1
|
von Diezmann L, Bristow C, Rog O. Diffusion within the synaptonemal complex can account for signal transduction along meiotic chromosomes. Mol Biol Cell 2024; 35:ar148. [PMID: 39475711 DOI: 10.1091/mbc.e24-05-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2024] Open
Abstract
Meiotic chromosomes efficiently transduce information along their length to regulate the distribution of genetic exchanges (crossovers). However, the mode of signal transduction remains unknown. A conserved protein interface called the synaptonemal complex forms between the parental chromosomes. The synaptonemal complex exhibits liquid-like behaviors, suggesting that the diffusion of signaling molecules along its length could coordinate crossover formation. Here, we directly test the feasibility of such a mechanism by tracking a component of the synaptonemal complex (SYP-3) and a conserved regulator of exchanges (ZHP-3) in live Caenorhabditis elegans gonads. While we find that both proteins diffuse within the synaptonemal complex, ZHP-3 diffuses 4- and 9-fold faster than SYP-3 before and after crossover designation, respectively. We use these measurements to parameterize a physical model for signal transduction. We find that ZHP-3, but not SYP-3, can explore the lengths of chromosomes on the time scale of crossover designation, consistent with a role in the spatial regulation of exchanges. Given the conservation of ZHP-3 paralogues across eukaryotes, we propose that diffusion along the synaptonemal complex may be a conserved mechanism of meiotic regulation. More broadly, our work explores how diffusion compartmentalized by condensates could regulate crucial chromosomal functions.
Collapse
Affiliation(s)
- Lexy von Diezmann
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84114
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84114
| | - Chloe Bristow
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84114
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84114
| | - Ofer Rog
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84114
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84114
| |
Collapse
|
2
|
Saito TT, Yamamoto K, Minami H, Tsujiue T. Caenorhabditis elegans brc-1 mutation increases the number of COSA-1 foci in him-8 and zim-2 mutants. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001077. [PMID: 39132054 PMCID: PMC11310775 DOI: 10.17912/micropub.biology.001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 06/21/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Crossover designation factors such as COSA-1 are concentrated at the specific DNA double-strand break (DSB) sites to promote crossover formation. zim-1 mutants, which show defects in the homologous chromosome pairing of chromosomes II and III, increase the COSA-1 foci/normal bivalent state compared to the expected value. The excess designation was suppressed by an additional mutation in brc-1 in zim-1 mutants. We demonstrated that the number of COSA-1 foci in him-8 and zim-2 mutants, showing defects in the pairing of the X and V chromosomes, respectively, increased compared to the expected value, and brc-1 mutation accelerated the number of COSA-1 foci in oogenesis.
Collapse
Affiliation(s)
- Takamune T. Saito
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Koki Yamamoto
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
- Present address: Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hirohito Minami
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Taiki Tsujiue
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| |
Collapse
|
3
|
Condezo YB, Sainz-Urruela R, Gomez-H L, Salas-Lloret D, Felipe-Medina N, Bradley R, Wolff ID, Tanis S, Barbero JL, Sánchez-Martín M, de Rooij D, Hendriks IA, Nielsen ML, Gonzalez-Prieto R, Cohen PE, Pendas AM, Llano E. RNF212B E3 ligase is essential for crossover designation and maturation during male and female meiosis in the mouse. Proc Natl Acad Sci U S A 2024; 121:e2320995121. [PMID: 38865271 PMCID: PMC11194559 DOI: 10.1073/pnas.2320995121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Meiosis, a reductional cell division, relies on precise initiation, maturation, and resolution of crossovers (COs) during prophase I to ensure the accurate segregation of homologous chromosomes during metaphase I. This process is regulated by the interplay of RING-E3 ligases such as RNF212 and HEI10 in mammals. In this study, we functionally characterized a recently identified RING-E3 ligase, RNF212B. RNF212B colocalizes and interacts with RNF212, forming foci along chromosomes from zygonema onward in a synapsis-dependent and DSB-independent manner. These consolidate into larger foci at maturing COs, colocalizing with HEI10, CNTD1, and MLH1 by late pachynema. Genetically, RNF212B foci formation depends on Rnf212 but not on Msh4, Hei10, and Cntd1, while the unloading of RNF212B at the end of pachynema is dependent on Hei10 and Cntd1. Mice lacking RNF212B, or expressing an inactive RNF212B protein, exhibit modest synapsis defects, a reduction in the localization of pro-CO factors (MSH4, TEX11, RPA, MZIP2) and absence of late CO-intermediates (MLH1). This loss of most COs by diakinesis results in mostly univalent chromosomes. Double mutants for Rnf212b and Rnf212 exhibit an identical phenotype to that of Rnf212b single mutants, while double heterozygous demonstrate a dosage-dependent reduction in CO number, indicating a functional interplay between paralogs. SUMOylome analysis of testes from Rnf212b mutants and pull-down analysis of Sumo- and Ubiquitin-tagged HeLa cells, suggest that RNF212B is an E3-ligase with Ubiquitin activity, serving as a crucial factor for CO maturation. Thus, RNF212 and RNF212B play vital, yet overlapping roles, in ensuring CO homeostasis through their distinct E3 ligase activities.
Collapse
Affiliation(s)
- Yazmine B. Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Raquel Sainz-Urruela
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Laura Gomez-H
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
- Department of Totipotency, Max Planck Institute of Biochemistry, 82152Martinsried, Germany
| | - Daniel Salas-Lloret
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Rachel Bradley
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Ian D. Wolff
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Stephanie Tanis
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Jose Luis Barbero
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040Madrid, Spain
| | | | - Dirk de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht3584CM, The Netherlands
| | - Ivo A. Hendriks
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200Copenhagen, Denmark
| | - Michael L. Nielsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200Copenhagen, Denmark
| | - Román Gonzalez-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Andalusian Center for Molecular Biology and Regenerative MedicineCentro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad-Pablo de Olavide, 41092Sevilla, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41012Sevilla, Spain
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Alberto M. Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
- Departamento de Fisiología, Universidad de Salamanca, 37007Salamanca, Spain
| |
Collapse
|
4
|
Yang Y, Wang N, Liu G, Nan W, Wang B, Gartner A, Zhang H, Hong Y. COSA-1 mediated pro-crossover complex formation promotes meiotic crossing over in C. elegans. Nucleic Acids Res 2024; 52:4375-4392. [PMID: 38412290 PMCID: PMC11077092 DOI: 10.1093/nar/gkae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
Accurate chromosome segregation during meiosis requires the establishment of at least one crossover (CO) between each pair of homologous chromosomes. CO formation depends on a group of conserved pro-CO proteins, which colocalize at CO-designated sites during late meiotic prophase I. However, it remains unclear whether these pro-CO proteins form a functional complex and how they promote meiotic CO formation in vivo. Here, we show that COSA-1, a key component required for CO formation, interacts with other pro-CO factors, MSH-5 and ZHP-3, via its N-terminal disordered region. Point mutations that impair these interactions do not affect CO designation, but they strongly hinder the accumulation of COSA-1 at CO-designated sites and result in defective CO formation. These defects can be partially bypassed by artificially tethering an interaction-compromised COSA-1 derivate to ZHP-3. Furthermore, we revealed that the accumulation of COSA-1 into distinct foci is required to assemble functional 'recombination nodules'. These prevent early CO-designated recombination intermediates from being dismantled by the RTEL-1 helicase and protect late recombination intermediates, such as Holliday junctions, until they are resolved by CO-specific resolvases. Altogether, our findings provide insight into COSA-1 mediated pro-CO complex assembly and its contribution to CO formation.
Collapse
Affiliation(s)
- Yuejun Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Nan Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Guoteng Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Wencong Nan
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Bin Wang
- National Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Anton Gartner
- Institute for Basic Sciences Center for Genomic Integrity, Graduate School for Health Sciences and Technology and Department for Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hongtao Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Ye Hong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
5
|
Kim H, Kim J, Son N, Kuo P, Morgan C, Chambon A, Byun D, Park J, Lee Y, Park YM, Fozard JA, Guérin J, Hurel A, Lambing C, Howard M, Hwang I, Mercier R, Grelon M, Henderson IR, Choi K. Control of meiotic crossover interference by a proteolytic chaperone network. NATURE PLANTS 2024; 10:453-468. [PMID: 38379086 DOI: 10.1038/s41477-024-01633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Meiosis is a specialized eukaryotic division that produces genetically diverse gametes for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal exchanges, called crossovers, which recombine genetic variation. Meiotic crossovers are stringently controlled with at least one obligate exchange forming per chromosome pair, while closely spaced crossovers are inhibited by interference. In Arabidopsis, crossover positions can be explained by a diffusion-mediated coarsening model, in which large, approximately evenly spaced foci of the pro-crossover E3 ligase HEI10 grow at the expense of smaller, closely spaced clusters. However, the mechanisms that control HEI10 dynamics during meiosis remain unclear. Here, through a forward genetic screen in Arabidopsis, we identified high crossover rate3 (hcr3), a dominant-negative mutant that reduces crossover interference and increases crossovers genome-wide. HCR3 encodes J3, a co-chaperone related to HSP40, which acts to target protein aggregates and biomolecular condensates to the disassembly chaperone HSP70, thereby promoting proteasomal degradation. Consistently, we show that a network of HCR3 and HSP70 chaperones facilitates proteolysis of HEI10, thereby regulating interference and the recombination landscape. These results reveal a new role for the HSP40/J3-HSP70 chaperones in regulating chromosome-wide dynamics of recombination via control of HEI10 proteolysis.
Collapse
Affiliation(s)
- Heejin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jaeil Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Namil Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Pallas Kuo
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Rothamsted Research, Harpenden, UK
| | - Chris Morgan
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Aurélie Chambon
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Dohwan Byun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jihye Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Youngkyung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yeong Mi Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - John A Fozard
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Julie Guérin
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Aurélie Hurel
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Rothamsted Research, Harpenden, UK
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
6
|
Tan Q, Zhang X, Luo Q, Xu YC, Zhang J, Liang WQ. The RING Domain of Rice HEI10 is Essential for Male, But Not Female Fertility. RICE (NEW YORK, N.Y.) 2024; 17:3. [PMID: 38180592 PMCID: PMC10769960 DOI: 10.1186/s12284-023-00681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
HEI10 is a conserved E3 ubiquitin ligase involved in crossover formation during meiosis, and is thus essential for both male and female gamete development. Here, we have discovered a novel allele of HEI10 in rice that produces a truncated HEI10 protein missing its N-terminal RING domain, namely sh1 (shorter hei10 1). Unlike previously reported hei10 null alleles that are completely sterile, sh1 exhibits complete male sterility but retains partial female fertility. The causative sh1 mutation is a 76 kb inversion between OsFYVE4 and HEI10, which breaks the integrity of both genes. Allelic tests and complementation assays revealed that the gamete developmental defects of sh1 were caused by disruption of HEI10. Further studies demonstrated that short HEI10 can correctly localise to the nucleus, where it could interact with other proteins that direct meiosis; expressing short HEI10 in hei10 null lines partially restores female fertility. Our data reveal an intriguing mutant allele of HEI10 with differential effects on male and female fertility, providing a new tool to explore similarities and differences between male and female meiosis.
Collapse
Affiliation(s)
- Qian Tan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Luo
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Chun Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wan-Qi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Rafiei N, Ronceret A. Crossover interference mechanism: New lessons from plants. Front Cell Dev Biol 2023; 11:1156766. [PMID: 37274744 PMCID: PMC10236007 DOI: 10.3389/fcell.2023.1156766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Plants are the source of our understanding of several fundamental biological principles. It is well known that Gregor Mendel discovered the laws of Genetics in peas and that maize was used for the discovery of transposons by Barbara McClintock. Plant models are still useful for the understanding of general key biological concepts. In this article, we will focus on discussing the recent plant studies that have shed new light on the mysterious mechanisms of meiotic crossover (CO) interference, heterochiasmy, obligatory CO, and CO homeostasis. Obligatory CO is necessary for the equilibrated segregation of homologous chromosomes during meiosis. The tight control of the different male and female CO rates (heterochiasmy) enables both the maximization and minimization of genome shuffling. An integrative model can now predict these observed aspects of CO patterning in plants. The mechanism proposed considers the Synaptonemal Complex as a canalizing structure that allows the diffusion of a class I CO limiting factor linearly on synapsed bivalents. The coarsening of this limiting factor along the SC explains the interfering spacing between COs. The model explains the observed coordinated processes between synapsis, CO interference, CO insurance, and CO homeostasis. It also easily explains heterochiasmy just considering the different male and female SC lengths. This mechanism is expected to be conserved in other species.
Collapse
|
8
|
Girard C, Zwicker D, Mercier R. The regulation of meiotic crossover distribution: a coarse solution to a century-old mystery? Biochem Soc Trans 2023:233030. [PMID: 37145037 DOI: 10.1042/bst20221329] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Meiotic crossovers, which are exchanges of genetic material between homologous chromosomes, are more evenly and distantly spaced along chromosomes than expected by chance. This is because the occurrence of one crossover reduces the likelihood of nearby crossover events - a conserved and intriguing phenomenon called crossover interference. Although crossover interference was first described over a century ago, the mechanism allowing coordination of the fate of potential crossover sites half a chromosome away remains elusive. In this review, we discuss the recently published evidence supporting a new model for crossover patterning, coined the coarsening model, and point out the missing pieces that are still needed to complete this fascinating puzzle.
Collapse
Affiliation(s)
- Chloe Girard
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - David Zwicker
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| |
Collapse
|
9
|
Almanzar DE, Gordon SG, Bristow C, Hamrick A, von Diezmann L, Liu H, Rog O. Meiotic DNA exchanges in C. elegans are promoted by proximity to the synaptonemal complex. Life Sci Alliance 2023; 6:e202301906. [PMID: 36697255 PMCID: PMC9877436 DOI: 10.26508/lsa.202301906] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
During meiosis, programmed double-strand DNA breaks are repaired to form exchanges between the parental chromosomes called crossovers. Chromosomes lacking a crossover fail to segregate accurately into the gametes, leading to aneuploidy. In addition to engaging the homolog, crossover formation requires the promotion of exchanges, rather than non-exchanges, as repair products. However, the mechanism underlying this meiosis-specific preference is not fully understood. Here, we study the regulation of meiotic sister chromatid exchanges in Caenorhabditis elegans by direct visualization. We find that a conserved chromosomal interface that promotes exchanges between the parental chromosomes, the synaptonemal complex, can also promote exchanges between the sister chromatids. In both cases, exchanges depend on the recruitment of the same set of pro-exchange factors to repair sites. Surprisingly, although the synaptonemal complex usually assembles between the two DNA molecules undergoing an exchange, its activity does not rely on a specific chromosome conformation. This suggests that the synaptonemal complex regulates exchanges-both crossovers and sister exchanges-by establishing a nuclear domain conducive to nearby recruitment of exchange-promoting factors.
Collapse
Affiliation(s)
- David E Almanzar
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT, USA
| | - Spencer G Gordon
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT, USA
| | - Chloe Bristow
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT, USA
| | - Antonia Hamrick
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT, USA
| | - Lexy von Diezmann
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT, USA
| | - Hanwenheng Liu
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT, USA
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Ito M, Shinohara A. Chromosome architecture and homologous recombination in meiosis. Front Cell Dev Biol 2023; 10:1097446. [PMID: 36684419 PMCID: PMC9853400 DOI: 10.3389/fcell.2022.1097446] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Meiocytes organize higher-order chromosome structures comprising arrays of chromatin loops organized at their bases by linear axes. As meiotic prophase progresses, the axes of homologous chromosomes align and synapse along their lengths to form ladder-like structures called synaptonemal complexes (SCs). The entire process of meiotic recombination, from initiation via programmed DNA double-strand breaks (DSBs) to completion of DSB repair with crossover or non-crossover outcomes, occurs in the context of chromosome axes and SCs. These meiosis-specific chromosome structures provide specialized environments for the regulation of DSB formation and crossing over. In this review, we summarize insights into the importance of chromosome architecture in the regulation of meiotic recombination, focusing on cohesin-mediated axis formation, DSB regulation via tethered loop-axis complexes, inter-homolog template bias facilitated by axial proteins, and crossover regulation in the context of the SCs. We also discuss emerging evidence that the SUMO and the ubiquitin-proteasome system function in the organization of chromosome structure and regulation of meiotic recombination.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
11
|
Lascarez-Lagunas LI, Martinez-Garcia M, Nadarajan S, Diaz-Pacheco BN, Berson E, Colaiácovo MP. Chromatin landscape, DSB levels, and cKU-70/80 contribute to patterning of meiotic DSB processing along chromosomes in C. elegans. PLoS Genet 2023; 19:e1010627. [PMID: 36706157 PMCID: PMC9907818 DOI: 10.1371/journal.pgen.1010627] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/08/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Programmed DNA double-strand break (DSB) formation is essential for achieving accurate chromosome segregation during meiosis. DSB repair timing and template choice are tightly regulated. However, little is known about how DSB distribution and the choice of repair pathway are regulated along the length of chromosomes, which has direct effects on the recombination landscape and chromosome remodeling at late prophase I. Here, we use the spatiotemporal resolution of meiosis in the Caenorhabditis elegans germline along with genetic approaches to study distribution of DSB processing and its regulation. High-resolution imaging of computationally straightened chromosomes immunostained for the RAD-51 recombinase marking DSB repair sites reveals that the pattern of RAD-51 foci throughout pachytene resembles crossover distribution in wild type. Specifically, RAD-51 foci occur primarily along the gene-poor distal thirds of the chromosomes in both early and late pachytene, and on both the X and the autosomes. However, this biased off-center distribution can be abrogated by the formation of excess DSBs. Reduced condensin function, but not an increase in total physical axial length, results in a homogeneous distribution of RAD-51 foci, whereas regulation of H3K9 methylation is required for the enrichment of RAD-51 at off-center positions. Finally, the DSB recognition heterodimer cKU-70/80, but not the non-homologous end-joining canonical ligase LIG-4, contributes to the enriched off-center distribution of RAD-51 foci. Taken together, our data supports a model by which regulation of the chromatin landscape, DSB levels, and DSB detection by cKU-70/80 collaborate to promote DSB processing by homologous recombination at off-center regions of the chromosomes in C. elegans.
Collapse
Affiliation(s)
- Laura I. Lascarez-Lagunas
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marina Martinez-Garcia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Saravanapriah Nadarajan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brianna N. Diaz-Pacheco
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizaveta Berson
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mónica P. Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Wang Y, Gao W, Wang L, Wang R, Yang Z, Luo F, He Y, Wang Z, Wang F, Sun Q, Li J, Zhang D. FBXW24 controls female meiotic prophase progression by regulating SYCP3 ubiquitination. Clin Transl Med 2022; 12:e891. [PMID: 35858239 PMCID: PMC9299759 DOI: 10.1002/ctm2.891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND An impeccable female meiotic prophase is critical for producing a high-quality oocyte and, ultimately, a healthy newborn. SYCP3 is a key component of the synaptonemal complex regulating meiotic homologous recombination. However, what regulates SYCP3 stability is unknown. METHODS Fertility assays, follicle counting, meiotic prophase stage (leptotene, zygotene, pachytene and diplotene) analysis and live imaging were employed to examine how FBXW24 knockout (KO) affect female fertility, follicle reserve, oocyte quality, meiotic prophase progression of female germ cells, and meiosis of oocytes. Western blot and immunostaining were used to examined the levels & signals (intensity, foci) of SYCP3 and multiple key DSB indicators & repair proteins (γH2AX, RPA2, p-CHK2, RAD51, MLH1, HORMAD1, TRIP13) after FBXW24 KO. Co-IP and immuno-EM were used to examined the interaction between FBXW24 and SYCP3; Mass spec was used to characterize the ubiquitination sites in SYCP3; In vivo & in vitro ubiquitination assays were utilized to determine the key sites in SYCP3 & FBXW24 for ubiquitination. RESULTS Fbxw24-knockout (KO) female mice were infertile due to massive oocyte death upon meiosis entry. Fbxw24-KO oocytes were defective due to elevated DNA double-strand breaks (DSBs) and inseparable homologous chromosomes. Fbxw24-KO germ cells showed increased SYCP3 levels, delayed prophase progression, increased DSBs, and decreased crossover foci. Next, we found that FBXW24 directly binds and ubiquitinates SYCP3 to regulate its stability. In addition, several key residues important for SYCP3 ubiquitination and FBXW24 ubiquitinating activity were characterized. CONCLUSIONS We proposed that FBXW24 regulates the timely degradation of SYCP3 to ensure normal crossover and DSB repair during pachytene. FBXW24-KO delayed SYCP3 degradation and DSB repair from pachytene until metaphase II (MII), ultimately causing failure in oocyte maturation, oocyte death, and infertility.
Collapse
Affiliation(s)
- Yang Wang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Wen‐Yi Gao
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Li‐Li Wang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Ruo‐Lei Wang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Zhi‐Xia Yang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Fu‐Qiang Luo
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Yu‐Hao He
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Zi‐Bin Wang
- Analysis and Test CenterNanjing Medical UniversityNanjingChina
| | - Fu‐Qiang Wang
- Fertility Preservation Lab and Guangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouChina
| | - Qing‐Yuan Sun
- Fertility Preservation Lab and Guangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouChina
| | - Jing Li
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Dong Zhang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Animal Core FacilityNanjing Medical UniversityNanjingP. R. China
| |
Collapse
|
13
|
Haversat J, Woglar A, Klatt K, Akerib CC, Roberts V, Chen SY, Arur S, Villeneuve AM, Kim Y. Robust designation of meiotic crossover sites by CDK-2 through phosphorylation of the MutSγ complex. Proc Natl Acad Sci U S A 2022; 119:e2117865119. [PMID: 35576467 PMCID: PMC9173770 DOI: 10.1073/pnas.2117865119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/05/2022] [Indexed: 02/07/2023] Open
Abstract
Crossover formation is essential for proper segregation of homologous chromosomes during meiosis. Here, we show that Caenorhabditis elegans cyclin-dependent kinase 2 (CDK-2) partners with cyclin-like protein COSA-1 to promote crossover formation by promoting conversion of meiotic double-strand breaks into crossover–specific recombination intermediates. Further, we identify MutSγ component MSH-5 as a CDK-2 phosphorylation target. MSH-5 has a disordered C-terminal tail that contains 13 potential CDK phosphosites and is required to concentrate crossover–promoting proteins at recombination sites. Phosphorylation of the MSH-5 tail appears dispensable in a wild-type background, but when MutSγ activity is partially compromised, crossover formation and retention of COSA-1 at recombination sites are exquisitely sensitive to phosphosite loss. Our data support a model in which robustness of crossover designation reflects a positive feedback mechanism involving CDK-2–mediated phosphorylation and scaffold-like properties of the MSH5 C-terminal tail, features that combine to promote full recruitment and activity of crossover–promoting complexes.
Collapse
Affiliation(s)
- Jocelyn Haversat
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Alexander Woglar
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Kayla Klatt
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Chantal C. Akerib
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Victoria Roberts
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Shin-Yu Chen
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Swathi Arur
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Anne M. Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Yumi Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
14
|
Velkova M, Silva N, Dello Stritto MR, Schleiffer A, Barraud P, Hartl M, Jantsch V. Caenorhabditis elegans RMI2 functional homolog-2 (RMIF-2) and RMI1 (RMH-1) have both overlapping and distinct meiotic functions within the BTR complex. PLoS Genet 2021; 17:e1009663. [PMID: 34252074 PMCID: PMC8318279 DOI: 10.1371/journal.pgen.1009663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/28/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Homologous recombination is a high-fidelity repair pathway for DNA double-strand breaks employed during both mitotic and meiotic cell divisions. Such repair can lead to genetic exchange, originating from crossover (CO) generation. In mitosis, COs are suppressed to prevent sister chromatid exchange. Here, the BTR complex, consisting of the Bloom helicase (HIM-6 in worms), topoisomerase 3 (TOP-3), and the RMI1 (RMH-1 and RMH-2) and RMI2 scaffolding proteins, is essential for dismantling joint DNA molecules to form non-crossovers (NCOs) via decatenation. In contrast, in meiosis COs are essential for accurate chromosome segregation and the BTR complex plays distinct roles in CO and NCO generation at different steps in meiotic recombination. RMI2 stabilizes the RMI1 scaffolding protein, and lack of RMI2 in mitosis leads to elevated sister chromatid exchange, as observed upon RMI1 knockdown. However, much less is known about the involvement of RMI2 in meiotic recombination. So far, RMI2 homologs have been found in vertebrates and plants, but not in lower organisms such as Drosophila, yeast, or worms. We report the identification of the Caenorhabditis elegans functional homolog of RMI2, which we named RMIF-2. The protein shows a dynamic localization pattern to recombination foci during meiotic prophase I and concentration into recombination foci is mutually dependent on other BTR complex proteins. Comparative analysis of the rmif-2 and rmh-1 phenotypes revealed numerous commonalities, including in regulating CO formation and directing COs toward chromosome arms. Surprisingly, the prevalence of heterologous recombination was several fold lower in the rmif-2 mutant, suggesting that RMIF-2 may be dispensable or less strictly required for some BTR complex-mediated activities during meiosis. Bloom syndrome is caused by mutations in proteins of the BTR complex (consisting of the Bloom helicase, topoisomerase 3, and the RMI1 and RMI2 scaffolding proteins) and the clinical characteristics are growth deficiency, short stature, skin photosensitivity, and increased cancer predisposition. At the cellular level, characteristic features are the presence of increased sister chromatid exchange on chromosomes; unresolved DNA recombination intermediates that eventually cause genome instability; and erroneous DNA repair by heterologous recombination (recombination between non-identical sequences, extremely rare in wild type animals), which can trigger translocations and chromosomal rearrangements. Identification of the Caenorhabditis elegans ortholog of RMI2 (called RMIF-2) allowed us to compare heterologous recombination in the germline of mutants of various BTR complex proteins. The heterologous recombination rate was several fold lower in rmif-2 mutants than in mutants of rmh-1 and him-6 (worm homologs of RMI1 and the Bloom helicase, respectively). Nevertheless, many phenotypic features point at RMIF-2 working together with RMH-1. If these germline functions of RMI2/RMIF-2 are conserved in humans, this might mean that individuals with RMI2 mutations have a lower risk of translocations and genome rearrangements than those with mutations in the other BTR complex genes.
Collapse
Affiliation(s)
- Maria Velkova
- Department of Chromosome Biology, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
| | - Nicola Silva
- Department of Chromosome Biology, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
| | | | - Alexander Schleiffer
- Research Institute of Molecular Pathology, Campus Vienna BioCenter, Vienna 1, Vienna, Austria
- Institute of Molecular Biotechnology, Campus Vienna BioCenter, Vienna, Austria
| | - Pierre Barraud
- Expression Génétique Microbienne, UMR 8261, Centre national de la recherche scientifique, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
- * E-mail:
| |
Collapse
|
15
|
Abstract
The formation of crossovers between homologous chromosomes is key to sexual reproduction. In most species, crossovers are spaced further apart than would be expected if they formed independently, a phenomenon termed crossover interference. Despite more than a century of study, the molecular mechanisms implementing crossover interference remain a subject of active debate. Recent findings of how signaling proteins control the formation of crossovers and about the interchromosomal interface in which crossovers form offer new insights into this process. In this Review, we present a cell biological and biophysical perspective on crossover interference, summarizing the evidence that links interference to the spatial, dynamic, mechanical and molecular properties of meiotic chromosomes. We synthesize this physical understanding in the context of prevailing mechanistic models that aim to explain how crossover interference is implemented.
Collapse
Affiliation(s)
- Lexy von Diezmann
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA.,School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ofer Rog
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA.,School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
16
|
Orr JN, Waugh R, Colas I. Ubiquitination in Plant Meiosis: Recent Advances and High Throughput Methods. FRONTIERS IN PLANT SCIENCE 2021; 12:667314. [PMID: 33897750 PMCID: PMC8058418 DOI: 10.3389/fpls.2021.667314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 06/06/2023]
Abstract
Meiosis is a specialized cell division which is essential to sexual reproduction. The success of this highly ordered process involves the timely activation, interaction, movement, and removal of many proteins. Ubiquitination is an extraordinarily diverse post-translational modification with a regulatory role in almost all cellular processes. During meiosis, ubiquitin localizes to chromatin and the expression of genes related to ubiquitination appears to be enhanced. This may be due to extensive protein turnover mediated by proteasomal degradation. However, degradation is not the only substrate fate conferred by ubiquitination which may also mediate, for example, the activation of key transcription factors. In plant meiosis, the specific roles of several components of the ubiquitination cascade-particularly SCF complex proteins, the APC/C, and HEI10-have been partially characterized indicating diverse roles in chromosome segregation, recombination, and synapsis. Nonetheless, these components remain comparatively poorly understood to their counterparts in other processes and in other eukaryotes. In this review, we present an overview of our understanding of the role of ubiquitination in plant meiosis, highlighting recent advances, remaining challenges, and high throughput methods which may be used to overcome them.
Collapse
Affiliation(s)
- Jamie N. Orr
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- School of Agriculture and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
17
|
Zhang Z, Xie S, Wang R, Guo S, Zhao Q, Nie H, Liu Y, Zhang F, Chen M, Liu L, Meng X, Liu M, Zhao L, Colaiácovo MP, Zhou J, Gao J. Multivalent weak interactions between assembly units drive synaptonemal complex formation. J Cell Biol 2021; 219:151585. [PMID: 32211900 PMCID: PMC7199860 DOI: 10.1083/jcb.201910086] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/22/2020] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
The synaptonemal complex (SC) is an ordered but highly dynamic structure assembled between homologous chromosomes to control interhomologous crossover formation, ensuring accurate meiotic chromosome segregation. However, the mechanisms regulating SC assembly and dynamics remain unclear. Here, we identified two new SC components, SYP-5 and SYP-6, in Caenorhabditis elegans that have distinct expression patterns and form distinct SC assembly units with other SYPs through stable interactions. SYP-5 and SYP-6 exhibit diverse in vivo SC regulatory functions and distinct phase separation properties in cells. Charge-interacting elements (CIEs) are enriched in SC intrinsically disordered regions (IDRs), and IDR deletion or CIE removal confirmed a requirement for these elements in SC regulation. Our data support the theory that multivalent weak interactions between the SC units drive SC formation and that CIEs confer multivalency to the assembly units.
Collapse
Affiliation(s)
- Zhenguo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Songbo Xie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Shuqun Guo
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Qiuchen Zhao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Hui Nie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Yuanyuan Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Fengguo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Miao Chen
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Libo Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Xiaoqian Meng
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Min Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Li Zhao
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA.,Department of Laboratory Medicine, Children's Hospital Boston, Boston, MA
| | | | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
18
|
Gartner A, Engebrecht J. DNA repair, recombination, and damage signaling. Genetics 2021; 220:6522877. [PMID: 35137093 PMCID: PMC9097270 DOI: 10.1093/genetics/iyab178] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
DNA must be accurately copied and propagated from one cell division to the next, and from one generation to the next. To ensure the faithful transmission of the genome, a plethora of distinct as well as overlapping DNA repair and recombination pathways have evolved. These pathways repair a large variety of lesions, including alterations to single nucleotides and DNA single and double-strand breaks, that are generated as a consequence of normal cellular function or by external DNA damaging agents. In addition to the proteins that mediate DNA repair, checkpoint pathways have also evolved to monitor the genome and coordinate the action of various repair pathways. Checkpoints facilitate repair by mediating a transient cell cycle arrest, or through initiation of cell suicide if DNA damage has overwhelmed repair capacity. In this chapter, we describe the attributes of Caenorhabditis elegans that facilitate analyses of DNA repair, recombination, and checkpoint signaling in the context of a whole animal. We review the current knowledge of C. elegans DNA repair, recombination, and DNA damage response pathways, and their role during development, growth, and in the germ line. We also discuss how the analysis of mutational signatures in C. elegans is helping to inform cancer mutational signatures in humans.
Collapse
Affiliation(s)
- Anton Gartner
- Department for Biological Sciences, IBS Center for Genomic Integrity, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea,Corresponding author: (A.G.); (J.E.)
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA,Corresponding author: (A.G.); (J.E.)
| |
Collapse
|
19
|
Russo AE, Nelson CR, Bhalla N. Mutating two putative phosphorylation sites on ZHP-3 does not affect its localization or function during meiotic chromosome segregation. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 33490887 PMCID: PMC7816088 DOI: 10.17912/micropub.biology.000354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Meiotic chromosome segregation depends on crossover recombination to link homologous chromosomes together and promote accurate segregation in the first meiotic division. In Caenorhabditis elegans, a conserved RING finger protein, ZHP-3, is essential for meiotic recombination and localizes to sites of crossover formation. Whether ZHP-3 is regulated to promote recombination remains poorly understood. In vitro analysis identified two putative CHK-1 kinase phosphorylation sites on ZHP-3. However, mutation of the phosphorylation sites identified in vitro had no effect on meiotic recombination or localization of ZHP-3. Thus, these two phosphorylation sites appear to be dispensable for ZHP-3’s role in meiotic recombination or its localization.
Collapse
Affiliation(s)
- Anna E Russo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Christian R Nelson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
20
|
Sato-Carlton A, Nakamura-Tabuchi C, Li X, Boog H, Lehmer MK, Rosenberg SC, Barroso C, Martinez-Perez E, Corbett KD, Carlton PM. Phosphoregulation of HORMA domain protein HIM-3 promotes asymmetric synaptonemal complex disassembly in meiotic prophase in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008968. [PMID: 33175901 PMCID: PMC7717579 DOI: 10.1371/journal.pgen.1008968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/04/2020] [Accepted: 10/17/2020] [Indexed: 11/27/2022] Open
Abstract
In the two cell divisions of meiosis, diploid genomes are reduced into complementary haploid sets through the discrete, two-step removal of chromosome cohesion, a task carried out in most eukaryotes by protecting cohesion at the centromere until the second division. In eukaryotes without defined centromeres, however, alternative strategies have been innovated. The best-understood of these is found in the nematode Caenorhabditis elegans: after the single off-center crossover divides the chromosome into two segments, or arms, several chromosome-associated proteins or post-translational modifications become specifically partitioned to either the shorter or longer arm, where they promote the correct timing of cohesion loss through as-yet unknown mechanisms. Here, we investigate the meiotic axis HORMA-domain protein HIM-3 and show that it becomes phosphorylated at its C-terminus, within the conserved “closure motif” region bound by the related HORMA-domain proteins HTP-1 and HTP-2. Binding of HTP-2 is abrogated by phosphorylation of the closure motif in in vitro assays, strongly suggesting that in vivo phosphorylation of HIM-3 likely modulates the hierarchical structure of the chromosome axis. Phosphorylation of HIM-3 only occurs on synapsed chromosomes, and similarly to other previously-described phosphorylated proteins of the synaptonemal complex, becomes restricted to the short arm after designation of crossover sites. Regulation of HIM-3 phosphorylation status is required for timely disassembly of synaptonemal complex central elements from the long arm, and is also required for proper timing of HTP-1 and HTP-2 dissociation from the short arm. Phosphorylation of HIM-3 thus plays a role in establishing the identity of short and long arms, thereby contributing to the robustness of the two-step chromosome segregation. To segregate properly in meiosis, cohesion between replicated chromosomes must remain after the first meiotic cell division, so chromosomes can be held together until they finally separate in the second division. While the majority of organisms use centromeres to protect chromosome cohesion in the first division, the nematode worm C. elegans, which lacks single centromeres, instead protects cohesion only on a segment of the chromosome known as the “long arm”. The long arm (and its complement, the short arm) are known to accumulate specific proteins and protein modifications, but it is not known how the short and long arms are first distinguished, nor how their separate functions are carried out. We report here that the chromosome axis protein HIM-3 and its modification by phosphorylation is important for ensuring the robust establishment of short and long arm functions. We show that phosphorylated HIM-3 partitions to the short arms after crossover recombination sites are designated, and HIM-3 mutants that mimic constitutive phosphorylation delay the normal establishment of the two complementary arm domains. Our findings reveal another layer of regulation to an outstanding mystery in chromosome biology.
Collapse
Affiliation(s)
| | | | - Xuan Li
- Kyoto University, Graduate School of Biostudies, Japan
| | - Hendrik Boog
- Kyoto University, Graduate School of Biostudies, Japan
| | - Madison K. Lehmer
- Department of Chemistry and Biochemistry, University of California, San Diego, United States of America
| | - Scott C. Rosenberg
- Department of Chemistry and Biochemistry, University of California, San Diego, United States of America
| | - Consuelo Barroso
- MRC London Institute of Medical Sciences, Imperial College, London
| | | | - Kevin D. Corbett
- Department of Chemistry and Biochemistry, University of California, San Diego, United States of America
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States of America
- Ludwig Institute for Cancer Research, San Diego Branch, United States of America
| | - Peter Mark Carlton
- Kyoto University, Graduate School of Biostudies, Japan
- Kyoto University, Radiation Biology Center, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Japan
- * E-mail:
| |
Collapse
|
21
|
Lascarez-Lagunas LI, Herruzo E, Grishok A, San-Segundo PA, Colaiácovo MP. DOT-1.1-dependent H3K79 methylation promotes normal meiotic progression and meiotic checkpoint function in C. elegans. PLoS Genet 2020; 16:e1009171. [PMID: 33104701 PMCID: PMC7644094 DOI: 10.1371/journal.pgen.1009171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/05/2020] [Accepted: 10/06/2020] [Indexed: 01/02/2023] Open
Abstract
Epigenetic modifiers are emerging as important regulators of the genome. However, how they regulate specific processes during meiosis is not well understood. Methylation of H3K79 by the histone methyltransferase Dot1 has been shown to be involved in the maintenance of genomic stability in various organisms. In S. cerevisiae, Dot1 modulates the meiotic checkpoint response triggered by synapsis and/or recombination defects by promoting Hop1-dependent Mek1 activation and Hop1 distribution along unsynapsed meiotic chromosomes, at least in part, by regulating Pch2 localization. However, how this protein regulates meiosis in metazoans is unknown. Here, we describe the effects of H3K79me depletion via analysis of dot-1.1 or zfp-1 mutants during meiosis in Caenorhabditis elegans. We observed decreased fertility and increased embryonic lethality in dot-1.1 mutants suggesting meiotic dysfunction. We show that DOT-1.1 plays a role in the regulation of pairing, synapsis and recombination in the worm. Furthermore, we demonstrate that DOT-1.1 is an important regulator of mechanisms surveilling chromosome synapsis during meiosis. In sum, our results reveal that regulation of H3K79me plays an important role in coordinating events during meiosis in C. elegans.
Collapse
Affiliation(s)
- Laura I. Lascarez-Lagunas
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, United States of America
| | - Esther Herruzo
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas and University of Salamanca, Salamanca, Spain
| | - Alla Grishok
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States of America
- Genome Science Institute, Boston University School of Medicine, Boston, MA, United States of America
| | - Pedro A. San-Segundo
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas and University of Salamanca, Salamanca, Spain
| | - Mónica P. Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
22
|
Janisiw E, Raices M, Balmir F, Paulin LF, Baudrimont A, von Haeseler A, Yanowitz JL, Jantsch V, Silva N. Poly(ADP-ribose) glycohydrolase coordinates meiotic DNA double-strand break induction and repair independent of its catalytic activity. Nat Commun 2020; 11:4869. [PMID: 32978394 PMCID: PMC7519143 DOI: 10.1038/s41467-020-18693-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Poly(ADP-ribosyl)ation is a reversible post-translational modification synthetized by ADP-ribose transferases and removed by poly(ADP-ribose) glycohydrolase (PARG), which plays important roles in DNA damage repair. While well-studied in somatic tissues, much less is known about poly(ADP-ribosyl)ation in the germline, where DNA double-strand breaks are introduced by a regulated program and repaired by crossover recombination to establish a tether between homologous chromosomes. The interaction between the parental chromosomes is facilitated by meiotic specific adaptation of the chromosome axes and cohesins, and reinforced by the synaptonemal complex. Here, we uncover an unexpected role for PARG in coordinating the induction of meiotic DNA breaks and their homologous recombination-mediated repair in Caenorhabditis elegans. PARG-1/PARG interacts with both axial and central elements of the synaptonemal complex, REC-8/Rec8 and the MRN/X complex. PARG-1 shapes the recombination landscape and reinforces the tightly regulated control of crossover numbers without requiring its catalytic activity. We unravel roles in regulating meiosis, beyond its enzymatic activity in poly(ADP-ribose) catabolism. Poly(ADP-ribose) glycohydrolase (PARG) is involved in different cellular processes including DNA repair. Here the authors reveal a role for PARG in regulating meiotic DNA double strand break induction and repair in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Eva Janisiw
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria.,Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Marilina Raices
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fabiola Balmir
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,AHN Center for Reproductive Medicine, AHN McCandless, Pittsburgh, PA, USA
| | - Luis F Paulin
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, Medical University of Vienna, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Antoine Baudrimont
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, Medical University of Vienna, Vienna BioCenter, University of Vienna, Vienna, Austria.,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Judith L Yanowitz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Nicola Silva
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
23
|
Systematic analysis of long intergenic non-coding RNAs in C. elegans germline uncovers roles in somatic growth. RNA Biol 2020; 18:435-445. [PMID: 32892705 DOI: 10.1080/15476286.2020.1814549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) are transcripts longer than 200 nucleotides that are transcribed from non-coding loci yet undergo biosynthesis similar to coding mRNAs. The disproportional number of lincRNAs expressed in testes suggests that lincRNAs are important during gametogenesis, but experimental evidence has implicated very few lincRNAs in this process. We took advantage of the relatively limited number of lincRNAs in the genome of the nematode Caenorhabditis elegans to systematically analyse the functions of lincRNAs during meiosis. We deleted six lincRNA genes that are highly and dynamically expressed in the C. elegans gonad and tested the effects on central meiotic processes. Surprisingly, whereas the lincRNA deletions did not strongly impact fertility, germline apoptosis, crossovers, or synapsis, linc-4 was required for somatic growth. Slower growth was observed in linc-4-deletion mutants and in worms depleted of linc-4 using RNAi, indicating that linc-4 transcripts are required for this post-embryonic process. Unexpectedly, analysis of worms depleted of linc-4 in soma versus germline showed that the somatic role stems from linc-4 expression in germline cells. This unique feature suggests that some lincRNAs, like some small non-coding RNAs, are required for germ-soma interactions.
Collapse
|
24
|
Garcia-Muse T, Galindo-Diaz U, Garcia-Rubio M, Martin JS, Polanowska J, O'Reilly N, Aguilera A, Boulton SJ. A Meiotic Checkpoint Alters Repair Partner Bias to Permit Inter-sister Repair of Persistent DSBs. Cell Rep 2020; 26:775-787.e5. [PMID: 30650366 PMCID: PMC6334227 DOI: 10.1016/j.celrep.2018.12.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022] Open
Abstract
Accurate meiotic chromosome segregation critically depends on the formation of inter-homolog crossovers initiated by double-strand breaks (DSBs). Inaccuracies in this process can drive aneuploidy and developmental defects, but how meiotic cells are protected from unscheduled DNA breaks remains unexplored. Here we define a checkpoint response to persistent meiotic DSBs in C. elegans that phosphorylates the synaptonemal complex (SC) to switch repair partner from the homolog to the sister chromatid. A key target of this response is the core SC component SYP-1, which is phosphorylated in response to ionizing radiation (IR) or unrepaired meiotic DSBs. Failure to phosphorylate (syp-16A) or dephosphorylate (syp-16D) SYP-1 in response to DNA damage results in chromosome non-dysjunction, hyper-sensitivity to IR-induced DSBs, and synthetic lethality with loss of brc-1BRCA1. Since BRC-1 is required for inter-sister repair, these observations reveal that checkpoint-dependent SYP-1 phosphorylation safeguards the germline against persistent meiotic DSBs by channelling repair to the sister chromatid. Meiotic DNA damage triggers phosphorylation of the synaptonemal complex (SC) ATM-ATR kinases phosphorylate the SC in response to excessive meiotic DSBs SC phosphorylation channels DNA repair to the sister chromatid
Collapse
Affiliation(s)
- Tatiana Garcia-Muse
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain; Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK.
| | - U Galindo-Diaz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain
| | - M Garcia-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain
| | - J S Martin
- Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - J Polanowska
- Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - N O'Reilly
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, Midland Road, London, UK
| | - A Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain.
| | - Simon J Boulton
- Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK; DSB Repair Metabolism Laboratory, The Francis Crick Institute, Midland Road, London, UK.
| |
Collapse
|
25
|
Liu C, Zhao H, Xiao S, Han T, Chen Y, Wang T, Ma Y, Gao H, Xie Z, Du L, Li J, Li G, Li W. Slx5p-Slx8p Promotes Accurate Chromosome Segregation by Mediating the Degradation of Synaptonemal Complex Components during Meiosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1900739. [PMID: 32099749 PMCID: PMC7029635 DOI: 10.1002/advs.201900739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Meiosis increases genetic diversity, yet the genome complement needs to be stable to ensure offspring viability. Both small ubiquitin-like modifier (SUMO) and ubiquitin have been reported to participate in meiotic regulation, yet functions of the SUMO-ubiquitination crosstalk in meiosis remain unclear. Here, it is reported that a SUMO-targeted ubiquitin ligase, Slx8p, promotes accurate chromosome segregation during meiosis, since the deletion of SLX8 leads to increased aneuploidy due to a defect in synaptonemal complex (SC) component degradation. Both the RING domain and SUMO interacting motifs of Slx8p are essential for meiotic progression and maintaining spore viability, and the expression of tetraubiquitin fused with SUMO partially rescues meiotic defects in the SLX8-deletion strain. Furthermore, Slx5p-Slx8p can directly add ubiquitin to SUMOylated Zip1p and Ecm11p, and forced degradation of Ecm11p partially rescues the sporulation defects of the SLX8 deletion strain. These findings provide a mechanism for SC disassembly and reveal that the crosstalk between SUMOylation and ubiquitination facilitates accurate chromosome segregation by promoting SC component degradation during meiosis.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
| | - Haichao Zhao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Sai Xiao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Tingting Han
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730P. R. China
| | - Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Tong Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
| | - Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Hui Gao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
| | - Zhiping Xie
- Joint International Research Laboratory of Metabolic & Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Li‐Lin Du
- National Institute of Biological SciencesBeijing102206P. R. China
| | - Jian Li
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730P. R. China
| | - Guoping Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730P. R. China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
26
|
Alleva B, Clausen S, Koury E, Hefel A, Smolikove S. CRL4 regulates recombination and synaptonemal complex aggregation in the Caenorhabditis elegans germline. PLoS Genet 2019; 15:e1008486. [PMID: 31738749 PMCID: PMC6886871 DOI: 10.1371/journal.pgen.1008486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/02/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023] Open
Abstract
To maintain the integrity of the genome, meiotic DNA double strand breaks (DSBs) need to form by the meiosis-specific nuclease Spo11 and be repaired by homologous recombination. One class of products formed by recombination are crossovers, which are required for proper chromosome segregation in the first meiotic division. The synaptonemal complex (SC) is a protein structure that connects homologous chromosomes during meiotic prophase I. The proper assembly of the SC is important for recombination, crossover formation, and the subsequent chromosome segregation. Here we identify the components of Cullin RING E3 ubiquitin ligase 4 (CRL4) that play a role in SC assembly in Caenorhabditis elegans. Mutants of the CRL4 complex (cul-4, ddb-1, and gad-1) show defects in SC assembly manifested in the formation of polycomplexes (PCs), impaired progression of meiotic recombination, and reduction in crossover numbers. PCs that are formed in cul-4 mutants lack the mobile properties of wild type SC, but are likely not a direct target of ubiquitination. In C. elegans, SC assembly does not require recombination and there is no evidence that PC formation is regulated by recombination as well. However, in one cul-4 mutant PC formation is dependent upon early meiotic recombination, indicating that proper assembly of the SC can be diminished by recombination in some scenarios. Lastly, our studies suggest that CUL-4 deregulation leads to transposition of the Tc3 transposable element, and defects in formation of SPO-11-mediated DSBs. Our studies highlight previously unknown functions of CRL4 in C. elegans meiosis and show that CUL-4 likely plays multiple roles in meiosis that are essential for maintaining genome integrity. Defects in the formation of the structure named the synaptonemal complex (SC) lead to the missegregation of chromosomes in the divisions that generate sperm and egg cells. In humans, this chromosome missegregation is associated with infertility and developmental disabilities of the surviving progeny. Abnormal SC structures composed of misfolded and aggregated SC proteins are associated with an inability to properly repair DNA damage and accurately segregate meiotic chromosomes. How SC proteins assemble such that they do not form misfolded protein aggregates is poorly understood. The germlines of nematodes (Caenorhabditis elegans) that lack protein components of the Cullin 4 E3 Ubiquitin ligase complex (CRL4), have defects in the formation of the SC that can be due to misfolding of SC proteins and their aggregation. CRL4 appears to be involved in other germline functions that directly affect chromosome stability (DNA damage repair and transposition), indicating that CRL4 has a central function in the formation of functional sperm and egg cells.
Collapse
Affiliation(s)
- Benjamin Alleva
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Sean Clausen
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Emily Koury
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Adam Hefel
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Sarit Smolikove
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
27
|
Cahoon CK, Helm JM, Libuda DE. Synaptonemal Complex Central Region Proteins Promote Localization of Pro-crossover Factors to Recombination Events During Caenorhabditis elegans Meiosis. Genetics 2019; 213:395-409. [PMID: 31431470 PMCID: PMC6781886 DOI: 10.1534/genetics.119.302625] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/16/2019] [Indexed: 11/23/2022] Open
Abstract
Crossovers (COs) between homologous chromosomes are critical for meiotic chromosome segregation and form in the context of the synaptonemal complex (SC), a meiosis-specific structure that assembles between aligned homologs. During Caenorhabditis elegans meiosis, central region components of the SC (SYP proteins) are essential to repair double-strand DNA breaks (DSBs) as COs. Here, we investigate the relationships between the SYP proteins and conserved pro-CO factors by examining the immunolocalization of these proteins in meiotic mutants where SYP proteins are absent, reduced, or mislocalized. Although COs do not form in syp null mutants, pro-CO factors COSA-1, MSH-5, and ZHP-3 nevertheless colocalize at DSB-dependent sites during late prophase, reflecting an inherent affinity of these factors for DSB repair sites. In contrast, in mutants where SYP proteins are present but form aggregates or display abnormal synapsis, pro-CO factors consistently track with SYP-1 localization. Further, pro-CO factors usually localize to a single site per SYP-1 structure, even in SYP aggregates or in mutants where the SC forms between sister chromatids, suggesting that CO regulation occurs within these aberrant SC structures. Moreover, we find that the meiotic cohesin REC-8 is required to ensure that SC formation occurs between homologs and not sister chromatids. Taken together, our findings support a model in which SYP proteins promote CO formation by promoting the localization of pro-CO factors to recombination events within an SC compartment, thereby ensuring that pro-CO factors identify a recombination event within an SC structure and that CO maturation occurs only between properly aligned homologous chromosomes.
Collapse
Affiliation(s)
- Cori K Cahoon
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Jacquellyn M Helm
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Diana E Libuda
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
28
|
Pyatnitskaya A, Borde V, De Muyt A. Crossing and zipping: molecular duties of the ZMM proteins in meiosis. Chromosoma 2019; 128:181-198. [PMID: 31236671 DOI: 10.1007/s00412-019-00714-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 11/25/2022]
Abstract
Accurate segregation of homologous chromosomes during meiosis depends on the ability of meiotic cells to promote reciprocal exchanges between parental DNA strands, known as crossovers (COs). For most organisms, including budding yeast and other fungi, mammals, nematodes, and plants, the major CO pathway depends on ZMM proteins, a set of molecular actors specifically devoted to recognize and stabilize CO-specific DNA intermediates that are formed during homologous recombination. The progressive implementation of ZMM-dependent COs takes place within the context of the synaptonemal complex (SC), a proteinaceous structure that polymerizes between homologs and participates in close homolog juxtaposition during prophase I of meiosis. While SC polymerization starts from ZMM-bound sites and ZMM proteins are required for SC polymerization in budding yeast and the fungus Sordaria, other organisms differ in their requirement for ZMM in SC elongation. This review provides an overview of ZMM functions and discusses their collaborative tasks for CO formation and SC assembly, based on recent findings and on a comparison of different model organisms.
Collapse
Affiliation(s)
- Alexandra Pyatnitskaya
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Paris Sorbonne Université, Paris, France
| | - Valérie Borde
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France.
- Paris Sorbonne Université, Paris, France.
| | - Arnaud De Muyt
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France.
- Paris Sorbonne Université, Paris, France.
| |
Collapse
|
29
|
Achache H, Laurent L, Hecker-Mimoun Y, Ishtayeh H, Rappaport Y, Kroizer E, Colaiácovo MP, Tzur YB. Progression of Meiosis Is Coordinated by the Level and Location of MAPK Activation Via OGR-2 in Caenorhabditis elegans. Genetics 2019; 212:213-229. [PMID: 30867196 PMCID: PMC6499523 DOI: 10.1534/genetics.119.302080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
During meiosis, a series of evolutionarily conserved events allow for reductional chromosome division, which is required for sexual reproduction. Although individual meiotic processes have been extensively studied, we currently know far less about how meiosis is regulated and coordinated. In the Caenorhabditis elegans gonad, mitogen-activated protein kinase (MAPK) signaling drives oogenesis while undergoing spatial activation and deactivation waves. However, it is currently unclear how MAPK activation is governed and how it facilitates the progression of oogenesis. Here, we show that the oocyte and germline-related 2 (ogr-2) gene affects proper progression of oogenesis. Complete deletion of ogr-2 results in delayed meiotic entry and late spatial onset of double-strand break repair. Elevated levels of apoptosis are observed in this mutant, independent of the meiotic canonical checkpoints; however, they are dependent on the MAPK terminal member MPK-1/ERK. MPK-1 activation is elevated in diplotene in ogr-2 mutants and its aberrant spatial activation correlates with stages where meiotic progression defects are evident. Deletion of ogr-2 significantly reduces the expression of lip-1, a phosphatase reported to repress MPK-1, which is consistent with OGR-2 localization at chromatin in germ cells. We suggest that OGR-2 modulates the expression of lip-1 to promote the timely progression of meiosis through MPK-1 spatial deactivation.
Collapse
Affiliation(s)
- Hanna Achache
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Lévana Laurent
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Yaël Hecker-Mimoun
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Hasan Ishtayeh
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Yisrael Rappaport
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Eitan Kroizer
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | | | - Yonatan B Tzur
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| |
Collapse
|
30
|
Lake CM, Nielsen RJ, Bonner AM, Eche S, White-Brown S, McKim KS, Hawley RS. Narya, a RING finger domain-containing protein, is required for meiotic DNA double-strand break formation and crossover maturation in Drosophila melanogaster. PLoS Genet 2019; 15:e1007886. [PMID: 30615609 PMCID: PMC6336347 DOI: 10.1371/journal.pgen.1007886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/17/2019] [Accepted: 12/10/2018] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination, which is necessary to ensure that homologous chromosomes segregate properly, begins with the induction of meiotic DNA double-strand breaks (DSBs) and ends with the repair of a subset of those breaks into crossovers. Here we investigate the roles of two paralogous genes, CG12200 and CG31053, which we have named Narya and Nenya, respectively, due to their relationship with a structurally similar protein named Vilya. We find that narya recently evolved from nenya by a gene duplication event, and we show that these two RING finger domain-containing proteins are functionally redundant with respect to a critical role in DSB formation. Narya colocalizes with Vilya foci, which are known to define recombination nodules, or sites of crossover formation. A separation-of-function allele of narya retains the capacity for DSB formation but cannot mature those DSBs into crossovers. We further provide data on the physical interaction of Narya, Nenya and Vilya, as assayed by the yeast two-hybrid system. Together these data support the view that all three RING finger domain-containing proteins function in the formation of meiotic DNA DSBs and in the process of crossing over. Errors in chromosome segregation during meiosis are the leading cause of miscarriages and can result in genetic abnormalities like Down syndrome or Turner syndrome. For chromosomes to segregate faithfully, they must recombine with their homolog during the early steps of meiosis. An essential component of the process of meiotic recombination is creating the lesions (double-strand breaks, DSBs) that are required to form a crossover with the homologous chromosome. Crossovers are required to ensure chromosomes segregate properly at the first meiotic division. In this study we have identified two genes, narya and nenya, that are essential in DSB formation. We found that narya arose from a duplication of nenya, and these two genes are functionally redundant. In addition to its role in DSB formation, narya also plays a role in processing DSBs into crossovers. Strengthening our knowledge about the mechanism by which Narya both creates DSBs and processes them into crossovers will lead to a better understanding of the process of meiotic chromosome segregation not only in flies but many other organisms, as these genes have homologs in yeast, worms, plants, mice and humans.
Collapse
Affiliation(s)
- Cathleen M. Lake
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Rachel J. Nielsen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Amanda M. Bonner
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Salam Eche
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sanese White-Brown
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S. McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
31
|
BRCA1-BARD1 associate with the synaptonemal complex and pro-crossover factors and influence RAD-51 dynamics during Caenorhabditis elegans meiosis. PLoS Genet 2018; 14:e1007653. [PMID: 30383754 PMCID: PMC6211622 DOI: 10.1371/journal.pgen.1007653] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/23/2018] [Indexed: 11/19/2022] Open
Abstract
During meiosis, the maternal and paternal homologous chromosomes must align along their entire length and recombine to achieve faithful segregation in the gametes. Meiotic recombination is accomplished through the formation of DNA double-strand breaks, a subset of which can mature into crossovers to link the parental homologous chromosomes and promote their segregation. Breast and ovarian cancer susceptibility protein BRCA1 and its heterodimeric partner BARD1 play a pivotal role in DNA repair in mitotic cells; however, their functions in gametogenesis are less well understood. Here we show that localization of BRC-1 and BRD-1 (Caenorhabditis elegans orthologues of BRCA1 and BARD1) is dynamic during meiotic prophase I; they ultimately becoming concentrated at regions surrounding the presumptive crossover sites, co-localizing with the pro-crossover factors COSA-1, MSH-5 and ZHP-3. The synaptonemal complex and PLK-2 activity are essential for recruitment of BRC-1 to chromosomes and its subsequent redistribution towards the short arm of the bivalent. BRC-1 and BRD-1 form in vivo complexes with the synaptonemal complex component SYP-3 and the crossover-promoting factor MSH-5. Furthermore, BRC-1 is essential for efficient stage-specific recruitment/stabilization of the RAD-51 recombinase to DNA damage sites when synapsis is impaired and upon induction of exogenous damage. Taken together, our data provide new insights into the localization and meiotic function of the BRC-1-BRD-1 complex and highlight its essential role in DNA double-strand break repair during gametogenesis.
Collapse
|
32
|
Bohr T, Nelson CR, Giacopazzi S, Lamelza P, Bhalla N. Shugoshin Is Essential for Meiotic Prophase Checkpoints in C. elegans. Curr Biol 2018; 28:3199-3211.e3. [PMID: 30293721 PMCID: PMC6200582 DOI: 10.1016/j.cub.2018.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/16/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
The conserved factor Shugoshin is dispensable in C. elegans for the two-step loss of sister chromatid cohesion that directs the proper segregation of meiotic chromosomes. We show that the C. elegans ortholog of Shugoshin, SGO-1, is required for checkpoint activity in meiotic prophase. This role in checkpoint function is similar to that of conserved proteins that structure meiotic chromosome axes. Indeed, null sgo-1 mutants exhibit additional phenotypes similar to that of a partial loss-of-function allele of the axis component, HTP-3: premature synaptonemal complex disassembly, the activation of alternate DNA repair pathways, and an inability to recruit a conserved effector of the DNA damage pathway, HUS-1. SGO-1 localizes to pre-meiotic nuclei when HTP-3 is present but not yet loaded onto chromosome axes and genetically interacts with a central component of the cohesin complex, SMC-3, suggesting that it contributes to meiotic chromosome metabolism early in meiosis by regulating cohesin. We propose that SGO-1 acts during pre-meiotic replication to ensure fully functional meiotic chromosome architecture, rendering these chromosomes competent for checkpoint activity and normal progression of meiotic recombination. Given that most research on Shugoshin has focused on its regulation of sister chromatid cohesion during chromosome segregation, this novel role may be conserved but previously uncharacterized in other organisms. Further, our findings expand the repertoire of Shugoshin's functions beyond coordinating regulatory activities at the centromere.
Collapse
Affiliation(s)
- Tisha Bohr
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Christian R Nelson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Stefani Giacopazzi
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Piero Lamelza
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
33
|
Nguyen H, Labella S, Silva N, Jantsch V, Zetka M. C. elegans ZHP-4 is required at multiple distinct steps in the formation of crossovers and their transition to segregation competent chiasmata. PLoS Genet 2018; 14:e1007776. [PMID: 30379819 PMCID: PMC6239344 DOI: 10.1371/journal.pgen.1007776] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/16/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022] Open
Abstract
Correct segregation of meiotic chromosomes depends on DNA crossovers (COs) between homologs that culminate into visible physical linkages called chiasmata. COs emerge from a larger population of joint molecules (JM), the remainder of which are repaired as noncrossovers (NCOs) to restore genomic integrity. We present evidence that the RNF212-like C. elegans protein ZHP-4 cooperates with its paralog ZHP-3 to enforce crossover formation at distinct steps during meiotic prophase: in the formation of early JMs and in transition of late CO intermediates into chiasmata. ZHP-3/4 localize to the synaptonemal complex (SC) co-dependently followed by their restriction to sites of designated COs. RING domain mutants revealed a critical function for ZHP-4 in localization of both proteins to the SC and for CO formation. While recombination initiates in zhp-4 mutants, they fail to appropriately acquire pro-crossover factors at abundant early JMs, indicating a function for ZHP-4 in an early step of the CO/NCO decision. At late pachytene stages, hypomorphic mutants exhibit significant levels of crossing over that are accompanied by defects in localization of pro-crossover RMH-1, MSH-5 and COSA-1 to designated crossover sites, and by the appearance of bivalents defective in chromosome remodelling required for segregation. These results reveal a ZHP-4 function at designated CO sites where it is required to stabilize pro-crossover factors at the late crossover intermediate, which in turn are required for the transition to a chiasma that is required for bivalent remodelling. Our study reveals an essential requirement for ZHP-4 in negotiating both the formation of COs and their ability to transition to structures capable of directing accurate chromosome segregation. We propose that ZHP-4 acts in concert with ZHP-3 to propel interhomolog JMs along the crossover pathway by stabilizing pro-CO factors that associate with early and late intermediates, thereby protecting designated crossovers as they transition into the chiasmata required for disjunction.
Collapse
Affiliation(s)
- Hanh Nguyen
- Department of Biology, McGill University, Montreal, Quebec Canada
| | - Sara Labella
- Department of Biology, McGill University, Montreal, Quebec Canada
| | - Nicola Silva
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Monique Zetka
- Department of Biology, McGill University, Montreal, Quebec Canada
| |
Collapse
|
34
|
Hong Y, Velkova M, Silva N, Jagut M, Scheidt V, Labib K, Jantsch V, Gartner A. The conserved LEM-3/Ankle1 nuclease is involved in the combinatorial regulation of meiotic recombination repair and chromosome segregation in Caenorhabditis elegans. PLoS Genet 2018; 14:e1007453. [PMID: 29879106 PMCID: PMC6007928 DOI: 10.1371/journal.pgen.1007453] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 06/19/2018] [Accepted: 05/29/2018] [Indexed: 11/23/2022] Open
Abstract
Homologous recombination is essential for crossover (CO) formation and accurate chromosome segregation during meiosis. It is of considerable importance to work out how recombination intermediates are processed, leading to CO and non-crossover (NCO) outcome. Genetic analysis in budding yeast and Caenorhabditis elegans indicates that the processing of meiotic recombination intermediates involves a combination of nucleases and DNA repair enzymes. We previously reported that in C. elegans meiotic joint molecule resolution is mediated by two redundant pathways, conferred by the SLX-1 and MUS-81 nucleases, and by the HIM-6 Bloom helicase in conjunction with the XPF-1 endonuclease, respectively. Both pathways require the scaffold protein SLX-4. However, in the absence of all these enzymes, residual processing of meiotic recombination intermediates still occurs and CO formation is reduced but not abolished. Here we show that the LEM-3 nuclease, mutation of which by itself does not have an overt meiotic phenotype, genetically interacts with slx-1 and mus-81 mutants, the respective double mutants displaying 100% embryonic lethality. The combined loss of LEM-3 and MUS-81 leads to altered processing of recombination intermediates, a delayed disassembly of foci associated with CO designated sites, and the formation of univalents linked by SPO-11 dependent chromatin bridges (dissociated bivalents). However, LEM-3 foci do not colocalize with ZHP-3, a marker that congresses into CO designated sites. In addition, neither CO frequency nor distribution is altered in lem-3 single mutants or in combination with mus-81 or slx-4 mutations. Finally, we found persistent chromatin bridges during meiotic divisions in lem-3; slx-4 double mutants. Supported by the localization of LEM-3 between dividing meiotic nuclei, this data suggest that LEM-3 is able to process erroneous recombination intermediates that persist into the second meiotic division.
Collapse
Affiliation(s)
- Ye Hong
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Maria Velkova
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Austria
| | - Nicola Silva
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Austria
| | - Marlène Jagut
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Austria
| | - Viktor Scheidt
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Austria
| | - Anton Gartner
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
35
|
Woglar A, Villeneuve AM. Dynamic Architecture of DNA Repair Complexes and the Synaptonemal Complex at Sites of Meiotic Recombination. Cell 2018; 173:1678-1691.e16. [PMID: 29754818 DOI: 10.1016/j.cell.2018.03.066] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/05/2018] [Accepted: 03/26/2018] [Indexed: 01/20/2023]
Abstract
Meiotic double-strand breaks (DSBs) are generated and repaired in a highly regulated manner to ensure formation of crossovers (COs) while also enabling efficient non-CO repair to restore genome integrity. We use structured-illumination microscopy to investigate the dynamic architecture of DSB repair complexes at meiotic recombination sites in relationship to the synaptonemal complex (SC). DSBs resected at both ends are converted into inter-homolog repair intermediates harboring two populations of BLM helicase and RPA, flanking a single population of MutSγ. These intermediates accumulate until late pachytene, when repair proteins disappear from non-CO sites and CO-designated sites become enveloped by SC-central region proteins, acquire a second MutSγ population, and lose RPA. These and other data suggest that the SC may protect CO intermediates from being dismantled inappropriately and promote CO maturation by generating a transient CO-specific repair compartment, thereby enabling differential timing and outcome of repair at CO and non-CO sites.
Collapse
Affiliation(s)
- Alexander Woglar
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Anne M Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
36
|
Reichman R, Shi Z, Malone R, Smolikove S. Mitotic and Meiotic Functions for the SUMOylation Pathway in the Caenorhabditis elegans Germline. Genetics 2018; 208:1421-1441. [PMID: 29472245 PMCID: PMC5887140 DOI: 10.1534/genetics.118.300787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
Meiosis is a highly regulated process, partly due to the need to break and then repair DNA as part of the meiotic program. Post-translational modifications are widely used during meiotic events to regulate steps such as protein complex formation, checkpoint activation, and protein attenuation. In this paper, we investigate how proteins that are obligatory components of the SUMO (small ubiquitin-like modifier) pathway, one such post-translational modification, affect the Caenorhabditis elegans germline. We show that UBC-9, the E2 conjugation enzyme, and the C. elegans homolog of SUMO, SMO-1, localize to germline nuclei throughout prophase I. Mutant analysis of smo-1 and ubc-9 revealed increased recombination intermediates throughout the germline, originating during the mitotic divisions. SUMOylation mutants also showed late meiotic defects including defects in the restructuring of oocyte bivalents and endomitotic oocytes. Increased rates of noninterfering crossovers were observed in ubc-9 heterozygotes, even though interfering crossovers were unaffected. We have also identified a physical interaction between UBC-9 and DNA repair protein MRE-11 ubc-9 and mre-11 null mutants exhibited similar phenotypes at germline mitotic nuclei and were synthetically sick. These phenotypes and genetic interactions were specific to MRE-11 null mutants as opposed to RAD-50 or resection-defective MRE-11 We propose that the SUMOylation pathway acts redundantly with MRE-11, and in this process MRE-11 likely plays a structural role.
Collapse
Affiliation(s)
- Rachel Reichman
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Zhuoyue Shi
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Robert Malone
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Sarit Smolikove
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
37
|
Zhang L, Köhler S, Rillo-Bohn R, Dernburg AF. A compartmentalized signaling network mediates crossover control in meiosis. eLife 2018. [PMID: 29521627 DOI: 10.7554/elife.30789.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
During meiosis, each pair of homologous chromosomes typically undergoes at least one crossover (crossover assurance), but these exchanges are strictly limited in number and widely spaced along chromosomes (crossover interference). The molecular basis for this chromosome-wide regulation remains mysterious. A family of meiotic RING finger proteins has been implicated in crossover regulation across eukaryotes. Caenorhabditis elegans expresses four such proteins, of which one (ZHP-3) is known to be required for crossovers. Here we investigate the functions of ZHP-1, ZHP-2, and ZHP-4. We find that all four ZHP proteins, like their homologs in other species, localize to the synaptonemal complex, an unusual, liquid crystalline compartment that assembles between paired homologs. Together they promote accumulation of pro-crossover factors, including ZHP-3 and ZHP-4, at a single recombination intermediate, thereby patterning exchanges along paired chromosomes. These proteins also act at the top of a hierarchical, symmetry-breaking process that enables crossovers to direct accurate chromosome segregation.
Collapse
Affiliation(s)
- Liangyu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, United States
- California Institute for Quantitative Biosciences, Berkeley, United States
| | - Simone Köhler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, United States
- California Institute for Quantitative Biosciences, Berkeley, United States
| | - Regina Rillo-Bohn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, United States
- California Institute for Quantitative Biosciences, Berkeley, United States
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, United States
- California Institute for Quantitative Biosciences, Berkeley, United States
| |
Collapse
|
38
|
Zhang L, Köhler S, Rillo-Bohn R, Dernburg AF. A compartmentalized signaling network mediates crossover control in meiosis. eLife 2018; 7:e30789. [PMID: 29521627 PMCID: PMC5906097 DOI: 10.7554/elife.30789] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 03/08/2018] [Indexed: 01/01/2023] Open
Abstract
During meiosis, each pair of homologous chromosomes typically undergoes at least one crossover (crossover assurance), but these exchanges are strictly limited in number and widely spaced along chromosomes (crossover interference). The molecular basis for this chromosome-wide regulation remains mysterious. A family of meiotic RING finger proteins has been implicated in crossover regulation across eukaryotes. Caenorhabditis elegans expresses four such proteins, of which one (ZHP-3) is known to be required for crossovers. Here we investigate the functions of ZHP-1, ZHP-2, and ZHP-4. We find that all four ZHP proteins, like their homologs in other species, localize to the synaptonemal complex, an unusual, liquid crystalline compartment that assembles between paired homologs. Together they promote accumulation of pro-crossover factors, including ZHP-3 and ZHP-4, at a single recombination intermediate, thereby patterning exchanges along paired chromosomes. These proteins also act at the top of a hierarchical, symmetry-breaking process that enables crossovers to direct accurate chromosome segregation.
Collapse
Affiliation(s)
- Liangyu Zhang
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
| | - Simone Köhler
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
| | - Regina Rillo-Bohn
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
| | - Abby F Dernburg
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
| |
Collapse
|
39
|
Gao J, Colaiácovo MP. Zipping and Unzipping: Protein Modifications Regulating Synaptonemal Complex Dynamics. Trends Genet 2017; 34:232-245. [PMID: 29290403 DOI: 10.1016/j.tig.2017.12.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 12/23/2022]
Abstract
The proteinaceous zipper-like structure known as the synaptonemal complex (SC), which forms between pairs of homologous chromosomes during meiosis from yeast to humans, plays important roles in promoting interhomolog crossover formation, regulating cessation of DNA double-strand break (DSB) formation following crossover designation, and ensuring accurate meiotic chromosome segregation. Recent studies are starting to reveal critical roles for different protein modifications in regulating SC dynamics. Protein SUMOylation, N-terminal acetylation, and phosphorylation have been shown to be essential for the regulated assembly and disassembly of the SC. Moreover, phosphorylation of specific SC components has been found to link changes in SC dynamics with meiotic recombination. This review highlights the latest findings on how protein modifications regulate SC dynamics and functions.
Collapse
Affiliation(s)
- Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
40
|
Bogdanov YF. Noncanonical meiosis in the nematode Caenorhabditis elegans as a model for studying the molecular bases of the homologous chromosome synapsis, crossing over, and segregation. RUSS J GENET+ 2017. [DOI: 10.1134/s102279541712002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Lawrence EJ, Griffin CH, Henderson IR. Modification of meiotic recombination by natural variation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5471-5483. [PMID: 28992351 DOI: 10.1093/jxb/erx306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is a specialized cell division that produces haploid gametes required for sexual reproduction. During the first meiotic division, homologous chromosomes pair and undergo reciprocal crossing over, which recombines linked sequence variation. Meiotic recombination frequency varies extensively both within and between species. In this review, we will examine the molecular basis of meiotic recombination rate variation, with an emphasis on plant genomes. We first consider cis modification caused by polymorphisms at the site of recombination, or elsewhere on the same chromosome. We review cis effects caused by mismatches within recombining joint molecules, the effect of structural hemizygosity, and the role of specific DNA sequence motifs. In contrast, trans modification of recombination is exerted by polymorphic loci encoding diffusible molecules, which are able to modulate recombination on the same and/or other chromosomes. We consider trans modifiers that act to change total recombination levels, hotspot locations, or interactions between homologous and homeologous chromosomes in polyploid species. Finally, we consider the significance of genetic variation that modifies meiotic recombination for adaptation and evolution of plant species.
Collapse
Affiliation(s)
- Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Catherine H Griffin
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
42
|
Abstract
The segregation of homologous chromosomes in meiosis depends on their ability to locate one another in the nucleus and establish a physical association through crossing over. A tightly regulated number of crossovers (COs) emerges following repair of induced DNA double-strand breaks by homologous recombination (HR), but the process of how HR intermediates transition into COs is still poorly understood. Two recent studies by Ahuja et al. and Rao et al. have revealed a role for chromosomally localized proteasomes in choreographing both homologous chromosome pairing and the evolution of HR intermediates into segregation-competent COs. Using chemical inhibition of the proteasome and mutant analysis, the collective data reveal conserved functions for both the proteasome and a family of E3 ligases that can direct or compete with its activity in ensuring CO formation. Here, we review these findings and the impact of the discovery that protein modification dynamics and proteasomal activity cooperate to regulate key meiotic processes.
Collapse
Affiliation(s)
- Aleksandar Vujin
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Monique Zetka
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Regulating the construction and demolition of the synaptonemal complex. Nat Struct Mol Biol 2017; 23:369-77. [PMID: 27142324 DOI: 10.1038/nsmb.3208] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/18/2016] [Indexed: 01/11/2023]
Abstract
The synaptonemal complex (SC) is a meiosis-specific scaffold that links homologous chromosomes from end to end during meiotic prophase and is required for the formation of meiotic crossovers. Assembly of SC components is regulated by a combination of associated nonstructural proteins and post-translational modifications, such as SUMOylation, which together coordinate the timing between homologous chromosome pairing, double-strand-break formation and recombination. In addition, transcriptional and translational control mechanisms ensure the timely disassembly of the SC after crossover resolution and before chromosome segregation at anaphase I.
Collapse
|
44
|
Abstract
Sexual reproduction requires the production of haploid gametes (sperm and egg) with only one copy of each chromosome; fertilization then restores the diploid chromosome content in the next generation. This reduction in genetic content is accomplished during a specialized cell division called meiosis, in which two rounds of chromosome segregation follow a single round of DNA replication. In preparation for the first meiotic division, homologous chromosomes pair and synapse, creating a context that promotes formation of crossover recombination events. These crossovers, in conjunction with sister chromatid cohesion, serve to connect the two homologs and facilitate their segregation to opposite poles during the first meiotic division. During the second meiotic division, which is similar to mitosis, sister chromatids separate; the resultant products are haploid cells that become gametes. In Caenorhabditis elegans (and most other eukaryotes) homologous pairing and recombination are required for proper chromosome inheritance during meiosis; accordingly, the events of meiosis are tightly coordinated to ensure the proper execution of these events. In this chapter, we review the seminal events of meiosis: pairing of homologous chromosomes, the changes in chromosome structure that chromosomes undergo during meiosis, the events of meiotic recombination, the differentiation of homologous chromosome pairs into structures optimized for proper chromosome segregation at Meiosis I, and the ultimate segregation of chromosomes during the meiotic divisions. We also review the regulatory processes that ensure the coordinated execution of these meiotic events during prophase I.
Collapse
Affiliation(s)
- Kenneth J Hillers
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, United States
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter,1030 Vienna, Austria
| | | | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| |
Collapse
|
45
|
Shodhan A, Kataoka K, Mochizuki K, Novatchkova M, Loidl J. A Zip3-like protein plays a role in crossover formation in the SC-less meiosis of the protist Tetrahymena. Mol Biol Cell 2017; 28:825-833. [PMID: 28100637 PMCID: PMC5349789 DOI: 10.1091/mbc.e16-09-0678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 11/11/2022] Open
Abstract
When programmed meiotic DNA double-strand breaks (DSBs) undergo recombinational repair, genetic crossovers (COs) may be formed. A certain level of this is required for the faithful segregation of chromosomes, but the majority of DSBs are processed toward a safer alternative, namely noncrossovers (NCOs), via nonreciprocal DNA exchange. At the crossroads between these two DSB fates is the Msh4-Msh5 (MutSγ) complex, which stabilizes CO-destined recombination intermediates and members of the Zip3/RNF212 family of RING finger proteins, which in turn stabilize MutSγ. These proteins function in the context of the synaptonemal complex (SC) and mainly act on SC-dependent COs. Here we show that in the SC-less ciliate Tetrahymena, Zhp3 (a protein distantly related to Zip3/RNF212), together with MutSγ, is responsible for the majority of COs. This activity of Zhp3 suggests an evolutionarily conserved SC-independent strategy for balancing CO:NCO ratios. Moreover, we report a novel meiosis-specific protein, Sa15, as an interacting partner of Zhp3. Sa15 forms linear structures in meiotic prophase nuclei to which Zhp3 localizes. Sa15 is required for a wild-type level of CO formation. Its linear organization suggests the existence of an underlying chromosomal axis that serves as a scaffold for Zhp3 and other recombination proteins.
Collapse
Affiliation(s)
- Anura Shodhan
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Kensuke Kataoka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences and
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences and
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences and
- Research Institute of Molecular Pathology, 1030 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
46
|
Ziolkowski PA, Underwood CJ, Lambing C, Martinez-Garcia M, Lawrence EJ, Ziolkowska L, Griffin C, Choi K, Franklin FCH, Martienssen RA, Henderson IR. Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev 2017; 31:306-317. [PMID: 28223312 PMCID: PMC5358726 DOI: 10.1101/gad.295501.116] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 11/24/2022]
Abstract
During meiosis, homologous chromosomes undergo crossover recombination, which creates genetic diversity and balances homolog segregation. Despite these critical functions, crossover frequency varies extensively within and between species. Although natural crossover recombination modifier loci have been detected in plants, causal genes have remained elusive. Using natural Arabidopsis thaliana accessions, we identified two major recombination quantitative trait loci (rQTLs) that explain 56.9% of crossover variation in Col×Ler F2 populations. We mapped rQTL1 to semidominant polymorphisms in HEI10, which encodes a conserved ubiquitin E3 ligase that regulates crossovers. Null hei10 mutants are haploinsufficient, and, using genome-wide mapping and immunocytology, we show that transformation of additional HEI10 copies is sufficient to more than double euchromatic crossovers. However, heterochromatic centromeres remained recombination-suppressed. The strongest HEI10-mediated crossover increases occur in subtelomeric euchromatin, which is reminiscent of sex differences in Arabidopsis recombination. Our work reveals that HEI10 naturally limits Arabidopsis crossovers and has the potential to influence the response to selection.
Collapse
Affiliation(s)
- Piotr A Ziolkowski
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Department of Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Charles J Underwood
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | - Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Liliana Ziolkowska
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Catherine Griffin
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
47
|
Pelisch F, Tammsalu T, Wang B, Jaffray EG, Gartner A, Hay RT. A SUMO-Dependent Protein Network Regulates Chromosome Congression during Oocyte Meiosis. Mol Cell 2017; 65:66-77. [PMID: 27939944 PMCID: PMC5222697 DOI: 10.1016/j.molcel.2016.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/29/2016] [Accepted: 10/31/2016] [Indexed: 01/20/2023]
Abstract
During Caenorhabditis elegans oocyte meiosis, a multi-protein ring complex (RC) localized between homologous chromosomes, promotes chromosome congression through the action of the chromokinesin KLP-19. While some RC components are known, the mechanism of RC assembly has remained obscure. We show that SUMO E3 ligase GEI-17/PIAS is required for KLP-19 recruitment to the RC, and proteomic analysis identified KLP-19 as a SUMO substrate in vivo. In vitro analysis revealed that KLP-19 is efficiently sumoylated in a GEI-17-dependent manner, while GEI-17 undergoes extensive auto-sumoylation. GEI-17 and another RC component, the kinase BUB-1, contain functional SUMO interaction motifs (SIMs), allowing them to recruit SUMO modified proteins, including KLP-19, into the RC. Thus, dynamic SUMO modification and the presence of SIMs in RC components generate a SUMO-SIM network that facilitates assembly of the RC. Our results highlight the importance of SUMO-SIM networks in regulating the assembly of dynamic protein complexes.
Collapse
Affiliation(s)
- Federico Pelisch
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Triin Tammsalu
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Bin Wang
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Ellis G Jaffray
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Anton Gartner
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
48
|
Rog O, Köhler S, Dernburg AF. The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors. eLife 2017; 6. [PMID: 28045371 PMCID: PMC5268736 DOI: 10.7554/elife.21455] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/02/2017] [Indexed: 12/27/2022] Open
Abstract
The synaptonemal complex (SC) is a polymer that spans ~100 nm between paired homologous chromosomes during meiosis. Its striated, periodic appearance in electron micrographs led to the idea that transverse filaments within this structure ‘crosslink’ the axes of homologous chromosomes, stabilizing their pairing. SC proteins can also form polycomplexes, three-dimensional lattices that recapitulate the periodic structure of SCs but do not associate with chromosomes. Here we provide evidence that SCs and polycomplexes contain mobile subunits and that their assembly is promoted by weak hydrophobic interactions, indicative of a liquid crystalline phase. We further show that in the absence of recombination intermediates, polycomplexes recapitulate the dynamic localization of pro-crossover factors during meiotic progression, revealing how the SC might act as a conduit to regulate chromosome-wide crossover distribution. Properties unique to liquid crystals likely enable long-range signal transduction along meiotic chromosomes and underlie the rapid evolution of SC proteins. DOI:http://dx.doi.org/10.7554/eLife.21455.001 The genetic information in cells is encoded within long molecules of DNA called chromosomes. In most human cells, the two copies of each chromosome – the one inherited from our mother and the one from our father – are physically separated and behave independently. However, in the reproductive cells that give rise to eggs or sperm, each chromosome must pair with its partner. Pairing first occurs at one or more positions along each chromosome. This triggers a protein-based polymer called the “synaptonemal complex” to assemble between the paired chromosomes, and then spread along the interface between the partners until they are fully lined up side-by-side. Chromosomes in reproductive cells must pair in this particular way to exchange genetic information and generate new combinations of traits. The synaptonemal complex was first observed over 60 years ago, but it remains enigmatic. Though its structure is highly ordered and looks very similar in different organisms from yeast to humans, little is known about how this polymer forms or what it does between chromosomes. Some evidence has suggested that the synaptonemal complex helps to regulate how much information can be transferred between each pair of chromosomes, but not all studies have supported this conclusion. Several lines of evidence suggest that the synaptonemal complex might be fundamentally different from other protein-based polymers, such as those that form filamentous skeletal structures within cells, namely actin filaments and microtubules. Now, Rog et al. have tested the idea that the synaptonemal complex might actually have liquid-like properties, despite its highly ordered appearance. The experiments showed that the proteins that make up the synaptonemal complex in yeast, worms and fruit flies are weakly bound to each other and can move around within the assembled structure. These are considered to be defining properties that distinguish liquids from solid materials. Together with its regular, repetitive organization, these findings indicate that the synaptonemal complex behaves like a liquid crystal. This intriguing class of materials has properties between those of conventional liquids and those of solid crystals, and is particularly sensitive to environmental conditions. Rog et al. believe that this discovery helps to explain how signals are transmitted along the length of chromosomes to regulate the transfer of genetic information. In support of this idea, further experiments showed that proteins that are required for this recombination process were also found within the synaptonemal complex. As reproductive cells transition from one stage of their development to the next, these proteins abruptly move to a new location, indicating that a switch-like signal rapidly spreads throughout the synaptonemal complex. Together the findings suggest that the liquid crystal-like properties of the synaptonemal complex allow signals to be transmitted along the interface between pairs of chromosomes. The next challenges are to understand what triggers these signals and to explore whether they are based upon physical or chemical changes within the synaptonemal complex. Further research is also needed to uncover how this information is propagated along the length of a chromosome. DOI:http://dx.doi.org/10.7554/eLife.21455.002
Collapse
Affiliation(s)
- Ofer Rog
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,Department of Biology, University of Utah, Salt Lake City, USA
| | - Simone Köhler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,California Institute for Quantitative Biosciences, Berkeley, United States
| |
Collapse
|
49
|
Wrestling with Chromosomes: The Roles of SUMO During Meiosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:185-196. [PMID: 28197913 DOI: 10.1007/978-3-319-50044-7_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Meiosis is a specialized form of cell division required for the formation of haploid gametes and therefore is essential for successful sexual reproduction. Various steps are exquisitely coordinated to ensure accurate chromosome segregation during meiosis, thereby promoting the formation of haploid gametes from diploid cells. Recent studies are demonstrating that an important form of regulation during meiosis is exerted by the post-translational protein modification known as sumoylation. Here, we review and discuss the various critical steps of meiosis in which SUMO-mediated regulation has been implicated thus far. These include the maintenance of meiotic centromeric heterochromatin , meiotic DNA double-strand break repair and homologous recombination, centromeric coupling, and the assembly of a proteinaceous scaffold between homologous chromosomes known as the synaptonemal complex.
Collapse
|
50
|
Abstract
Meiosis, the mechanism of creating haploid gametes, is a complex cellular process observed across sexually reproducing organisms. Fundamental to meiosis is the process of homologous recombination, whereby DNA double-strand breaks are introduced into the genome and are subsequently repaired to generate either noncrossovers or crossovers. Although homologous recombination is essential for chromosome pairing during prophase I, the resulting crossovers are critical for maintaining homolog interactions and enabling accurate segregation at the first meiotic division. Thus, the placement, timing, and frequency of crossover formation must be exquisitely controlled. In this review, we discuss the proteins involved in crossover formation, the process of their formation and designation, and the rules governing crossovers, all within the context of the important landmarks of prophase I. We draw together crossover designation data across organisms, analyze their evolutionary divergence, and propose a universal model for crossover regulation.
Collapse
Affiliation(s)
- Stephen Gray
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| | - Paula E Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| |
Collapse
|