1
|
Lo Sciuto A, D'Angelo F, Spinnato MC, Garcia PS, Genah S, Matteo C, Séchet E, Banin E, Barras F, Imperi F. A molecular comparison of [Fe-S] cluster-based homeostasis in Escherichia coli and Pseudomonas aeruginosa. mBio 2024; 15:e0120624. [PMID: 39360836 PMCID: PMC11559095 DOI: 10.1128/mbio.01206-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 11/14/2024] Open
Abstract
Iron-sulfur [Fe-S] clusters are essential protein cofactors allowing bacteria to perceive environmental redox modification and to adapt to iron limitation. Escherichia coli, which served as a bacterial model, contains two [Fe-S] cluster biogenesis systems, ISC and SUF, which ensure [Fe-S] cluster synthesis under balanced and stress conditions, respectively. However, our recent phylogenomic analyses revealed that most bacteria possess only one [Fe-S] cluster biogenesis system, most often SUF. The opportunist human pathogen Pseudomonas aeruginosa is atypical as it harbors only ISC. Here, we confirmed the essentiality of ISC in P. aeruginosa under both normal and stress conditions. Moreover, P. aeruginosa ISC restored viability, under balanced growth conditions, to an E. coli strain lacking both ISC and SUF. Reciprocally, the E. coli SUF system sustained growth and [Fe-S] cluster-dependent enzyme activities of ISC-deficient P. aeruginosa. Surprisingly, an ISC-deficient P. aeruginosa strain expressing E. coli SUF showed defects in resistance to H2O2 stress and paraquat, a superoxide generator. Similarly, the P. aeruginosa ISC system did not confer stress resistance to a SUF-deficient E. coli mutant. A survey of 120 Pseudomonadales genomes confirmed that all but five species have selected ISC over SUF. While highlighting the great versatility of bacterial [Fe-S] cluster biogenesis systems, this study emphasizes that their contribution to cellular homeostasis must be assessed in the context of each species and its own repertoire of stress adaptation functions. As a matter of fact, despite having only one ISC system, P. aeruginosa shows higher fitness in the face of ROS and iron limitation than E. coli. IMPORTANCE ISC and SUF molecular systems build and transfer Fe-S cluster to cellular apo protein clients. The model Escherichia coli has both ISC and SUF and study of the interplay between the two systems established that the ISC system is the house-keeping one and SUF the stress-responding one. Unexpectedly, our recent phylogenomic analysis revealed that in contrast to E. coli (and related enterobacteria such as Salmonella), most bacteria have only one system, and, in most cases, it is SUF. Pseudomonas aeruginosa fits the general rule of having only one system but stands against the rule by having ISC. This study aims at engineering P. aeruginosa harboring E. coli systems and vice versa. Comparison of the recombinants allowed to assess the functional versatility of each system while appreciating their contribution to cellular homeostasis in different species context.
Collapse
Affiliation(s)
| | - Francesca D'Angelo
- Department of Microbiology, Stress Adaptation and Metabolism Unit, UMR CNRS 6047, Université Paris-Cité, Institut Pasteur, Paris, France
| | | | - Pierre Simon Garcia
- Department of Microbiology, Stress Adaptation and Metabolism Unit, UMR CNRS 6047, Université Paris-Cité, Institut Pasteur, Paris, France
| | - Shirley Genah
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, Rome, Italy
| | | | - Emmanuel Séchet
- Department of Microbiology, Stress Adaptation and Metabolism Unit, UMR CNRS 6047, Université Paris-Cité, Institut Pasteur, Paris, France
| | - Ehud Banin
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Frédéric Barras
- Department of Microbiology, Stress Adaptation and Metabolism Unit, UMR CNRS 6047, Université Paris-Cité, Institut Pasteur, Paris, France
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
2
|
Fisher CE, Bak DW, Miller KE, Washington-Hughes CL, Dickfoss AM, Weerapana E, Py B, Outten FW. Escherichia coli monothiol glutaredoxin GrxD replenishes Fe-S clusters to the essential ErpA A-type carrier under low iron stress. J Biol Chem 2024; 300:107506. [PMID: 38944118 PMCID: PMC11327457 DOI: 10.1016/j.jbc.2024.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
Iron-sulfur (Fe-S) clusters are required for essential biological pathways, including respiration and isoprenoid biosynthesis. Complex Fe-S cluster biogenesis systems have evolved to maintain an adequate supply of this critical protein cofactor. In Escherichia coli, two Fe-S biosynthetic systems, the "housekeeping" Isc and "stress responsive" Suf pathways, interface with a network of cluster trafficking proteins, such as ErpA, IscA, SufA, and NfuA. GrxD, a Fe-S cluster-binding monothiol glutaredoxin, also participates in Fe-S protein biogenesis in both prokaryotes and eukaryotes. Previous studies in E. coli showed that the ΔgrxD mutation causes sensitivity to iron depletion, spotlighting a critical role for GrxD under conditions that disrupt Fe-S homeostasis. Here, we utilized a global chemoproteomic mass spectrometry approach to analyze the contribution of GrxD to the Fe-S proteome. Our results demonstrate that (1) GrxD is required for biogenesis of a specific subset of Fe-S proteins under iron-depleted conditions, (2) GrxD is required for cluster delivery to ErpA under iron limitation, (3) GrxD is functionally distinct from other Fe-S trafficking proteins, and (4) GrxD Fe-S cluster binding is responsive to iron limitation. All these results lead to the proposal that GrxD is required to maintain Fe-S cluster delivery to the essential trafficking protein ErpA during iron limitation conditions.
Collapse
Affiliation(s)
- Claire E Fisher
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Daniel W Bak
- Department of Chemistry, Boston College, Massachusetts, USA
| | - Kennedy E Miller
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | | | - Anna M Dickfoss
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | | | - Béatrice Py
- Aix-Marseille Université-Centre National de la Recherche Scientifique (UMR7283), Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Marseille, France.
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
3
|
Holden ER, Abi Assaf J, Al-Khanaq H, Vimont N, Webber MA, Trampari E. Identification of pathways required for Salmonella to colonize alfalfa using TraDIS- Xpress. Appl Environ Microbiol 2024; 90:e0013924. [PMID: 38904400 PMCID: PMC11267905 DOI: 10.1128/aem.00139-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Enteropathogenic bacteria, such as Salmonella, have been linked to numerous fresh produce outbreaks, posing a significant public health threat. The ability of Salmonella to persist on fresh produce for extended periods is partly attributed to its capacity to form biofilms, which pose a challenge to food decontamination and can increase pathogenic bacterial load in the food chain. Preventing Salmonella colonization of food products and food processing environments is crucial for reducing the incidence of foodborne outbreaks. Understanding the mechanisms of establishment on fresh produce will inform the development of decontamination approaches. We used Transposon-Directed Insertion site Sequencing (TraDIS-Xpress) to investigate the mechanisms used by Salmonella enterica serovar Typhimurium to colonize and establish on fresh produce over time. We established an alfalfa colonization model and compared the findings to those obtained from glass surfaces. Our research identified distinct mechanisms required for Salmonella establishment on alfalfa compared with glass surfaces over time. These include the type III secretion system (sirC), Fe-S cluster assembly (iscA), curcumin degradation (curA), and copper tolerance (cueR). Shared pathways across surfaces included NADH hydrogenase synthesis (nuoA and nuoB), fimbrial regulation (fimA and fimZ), stress response (rpoS), LPS O-antigen synthesis (rfbJ), iron acquisition (ybaN), and ethanolamine utilization (eutT and eutQ). Notably, flagellum biosynthesis differentially impacted the colonization of biotic and abiotic environments over time. Understanding the genetic underpinnings of Salmonella establishment on both biotic and abiotic surfaces over time offers valuable insights that can inform the development of targeted antibacterial therapeutics, ultimately enhancing food safety throughout the food processing chain. IMPORTANCE Salmonella is the second most costly foodborne illness in the United Kingdom, accounting for £0.2 billion annually, with numerous outbreaks linked to fresh produce, such as leafy greens, cucumbers, tomatoes, and alfalfa sprouts. The ability of Salmonella to colonize and establish itself in fresh produce poses a significant challenge, hindering decontamination efforts and increasing the risk of illness. Understanding the key mechanisms of Salmonella to colonize plants over time is key to finding new ways to prevent and control contamination of fresh produce. This study identified genes and pathways important for Salmonella colonization of alfalfa and compared those with colonization of glass using a genome-wide screen. Genes with roles in flagellum biosynthesis, lipopolysaccharide production, and stringent response regulation varied in their significance between plants and glass. This work deepens our understanding of the requirements for plant colonization by Salmonella, revealing how gene essentiality changes over time and in different environments. This knowledge is key to developing effective strategies to reduce the risk of foodborne disease.
Collapse
Affiliation(s)
- Emma R. Holden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Justin Abi Assaf
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Haider Al-Khanaq
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Noemie Vimont
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Mark A. Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Eleftheria Trampari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
4
|
Garcia PS, Gribaldo S, Barras F. When iron and sulfur met on an anoxic planet and eventually made clusters essential for life. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119730. [PMID: 38631441 DOI: 10.1016/j.bbamcr.2024.119730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
[FeS] clusters are co-factors that are essential for life and are synthesized by dedicated multiprotein cellular machineries. In this review, we present the current scenario for the emergence and the diversification of the [FeS] cluster biosynthesis machineries. In addition to well-known NIF, ISC and SUF machineries, two alternative minimal systems, SMS, and MIS, were recently identified. Taxonomic distribution and phylogeny analyses indicate that SMS and MIS were present in the Last Universal Common Ancestor (LUCA), well before the increase of oxygen on Earth. ISC, SUF and NIF systems emerged later in the history of life. The possible reasons for the emergence and diversification of these machineries are discussed.
Collapse
Affiliation(s)
- Pierre Simon Garcia
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Department of Microbiology, Unit Stress Adaptation and Metabolism in Enterobacteria, Paris, France; Institut Pasteur, Université Paris Cité, Department of Microbiology, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Frédéric Barras
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Department of Microbiology, Unit Stress Adaptation and Metabolism in Enterobacteria, Paris, France.
| |
Collapse
|
5
|
Hasnat MA, Leimkühler S. Shared functions of Fe-S cluster assembly and Moco biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119731. [PMID: 38631442 DOI: 10.1016/j.bbamcr.2024.119731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Molybdenum cofactor (Moco) biosynthesis is a complex process that involves the coordinated function of several proteins. In the recent years it has become evident that the availability of Fe-S clusters play an important role for the biosynthesis of Moco. First, the MoaA protein binds two [4Fe-4S] clusters per monomer. Second, the expression of the moaABCDE and moeAB operons is regulated by FNR, which senses the availability of oxygen via a functional [4Fe-4S] cluster. Finally, the conversion of cyclic pyranopterin monophosphate to molybdopterin requires the availability of the L-cysteine desulfurase IscS, which is an enzyme involved in the transfer of sulfur to various acceptor proteins with a main role in the assembly of Fe-S clusters. In this review, we dissect the dependence of the production of active molybdoenzymes in detail, starting from the regulation of gene expression and further explaining sulfur delivery and Fe-S cluster insertion into target enzymes. Further, Fe-S cluster assembly is also linked to iron availability. While the abundance of selected molybdoenzymes is largely decreased under iron-limiting conditions, we explain that the expression of the genes is dependent on an active FNR protein. FNR is a very important transcription factor that represents the master-switch for the expression of target genes in response to anaerobiosis. Moco biosynthesis is further directly dependent on the presence of ArcA and also on an active Fur protein.
Collapse
Affiliation(s)
- Muhammad Abrar Hasnat
- University of Potsdam, Institute of Biochemistry and Biology, Department of Molecular Enzymology, Karl-Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Silke Leimkühler
- University of Potsdam, Institute of Biochemistry and Biology, Department of Molecular Enzymology, Karl-Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
6
|
Sourice M, Oriol C, Aubert C, Mandin P, Py B. Genetic dissection of the bacterial Fe-S protein biogenesis machineries. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119746. [PMID: 38719030 DOI: 10.1016/j.bbamcr.2024.119746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Iron‑sulfur (Fe-S) clusters are one of the most ancient and versatile inorganic cofactors present in the three domains of life. Fe-S clusters are essential cofactors for the activity of a large variety of metalloproteins that play crucial physiological roles. Fe-S protein biogenesis is a complex process that starts with the acquisition of the elements (iron and sulfur atoms) and their assembly into an Fe-S cluster that is subsequently inserted into the target proteins. The Fe-S protein biogenesis is ensured by multiproteic systems conserved across all domains of life. Here, we provide an overview on how bacterial genetics approaches have permitted to reveal and dissect the Fe-S protein biogenesis process in vivo.
Collapse
Affiliation(s)
- Mathieu Sourice
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Charlotte Oriol
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Corinne Aubert
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Pierre Mandin
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
7
|
Veronesi G, Pérard J, Clémancey M, Gerez C, Duverger Y, Kieffer I, Barras F, Gambarelli S, Blondin G, Ollagnier de Choudens S. Multimodal Spectroscopic Analysis of the Fe-S Clusters of the as-Isolated Escherichia coli SufBC 2D Complex. Inorg Chem 2024; 63:8730-8738. [PMID: 38687645 DOI: 10.1021/acs.inorgchem.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Iron-sulfur (Fe-S) clusters are essential inorganic cofactors dedicated to a wide range of biological functions, including electron transfer and catalysis. Specialized multiprotein machineries present in all types of organisms support their biosynthesis. These machineries encompass a scaffold protein, on which Fe-S clusters are assembled before being transferred to cellular targets. Here, we describe the first characterization of the native Fe-S cluster of the anaerobically purified SufBC2D scaffold from Escherichia coli by XAS and Mössbauer, UV-visible absorption, and EPR spectroscopies. Interestingly, we propose that SufBC2D harbors two iron-sulfur-containing species, a [2Fe-2S] cluster and an as-yet unidentified species. Mutagenesis and biochemistry were used to propose amino acid ligands for the [2Fe-2S] cluster, supporting the hypothesis that both SufB and SufD are involved in the Fe-S cluster ligation. The [2Fe-2S] cluster can be transferred to ferredoxin in agreement with the SufBC2D scaffold function. These results are discussed in the context of Fe-S cluster biogenesis.
Collapse
Affiliation(s)
- Giulia Veronesi
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble F-38000, France
| | - Julien Pérard
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble F-38000, France
| | - Martin Clémancey
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble F-38000, France
| | - Catherine Gerez
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble F-38000, France
| | - Yohann Duverger
- Laboratoire de Chimie Bactérienne, UMR7243 Aix-Marseille Université CNRS, 31 Chemin Joseph Aiguier, Marseille 13009, France
| | - Isabelle Kieffer
- Univ. Grenoble Alpes, CNRS, IRD, Irstea, Météo France, OSUG, FAME, Grenoble 38000, France
| | - Frédéric Barras
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Department of Microbiology, SAMe Unit, Paris 75724, France
| | - Serge Gambarelli
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble F-38000, France
| | - Geneviève Blondin
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble F-38000, France
| | | |
Collapse
|
8
|
Schumacher K, Gelhausen R, Kion-Crosby W, Barquist L, Backofen R, Jung K. Ribosome profiling reveals the fine-tuned response of Escherichia coli to mild and severe acid stress. mSystems 2023; 8:e0103723. [PMID: 37909716 PMCID: PMC10746267 DOI: 10.1128/msystems.01037-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Bacteria react very differently to survive in acidic environments, such as the human gastrointestinal tract. Escherichia coli is one of the extremely acid-resistant bacteria and has a variety of acid-defense mechanisms. Here, we provide the first genome-wide overview of the adaptations of E. coli K-12 to mild and severe acid stress at both the transcriptional and translational levels. Using ribosome profiling and RNA sequencing, we uncover novel adaptations to different degrees of acidity, including previously hidden stress-induced small proteins and novel key transcription factors for acid defense, and report mRNAs with pH-dependent differential translation efficiency. In addition, we distinguish between acid-specific adaptations and general stress response mechanisms using denoising autoencoders. This workflow represents a powerful approach that takes advantage of next-generation sequencing techniques and machine learning to systematically analyze bacterial stress responses.
Collapse
Affiliation(s)
- Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Willow Kion-Crosby
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
9
|
Li L, Liu Z, Meng D, Liu Y, Liu T, Jiang C, Yin H. Sequence similarity network and protein structure prediction offer insights into the evolution of microbial pathways for ferrous iron oxidation. mSystems 2023; 8:e0072023. [PMID: 37768051 PMCID: PMC10654088 DOI: 10.1128/msystems.00720-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Microbial Fe(II) oxidation is a crucial process that harnesses and converts the energy available in Fe, contributing significantly to global element cycling. However, there are still many aspects of this process that remain unexplored. In this study, we utilized a combination of comparative genomics, sequence similarity network analysis, and artificial intelligence-driven structure modeling methods to address the lack of structural information on Fe(II) oxidation proteins and offer a comprehensive perspective on the evolution of Fe(II) oxidation pathways. Our findings suggest that several microbial Fe(II) oxidation pathways currently known may have originated within classes Gammaproteobacteria and Betaproteobacteria.
Collapse
Affiliation(s)
- Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yongjun Liu
- Hunan Tobacco Science Institute, Changsha, China
| | - Tianbo Liu
- Hunan Tobacco Science Institute, Changsha, China
| | - Chengying Jiang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
10
|
Niemand Wolhuter N, Ngakane L, de Wet TJ, Warren RM, Williams MJ. The Mycobacterium smegmatis HesB Protein, MSMEG_4272, Is Required for In Vitro Growth and Iron Homeostasis. Microorganisms 2023; 11:1573. [PMID: 37375075 DOI: 10.3390/microorganisms11061573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
A-type carrier (ATC) proteins are proposed to function in the biogenesis of Fe-S clusters, although their exact role remains controversial. The genome of Mycobacterium smegmatis encodes a single ATC protein, MSMEG_4272, which belongs to the HesB/YadR/YfhF family of proteins. Attempts to generate an MSMEG_4272 deletion mutant by two-step allelic exchange were unsuccessful, suggesting that the gene is essential for in vitro growth. CRISPRi-mediated transcriptional knock-down of MSMEG_4272 resulted in a growth defect under standard culture conditions, which was exacerbated in mineral-defined media. The knockdown strain displayed reduced intracellular iron levels under iron-replete conditions and increased susceptibility to clofazimine, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), and isoniazid, while the activity of the Fe-S containing enzymes, succinate dehydrogenase, and aconitase were not affected. This study suggests that MSMEG_4272 plays a role in the regulation of intracellular iron levels and is required for in vitro growth of M. smegmatis, particularly during exponential growth.
Collapse
Affiliation(s)
- Nandi Niemand Wolhuter
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Lerato Ngakane
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Robin M Warren
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Monique J Williams
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
11
|
Yang B, Xu C, Cheng Y, Jia T, Hu X. Research progress on the biosynthesis and delivery of iron-sulfur clusters in the plastid. PLANT CELL REPORTS 2023:10.1007/s00299-023-03024-7. [PMID: 37160773 DOI: 10.1007/s00299-023-03024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ancient protein cofactors ubiquitously exist in organisms. They are involved in many important life processes. Plastids are semi-autonomous organelles with a double membrane and it is believed to originate from a cyanobacterial endosymbiont. By learning form the research in cyanobacteria, a Fe-S cluster biosynthesis and delivery pathway has been proposed and partly demonstrated in plastids, including iron uptake, sulfur mobilization, Fe-S cluster assembly and delivery. Fe-S clusters are essential for the downstream Fe-S proteins to perform their normal biological functions. Because of the importance of Fe-S proteins in plastid, researchers have made a lot of research progress on this pathway in recent years. This review summarizes the detail research progress made in recent years. In addition, the scientific problems remained in this pathway are also discussed.
Collapse
Affiliation(s)
- Bing Yang
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Chenyun Xu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuting Cheng
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
12
|
Norambuena J, Al-Tameemi H, Bovermann H, Kim J, Beavers WN, Skaar EP, Parker D, Boyd JM. Copper ions inhibit pentose phosphate pathway function in Staphylococcus aureus. PLoS Pathog 2023; 19:e1011393. [PMID: 37235600 PMCID: PMC10249872 DOI: 10.1371/journal.ppat.1011393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/08/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
To gain a better insight of how Copper (Cu) ions toxify cells, metabolomic analyses were performed in S. aureus strains that lacks the described Cu ion detoxification systems (ΔcopBL ΔcopAZ; cop-). Exposure of the cop- strain to Cu(II) resulted in an increase in the concentrations of metabolites utilized to synthesize phosphoribosyl diphosphate (PRPP). PRPP is created using the enzyme phosphoribosylpyrophosphate synthetase (Prs) which catalyzes the interconversion of ATP and ribose 5-phosphate to PRPP and AMP. Supplementing growth medium with metabolites requiring PRPP for synthesis improved growth in the presence of Cu(II). A suppressor screen revealed that a strain with a lesion in the gene coding adenine phosphoribosyltransferase (apt) was more resistant to Cu. Apt catalyzes the conversion of adenine with PRPP to AMP. The apt mutant had an increased pool of adenine suggesting that the PRPP pool was being redirected. Over-production of apt, or alternate enzymes that utilize PRPP, increased sensitivity to Cu(II). Increasing or decreasing expression of prs resulted in decreased and increased sensitivity to growth in the presence of Cu(II), respectively. We demonstrate that Prs is inhibited by Cu ions in vivo and in vitro and that treatment of cells with Cu(II) results in decreased PRPP levels. Lastly, we establish that S. aureus that lacks the ability to remove Cu ions from the cytosol is defective in colonizing the airway in a murine model of acute pneumonia, as well as the skin. The data presented are consistent with a model wherein Cu ions inhibits pentose phosphate pathway function and are used by the immune system to prevent S. aureus infections.
Collapse
Affiliation(s)
- Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Hassan Al-Tameemi
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Hannah Bovermann
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - William N. Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
13
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
14
|
Rao TVP, Kuzminov A. Robust linear DNA degradation supports replication-initiation-defective mutants in Escherichia coli. G3 (BETHESDA, MD.) 2022; 12:jkac228. [PMID: 36165702 PMCID: PMC9635670 DOI: 10.1093/g3journal/jkac228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
RecBCD helicase/nuclease supports replication fork progress via recombinational repair or linear DNA degradation, explaining recBC mutant synthetic lethality with replication elongation defects. Since replication initiation defects leave chromosomes without replication forks, these should be insensitive to the recBCD status. Surprisingly, we found that both Escherichia coli dnaA46(Ts) and dnaC2(Ts) initiation mutants at semi-permissive temperatures are also recBC-colethal. Interestingly, dnaA46 recBC lethality suppressors suggest underinitiation as the problem, while dnaC2 recBC suppressors signal overintiation. Using genetic and physical approaches, we studied the dnaA46 recBC synthetic lethality, for the possibility that RecBCD participates in replication initiation. Overproduced DnaA46 mutant protein interferes with growth of dnaA+ cells, while the residual viability of the dnaA46 recBC mutant depends on the auxiliary replicative helicase Rep, suggesting replication fork inhibition by the DnaA46 mutant protein. The dnaA46 mutant depends on linear DNA degradation by RecBCD, rather than on recombinational repair. At the same time, the dnaA46 defect also interacts with Holliday junction-moving defects, suggesting reversal of inhibited forks. However, in contrast to all known recBC-colethals, which fragment their chromosomes, the dnaA46 recBC mutant develops no chromosome fragmentation, indicating that its inhibited replication forks are stable. Physical measurements confirm replication inhibition in the dnaA46 mutant shifted to semi-permissive temperatures, both at the level of elongation and initiation, while RecBCD gradually restores elongation and then initiation. We propose that RecBCD-catalyzed resetting of inhibited replication forks allows replication to displace the "sticky" DnaA46(Ts) protein from the chromosomal DNA, mustering enough DnaA for new initiations.
Collapse
Affiliation(s)
| | - Andrei Kuzminov
- Corresponding author: Department of Microbiology, University of Illinois at Urbana-Champaign, B103 C&LSL, 601 South Goodwin Avenue, Urbana, IL 61801-3709, USA.
| |
Collapse
|
15
|
Brown DC, Aggarwal N, Turner RJ. Exploration of the presence and abundance of multidrug resistance efflux genes in oil and gas environments. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36190831 DOI: 10.1099/mic.0.001248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As sequencing technology improves and the cost of metagenome sequencing decreases, the number of sequenced environments increases. These metagenomes provide a wealth of data in the form of annotated and unannotated genes. The role of multidrug resistance efflux pumps (MDREPs) is the removal of antibiotics, biocides and toxic metabolites created during aromatic hydrocarbon metabolism. Due to their naturally occurring role in hydrocarbon metabolism and their role in biocide tolerance, MDREP genes are of particular importance for the protection of pipeline assets. However, the heterogeneity of MDREP genes creates a challenge during annotation and detection. Here we use a selection of primers designed to target MDREPs in six pure species and apply them to publicly available metagenomes associated with oil and gas environments. Using in silico PCR with relaxed primer binding conditions we probed the metagenomes of a shale reservoir, a heavy oil tailings pond, a civil wastewater treatment, two marine sediments exposed to hydrocarbons following the Deepwater Horizon oil spill and a non-exposed marine sediment to assess the presence and abundance of MDREP genes. Through relaxed primer binding conditions during in silico PCR, the prevalence of MDREPs was determined. The percentage of nucleotide sequences identified by the MDREP primers was partially augmented by exposure to hydrocarbons in marine sediment and in shale reservoir compared to hydrocarbon-free marine sediments while tailings ponds and wastewater had the highest percentages. We believe this approach lays the groundwork for a supervised method of identifying poorly conserved genes within metagenomes.
Collapse
|
16
|
Abstract
The ability to detect magnetic fields is a sensory modality that is used by many animals to navigate. While first postulated in the 1800s, for decades, it was considered a biological myth. A series of elegant behavioral experiments in the 1960s and 1970s showed conclusively that the sense is real; however, the underlying mechanism(s) remained unresolved. Consequently, this has given rise to a series of beliefs that are critically analyzed in this manuscript. We address six assertions: (1) Magnetoreception does not exist; (2) It has to be magnetite; (3) Birds have a conserved six loci magnetic sense system in their upper beak; (4) It has to be cryptochrome; (5) MagR is a protein biocompass; and (6) The electromagnetic induction hypothesis is dead. In advancing counter-arguments for these beliefs, we hope to stimulate debate, new ideas, and the design of well-controlled experiments that can aid our understanding of this fascinating biological phenomenon.
Collapse
Affiliation(s)
- Simon Nimpf
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152 Munich, Germany
| | - David A Keays
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152 Munich, Germany.,University of Cambridge, Department of Physiology, Development & Neuroscience, Downing Street, CB2 3EG Cambridge, UK.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus- Vienna-Biocenter 1, 1030 Vienna, Austria
| |
Collapse
|
17
|
Shomar H, Bokinsky G. Towards a Synthetic Biology Toolset for Metallocluster Enzymes in Biosynthetic Pathways: What We Know and What We Need. Molecules 2021; 26:molecules26226930. [PMID: 34834021 PMCID: PMC8617995 DOI: 10.3390/molecules26226930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Microbes are routinely engineered to synthesize high-value chemicals from renewable materials through synthetic biology and metabolic engineering. Microbial biosynthesis often relies on expression of heterologous biosynthetic pathways, i.e., enzymes transplanted from foreign organisms. Metallocluster enzymes are one of the most ubiquitous family of enzymes involved in natural product biosynthesis and are of great biotechnological importance. However, the functional expression of recombinant metallocluster enzymes in live cells is often challenging and represents a major bottleneck. The activity of metallocluster enzymes requires essential supporting pathways, involved in protein maturation, electron supply, and/or enzyme stability. Proper function of these supporting pathways involves specific protein-protein interactions that remain poorly characterized and are often overlooked by traditional synthetic biology approaches. Consequently, engineering approaches that focus on enzymatic expression and carbon flux alone often overlook the particular needs of metallocluster enzymes. This review highlights the biotechnological relevance of metallocluster enzymes and discusses novel synthetic biology strategies to advance their industrial application, with a particular focus on iron-sulfur cluster enzymes. Strategies to enable functional heterologous expression and enhance recombinant metallocluster enzyme activity in industrial hosts include: (1) optimizing specific maturation pathways; (2) improving catalytic stability; and (3) enhancing electron transfer. In addition, we suggest future directions for developing microbial cell factories that rely on metallocluster enzyme catalysis.
Collapse
Affiliation(s)
- Helena Shomar
- INSERM U722, Faculté de Médecine, Université de Paris, Site Xavier Bichat, 75018 Paris, France
- Correspondence: (H.S.); (G.B.)
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Correspondence: (H.S.); (G.B.)
| |
Collapse
|
18
|
Abstract
Building iron-sulfur (Fe-S) clusters and assembling Fe-S proteins are essential actions for life on Earth. The three processes that sustain life, photosynthesis, nitrogen fixation, and respiration, require Fe-S proteins. Genes coding for Fe-S proteins can be found in nearly every sequenced genome. Fe-S proteins have a wide variety of functions, and therefore, defective assembly of Fe-S proteins results in cell death or global metabolic defects. Compared to alternative essential cellular processes, there is less known about Fe-S cluster synthesis and Fe-S protein maturation. Moreover, new factors involved in Fe-S protein assembly continue to be discovered. These facts highlight the growing need to develop a deeper biological understanding of Fe-S cluster synthesis, holo-protein maturation, and Fe-S cluster repair. Here, we outline bacterial strategies used to assemble Fe-S proteins and the genetic regulation of these processes. We focus on recent and relevant findings and discuss future directions, including the proposal of using Fe-S protein assembly as an antipathogen target.
Collapse
|
19
|
Molecular Biology and Genetic Tools to Investigate Functional Redundancy Among Fe-S Cluster Carriers in E. coli. Methods Mol Biol 2021. [PMID: 34292541 DOI: 10.1007/978-1-0716-1605-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Iron-sulfur (Fe-S) clusters are among the oldest protein cofactors, and Fe-S cluster-based chemistry has shaped the cellular metabolism of all living organisms. Over the last 30 years, thanks to molecular biology and genetic approaches, numerous actors for Fe-S cluster assembly and delivery to apotargets have been uncovered. In prokaryotes, Escherichia coli is the best-studied for its convenience of growth and its genetic amenability. During evolution, redundant ways to secure the supply of Fe-S clusters to the client proteins have emerged in E. coli. Disrupting gene expression is essential for gene function exploration, but redundancy can blur the interpretations as it can mask the role of important biogenesis components. This chapter describes molecular biology and genetic strategies that have permitted to reveal the E. coli Fe-S cluster conveying component network, composition, organization, and plasticity. In this chapter, we will describe the following genetic methods to investigate the importance of E. coli Fe-S cluster carriers: one-step inactivation of chromosomal genes in E. coli using polymerase chain reaction (PCR) products, P1 transduction, arabinose-inducible expression system, mevalonate (MVA) genetic by-pass, sensitivity tests to oxidative stress and iron starvation, β-galactosidase assay, gentamicin survival test, and Hot Fusion cloning method.
Collapse
|
20
|
Benoit SL, Agudelo S, Maier RJ. A two-hybrid system reveals previously uncharacterized protein-protein interactions within the Helicobacter pylori NIF iron-sulfur maturation system. Sci Rep 2021; 11:10794. [PMID: 34031459 PMCID: PMC8144621 DOI: 10.1038/s41598-021-90003-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
Iron-sulfur (Fe-S) proteins play essential roles in all living organisms. The gastric pathogen Helicobacter pylori relies exclusively on the NIF system for biosynthesis and delivery of Fe-S clusters. Previously characterized components include two essential proteins, NifS (cysteine desulfurase) and NifU (scaffold protein), and a dispensable Fe-S carrier, Nfu. Among 38 proteins previously predicted to coordinate Fe-S clusters, two proteins, HP0207 (a member of the Nbp35/ApbC ATPase family) and HP0277 (previously annotated as FdxA, a member of the YfhL ferredoxin-like family) were further studied, using a bacterial two-hybrid system approach to identify protein-protein interactions. ApbC was found to interact with 30 proteins, including itself, NifS, NifU, Nfu and FdxA, and alteration of the conserved ATPase motif in ApbC resulted in a significant (50%) decrease in the number of protein interactions, suggesting the ATpase activity is needed for some ApbC-target protein interactions. FdxA was shown to interact with 21 proteins, including itself, NifS, ApbC and Nfu, however no interactions between NifU and FdxA were detected. By use of cross-linking studies, a 51-kDa ApbC-Nfu heterodimer complex was identified. Attempts to generate apbC chromosomal deletion mutants in H. pylori were unsuccessful, therefore indirectly suggesting the hp0207 gene is essential. In contrast, mutants in the fdxA gene were obtained, albeit only in one parental strain (26695). Taken together, these results suggest both ApbC and FdxA are important players in the H. pylori NIF maturation system.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, The University of Georgia, 30602, Athens, Georgia.,Center for Metalloenzyme Studies, The University of Georgia, 30602, Athens, Georgia
| | - Stephanie Agudelo
- Department of Microbiology, The University of Georgia, 30602, Athens, Georgia
| | - Robert J Maier
- Department of Microbiology, The University of Georgia, 30602, Athens, Georgia. .,Center for Metalloenzyme Studies, The University of Georgia, 30602, Athens, Georgia.
| |
Collapse
|
21
|
Zoolkefli FIRM, Moriguchi K, Cho Y, Kiyokawa K, Yamamoto S, Suzuki K. Isolation and Analysis of Donor Chromosomal Genes Whose Deficiency Is Responsible for Accelerating Bacterial and Trans-Kingdom Conjugations by IncP1 T4SS Machinery. Front Microbiol 2021; 12:620535. [PMID: 34093458 PMCID: PMC8174662 DOI: 10.3389/fmicb.2021.620535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Conjugal transfer is a major driving force of genetic exchange in eubacteria, and the system in IncP1-type broad-host-range plasmids transfers DNA even to eukaryotes and archaea in a process known as trans-kingdom conjugation (TKC). Although conjugation factors encoded on plasmids have been extensively analyzed, those on the donor chromosome have not. To identify the potential conjugation factor(s), a genome-wide survey on a comprehensive collection of Escherichia coli gene knockout mutants (Keio collection) as donors to Saccharomyces cerevisiae recipients was performed using a conjugal transfer system mediated by the type IV secretion system (T4SS) of the IncP1α plasmid. Out of 3,884 mutants, three mutants (ΔfrmR, ΔsufA, and ΔiscA) were isolated, which showed an increase by one order of magnitude in both E. coli-E. coli and E. coli-yeast conjugations without an increase in the mRNA accumulation level for the conjugation related genes examined. The double-knockout mutants for these genes (ΔfrmRΔsufA and ΔiscAΔfrmR) did not show synergistic effects on the conjugation efficiency, suggesting that these factors affect a common step in the conjugation machinery. The three mutants demonstrated increased conjugation efficiency in IncP1β-type but not in IncN- and IncW-type broad-host-range plasmid transfers, and the homologous gene knockout mutants against the three genes in Agrobacterium tumefaciens also showed increased TKC efficiency. These results suggest the existence of a specific regulatory system in IncP1 plasmids that enables the control of conjugation efficiency in different hosts, which could be utilized for the development of donor strains as gene introduction tools into bacteria, eukaryotes, and archaea.
Collapse
Affiliation(s)
| | - Kazuki Moriguchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Yunjae Cho
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashihiroshima, Japan
| | - Kazuya Kiyokawa
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| | - Katsunori Suzuki
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
22
|
Silva LSO, Matias PM, Romão CV, Saraiva LM. Structural Basis of RICs Iron Donation for Iron-Sulfur Cluster Biogenesis. Front Microbiol 2021; 12:670681. [PMID: 33995335 PMCID: PMC8117158 DOI: 10.3389/fmicb.2021.670681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli YtfE is a di-iron protein of the widespread Repair of Iron Centers proteins (RIC) family that has the capacity to donate iron, which is a crucial component of the biogenesis of the ubiquitous family of iron-sulfur proteins. In this work we identify in E. coli a previously unrecognized link between the YtfE protein and the major bacterial system for iron-sulfur cluster (ISC) assembly. We show that YtfE establishes protein-protein interactions with the scaffold IscU, where the transient cluster is formed, and the cysteine desulfurase IscS. Moreover, we found that promotion by YtfE of the formation of an Fe-S cluster in IscU requires two glutamates, E125 and E159 in YtfE. Both glutamates form part of the entrance of a protein channel in YtfE that links the di-iron center to the surface. In particular, E125 is crucial for the exit of iron, as a single mutation to leucine closes the channel rendering YtfE inactive for the build-up of Fe-S clusters. Hence, we provide evidence for the key role of RICs as bacterial iron donor proteins involved in the biogenesis of Fe-S clusters.
Collapse
Affiliation(s)
- Liliana S O Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Pedro M Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Célia V Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
23
|
Identification of Genes Involved in Fe-S Cluster Biosynthesis of Nitrogenase in Paenibacillus polymyxa WLY78. Int J Mol Sci 2021; 22:ijms22073771. [PMID: 33916504 PMCID: PMC8038749 DOI: 10.3390/ijms22073771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
NifS and NifU (encoded by nifS and nifU) are generally dedicated to biogenesis of the nitrogenase Fe–S cluster in diazotrophs. However, nifS and nifU are not found in N2-fixing Paenibacillus strains, and the mechanisms involved in Fe–S cluster biosynthesis of nitrogenase is not clear. Here, we found that the genome of Paenibacillus polymyxa WLY78 contains the complete sufCDSUB operon, a partial sufC2D2B2 operon, a nifS-like gene, two nifU-like genes (nfuA-like and yutI), and two iscS genes. Deletion and complementation studies showed that the sufC, sufD, and sufB genes of the sufCDSUB operon, and nifS-like and yutI genes were involved in the Fe–S cluster biosynthesis of nitrogenase. Heterologous complementation studies demonstrated that the nifS-like gene of P. polymyxa WLY78 is interchangeable with Klebsiella oxytoca nifS, but P. polymyxa WLY78 SufCDB cannot be functionally replaced by K. oxytoca NifU. In addition, K. oxytoca nifU and Escherichia coli nfuA are able to complement the P. polymyxa WLY78 yutI mutant. Our findings thus indicate that the NifS-like and SufCDB proteins are the specific sulfur donor and the molecular scaffold, respectively, for the Fe–S cluster formation of nitrogenase in P. polymyxa WLY78. YutI can be an Fe–S cluster carrier involved in nitrogenase maturation in P. polymyxa WLY78.
Collapse
|
24
|
A-type carrier proteins are involved in [4Fe-4S] cluster insertion into the radical SAM protein MoaA for the synthesis of active molybdoenzymes. J Bacteriol 2021; 203:e0008621. [PMID: 33782054 DOI: 10.1128/jb.00086-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters are important biological cofactors present in proteins with crucial biological functions, from photosynthesis to DNA repair, gene expression and bioenergetic processes. For the insertion of Fe-S clusters into proteins, A-type carrier proteins have been identified. So far, three of them were characterized in detail in Escherichia coli, namely IscA, SufA and ErpA, which were shown to partially replace each other in their roles in [4Fe-4S] cluster insertion into specific target proteins. To further expand the knowledge of [4Fe-4S] cluster insertion into proteins, we analyzed the complex Fe-S cluster dependent network for the synthesis of the molybdenum cofactor (Moco) and the expression of genes encoding nitrate reductase in E. coli Our studies include the identification of the A-type carrier proteins ErpA and IscA involved in [4Fe-4S] cluster insertion into the S-adenosyl-methionine dependent radical SAM protein MoaA. We show that ErpA and IscA can partially replace each other in their role to provide [4Fe-4S] clusters for MoaA. Since most genes expressing molybdoenzymes are regulated by the transcriptional regulator for fumarate and nitrate reduction (FNR) under anaerobic conditions, we also identified the proteins that are crucial to obtain an active FNR under conditions of nitrate respiration. We show that ErpA is essential for the FNR-dependent expression of the narGHJI operon, a role that cannot be compensated by IscA under the growth conditions tested. SufA does not have a role in Fe-S cluster insertion into MoaA or FNR under anaerobic growth of nitrate respiration, based on low gene expression levels.IMPORTANCEUnderstanding the assembly of iron-sulfur (Fe-S) proteins is relevant to many fields, including nitrogen fixation, photosynthesis, bioenergetics and gene regulation. Still remaining critical gaps in our knowledge are how Fe-S clusters are transferred to their target proteins and how the specificity in this process is achieved, since different forms of Fe-S clusters need to be delivered to structurally highly diverse target proteins. Numerous Fe-S carrier proteins have been identified in prokaryotes like Escherichia coli, including ErpA, IscA, SusA and NfuA. In addition, the diverse Fe-S cluster delivery proteins and their target proteins underlie a complex regulatory network of expression, to ensure that both proteins are synthesized under particular growth conditions.
Collapse
|
25
|
Occurrence, Evolution and Specificities of Iron-Sulfur Proteins and Maturation Factors in Chloroplasts from Algae. Int J Mol Sci 2021; 22:ijms22063175. [PMID: 33804694 PMCID: PMC8003979 DOI: 10.3390/ijms22063175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
Iron-containing proteins, including iron-sulfur (Fe-S) proteins, are essential for numerous electron transfer and metabolic reactions. They are present in most subcellular compartments. In plastids, in addition to sustaining the linear and cyclic photosynthetic electron transfer chains, Fe-S proteins participate in carbon, nitrogen, and sulfur assimilation, tetrapyrrole and isoprenoid metabolism, and lipoic acid and thiamine synthesis. The synthesis of Fe-S clusters, their trafficking, and their insertion into chloroplastic proteins necessitate the so-called sulfur mobilization (SUF) protein machinery. In the first part, we describe the molecular mechanisms that allow Fe-S cluster synthesis and insertion into acceptor proteins by the SUF machinery and analyze the occurrence of the SUF components in microalgae, focusing in particular on the green alga Chlamydomonas reinhardtii. In the second part, we describe chloroplastic Fe-S protein-dependent pathways that are specific to Chlamydomonas or for which Chlamydomonas presents specificities compared to terrestrial plants, putting notable emphasis on the contribution of Fe-S proteins to chlorophyll synthesis in the dark and to the fermentative metabolism. The occurrence and evolutionary conservation of these enzymes and pathways have been analyzed in all supergroups of microalgae performing oxygenic photosynthesis.
Collapse
|
26
|
Suraci D, Saudino G, Nasta V, Ciofi-Baffoni S, Banci L. ISCA1 Orchestrates ISCA2 and NFU1 in the Maturation of Human Mitochondrial [4Fe-4S] Proteins. J Mol Biol 2021; 433:166924. [PMID: 33711344 DOI: 10.1016/j.jmb.2021.166924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
The late-acting steps of the pathway responsible for the maturation of mitochondrial [4Fe-4S] proteins are still elusive. Three proteins ISCA1, ISCA2 and NFU1 were shown to be implicated in the assembly of [4Fe-4S] clusters and their transfer into mitochondrial apo proteins. We present here a NMR-based study showing a detailed molecular model of the succession of events performed in a coordinated manner by ISCA1, ISCA2 and NFU1 to make [4Fe-4S] clusters available to mitochondrial apo proteins. We show that ISCA1 is the key player of the [4Fe-4S] protein maturation process because of its ability to interact with both NFU1 and ISCA2, which, instead do not interact each other. ISCA1 works as the promoter of the interaction between ISCA2 and NFU1 being able to determine the formation of a transient ISCA1-ISCA2-NFU1 ternary complex. We also show that ISCA1, thanks to its specific interaction with the C-terminal cluster-binding domain of NFU1, drives [4Fe-4S] cluster transfer from the site where the cluster is assembled on the ISCA1-ISCA2 complex to a cluster binding site formed by ISCA1 and NFU1 in the ternary ISCA1-ISCA2-NFU1 complex. Such mechanism guarantees that the [4Fe-4S] cluster can be safely moved from where it is assembled on the ISCA1-ISCA2 complex to NFU1, thereby resulting the [4Fe-4S] cluster available for the mitochondrial apo proteins specifically requiring NFU1 for their maturation.
Collapse
Affiliation(s)
- Dafne Suraci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Giovanni Saudino
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Veronica Nasta
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
27
|
Azam T, Przybyla-Toscano J, Vignols F, Couturier J, Rouhier N, Johnson MK. The Arabidopsis Mitochondrial Glutaredoxin GRXS15 Provides [2Fe-2S] Clusters for ISCA-Mediated [4Fe-4S] Cluster Maturation. Int J Mol Sci 2020; 21:ijms21239237. [PMID: 33287436 PMCID: PMC7730481 DOI: 10.3390/ijms21239237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 01/23/2023] Open
Abstract
Iron-sulfur (Fe-S) proteins are crucial for many cellular functions, particularly those involving electron transfer and metabolic reactions. An essential monothiol glutaredoxin GRXS15 plays a key role in the maturation of plant mitochondrial Fe-S proteins. However, its specific molecular function is not clear, and may be different from that of the better characterized yeast and human orthologs, based on known properties. Hence, we report here a detailed characterization of the interactions between Arabidopsis thaliana GRXS15 and ISCA proteins using both in vivo and in vitro approaches. Yeast two-hybrid and bimolecular fluorescence complementation experiments demonstrated that GRXS15 interacts with each of the three plant mitochondrial ISCA1a/1b/2 proteins. UV-visible absorption/CD and resonance Raman spectroscopy demonstrated that coexpression of ISCA1a and ISCA2 resulted in samples with one [2Fe-2S]2+ cluster per ISCA1a/2 heterodimer, but cluster reconstitution using as-purified [2Fe-2S]-ISCA1a/2 resulted in a [4Fe-4S]2+ cluster-bound ISCA1a/2 heterodimer. Cluster transfer reactions monitored by UV-visible absorption and CD spectroscopy demonstrated that [2Fe-2S]-GRXS15 mediates [2Fe-2S]2+ cluster assembly on mitochondrial ferredoxin and [4Fe-4S]2+ cluster assembly on the ISCA1a/2 heterodimer in the presence of excess glutathione. This suggests that ISCA1a/2 is an assembler of [4Fe-4S]2+ clusters, via two-electron reductive coupling of two [2Fe-2S]2+ clusters. Overall, the results provide new insights into the roles of GRXS15 and ISCA1a/2 in effecting [2Fe-2S]2+ to [4Fe-4S]2+ cluster conversions for the maturation of client [4Fe-4S] cluster-containing proteins in plants.
Collapse
Affiliation(s)
- Tamanna Azam
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA;
| | | | - Florence Vignols
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, 34060 Montpellier, France;
| | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (J.P.-T.); (J.C.); (N.R.)
| | - Nicolas Rouhier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; (J.P.-T.); (J.C.); (N.R.)
| | - Michael K. Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA;
- Correspondence: ; Tel.: +1-706-542-9378; Fax: +1-706-542-9454
| |
Collapse
|
28
|
Lill R. Do FeS clusters rule bacterial iron regulation? J Biol Chem 2020; 295:15464-15465. [PMID: 33188081 DOI: 10.1074/jbc.h120.016190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For decades, the bacterial ferric uptake regulator (Fur) has been thought to respond to ferrous iron to transcriptionally regulate genes required for balancing iron uptake, storage, and utilization. Because iron binding to Fur has never been confirmed in vivo, the physiological iron-sensing mechanism remains an open question. Fontenot et al. now show that Fur purified from Escherichia coli binds an all-Cys-coordinated [2Fe-2S] cluster. This finding opens the exciting possibility that Fur may join numerous well-studied bacterial, fungal, and mammalian proteins that use FeS clusters for cellular iron regulation.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Marburg, Germany; SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
29
|
Pearson SA, Cowan JA. Evolution of the human mitochondrial ABCB7 [2Fe-2S](GS) 4 cluster exporter and the molecular mechanism of an E433K disease-causing mutation. Arch Biochem Biophys 2020; 697:108661. [PMID: 33157103 DOI: 10.1016/j.abb.2020.108661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/08/2020] [Accepted: 10/29/2020] [Indexed: 11/18/2022]
Abstract
Iron-sulfur cluster proteins play key roles in a multitude of cellular processes. Iron-sulfur cofactors are assembled primarily in mitochondria and are then exported to the cytosol by use of an ABCB7 transporter. It has been shown that the yeast mitochondrial transporter Atm1 can export glutathione-coordinated iron-sulfur clusters, [2Fe-2S](SG)4, providing a source of cluster units for cytosolic iron-sulfur cluster assembly systems. This pathway is consistent with the endosymbiotic model of mitochondrial evolution where homologous bacterial heavy metal transporters, utilizing metal glutathione adducts, were adapted for use in eukaryotic mitochondria. Herein, the basis for endosymbiotic evolution of the human cluster export protein (ABCB7) is developed through a BLAST analysis of transporters from ancient proteobacteria. In addition, a functional comparison of native human protein, versus a disease-causing mutant, demonstrates a key role for residue E433 in promoting cluster transport. Dysfunction in mitochondrial export of Fe-S clusters is a likely cause of the disease condition X-linked sideroblastic anemia.
Collapse
Affiliation(s)
- Stephen A Pearson
- The Ohio State University Biophysics Program, The Ohio State University, 484 West 12thAvenue, Columbus, OH, 43210, United States
| | - J A Cowan
- The Ohio State University Biophysics Program, The Ohio State University, 484 West 12thAvenue, Columbus, OH, 43210, United States; Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, United States. https://chemistry.osu.edu/people/cowan.2
| |
Collapse
|
30
|
Gerstel A, Zamarreño Beas J, Duverger Y, Bouveret E, Barras F, Py B. Oxidative stress antagonizes fluoroquinolone drug sensitivity via the SoxR-SUF Fe-S cluster homeostatic axis. PLoS Genet 2020; 16:e1009198. [PMID: 33137124 PMCID: PMC7671543 DOI: 10.1371/journal.pgen.1009198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/17/2020] [Accepted: 10/15/2020] [Indexed: 11/18/2022] Open
Abstract
The level of antibiotic resistance exhibited by bacteria can vary as a function of environmental conditions. Here, we report that phenazine-methosulfate (PMS), a redox-cycling compound (RCC) enhances resistance to fluoroquinolone (FQ) norfloxacin. Genetic analysis showed that E. coli adapts to PMS stress by making Fe-S clusters with the SUF machinery instead of the ISC one. Based upon phenotypic analysis of soxR, acrA, and micF mutants, we showed that PMS antagonizes fluoroquinolone toxicity by SoxR-mediated up-regulation of the AcrAB drug efflux pump. Subsequently, we showed that despite the fact that SoxR could receive its cluster from either ISC or SUF, only SUF is able to sustain efficient SoxR maturation under exposure to prolonged PMS period or high PMS concentrations. This study furthers the idea that Fe-S cluster homeostasis acts as a sensor of environmental conditions, and because its broad influence on cell metabolism, modifies the antibiotic resistance profile of E. coli. Our study investigates how phenazine compounds, which are widely present in the environment, impact antibiotic resistance of the Gram-negative bacteria Escherichia coli. The paucity of new antibacterial molecules fuels concern in the wake of increased antibiotic resistance among pathogens. Equally worrying is the realization that environmental conditions can have a drastic influence on the efficiency of antibacterial compounds. Here we report that phenazine, a member of the redox-cycling molecule family, is antagonistic to norfloxacin, a well-known and routinely used fluoroquinolone antibiotic. We show that the mechanism E. coli is using for synthesizing Fe-S clusters controls the phenazine/fluoroquinolone antagonism. Indeed, upon exposure to phenazine, E. coli switches from making Fe-S clusters with the ISC Fe-S biogenesis system to making them with SUF, a consequence of which is the activation of the SoxR transcriptional activator, up-regulation of the AcrAB efflux pump, and efflux of fluoroquinolone out of the cell. This study illustrates the major influence that environmental conditions play in setting antibiotic level resistance and further highlights the major contribution of Fe-S cluster homeostasis in antibiotic susceptibility.
Collapse
Affiliation(s)
- Audrey Gerstel
- Laboratoire de Chimie Bactérienne, Aix-Marseille Université-CNRS UMR7283, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Jordi Zamarreño Beas
- Laboratoire de Chimie Bactérienne, Aix-Marseille Université-CNRS UMR7283, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Yohann Duverger
- Laboratoire de Chimie Bactérienne, Aix-Marseille Université-CNRS UMR7283, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Emmanuelle Bouveret
- SAMe Unit, Département de Microbiologie, Institut Pasteur, CNRS UMR IMM 2001, Paris, France
| | - Frédéric Barras
- Laboratoire de Chimie Bactérienne, Aix-Marseille Université-CNRS UMR7283, Institut de Microbiologie de la Méditerranée, Marseille, France
- SAMe Unit, Département de Microbiologie, Institut Pasteur, CNRS UMR IMM 2001, Paris, France
- * E-mail: (FB); (BP)
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne, Aix-Marseille Université-CNRS UMR7283, Institut de Microbiologie de la Méditerranée, Marseille, France
- * E-mail: (FB); (BP)
| |
Collapse
|
31
|
Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118863. [PMID: 33007329 DOI: 10.1016/j.bbamcr.2020.118863] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro. In prokaryotes, three Fe/S protein biogenesis systems are known; ISC, SUF, and the more specialized NIF. The former two systems have been transferred by endosymbiosis from bacteria to mitochondria and plastids, respectively, of eukaryotes. In their cytosol, eukaryotes use the CIA machinery for the biogenesis of cytosolic and nuclear Fe/S proteins. Despite the structural diversity of the protein constituents of these four machineries, general mechanistic concepts underlie the complex process of Fe/S protein biogenesis. This review provides a comprehensive and comparative overview of the various known biogenesis systems in Biology, and summarizes their common or diverging molecular mechanisms, thereby illustrating both the conservation and diverse adaptions of these four machineries during evolution and under different lifestyles. Knowledge of these fundamental biochemical pathways is not only of basic scientific interest, but is important for the understanding of human 'Fe/S diseases' and can be used in biotechnology.
Collapse
Affiliation(s)
- Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Sven A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| |
Collapse
|
32
|
Methanothermobacter thermautotrophicus strain ΔH as a potential microorganism for bioconversion of CO2 to methane. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Blahut M, Sanchez E, Fisher CE, Outten FW. Fe-S cluster biogenesis by the bacterial Suf pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118829. [PMID: 32822728 DOI: 10.1016/j.bbamcr.2020.118829] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023]
Abstract
Biogenesis of iron-sulfur (FeS) clusters in an essential process in living organisms due to the critical role of FeS cluster proteins in myriad cell functions. During biogenesis of FeS clusters, multi-protein complexes are used to drive the mobilization and protection of reactive sulfur and iron intermediates, regulate assembly of various FeS clusters on an ATPase-dependent, multi-protein scaffold, and target nascent clusters to their downstream protein targets. The evolutionarily ancient sulfur formation (Suf) pathway for FeS cluster assembly is found in bacteria and archaea. In Escherichia coli, the Suf pathway functions as an emergency pathway under conditions of iron limitation or oxidative stress. In other pathogenic bacteria, such as Mycobacterium tuberculosis and Enterococcus faecalis, the Suf pathway is the sole source for FeS clusters and therefore is a potential target for the development of novel antibacterial compounds. Here we summarize the considerable progress that has been made in characterizing the first step of mobilization and protection of reactive sulfur carried out by the SufS-SufE or SufS-SufU complex, FeS cluster assembly on SufBC2D scaffold complexes, and the downstream trafficking of nascent FeS clusters to A-type carrier (ATC) proteins. Cell Biology of Metals III edited by Roland Lill and Mick Petris.
Collapse
Affiliation(s)
- Matthew Blahut
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Enis Sanchez
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Claire E Fisher
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.
| |
Collapse
|
34
|
Oppermann S, Höfflin S, Friedrich T. ErpA is important but not essential for the Fe/S cluster biogenesis of Escherichia coli NADH:ubiquinone oxidoreductase (complex I). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148286. [PMID: 32777304 DOI: 10.1016/j.bbabio.2020.148286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Energy converting NADH:ubiquinone oxidoreductase, complex I, is the first enzyme of respiratory chains in most eukaryotes and many bacteria. The complex comprises a peripheral arm catalyzing electron transfer and a membrane arm involved in proton-translocation. In Escherichia coli, the peripheral arm features a non-covalently bound flavin mononucleotide and nine iron-sulfur (Fe/S)-clusters. Very little is known about the incorporation of the Fe/S-clusters into the E. coli complex I. ErpA, an A-type carrier protein is discussed to act as a Fe/S-cluster carrier protein. To contribute to the understanding of ErpA for the assembly of E. coli complex I, we analyzed an erpA knock-out strain. Deletion of erpA decreased the complex I content in cytoplasmic membranes to approximately one third and the NADH oxidase activity to one fifth. EPR spectroscopy showed the presence of all Fe/S-clusters of the complex in the membrane but only in minor quantities. Sucrose gradient centrifugation and native PAGE revealed the presence of a marginal amount of a stable and fully assembled complex extractable from the membrane. Thus, ErpA is not essential for the assembly of complex I but its absence leads to a strong decrease of a functional complex in the cytoplasmic membrane due to a major lack of all EPR-detectable Fe/S-clusters.
Collapse
Affiliation(s)
- Sabrina Oppermann
- Albert-Ludwigs-Universität, Institut für Biochemie, Albertstr. 21, D-79104 Freiburg, Germany
| | - Simon Höfflin
- Albert-Ludwigs-Universität, Institut für Biochemie, Albertstr. 21, D-79104 Freiburg, Germany
| | - Thorsten Friedrich
- Albert-Ludwigs-Universität, Institut für Biochemie, Albertstr. 21, D-79104 Freiburg, Germany.
| |
Collapse
|
35
|
The Requirement of Inorganic Fe-S Clusters for the Biosynthesis of the Organometallic Molybdenum Cofactor. INORGANICS 2020. [DOI: 10.3390/inorganics8070043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential protein cofactors. In enzymes, they are present either in the rhombic [2Fe-2S] or the cubic [4Fe-4S] form, where they are involved in catalysis and electron transfer and in the biosynthesis of metal-containing prosthetic groups like the molybdenum cofactor (Moco). Here, we give an overview of the assembly of Fe-S clusters in bacteria and humans and present their connection to the Moco biosynthesis pathway. In all organisms, Fe-S cluster assembly starts with the abstraction of sulfur from l-cysteine and its transfer to a scaffold protein. After formation, Fe-S clusters are transferred to carrier proteins that insert them into recipient apo-proteins. In eukaryotes like humans and plants, Fe-S cluster assembly takes place both in mitochondria and in the cytosol. Both Moco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. Moco is a tricyclic pterin compound with molybdenum coordinated through its unique dithiolene group. Moco biosynthesis begins in the mitochondria in a Fe-S cluster dependent step involving radical/S-adenosylmethionine (SAM) chemistry. An intermediate is transferred to the cytosol where the dithiolene group is formed, to which molybdenum is finally added. Further connections between Fe-S cluster assembly and Moco biosynthesis are discussed in detail.
Collapse
|
36
|
Baussier C, Fakroun S, Aubert C, Dubrac S, Mandin P, Py B, Barras F. Making iron-sulfur cluster: structure, regulation and evolution of the bacterial ISC system. Adv Microb Physiol 2020; 76:1-39. [PMID: 32408945 DOI: 10.1016/bs.ampbs.2020.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron sulfur (Fe-S) clusters rank among the most ancient and conserved prosthetic groups. Fe-S clusters containing proteins are present in most, if not all, organisms. Fe-S clusters containing proteins are involved in a wide range of cellular processes, from gene regulation to central metabolism, via gene expression, RNA modification or bioenergetics. Fe-S clusters are built by biogenesis machineries conserved throughout both prokaryotes and eukaryotes. We focus mostly on bacterial ISC machinery, but not exclusively, as we refer to eukaryotic ISC system when it brings significant complementary information. Besides covering the structural and regulatory aspects of Fe-S biogenesis, this review aims to highlight Fe-S biogenesis facets remaining matters of discussion, such as the role of frataxin, or the link between fatty acid metabolism and Fe-S homeostasis. Last, we discuss recent advances on strategies used by different species to make and use Fe-S clusters in changing redox environmental conditions.
Collapse
Affiliation(s)
- Corentin Baussier
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Soufyan Fakroun
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Corinne Aubert
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Sarah Dubrac
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France
| | - Pierre Mandin
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Frédéric Barras
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France
| |
Collapse
|
37
|
Wang Y, Singh R, Tong E, Tang M, Zheng L, Fang H, Li R, Guo L, Song J, Srinivasan R, Sharma A, Lin L, Trujillo JA, Manshardt R, Chen LY, Ming R, Yu Q. Positional cloning and characterization of the papaya diminutive mutant reveal a truncating mutation in the CpMMS19 gene. THE NEW PHYTOLOGIST 2020; 225:2006-2021. [PMID: 31733154 DOI: 10.1111/nph.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
The papaya diminutive mutant exhibits miniature stature, retarded growth and reduced fertility. This undesirable mutation appeared in the variety 'Sunset', the progenitor of the transgenic line 'SunUp', and was accidentally carried forward into breeding populations. The diminutive mutation was mapped to chromosome 2 and fine mapped to scaffold 25. Sequencing of a bacterial artificial chromosome in the fine mapped region led to the identification of the target gene responsible for the diminutive mutant, a gene orthologous to MMS19 with a 36.8 kb deletion co-segregating with the diminutive mutant. The genomic sequence of CpMMS19 is 62 kb, consisting of 20 exons and 19 introns. It encodes a protein of 1143 amino acids while the diminutive allele encodes a truncated protein of 287 amino acids. Expression of the full-length CpMMS19 was able to complement the thermosensitive growth of the yeast mms19 deletion mutant while expression of the diminutive allele resulted in increased thermosensitivity. Over-expression of the diminutive allele in Arabidopsis met18 mutant results in a high frequency of seed abortion. The papaya diminutive phenotype is caused by an alteration in gene function rather than a loss-of-function mutation. SCAR (sequence characterized amplified region) markers were developed for rapid detection of the diminutive allele in breeding populations.
Collapse
Affiliation(s)
- Ying Wang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ratnesh Singh
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
| | - Eric Tong
- Hawaii Agriculture Research Center, Kunia, HI, 96759, USA
| | - Min Tang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liwei Zheng
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
| | - Hongkun Fang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruoyu Li
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin Guo
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinjin Song
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rajeswari Srinivasan
- Department of Tropical Plant & Soil Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Anupma Sharma
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
| | - Lianyu Lin
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jorge A Trujillo
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Richard Manshardt
- Department of Tropical Plant & Soil Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Li-Yu Chen
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Qingyi Yu
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
- Hawaii Agriculture Research Center, Kunia, HI, 96759, USA
| |
Collapse
|
38
|
Lu HM, Li JD, Zhang YD, Lu XL, Xu C, Huang Y, Gribskov M. The Evolution History of Fe-S Cluster A-Type Assembly Protein Reveals Multiple Gene Duplication Events and Essential Protein Motifs. Genome Biol Evol 2020; 12:160-173. [PMID: 32108236 PMCID: PMC7144353 DOI: 10.1093/gbe/evaa038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 01/15/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters play important roles in electron transfer, metabolic and biosynthetic reactions, and the regulation of gene expression. Understanding the biogenesis of Fe-S clusters is therefore relevant to many fields. In the complex process of Fe-S protein formation, the A-type assembly protein (ATAP) family, which consists of several subfamilies, plays an essential role in Fe-S cluster formation and transfer and is highly conserved across the tree of life. However, the taxonomic distribution, motif compositions, and the evolutionary history of the ATAP subfamilies are not well understood. To address these problems, our study investigated the taxonomic distribution of 321 species from a broad cross-section of taxa. Then, we identified common and specific motifs in multiple ATAP subfamilies to explain the functional conservation and nonredundancy of the ATAPs, and a novel, essential motif was found in Eumetazoa IscA1, which has a newly found magnetic function. Finally, we used phylogenetic analytical methods to reconstruct the evolution history of this family. Our results show that two types of ErpA proteins (nonproteobacteria-type ErpA1 and proteobacteria-type ErpA2) exist in bacteria. The ATAP family, consisting of seven subfamilies, can be further classified into two types of ATAPs. Type-I ATAPs include IscA, SufA, HesB, ErpA1, and IscA1, with an ErpA1-like gene as their last common ancestor, whereas type-II ATAPs consist of ErpA2 and IscA2, duplicated from an ErpA2-like gene. During the mitochondrial endosymbiosis, IscA became IscA1 in eukaryotes and ErpA2 became IscA2 in eukaryotes, respectively.
Collapse
Affiliation(s)
- Hui-Meng Lu
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
| | - Jing-Di Li
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
| | - Yu-Dan Zhang
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
| | - Xiao-Li Lu
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
| | - Chang Xu
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, PR China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, PR China
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University
- Department of Computer Science, Purdue University
| |
Collapse
|
39
|
Gao F. Iron-Sulfur Cluster Biogenesis and Iron Homeostasis in Cyanobacteria. Front Microbiol 2020; 11:165. [PMID: 32184761 PMCID: PMC7058544 DOI: 10.3389/fmicb.2020.00165] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/23/2020] [Indexed: 01/23/2023] Open
Abstract
Iron–sulfur (Fe–S) clusters are ancient and ubiquitous cofactors and are involved in many important biological processes. Unlike the non-photosynthetic bacteria, cyanobacteria have developed the sulfur utilization factor (SUF) mechanism as their main assembly pathway for Fe–S clusters, supplemented by the iron–sulfur cluster and nitrogen-fixing mechanisms. The SUF system consists of cysteine desulfurase SufS, SufE that can enhance SufS activity, SufBC2D scaffold complex, carrier protein SufA, and regulatory repressor SufR. The S source for the Fe–S cluster assembly mainly originates from L-cysteine, but the Fe donor remains elusive. This minireview mainly focuses on the biogenesis pathway of the Fe–S clusters in cyanobacteria and its relationship with iron homeostasis. Future challenges of studying Fe–S clusters in cyanobacteria are also discussed.
Collapse
Affiliation(s)
- Fudan Gao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
40
|
Elevated Expression of a Functional Suf Pathway in Escherichia coli BL21(DE3) Enhances Recombinant Production of an Iron-Sulfur Cluster-Containing Protein. J Bacteriol 2020; 202:JB.00496-19. [PMID: 31712282 DOI: 10.1128/jb.00496-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023] Open
Abstract
Structural and spectroscopic analysis of iron-sulfur [Fe-S] cluster-containing proteins is often limited by the occupancy and yield of recombinantly produced proteins. Here we report that Escherichia coli BL21(DE3), a strain routinely used to overproduce [Fe-S] cluster-containing proteins, has a nonfunctional Suf pathway, one of two E. coli [Fe-S] cluster biogenesis pathways. We confirmed that BL21(DE3) and commercially available derivatives carry a deletion that results in an in-frame fusion of sufA and sufB genes within the sufABCDSE operon. We show that this fusion protein accumulates in cells but is inactive in [Fe-S] cluster biogenesis. Restoration of an intact Suf pathway combined with enhanced suf operon expression led to a remarkable (∼3-fold) increase in the production of the [4Fe-4S] cluster-containing BchL protein, a key component of the dark-operative protochlorophyllide oxidoreductase complex. These results show that this engineered "SufFeScient" derivative of BL21(DE3) is suitable for enhanced large-scale synthesis of an [Fe-S] cluster-containing protein.IMPORTANCE Large quantities of recombinantly overproduced [Fe-S] cluster-containing proteins are necessary for their in-depth biochemical characterization. Commercially available E. coli strain BL21(DE3) and its derivatives have a mutation that inactivates the function of one of the two native pathways (Suf pathway) responsible for cluster biogenesis. Correction of the mutation, combined with sequence changes that elevate Suf protein levels, can increase yield and cluster occupancy of [Fe-S] cluster-containing enzymes, facilitating the biochemical analysis of this fascinating group of proteins.
Collapse
|
41
|
Tanaka N, Yuda E, Fujishiro T, Hirabayashi K, Wada K, Takahashi Y. Identification of IscU residues critical for de novo iron-sulfur cluster assembly. Mol Microbiol 2019; 112:1769-1783. [PMID: 31532036 DOI: 10.1111/mmi.14392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2019] [Indexed: 01/16/2023]
Abstract
IscU is a central component of the ISC machinery and serves as a scaffold for the de novo assembly of iron-sulfur (Fe-S) clusters prior to their delivery to target apo-Fe-S proteins. However, the molecular mechanism is not yet fully understood. In this study, we have conducted mutational analysis of E. coli IscU using the recently developed genetic complementation system of a mutant that can survive without Fe-S clusters. The Fe-S cluster ligands (C37, C63, H105, C106) and the proximal D39 and K103 residues are essential for in vivo function of IscU and could not be substituted with any other amino acids. Furthermore, we found that substitution of Y3, a strictly conserved residue among IscU homologs, abolished in vivo functions. Surprisingly, a second-site suppressor mutation in IscS (A349V) reverted the defect caused by IscU Y3 substitutions. Biochemical analysis revealed that IscU Y3 was crucial for functional interaction with IscS and sulfur transfer between the two proteins. Our findings suggest that the critical role of IscU Y3 is linked to the conformational dynamics of the flexible loop of IscS, which is required for the ingenious sulfur transfer to IscU.
Collapse
Affiliation(s)
- Naoyuki Tanaka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Eiki Yuda
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Takashi Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Kei Hirabayashi
- Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Yasuhiro Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
42
|
Garcia PS, Gribaldo S, Py B, Barras F. The SUF system: an ABC ATPase-dependent protein complex with a role in Fe-S cluster biogenesis. Res Microbiol 2019; 170:426-434. [PMID: 31419582 DOI: 10.1016/j.resmic.2019.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Iron-sulfur (Fe-S) clusters are considered one of the most ancient and versatile inorganic cofactors present in the three domains of life. Fe-S clusters can act as redox sensors or catalysts and are found to be used by a large number of functional and structurally diverse proteins. Here, we cover current knowledge of the SUF multiprotein machinery that synthesizes and inserts Fe-S clusters into proteins. Specific focus is put on the ABC ATPase SufC, which contributes to building Fe-S clusters, and appeared early on during evolution.
Collapse
Affiliation(s)
- Pierre Simon Garcia
- Department of Microbiology, Stress Adaptation and Metabolism in Enterobacteria Unit, ERL CNRS 6002, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France; Department of Microbiology, Evolutionary Biology of the Microbial Cell Unit, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Simonetta Gribaldo
- Department of Microbiology, Evolutionary Biology of the Microbial Cell Unit, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne, UMR7243 Aix-Marseille Université CNRS, 31 Chemin Joseph Aiguier, 13009, Marseille, France.
| | - Frédéric Barras
- Department of Microbiology, Stress Adaptation and Metabolism in Enterobacteria Unit, ERL CNRS 6002, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
43
|
Bai Y, Chen T, Happe T, Lu Y, Sawyer A. Iron-sulphur cluster biogenesis via the SUF pathway. Metallomics 2019; 10:1038-1052. [PMID: 30019043 DOI: 10.1039/c8mt00150b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Iron-sulphur (Fe-S) clusters are versatile cofactors, which are essential for key metabolic processes in cells, such as respiration and photosynthesis, and which may have also played a crucial role in establishing life on Earth. They can be found in almost all living organisms, from unicellular prokaryotes and archaea to multicellular animals and plants, and exist in diverse forms. This review focuses on the most ancient Fe-S cluster assembly system, the sulphur utilization factor (SUF) mechanism, which is crucial in bacteria for cell survival under stress conditions such as oxidation and iron starvation, and which is also present in the chloroplasts of green microalgae and plants, where it is responsible for plastidial Fe-S protein maturation. We explain the SUF Fe-S cluster assembly process, the proteins involved, their regulation and provide evolutionary insights. We specifically focus on examples from Fe-S cluster synthesis in the model organisms Escherichia coli and Arabidopsis thaliana and discuss in an in vivo context the assembly of the [FeFe]-hydrogenase H-cluster from Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Y Bai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | |
Collapse
|
44
|
Xu JJ, Zhang YC, Wu JQ, Wang WH, Li Y, Wan GJ, Chen FJ, Sword GA, Pan WD. Molecular characterization, spatial-temporal expression and magnetic response patterns of iron-sulfur cluster assembly1 (IscA1) in the rice planthopper, Nilaparvata lugens. INSECT SCIENCE 2019; 26:413-423. [PMID: 29063672 DOI: 10.1111/1744-7917.12546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/14/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
The mechanisms of magnetoreception have been proposed as the magnetite-based, the chemical radical-pair and biocompass model, in which magnetite particles, the cryptochrome (Cry) or iron-sulfur cluster assembly 1 (IscA1) may be involved. However, little is known about the association among the molecules. Here we investigated the molecular characterization and the mRNA expression of IscA1 in different developmental stages, tissues and magnetic fields in the migratory brown planthopper (BPH), Nilaparvata lugens. NlIscA1 contains an open reading frame of 390 bp, encoding amino acids of 129, with the predicted molecular weight of 14.0 kDa and the isoelectric point of 9.10. Well-conserved Fe-S cluster binding sites were observed in the predicted protein. Phylogenetic analysis demonstrated NlIscA1 to be clustered into the insect's IscA1. NlIscA1 showed up-regulated mRNA expression during the period of migration. The mRNA expression of NlIscA1 could be detected in all the three tissues of head, thorax and abdomen, with the highest expression level in the abdomen. For the macropterous migratory Nilaparvata lugens, mRNA expression of NlIscA1 and N. lugens cryptochrome1 (Nlcry1) were up-regulated under the magnetic fields of 5 Gauss and 10 Gauss in strength (vs. local geomagnetic field), while N. lugens cryptochrome2 (Nlcry2) remained stable. For the brachyterous non-migratory Nilaparvata lugens, no significant changes were found in mRNA expression of NlIscA1, Nlcry1 and Nlcry2 among different magnetic fields. These findings preliminarily reveal that the expression of NlIscA1 and Nlcry1 exhibited coordinated responses to the magnetic field. It suggests some potential associations among the putative magneto-sensitive molecules of cryptochrome and iron-sulfur cluster assembly.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Chao Zhang
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Qi Wu
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Hong Wang
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Li
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Gui-Jun Wan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Fa-Jun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Wei-Dong Pan
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Zupok A, Iobbi-Nivol C, Méjean V, Leimkühler S. The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria. Metallomics 2019; 11:1602-1624. [DOI: 10.1039/c9mt00186g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The regulation of the operons involved in Moco biosynthesis is dependent on the availability of Fe–S clusters in the cell.
Collapse
Affiliation(s)
- Arkadiusz Zupok
- University of Potsdam
- Institute of Biochemistry and Biology
- Molecular Enzymology
- Potsdam-Golm
- Germany
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université
- Institut de Microbiologie de la Méditerranée
- Laboratoire de Bioénergétique et Ingénierie des Protéines
- Centre National de la Recherche Scientifique
- Marseille
| | - Vincent Méjean
- Aix-Marseille Université
- Institut de Microbiologie de la Méditerranée
- Laboratoire de Bioénergétique et Ingénierie des Protéines
- Centre National de la Recherche Scientifique
- Marseille
| | - Silke Leimkühler
- University of Potsdam
- Institute of Biochemistry and Biology
- Molecular Enzymology
- Potsdam-Golm
- Germany
| |
Collapse
|
46
|
Burschel S, Kreuzer Decovic D, Nuber F, Stiller M, Hofmann M, Zupok A, Siemiatkowska B, Gorka M, Leimkühler S, Friedrich T. Iron-sulfur cluster carrier proteins involved in the assembly of Escherichia coli
NADH:ubiquinone oxidoreductase (complex I). Mol Microbiol 2018; 111:31-45. [DOI: 10.1111/mmi.14137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Sabrina Burschel
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
| | - Doris Kreuzer Decovic
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM); University of Freiburg; Germany
| | - Franziska Nuber
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
| | - Marie Stiller
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
| | - Maud Hofmann
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
| | - Arkadiusz Zupok
- University of Potsdam; Institut für Biochemie und Biologie; Karl-Liebknecht-Str. 24-25 14476 Potsdam-Golm Germany
| | - Beata Siemiatkowska
- Max-Planck-Institute of Molecular Plant Physiology; Am Mühlenberg 1 14476 Potsdam-Golm Germany
| | - Michal Gorka
- Max-Planck-Institute of Molecular Plant Physiology; Am Mühlenberg 1 14476 Potsdam-Golm Germany
| | - Silke Leimkühler
- University of Potsdam; Institut für Biochemie und Biologie; Karl-Liebknecht-Str. 24-25 14476 Potsdam-Golm Germany
| | - Thorsten Friedrich
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM); University of Freiburg; Germany
| |
Collapse
|
47
|
Uzarska MA, Przybyla-Toscano J, Spantgar F, Zannini F, Lill R, Mühlenhoff U, Rouhier N. Conserved functions of Arabidopsis mitochondrial late-acting maturation factors in the trafficking of iron‑sulfur clusters. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1250-1259. [PMID: 29902489 DOI: 10.1016/j.bbamcr.2018.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 11/25/2022]
Abstract
Numerous proteins require iron‑sulfur (Fe-S) clusters as cofactors for their function. Their biogenesis is a multi-step process occurring in the cytosol and mitochondria of all eukaryotes and additionally in plastids of photosynthetic eukaryotes. A basic model of Fe-S protein maturation in mitochondria has been obtained based on studies achieved in mammals and yeast, yet some molecular details, especially of the late steps, still require investigation. In particular, the late-acting biogenesis factors in plant mitochondria are poorly understood. In this study, we expressed the factors belonging to NFU, BOLA, SUFA/ISCA and IBA57 families in the respective yeast mutant strains. Expression of the Arabidopsis mitochondrial orthologs was usually sufficient to rescue the growth defects observed on specific media and/or to restore the abundance or activity of the defective Fe-S or lipoic acid-dependent enzymes. These data demonstrate that the plant mitochondrial counterparts, including duplicated isoforms, likely retained their ancestral functions. In contrast, the SUFA1 and IBA57.2 plastidial isoforms cannot rescue the lysine and glutamate auxotrophies of the respective isa1-isa2Δ and iba57Δ strains or of the isa1-isa2-iba57Δ triple mutant when expressed in combination. This suggests a specialization of the yeast mitochondrial and plant plastidial factors in these late steps of Fe-S protein biogenesis, possibly reflecting substrate-specific interactions in these different compartments.
Collapse
Affiliation(s)
- Marta A Uzarska
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | - Farah Spantgar
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany.
| | | |
Collapse
|
48
|
Py B, Gerez C, Huguenot A, Vidaud C, Fontecave M, Ollagnier de Choudens S, Barras F. The ErpA/NfuA complex builds an oxidation-resistant Fe-S cluster delivery pathway. J Biol Chem 2018; 293:7689-7702. [PMID: 29626095 DOI: 10.1074/jbc.ra118.002160] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Indexed: 11/06/2022] Open
Abstract
Fe-S cluster-containing proteins occur in most organisms, wherein they assist in myriad processes from metabolism to DNA repair via gene expression and bioenergetic processes. Here, we used both in vitro and in vivo methods to investigate the capacity of the four Fe-S carriers, NfuA, SufA, ErpA, and IscA, to fulfill their targeting role under oxidative stress. Likewise, Fe-S clusters exhibited varying half-lives, depending on the carriers they were bound to; an NfuA-bound Fe-S cluster was more stable (t½ = 100 min) than those bound to SufA (t½ = 55 min), ErpA (t½ = 54 min), or IscA (t½ = 45 min). Surprisingly, the presence of NfuA further enhanced stability of the ErpA-bound cluster to t½ = 90 min. Using genetic and plasmon surface resonance analyses, we showed that NfuA and ErpA interacted directly with client proteins, whereas IscA or SufA did not. Moreover, NfuA and ErpA interacted with one another. Given all of these observations, we propose an architecture of the Fe-S delivery network in which ErpA is the last factor that delivers cluster directly to most if not all client proteins. NfuA is proposed to assist ErpA under severely unfavorable conditions. A comparison with the strategy employed in yeast and eukaryotes is discussed.
Collapse
Affiliation(s)
- Béatrice Py
- From the Institut de Microbiologie de la Méditerranée, 13009 Marseille, France, .,CNRS Unité Mixte de Recherche (UMR) 7283, Laboratoire de Chimie Bactérienne (LCB), 31 Chemin Joseph Aiguier, 13009 Marseille, France.,Aix-Marseille Université, 13007 Marseille, France
| | - Catherine Gerez
- Université Grenoble Alpes, 38400 Saint-Martin-d'Hères, France.,CNRS UMR 5249, Laboratoire de Chimie et Biologie des Métaux (LCBM), 38054 Grenoble, France.,CEA/DRF/BIG/CBM/BioCat, 38054 Grenoble, France
| | - Allison Huguenot
- From the Institut de Microbiologie de la Méditerranée, 13009 Marseille, France.,CNRS Unité Mixte de Recherche (UMR) 7283, Laboratoire de Chimie Bactérienne (LCB), 31 Chemin Joseph Aiguier, 13009 Marseille, France.,Aix-Marseille Université, 13007 Marseille, France
| | | | - Marc Fontecave
- the Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Université Pierre et Marie Curie (UPMC) Université Paris 06, Collège de France, Paris Sciences et Lettres (PSL) Research University, 75252 Paris, France
| | - Sandrine Ollagnier de Choudens
- Université Grenoble Alpes, 38400 Saint-Martin-d'Hères, France.,CNRS UMR 5249, Laboratoire de Chimie et Biologie des Métaux (LCBM), 38054 Grenoble, France.,CEA/DRF/BIG/CBM/BioCat, 38054 Grenoble, France
| | - Frédéric Barras
- From the Institut de Microbiologie de la Méditerranée, 13009 Marseille, France, .,CNRS Unité Mixte de Recherche (UMR) 7283, Laboratoire de Chimie Bactérienne (LCB), 31 Chemin Joseph Aiguier, 13009 Marseille, France.,Aix-Marseille Université, 13007 Marseille, France
| |
Collapse
|
49
|
Peña-Diaz P, Lukeš J. Fe-S cluster assembly in the supergroup Excavata. J Biol Inorg Chem 2018; 23:521-541. [PMID: 29623424 PMCID: PMC6006210 DOI: 10.1007/s00775-018-1556-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
The majority of established model organisms belong to the supergroup Opisthokonta, which includes yeasts and animals. While enlightening, this focus has neglected protists, organisms that represent the bulk of eukaryotic diversity and are often regarded as primitive eukaryotes. One of these is the “supergroup” Excavata, which comprises unicellular flagellates of diverse lifestyles and contains species of medical importance, such as Trichomonas, Giardia, Naegleria, Trypanosoma and Leishmania. Excavata exhibits a continuum in mitochondrial forms, ranging from classical aerobic, cristae-bearing mitochondria to mitochondria-related organelles, such as hydrogenosomes and mitosomes, to the extreme case of a complete absence of the organelle. All forms of mitochondria house a machinery for the assembly of Fe–S clusters, ancient cofactors required in various biochemical activities needed to sustain every extant cell. In this review, we survey what is known about the Fe–S cluster assembly in the supergroup Excavata. We aim to bring attention to the diversity found in this group, reflected in gene losses and gains that have shaped the Fe–S cluster biogenesis pathways.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
50
|
Benoit SL, Holland AA, Johnson MK, Maier RJ. Iron-sulfur protein maturation in Helicobacter pylori: identifying a Nfu-type cluster carrier protein and its iron-sulfur protein targets. Mol Microbiol 2018; 108:379-396. [PMID: 29498770 DOI: 10.1111/mmi.13942] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 01/03/2023]
Abstract
Helicobacter pylori is anomalous among non nitrogen-fixing bacteria in containing an incomplete NIF system for Fe-S cluster assembly comprising two essential proteins, NifS (cysteine desulfurase) and NifU (scaffold protein). Although nifU deletion strains cannot be obtained via the conventional gene replacement, a NifU-depleted strain was constructed and shown to be more sensitive to oxidative stress compared to wild-type (WT) strains. The hp1492 gene, encoding a putative Nfu-type Fe-S cluster carrier protein, was disrupted in three different H. pylori strains, indicating that it is not essential. However, Δnfu strains have growth deficiency, are more sensitive to oxidative stress and are unable to colonize mouse stomachs. Moreover, Δnfu strains have lower aconitase activity but higher hydrogenase activity than the WT. Recombinant Nfu was found to bind either one [2Fe-2S] or [4Fe-4S] cluster/dimer, based on analytical, UV-visible absorption/CD and resonance Raman studies. A bacterial two-hybrid system was used to ascertain interactions between Nfu, NifS, NifU and each of 36 putative Fe-S-containing target proteins. Nfu, NifS and NifU were found to interact with 15, 6 and 29 putative Fe-S proteins respectively. The results indicate that Nfu, NifS and NifU play a major role in the biosynthesis and/or delivery of Fe-S clusters in H. pylori.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | - Ashley A Holland
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | - Michael K Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | - Robert J Maier
- Department of Microbiology and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|