling, GAL4 transcription family and several other previously unidentified effectors, such as RhoGEF, Phosphatidyl-Ethanolamine Binding protein (PBP), ankyrin and leucine-rich repeats. Interaction studies and the indexing of BLUF domains further show the diversity of BLUF-effector combinations. These diverse modular architectures highlight how the organism’s behaviour, cellular processes, and distinct cellular outputs are regulated by integrating BLUF sensing modules in combination with a plethora of diverse signatures. Our analysis highlights the modular diversity of BLUF containing proteins and opens the possibility of creating a rational design of novel functional chimeras using a BLUF architecture with relevant cellular effectors. Thus, the BLUF domain could be a potential candidate for the development of powerful novel optogenetic tools for its application in modulating diverse cell signaling.
Collapse
|
19
|
Hu W, Lagarias JC. LOF and GOF Alleles Shed Light on the Molecular Basis of phyB Signaling in Plants. THE PLANT CELL 2019; 31:1400-1401. [PMID: 31085578 PMCID: PMC6635851 DOI: 10.1105/tpc.19.00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Wei Hu
- Department of Molecular and Cellular BiologyUniversity of CaliforniaDavis, California 95616
| | - J Clark Lagarias
- Department of Molecular and Cellular BiologyUniversity of CaliforniaDavis, California 95616
| |
Collapse
|
20
|
PAS domain-containing phosphoglycerate kinase deficiency in Leishmania major results in increased autophagosome formation and cell death. Biochem J 2019; 476:1303-1321. [PMID: 30988012 DOI: 10.1042/bcj20190041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 11/17/2022]
Abstract
Per-Arnt-Sim (PAS) domains are structurally conserved and present in numerous proteins throughout all branches of the phylogenetic tree. Although PAS domain-containing proteins are major players for the adaptation to environmental stimuli in both prokaryotic and eukaryotic organisms, these types of proteins are still uncharacterized in the trypanosomatid parasites, Trypanosome and Leishmania In addition, PAS-containing phosphoglycerate kinase (PGK) protein is uncharacterized in the literature. Here, we report a PAS domain-containing PGK (LmPAS-PGK) in the unicellular pathogen Leishmania The modeled structure of N-terminal of this protein exhibits four antiparallel β sheets centrally flanked by α helices, which is similar to the characteristic signature of PAS domain. Activity measurements suggest that acidic pH can directly stimulate PGK activity. Localization studies demonstrate that the protein is highly enriched in the glycosome and its presence can also be seen in the lysosome. Gene knockout, overexpression and complement studies suggest that LmPAS-PGK plays a fundamental role in cell survival through autophagy. Furthermore, the knockout cells display a marked decrease in virulence when host macrophage and BALB/c mice were infected with them. Our work begins to clarify how acidic pH-dependent ATP generation by PGK is likely to function in cellular adaptability of Leishmania.
Collapse
|
21
|
Jones MA. Using light to improve commercial value. HORTICULTURE RESEARCH 2018; 5:47. [PMID: 30181887 PMCID: PMC6119199 DOI: 10.1038/s41438-018-0049-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 05/20/2023]
Abstract
The plasticity of plant morphology has evolved to maximize reproductive fitness in response to prevailing environmental conditions. Leaf architecture elaborates to maximize light harvesting, while the transition to flowering can either be accelerated or delayed to improve an individual's fitness. One of the most important environmental signals is light, with plants using light for both photosynthesis and as an environmental signal. Plants perceive different wavelengths of light using distinct photoreceptors. Recent advances in LED technology now enable light quality to be manipulated at a commercial scale, and as such opportunities now exist to take advantage of plants' developmental plasticity to enhance crop yield and quality through precise manipulation of a crops' lighting regime. This review will discuss how plants perceive and respond to light, and consider how these specific signaling pathways can be manipulated to improve crop yield and quality.
Collapse
Affiliation(s)
- Matthew Alan Jones
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, Colchester, CO4 3SQ UK
| |
Collapse
|
22
|
Park E, Kim Y, Choi G. Phytochrome B Requires PIF Degradation and Sequestration to Induce Light Responses across a Wide Range of Light Conditions. THE PLANT CELL 2018; 30:1277-1292. [PMID: 29764986 PMCID: PMC6048787 DOI: 10.1105/tpc.17.00913] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/23/2018] [Accepted: 05/10/2018] [Indexed: 05/04/2023]
Abstract
Phytochrome B (phyB) inhibits the function of phytochrome-interacting factors (PIFs) by inducing their degradation and sequestration, but the relative physiological importance of these two phyB activities is unclear. In an analysis of published Arabidopsis thaliana phyB mutations, we identified a point mutation in the N-terminal half of phyB (phyBG111D) that abolishes its PIF sequestration activity without affecting its PIF degradation activity. We also identified a point mutation in the phyB C-terminal domain, which, when combined with a deletion of the C-terminal end (phyB990G767R), does the opposite; it blocks PIF degradation without affecting PIF sequestration. The resulting phyB proteins, phyB990G767R and phyBG111D, are equally capable of inducing light responses under continuous red light. However, phyBG111D, which exhibits only the PIF degradation activity, induces stronger light responses than phyB990G767R under white light with prolonged dark periods (i.e., diurnal cycles). In contrast, phyB990G767R, which exhibits only the PIF sequestration activity, induces stronger light responses in flickering light (a condition that mimics sunflecks). Together, our results indicate that both of these separable phyB activities are required for light responses in varying light conditions.
Collapse
Affiliation(s)
- Eunae Park
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Yeojae Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| |
Collapse
|
23
|
Song C, Mroginski MA, Lang C, Kopycki J, Gärtner W, Matysik J, Hughes J. 3D Structures of Plant Phytochrome A as Pr and Pfr From Solid-State NMR: Implications for Molecular Function. FRONTIERS IN PLANT SCIENCE 2018; 9:498. [PMID: 29740459 PMCID: PMC5928327 DOI: 10.3389/fpls.2018.00498] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/03/2018] [Indexed: 05/25/2023]
Abstract
We present structural information for oat phyA3 in the far-red-light-absorbing (Pfr) signaling state, to our knowledge the first three-dimensional (3D) information for a plant phytochrome as Pfr. Solid-state magic-angle spinning (MAS) NMR was used to detect interatomic contacts in the complete photosensory module [residues 1-595, including the NTE (N-terminal extension), PAS (Per/Arnt/Sim), GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) and PHY (phytochrome-specific) domains but with the C-terminal PAS repeat and transmitter-like module deleted] auto-assembled in vitro with 13C- and 15N-labeled phycocyanobilin (PCB) chromophore. Thereafter, quantum mechanics/molecular mechanics (QM/MM) enabled us to refine 3D structural models constrained by the NMR data. We provide definitive atomic assignments for all carbon and nitrogen atoms of the chromophore, showing the Pfr chromophore geometry to be periplanar ZZEssa with the D -ring in a β-facial disposition incompatible with many earlier notions regarding photoconversion yet supporting circular dichroism (CD) data. The Y268 side chain is shifted radically relative to published Pfr crystal structures in order to accommodate the β-facial ring D . Our findings support a photoconversion sequence beginning with Pr photoactivation via an anticlockwise D -ring Za→Ea photoflip followed by significant shifts at the coupling of ring A to the protein, a B -ring propionate partner swap from R317 to R287, changes in the C -ring propionate hydrogen-bonding network, breakage of the D272-R552 salt bridge accompanied by sheet-to-helix refolding of the tongue region stabilized by Y326-D272-S554 hydrogen bonding, and binding of the NTE to the hydrophobic side of ring A . We discuss phyA photoconversion, including the possible roles of mesoscopic phase transitions and protonation dynamics in the chromophore pocket. We also discuss possible associations between structural changes and translocation and signaling processes within the cell.
Collapse
Affiliation(s)
- Chen Song
- Institut für Analytische Chemie, Universität Leipzig, Leipzig, Germany
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden, Leiden, Netherlands
| | | | - Christina Lang
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Giessen, Germany
| | - Jakub Kopycki
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Giessen, Germany
| | - Wolfgang Gärtner
- Institut für Analytische Chemie, Universität Leipzig, Leipzig, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Leipzig, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Giessen, Germany
| |
Collapse
|
24
|
Qiu Y, Pasoreck EK, Reddy AK, Nagatani A, Ma W, Chory J, Chen M. Mechanism of early light signaling by the carboxy-terminal output module of Arabidopsis phytochrome B. Nat Commun 2017. [PMID: 29199270 DOI: 10.1038/s41467-107-02062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Plant phytochromes are thought to transduce light signals by mediating the degradation of phytochrome-interacting transcription factors (PIFs) through the N-terminal photosensory module, while the C-terminal module, including a histidine kinase-related domain (HKRD), does not participate in signaling. Here we show that the C-terminal module of Arabidopsis phytochrome B (PHYB) is sufficient to mediate the degradation of PIF3 specifically and to activate photosynthetic genes in the dark. The HKRD is a dimerization domain for PHYB homo and heterodimerization. A D1040V mutation, which disrupts the dimerization of HKRD and the interaction between C-terminal module and PIF3, abrogates PHYB nuclear accumulation, photobody biogenesis, and PIF3 degradation. By contrast, disrupting the interaction between PIF3 and PHYB's N-terminal module has little effect on PIF3 degradation. Together, this study demonstrates that the dimeric form of the C-terminal module plays important signaling roles by targeting PHYB to subnuclear photobodies and interacting with PIF3 to trigger its degradation.
Collapse
Affiliation(s)
- Yongjian Qiu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | | | - Amit K Reddy
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Wenxiu Ma
- Department of Statistics, University of California, Riverside, CA, 92521, USA
| | - Joanne Chory
- Howard Hughes Medical Institute, Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
25
|
Mechanism of early light signaling by the carboxy-terminal output module of Arabidopsis phytochrome B. Nat Commun 2017; 8:1905. [PMID: 29199270 PMCID: PMC5712524 DOI: 10.1038/s41467-017-02062-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 11/03/2017] [Indexed: 11/08/2022] Open
Abstract
Plant phytochromes are thought to transduce light signals by mediating the degradation of phytochrome-interacting transcription factors (PIFs) through the N-terminal photosensory module, while the C-terminal module, including a histidine kinase-related domain (HKRD), does not participate in signaling. Here we show that the C-terminal module of Arabidopsis phytochrome B (PHYB) is sufficient to mediate the degradation of PIF3 specifically and to activate photosynthetic genes in the dark. The HKRD is a dimerization domain for PHYB homo and heterodimerization. A D1040V mutation, which disrupts the dimerization of HKRD and the interaction between C-terminal module and PIF3, abrogates PHYB nuclear accumulation, photobody biogenesis, and PIF3 degradation. By contrast, disrupting the interaction between PIF3 and PHYB's N-terminal module has little effect on PIF3 degradation. Together, this study demonstrates that the dimeric form of the C-terminal module plays important signaling roles by targeting PHYB to subnuclear photobodies and interacting with PIF3 to trigger its degradation.
Collapse
|
26
|
Viczián A, Klose C, Ádám É, Nagy F. New insights of red light-induced development. PLANT, CELL & ENVIRONMENT 2017; 40:2457-2468. [PMID: 27943362 DOI: 10.1111/pce.12880] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 05/14/2023]
Abstract
The red/far-red light absorbing photoreceptors phytochromes regulate development and growth and thus play an essential role in optimizing adaptation of the sessile plants to the ever-changing environment. Our understanding of how absorption of a red/far-red photon by phytochromes initiates/modifies diverse physiological responses has been steadily improving. Research performed in the last 5 years has been especially productive and led to significant conceptual changes about the mode of action of these photoreceptors. In this review, we focus on the phytochrome B photoreceptor, the major phytochrome species active in light-grown plants. We discuss how its light-independent inactivation (termed dark/thermal reversion), post-translational modification, including ubiquitination, phosphorylation and sumoylation, as well as heterodimerization with other phytochrome species modify red light-controlled physiological responses. Finally, we discuss how photobiological properties of phytochrome B enable this photoreceptor to function also as a thermosensor.
Collapse
Affiliation(s)
- András Viczián
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Cornelia Klose
- Institute of Biology2/Botany, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Éva Ádám
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| |
Collapse
|
27
|
Burgie ES, Bussell AN, Lye SH, Wang T, Hu W, McLoughlin KE, Weber EL, Li H, Vierstra RD. Photosensing and Thermosensing by Phytochrome B Require Both Proximal and Distal Allosteric Features within the Dimeric Photoreceptor. Sci Rep 2017; 7:13648. [PMID: 29057954 PMCID: PMC5651913 DOI: 10.1038/s41598-017-14037-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/21/2017] [Indexed: 11/12/2022] Open
Abstract
Phytochromes (Phys) encompass a diverse collection of bilin-containing photoreceptors that help plants and microorganisms perceive light through photointerconversion between red light (Pr) and far-red light (Pfr)-absorbing states. In addition, Pfr reverts thermally back to Pr via a highly enthalpic process that enables temperature sensation in plants and possibly other organisms. Through domain analysis of the Arabidopsis PhyB isoform assembled recombinantly, coupled with measurements of solution size, photoconversion, and thermal reversion, we identified both proximal and distal features that influence all three metrics. Included are the downstream C-terminal histidine kinase-related domain known to promote dimerization and a conserved patch just upstream of an N-terminal Period/Arnt/Sim (PAS) domain, which upon removal dramatically accelerates thermal reversion. We also discovered that the nature of the bilin strongly influences Pfr stability. Whereas incorporation of the native bilin phytochromobilin into PhyB confers robust Pfr → Pr thermal reversion, that assembled with the cyanobacterial version phycocyanobilin, often used for optogenetics, has a dramatically stabilized Pfr state. Taken together, we conclude that Pfr acquisition and stability are impacted by a collection of opposing allosteric features that inhibit or promote photoconversion and reversion of Pfr back to Pr, thus allowing Phys to dynamically measure light, temperature, and possibly time.
Collapse
Affiliation(s)
- E Sethe Burgie
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.,Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Adam N Bussell
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Shu-Hui Lye
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.,Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Tong Wang
- Department of Biology, Brookhaven National Laboratory, Upton, New York, 11973, USA.,CUNY Advanced Science Research Center, The City University of New York, New York, New York, 10031, USA
| | - Weiming Hu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Katrice E McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Erin L Weber
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Huilin Li
- Department of Biology, Brookhaven National Laboratory, Upton, New York, 11973, USA.,Van Andel Research Institute, Grand Rapids, Michigan, 49503, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA. .,Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
| |
Collapse
|
28
|
Coordination of Cryptochrome and Phytochrome Signals in the Regulation of Plant Light Responses. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Mapping light-driven conformational changes within the photosensory module of plant phytochrome B. Sci Rep 2016; 6:34366. [PMID: 27694986 PMCID: PMC5046071 DOI: 10.1038/srep34366] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/09/2016] [Indexed: 12/04/2022] Open
Abstract
Organisms developed different photoreceptors to be able to adapt to changing environmental light conditions. Phytochromes are red/far-red (r/fr) photochromic photoreceptors that belong to the classical photoreceptors along with cryptochromes and phototropins. They convert absorbed light into a biological signal by switching between two states in a light-dependent manner therefore enabling the light control downstream signalling. Their Pfr conformation is the biological active form in plants, but until now only a structure of the ground state (Pr) was solved. Here, the authors provide information about structural changes occurring during photoconversion within phytochrome B and identify possible interaction sites for its N-terminal extension (NTE) utilising hydrogen/deuterium exchange rate analyses of its amide backbone. Especially, the newly identified light-dependency of two regions in the NTE are of particular interest for understanding the involvement of the phytochrome’s NTE in the regulation of its downstream signalling.
Collapse
|
30
|
Nagano S. From photon to signal in phytochromes: similarities and differences between prokaryotic and plant phytochromes. JOURNAL OF PLANT RESEARCH 2016; 129:123-135. [PMID: 26818948 DOI: 10.1007/s10265-016-0789-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/03/2016] [Indexed: 06/05/2023]
Abstract
Phytochromes represent a diverse family of red/far-red-light absorbing chromoproteins which are widespread across plants, cyanobacteria, non-photosynthetic bacteria, and more. Phytochromes play key roles in regulating physiological activities in response to light, a critical element in the acclimatization to the environment. The discovery of prokaryotic phytochromes facilitated structural studies which deepened our understanding on the general mechanisms of phytochrome action. An extrapolation of this information to plant phytochromes is justified for universally conserved functional aspects, but it is also true that there are many aspects which are unique to plant phytochromes. Here I summarize some structural studies carried out to date on both prokaryotic and plant phytochromes. I also attempt to identify aspects which are common or unique to plant and prokaryotic phytochromes. Phytochrome themselves, as well as the downstream signaling pathway in plants are more complex than in their prokaryotic counterparts. Thus many structural and functional aspects of plant phytochrome remain unresolved.
Collapse
Affiliation(s)
- Soshichiro Nagano
- Institute for Plant Physiology, Justus Liebig University Giessen, Senckenbergstrasse 3, 35390, Giessen, Germany.
| |
Collapse
|
31
|
SUMOylation of phytochrome-B negatively regulates light-induced signaling in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:11108-13. [PMID: 26283376 DOI: 10.1073/pnas.1415260112] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The red/far red light absorbing photoreceptor phytochrome-B (phyB) cycles between the biologically inactive (Pr, λmax, 660 nm) and active (Pfr; λmax, 730 nm) forms and functions as a light quality and quantity controlled switch to regulate photomorphogenesis in Arabidopsis. At the molecular level, phyB interacts in a conformation-dependent fashion with a battery of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR transcription factors, and by modulating their activity/abundance, it alters expression patterns of genes underlying photomorphogenesis. Here we report that the small ubiquitin-like modifier (SUMO) is conjugated (SUMOylation) to the C terminus of phyB; the accumulation of SUMOylated phyB is enhanced by red light and displays a diurnal pattern in plants grown under light/dark cycles. Our data demonstrate that (i) transgenic plants expressing the mutant phyB(Lys996Arg)-YFP photoreceptor are hypersensitive to red light, (ii) light-induced SUMOylation of the mutant phyB is drastically decreased compared with phyB-YFP, and (iii) SUMOylation of phyB inhibits binding of PHYTOCHROME INTERACTING FACTOR 5 to phyB Pfr. In addition, we show that OVERLY TOLERANT TO SALT 1 (OTS1) de-SUMOylates phyB in vitro, it interacts with phyB in vivo, and the ots1/ots2 mutant is hyposensitive to red light. Taken together, we conclude that SUMOylation of phyB negatively regulates light signaling and it is mediated, at least partly, by the action of OTS SUMO proteases.
Collapse
|
32
|
Klose C, Viczián A, Kircher S, Schäfer E, Nagy F. Molecular mechanisms for mediating light-dependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors. THE NEW PHYTOLOGIST 2015; 206:965-71. [PMID: 26042244 PMCID: PMC4406131 DOI: 10.1111/nph.13207] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/05/2014] [Indexed: 05/19/2023]
Abstract
The photoreceptors phytochromes monitor the red/far-red part of the spectrum, exist in the biologically active Pfr (far-red absorbing) or inactive Pr (red absorbing) forms, and function as red/far-red light-regulated molecular switches to modulate plant development and growth. Phytochromes are synthesized in the cytoplasm, and light induces translocation of the Pfr conformer into the nucleus. Nuclear import of phytochromes is a highly regulated process and is fine-tuned by the quality and quantity of light. It appears that phytochrome A (phyA) and phytochrome B (phyB) do not possess active endogenous nuclear import signals (NLSs), thus light-induced translocation of these photoreceptors into the nucleus requires direct protein–protein interactions with their NLS-containing signaling partners. Sub-cellular partitioning of the various phytochrome species is mediated by different molecular machineries. Translocation of phyA into the nucleus is promoted by FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL), but the identity of nuclear transport facilitators mediating the import of phyB-E into the nucleus remains elusive. Phytochromes localized in the nucleus are associated with specific protein complexes, termed photobodies. The size and distribution of these structures are regulated by the intensity and duration of irradiation, and circumstantial evidence indicates that they are involved in fine-tuning phytochrome signaling.
Collapse
Affiliation(s)
- Cornelia Klose
- Institute of Botany, University of FreiburgSchänzlestrasse 1, D-79104, Freiburg, Germany
| | - András Viczián
- Institute of Plant Biology, Biological Research CentreTemesvári krt. 62, H-6726, Szeged, Hungary
| | - Stefan Kircher
- Institute of Botany, University of FreiburgSchänzlestrasse 1, D-79104, Freiburg, Germany
| | - Eberhard Schäfer
- Institute of Botany, University of FreiburgSchänzlestrasse 1, D-79104, Freiburg, Germany
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research CentreTemesvári krt. 62, H-6726, Szeged, Hungary
- School of Biological Sciences, Institute of Molecular Plant Science, University of EdinburghEdinburgh, EH9 3JH, UK
- Author for correspondence: Ferenc Nagy Tel: +36 62599718
| |
Collapse
|
33
|
Burgie ES, Vierstra RD. Phytochromes: an atomic perspective on photoactivation and signaling. THE PLANT CELL 2014; 26:4568-83. [PMID: 25480369 PMCID: PMC4311201 DOI: 10.1105/tpc.114.131623] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/10/2014] [Accepted: 11/14/2014] [Indexed: 05/19/2023]
Abstract
The superfamily of phytochrome (Phy) photoreceptors regulates a wide array of light responses in plants and microorganisms through their unique ability to reversibly switch between stable dark-adapted and photoactivated end states. Whereas the downstream signaling cascades and biological consequences have been described, the initial events that underpin photochemistry of the coupled bilin chromophore and the ensuing conformational changes needed to propagate the light signal are only now being understood. Especially informative has been the rapidly expanding collection of 3D models developed by x-ray crystallographic, NMR, and single-particle electron microscopic methods from a remarkably diverse array of bacterial Phys. These structures have revealed how the modular architecture of these dimeric photoreceptors engages the buried chromophore through distinctive knot, hairpin, and helical spine features. When collectively viewed, these 3D structures reveal complex structural alterations whereby photoisomerization of the bilin drives nanometer-scale movements within the Phy dimer through bilin sliding, hairpin reconfiguration, and spine deformation that ultimately impinge upon the paired signal output domains. When integrated with the recently described structure of the photosensory module from Arabidopsis thaliana PhyB, new opportunities emerge for the rational redesign of plant Phys with novel photochemistries and signaling properties potentially beneficial to agriculture and their exploitation as optogenetic reagents.
Collapse
Affiliation(s)
- E Sethe Burgie
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
34
|
Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome. Proc Natl Acad Sci U S A 2014; 111:10179-84. [PMID: 24982198 DOI: 10.1073/pnas.1403096111] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Many aspects of plant photomorphogenesis are controlled by the phytochrome (Phy) family of bilin-containing photoreceptors that detect red and far-red light by photointerconversion between a dark-adapted Pr state and a photoactivated Pfr state. Whereas 3D models of prokaryotic Phys are available, models of their plant counterparts have remained elusive. Here, we present the crystal structure of the photosensing module (PSM) from a seed plant Phy in the Pr state using the PhyB isoform from Arabidopsis thaliana. The PhyB PSM crystallized as a head-to-head dimer with strong structural homology to its bacterial relatives, including a 5(Z)syn, 10(Z)syn, 15(Z)anti configuration of the phytochromobilin chromophore buried within the cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) domain, and a well-ordered hairpin protruding from the Phy-specific domain toward the bilin pocket. However, its Per/Arnt/Sim (PAS) domain, knot region, and helical spine show distinct structural differences potentially important to signaling. Included is an elongated helical spine, an extended β-sheet connecting the GAF domain and hairpin stem, and unique interactions between the region upstream of the PAS domain knot and the bilin A and B pyrrole rings. Comparisons of this structure with those from bacterial Phys combined with mutagenic studies support a toggle model for photoconversion that engages multiple features within the PSM to stabilize the Pr and Pfr end states after rotation of the D pyrrole ring. Taken together, this Arabidopsis PhyB structure should enable molecular insights into plant Phy signaling and provide an essential scaffold to redesign their activities for agricultural benefit and as optogenetic reagents.
Collapse
|
35
|
Van Buskirk EK, Reddy AK, Nagatani A, Chen M. Photobody Localization of Phytochrome B Is Tightly Correlated with Prolonged and Light-Dependent Inhibition of Hypocotyl Elongation in the Dark. PLANT PHYSIOLOGY 2014; 165:595-607. [PMID: 24769533 PMCID: PMC4044834 DOI: 10.1104/pp.114.236661] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/25/2014] [Indexed: 05/20/2023]
Abstract
Photobody localization of Arabidopsis (Arabidopsis thaliana) phytochrome B (phyB) fused to green fluorescent protein (PBG) correlates closely with the photoinhibition of hypocotyl elongation. However, the amino-terminal half of phyB fused to green fluorescent protein (NGB) is hypersensitive to light despite its inability to localize to photobodies. Therefore, the significance of photobodies in regulating hypocotyl growth remains debatable. Accumulating evidence indicates that under diurnal conditions, photoactivated phyB persists into darkness to inhibit hypocotyl elongation. Here, we examine whether photobodies are involved in inhibiting hypocotyl growth in darkness by comparing the PBG and NGB lines after the red light-to-dark transition. Surprisingly, after the transition from 10 μmol m-2 s-1 red light to darkness, PBG inhibits hypocotyl elongation three times longer than NGB. The disassembly of photobodies in PBG hypocotyl nuclei correlates tightly with the accumulation of the growth-promoting transcription factor PHYTOCHROME-INTERACTING FACTOR3 (PIF3). Destabilizing photobodies by either decreasing the light intensity or adding monochromatic far-red light treatment before the light-to-dark transition leads to faster PIF3 accumulation and a dramatic reduction in the capacity for hypocotyl growth inhibition in PBG. In contrast, NGB is defective in PIF3 degradation, and its hypocotyl growth in the dark is nearly unresponsive to changes in light conditions. Together, our results support the model that photobodies are required for the prolonged, light-dependent inhibition of hypocotyl elongation in the dark by repressing PIF3 accumulation and by stabilizing the far-red light-absorbing form of phyB. Our study suggests that photobody localization patterns of phyB could serve as instructive cues that control light-dependent photomorphogenetic responses in the dark.
Collapse
Affiliation(s)
- Elise K Van Buskirk
- Department of Biology, Duke University, Durham, North Carolina 27708 (E.K.V.B., A.K.R., M.C.); andDepartment of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (A.N.)
| | - Amit K Reddy
- Department of Biology, Duke University, Durham, North Carolina 27708 (E.K.V.B., A.K.R., M.C.); andDepartment of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (A.N.)
| | - Akira Nagatani
- Department of Biology, Duke University, Durham, North Carolina 27708 (E.K.V.B., A.K.R., M.C.); andDepartment of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (A.N.)
| | - Meng Chen
- Department of Biology, Duke University, Durham, North Carolina 27708 (E.K.V.B., A.K.R., M.C.); andDepartment of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (A.N.)
| |
Collapse
|
36
|
Nito K, Wong CCL, Yates JR, Chory J. Tyrosine phosphorylation regulates the activity of phytochrome photoreceptors. Cell Rep 2013; 3:1970-9. [PMID: 23746445 DOI: 10.1016/j.celrep.2013.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022] Open
Abstract
Phytochromes are red/far-red light receptors that function in photomorphogenesis of plants. Photoisomerization of phytochrome by red light leads to its translocation to the nucleus, where it regulates gene expression. We examined whether phytochrome is phosphorylated in response to light, and we report that phytochrome B (phyB)'s N terminus contains a region with a number of phosphoserines, threonines, and tyrosines. The light-dependent phosphorylation of tyrosine 104 (Y104) appears to play a negative role in phyB's activity, because a phosphomimic mutant, phyBY104E, is unable to complement any phyB-related phenotype, is defective in binding to its signaling partner PIF3, and fails to form stable nuclear bodies even though it retains normal photochemistry in vitro. In contrast, plants stably expressing a nonphosphorylatable mutant, phyBY104F, are hypersensitive to light. The proper response to changes in the light environment is crucial for plant survival, and our study brings tyrosine phosphorylation to the forefront of light-signaling mechanisms.
Collapse
Affiliation(s)
- Kazumasa Nito
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
37
|
Piatkevich KD, Subach FV, Verkhusha VV. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chem Soc Rev 2013; 42:3441-52. [PMID: 23361376 PMCID: PMC3618476 DOI: 10.1039/c3cs35458j] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Near-infrared light is favourable for imaging in mammalian tissues due to low absorbance of hemoglobin, melanin, and water. Therefore, fluorescent proteins, biosensors and optogenetic constructs for optimal imaging, optical readout and light manipulation in mammals should have fluorescence and action spectra within the near-infrared window. Interestingly, natural Bacterial Phytochrome Photoreceptors (BphPs) utilize the low molecular weight biliverdin, found in most mammalian tissues, as a photoreactive chromophore. Due to their near-infrared absorbance BphPs are preferred templates for designing optical molecular tools for applications in mammals. Moreover, BphPs spectrally complement existing genetically-encoded probes. Several BphPs were already developed into the near-infrared fluorescent variants. Based on the analysis of the photochemistry and structure of BphPs we suggest a variety of possible BphP-based fluorescent proteins, biosensors, and optogenetic tools. Putative design strategies and experimental considerations for such probes are discussed.
Collapse
Affiliation(s)
- Kiryl D. Piatkevich
- Gruss-Lipper Biophotonics Center and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Fax: +1 (718) 430-8996; Tel: +1 (718) 430-8591
| | - Fedor V. Subach
- Gruss-Lipper Biophotonics Center and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Fax: +1 (718) 430-8996; Tel: +1 (718) 430-8591
| | - Vladislav V. Verkhusha
- Gruss-Lipper Biophotonics Center and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Fax: +1 (718) 430-8996; Tel: +1 (718) 430-8591
| |
Collapse
|
38
|
Zhang J, Stankey RJ, Vierstra RD. Structure-guided engineering of plant phytochrome B with altered photochemistry and light signaling. PLANT PHYSIOLOGY 2013; 161:1445-57. [PMID: 23321421 PMCID: PMC3585608 DOI: 10.1104/pp.112.208892] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/10/2013] [Indexed: 05/22/2023]
Abstract
Phytochromes (phys) encompass a diverse collection of biliproteins that enable cellular light perception by photoconverting between a red-light-absorbing ground state (Pr) and a far-red light-absorbing active state (Pfr). Based on the central role of plant phys in controlling numerous agriculturally important processes, their rational redesign offers great promise toward accelerating crop improvement. Employing as templates the available three-dimensional models of the photosensory module within bacterial phys, we report here our initial attempt to apply structure-guided mutagenesis to phy engineering using Arabidopsis (Arabidopsis thaliana) phyB, the dominant isoform in light-grown plants, as the example. A collection of phyB mutants was generated affecting the bilin-binding pocket that altered photochemistry, thermal stability, and/or nuclear localization patterns, some of which also impacted phenotypic outputs. Of particular interest are the Y361F substitution, which created Arabidopsis plants with greatly enhanced light sensitivity, mutants variably altered in Pfr-to-Pr thermal reversion and nuclear aggregation, and the D307A substitution, which failed to photoconvert from Pr to Pfr and display light-induced nuclear aggregation but retained some biological activity and accelerated turnover in red light. Taken together, this collection provides variants potentially useful to agriculture as well as new tools to better understand the molecular mechanisms underpinning phy signaling.
Collapse
|
39
|
Chen J, Sonobe K, Ogawa N, Masuda S, Nagatani A, Kobayashi Y, Ohta H. Inhibition of arabidopsis hypocotyl elongation by jasmonates is enhanced under red light in phytochrome B dependent manner. JOURNAL OF PLANT RESEARCH 2013; 126:161-8. [PMID: 22825635 PMCID: PMC3530149 DOI: 10.1007/s10265-012-0509-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/30/2012] [Indexed: 05/18/2023]
Abstract
Jasmonates are phytohormones derived from oxygenated fatty acids that regulate a broad range of plant defense and developmental processes. In Arabidopsis, hypocotyl elongation under various light conditions was suppressed by exogenously supplied methyl jasmonate (MeJA). Moreover, this suppression by MeJA was particularly effective under red light condition. Mutant analyses suggested that SCF(COI1)-mediated proteolysis was involved in this function. However, MeJA action still remained in the coi1 mutant, and (+)-7-iso-JA-L-Ile, a well-known active form of jasmonate, had a weaker effect than MeJA under the red light condition, suggesting that unknown signaling pathway are present in MeJA-mediated inhibition of hypocotyl elongation. EMS mutant screening identified two MeJA-insensitive hypocotyl elongation mutants, jasmonate resistance long hypocotyl 1 (jal1) and jal36, which had mutations in the phytochrome B (PHYB) gene. These analyses suggested that inhibition of hypocotyl elongation by jasmonates is enhanced under red light in phyB dependent manner.
Collapse
Affiliation(s)
- Jing Chen
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Kohei Sonobe
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Narihito Ogawa
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-52 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Shinji Masuda
- Center for Biological Resources and Informatics, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Yuichi Kobayashi
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-52 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| |
Collapse
|
40
|
Park E, Park J, Kim J, Nagatani A, Lagarias JC, Choi G. Phytochrome B inhibits binding of phytochrome-interacting factors to their target promoters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:537-46. [PMID: 22849408 PMCID: PMC3489987 DOI: 10.1111/j.1365-313x.2012.05114.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phytochromes are red and far-red light receptors in plants that mediate critical responses to light throughout the lifecycle. They achieve this in part by targeting negatively acting bHLH transcription factors called phytochrome-interacting factors (PIFs) for degradation within the nucleus. However, it is not known whether protein degradation is the primary mechanism by which phytochromes inhibit these repressors of photomorphogenesis. Here, we use chromatin immunoprecipitation to show that phyB inhibits the regulatory activity of PIF1 and PIF3 by releasing them from their DNA targets. The N-terminal fragment of phyB (NG-GUS-NLS; NGB) also inhibits binding of PIF3 to its target promoters. However, unlike full-length phyB, NGB does not promote PIF3 degradation, establishing the activity of NGB reflects its ability to inhibit PIF binding to DNA. We further show that Pfr forms of both full-length phyB and NGB inhibit DNA binding of PIF1 and PIF3 in vitro. Taken together, our results indicate that phyB inhibition of PIF function involves two separate processes: sequestration and protein degradation.
Collapse
Affiliation(s)
- Eunae Park
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Jeongmoo Park
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Junghyun Kim
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - J. Clark Lagarias
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
- Corresponding Author: Giltsu Choi, Department of Biological Sciences, KAIST, Daejeon 305-701, Korea, Phone: 82-42-350-2636, Fax: 82-42-350-2610
| |
Collapse
|
41
|
Galvão RM, Li M, Kothadia SM, Haskel JD, Decker PV, Van Buskirk EK, Chen M. Photoactivated phytochromes interact with HEMERA and promote its accumulation to establish photomorphogenesis in Arabidopsis. Genes Dev 2012; 26:1851-63. [PMID: 22895253 DOI: 10.1101/gad.193219.112] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Plant development is profoundly regulated by ambient light cues through the red/far-red photoreceptors, the phytochromes. Early phytochrome signaling events include the translocation of phytochromes from the cytoplasm to subnuclear domains called photobodies and the degradation of antagonistically acting phytochrome-interacting factors (PIFs). We recently identified a key phytochrome signaling component, HEMERA (HMR), that is essential for both phytochrome B (phyB) localization to photobodies and PIF degradation. However, the signaling mechanism linking phytochromes and HMR is unknown. Here we show that phytochromes directly interact with HMR to promote HMR protein accumulation in the light. HMR binds more strongly to the active form of phytochromes. This interaction is mediated by the photosensory domains of phytochromes and two phytochrome-interacting regions in HMR. Missense mutations in either HMR or phyB that alter the phytochrome/HMR interaction can also change HMR levels and photomorphogenetic responses. HMR accumulation in a constitutively active phyB mutant (YHB) is required for YHB-dependent PIF3 degradation in the dark. Our genetic and biochemical studies strongly support a novel phytochrome signaling mechanism in which photoactivated phytochromes directly interact with HMR and promote HMR accumulation, which in turn mediates the formation of photobodies and the degradation of PIFs to establish photomorphogenesis.
Collapse
Affiliation(s)
- Rafaelo M Galvão
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Oka Y, Ono Y, Toledo-Ortiz G, Kokaji K, Matsui M, Mochizuki N, Nagatani A. Arabidopsis phytochrome a is modularly structured to integrate the multiple features that are required for a highly sensitized phytochrome. THE PLANT CELL 2012; 24:2949-62. [PMID: 22843485 PMCID: PMC3426125 DOI: 10.1105/tpc.111.094201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Phytochrome is a red (R)/far-red (FR) light-sensing photoreceptor that regulates various aspects of plant development. Among the members of the phytochrome family, phytochrome A (phyA) exclusively mediates atypical phytochrome responses, such as the FR high irradiance response (FR-HIR), which is elicited under prolonged FR. A proteasome-based degradation pathway rapidly eliminates active Pfr (the FR-absorbing form of phyA) under R. To elucidate the structural basis for the phyA-specific properties, we systematically constructed 16 chimeric phytochromes in which each of four parts of the phytochrome molecule, namely, the N-terminal extension plus the Per/Arnt/Sim domain (N-PAS), the cGMP phosphodiesterase/adenyl cyclase/FhlA domain (GAF), the phytochrome domain (PHY), and the entire C-terminal half, was occupied by either the phyA or phytochrome B sequence. These phytochromes were expressed in transgenic Arabidopsis thaliana to examine their physiological activities. Consequently, the phyA N-PAS sequence was shown to be necessary and sufficient to promote nuclear accumulation under FR, whereas the phyA sequence in PHY was additionally required to exhibit FR-HIR. Furthermore, the phyA sequence in PHY alone substantially increased the light sensitivity to R. In addition, the GAF phyA sequence was important for rapid Pfr degradation. In summary, distinct structural modules, each of which confers different properties to phyA, are assembled on the phyA molecule.
Collapse
Affiliation(s)
- Yoshito Oka
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
- Plant Functional Genomics Research Group, Plant Science Center, RIKEN Yokohama Institute, Tsurumiku, Yokohama, Kanagawa 2300-0045, Japan
| | - Yuya Ono
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Gabriela Toledo-Ortiz
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Keio Kokaji
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Minami Matsui
- Plant Functional Genomics Research Group, Plant Science Center, RIKEN Yokohama Institute, Tsurumiku, Yokohama, Kanagawa 2300-0045, Japan
| | - Nobuyoshi Mochizuki
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Akira Nagatani
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
- Address correspondence to
| |
Collapse
|
43
|
Tsuboi H, Nakamura S, Schäfer E, Wada M. Red light-induced phytochrome relocation into the nucleus in Adiantum capillus-veneris. MOLECULAR PLANT 2012; 5:611-8. [PMID: 22266427 DOI: 10.1093/mp/ssr119] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Phytochromes in seed plants are known to move into nuclei in a red light-dependent manner with or without interacting factors. Here, we show phytochrome relocation to the nuclear region in phytochrome-dependent Adiantum capillus-veneris spore germination by partial spore-irradiation experiments. The nuclear or non-nuclear region of imbibed spores was irradiated with a microbeam of red and/or far-red light and the localization of phytochrome involved in spore germination was estimated from the germination rate. The phytochrome for spore germination existed throughout whole spore under darkness after imbibition, but gradually migrated to the nuclear region following red light irradiation. Intracellular distribution of PHY-GUS fusion proteins expressed in germinated spores by particle bombardment showed the migration of Acphy2, but not Acphy1, into nucleus in a red light-dependent manner, suggesting that Acphy2 is the photoreceptor for fern spore germination.
Collapse
|
44
|
Depauw FA, Rogato A, Ribera d'Alcalá M, Falciatore A. Exploring the molecular basis of responses to light in marine diatoms. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1575-91. [PMID: 22328904 DOI: 10.1093/jxb/ers005] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Light is an essential source of energy for life on Earth and is one of the most important signals that organisms use to obtain information from the surrounding environment, on land and in the oceans. Prominent marine microalgae, such as diatoms, display a suite of sophisticated responses (physiological, biochemical, and behavioural) to optimize their photosynthesis and growth under changing light conditions. However, the molecular mechanisms controlling diatom responses to light are still largely unknown. Recent progress in marine diatom genomics and genetics, combined with well-established (eco) physiological and biophysical approaches, now offers novel opportunities to address these issues. This review provides a description of the molecular components identified in diatom genomes that are involved in light perception and acclimation mechanisms. How the initial functional characterizations of specific light regulators provide the basis to investigate the conservation or diversification of light-mediated processes in diatoms is also discussed. Hypotheses on the role of the identified factors in determining the growth, distribution, and adaptation of diatoms in different marine environments are reported.
Collapse
Affiliation(s)
- Frauke Angelique Depauw
- Université Pierre et Marie Curie, Paris 06, Centre National de la Recherche Scientifique, UMR7238, Laboratoire de Génomique des Microorganismes, 75006 Paris, France
| | | | | | | |
Collapse
|
45
|
Herrero E, Kolmos E, Bujdoso N, Yuan Y, Wang M, Berns MC, Uhlworm H, Coupland G, Saini R, Jaskolski M, Webb A, Gonçalves J, Davis SJ. EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. THE PLANT CELL 2012; 24:428-43. [PMID: 22327739 PMCID: PMC3315225 DOI: 10.1105/tpc.111.093807] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 11/15/2011] [Accepted: 01/20/2012] [Indexed: 05/18/2023]
Abstract
The plant circadian clock is proposed to be a network of several interconnected feedback loops, and loss of any component leads to changes in oscillator speed. We previously reported that Arabidopsis thaliana EARLY FLOWERING4 (ELF4) is required to sustain this oscillator and that the elf4 mutant is arrhythmic. This phenotype is shared with both elf3 and lux. Here, we show that overexpression of either ELF3 or LUX ARRHYTHMO (LUX) complements the elf4 mutant phenotype. Furthermore, ELF4 causes ELF3 to form foci in the nucleus. We used expression data to direct a mathematical position of ELF3 in the clock network. This revealed direct effects on the morning clock gene PRR9, and we determined association of ELF3 to a conserved region of the PRR9 promoter. A cis-element in this region was suggestive of ELF3 recruitment by the transcription factor LUX, consistent with both ELF3 and LUX acting genetically downstream of ELF4. Taken together, using integrated approaches, we identified ELF4/ELF3 together with LUX to be pivotal for sustenance of plant circadian rhythms.
Collapse
Affiliation(s)
- Eva Herrero
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Elsebeth Kolmos
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Nora Bujdoso
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Ye Yuan
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Mengmeng Wang
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Markus C. Berns
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Heike Uhlworm
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Reena Saini
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, 60-780 Poznan, Poland
| | - Alex Webb
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Jorge Gonçalves
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Seth J. Davis
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| |
Collapse
|
46
|
Van Buskirk EK, Decker PV, Chen M. Photobodies in light signaling. PLANT PHYSIOLOGY 2012; 158:52-60. [PMID: 21951469 PMCID: PMC3252093 DOI: 10.1104/pp.111.186411] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/22/2011] [Indexed: 05/17/2023]
|
47
|
Sokolova V, Bindics J, Kircher S, Ádám É, Schäfer E, Nagy F, Viczián A. Missense mutation in the amino terminus of phytochrome A disrupts the nuclear import of the photoreceptor. PLANT PHYSIOLOGY 2012; 158:107-18. [PMID: 21969386 PMCID: PMC3252074 DOI: 10.1104/pp.111.186288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phytochromes are the red/far-red photoreceptors in higher plants. Among them, phytochrome A (PHYA) is responsible for the far-red high-irradiance response and for the perception of very low amounts of light, initiating the very-low-fluence response. Here, we report a detailed physiological and molecular characterization of the phyA-5 mutant of Arabidopsis (Arabidopsis thaliana), which displays hyposensitivity to continuous low-intensity far-red light and shows reduced very-low-fluence response and high-irradiance response. Red light-induced degradation of the mutant phyA-5 protein appears to be normal, yet higher residual amounts of phyA-5 are detected in seedlings grown under low-intensity far-red light. We show that (1) the phyA-5 mutant harbors a new missense mutation in the PHYA amino-terminal extension domain and that (2) the complex phenotype of the mutant is caused by reduced nuclear import of phyA-5 under low fluences of far-red light. We also demonstrate that impaired nuclear import of phyA-5 is brought about by weakened binding affinity of the mutant photoreceptor to nuclear import facilitators FHY1 (for FAR-RED ELONGATED HYPOCOTYL1) and FHL (for FHY1-LIKE). Finally, we provide evidence that the signaling and degradation kinetics of constitutively nuclear-localized phyA-5 and phyA are identical. Taken together, our data show that aberrant nucleo/cytoplasmic distribution impairs light-induced degradation of this photoreceptor and that the amino-terminal extension domain mediates the formation of the FHY1/FHL/PHYA far-red-absorbing form complex, whereby it plays a role in regulating the nuclear import of phyA.
Collapse
|
48
|
Oka Y, Kong SG, Matsushita T. A non-covalently attached chromophore can mediate phytochrome B signaling in Arabidopsis. PLANT & CELL PHYSIOLOGY 2011; 52:2088-102. [PMID: 22006939 DOI: 10.1093/pcp/pcr139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Phytochrome B (phyB) is the major informational photoreceptor in light-grown plants. The phyB polypeptide is folded into two domains, the N-terminal domain and the C-terminal domain. The N-terminal domain covalently binds to the chromophore via a particular cysteine residue, which allows the holoprotein to absorb light and undergo a photoreversible conformational change. The N-terminal domain of phyB interacts with transcription factors, such as PIF3 (PHYTOCHROME-INTERACTING FACTOR 3), to transduce the light signal to downstream components. Since substitution of the chromophore attachment site, Cys357, with alanine (C357A) abolishes the biological activity of Arabidopsis phyB, the covalent attachment with the chromophore is widely assumed to be necessary for phyB signal transduction. In this study, we show that Arabidopsis phyB is capable of transducing signals with a non-covalently retained chromophore. Substituting the Tyr276 residue of phyB with histidine (Y276H) is known to confer constitutive phyB signaling. PhyB containing both Y276H and C357A substitutions exhibited light-independent biological activity in transgenic Arabidopsis plants in a chromophore-dependent manner. Spectrophotometric analysis showed that the N-terminal domain of phyB containing just the C357A substitution could retain the chromophore non-covalently. The N-terminal domain containing both the Y276H and C357A substitutions interacted with PIF3 in a light-independent but chromophore-dependent fashion in yeast two-hybrid assays. From these results, we conclude that the constitutive phyB signaling conferred by Y276H requires the chromophore, but that the chromophore does not need to be covalently bonded to phyB.
Collapse
Affiliation(s)
- Yoshito Oka
- RIKEN Plant Science Center, Yokohama, 230-0045 Japan
| | | | | |
Collapse
|
49
|
Altered dark- and photoconversion of phytochrome B mediate extreme light sensitivity and loss of photoreversibility of the phyB-401 mutant. PLoS One 2011; 6:e27250. [PMID: 22073299 PMCID: PMC3207837 DOI: 10.1371/journal.pone.0027250] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 10/12/2011] [Indexed: 11/19/2022] Open
Abstract
The phyB-401 mutant is 10(3) fold more sensitive to red light than its wild-type analogue and shows loss of photoreversibility of hypocotyl growth inhibition. The phyB-401 photoreceptor displays normal spectral properties and shows almost no dark reversion when expressed in yeast cells. To gain insight into the molecular mechanism underlying this complex phenotype, we generated transgenic lines expressing the mutant and wild-type phyB in phyB-9 background. Analysis of these transgenic lines demonstrated that the mutant photoreceptor displays a reduced rate of dark-reversion but normal P(fr) to P(r) photoconversion in vivo and shows an altered pattern of association/dissociation with nuclear bodies compared to wild-type phyB. In addition we show (i) an enhanced responsiveness to far-red light for hypocotyl growth inhibition and CAB2 expression and (ii) that far-red light mediated photoreversibility of red light induced responses, including inhibition of hypocotyl growth, formation of nuclear bodies and induction of CAB2 expression is reduced in these transgenic lines. We hypothesize that the incomplete photoreversibility of signalling is due to the fact that far-red light induced photoconversion of the chromophore is at least partially uncoupled from the P(fr) to P(r) conformation change of the protein. It follows that the phyB-401 photoreceptor retains a P(fr)-like structure (P(r) (*)) for a few hours after the far-red light treatment. The greatly reduced rate of dark reversion and the formation of a biologically active P(r) (*) conformer satisfactorily explain the complex phenotype of the phyB-401 mutant and suggest that amino acid residues surrounding the position 564 G play an important role in fine-tuning phyB signalling.
Collapse
|
50
|
Spectroscopy and a High-Resolution Crystal Structure of Tyr263 Mutants of Cyanobacterial Phytochrome Cph1. J Mol Biol 2011; 413:115-27. [DOI: 10.1016/j.jmb.2011.08.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 12/14/2022]
|