1
|
Magistrati M, Zupin L, Lamantea E, Baruffini E, Ghezzi D, Legati A, Celsi F, Murru FM, Capaci V, Pinamonti M, Bussani R, Carrozzi M, Dallabona C, Zeviani M, Bonati MT. De Novo DNM1L Pathogenic Variant Associated with Lethal Encephalocardiomyopathy-Case Report and Literature Review. Int J Mol Sci 2025; 26:846. [PMID: 39859560 PMCID: PMC11765995 DOI: 10.3390/ijms26020846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Pathogenic variants in DNM1L, encoding dynamin-like protein-1 (DRP1), cause a lethal encephalopathy. DRP1 defective function results in altered mitochondrial networks, characterized by elongated/spaghetti-like, highly interconnected mitochondria. We validated in yeast the pathogenicity of a de novo DNM1L variant identified by whole exome sequencing performed more than 10 years after the patient's death. Meanwhile, we reviewed the broadness and specificities of DNM1L-related phenotype. The patient, who exhibited developmental delay in her third year, developed a therapy-refractory myoclonic status epilepticus, followed by neurological deterioration with brain atrophy and refractory epilepsy. She died of heart failure due to hypertrophic cardiomyopathy. She was found to be heterozygous for the DNM1L variant (NM_ 012062.5):c.1201G>A, p.(Gly401Ser). We demonstrated its deleterious impact and dominant negative effect by assessing haploid and diploid mutant yeast strains, oxidative growth, oxygen consumption, frequency of petite, and architecture of the mitochondrial network. Structural modeling of p.(Gly401Ser) predicted the interference of the mutant protein in the self-oligomerization of the DRP1 active complex. DNM1L-related phenotypes include static or (early) lethal encephalopathy and neurodevelopmental disorders. In addition, there may be ophthalmological impairment, peripheral neuropathy, ataxia, dystonia, spasticity, myoclonus, and myopathy. The clinical presentations vary depending on mutations in different DRP1 domains. Few pathogenic variants, the p.(Gly401Ser) included, cause an encephalocardiomyopathy with refractory status epilepticus.
Collapse
Affiliation(s)
- Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, 43124 Parma, Italy; (M.M.); (C.D.)
| | - Luisa Zupin
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy; (L.Z.); (F.C.); (F.M.M.); (V.C.); (M.C.); (M.Z.)
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy; (E.L.); (D.G.); (A.L.)
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, 43124 Parma, Italy; (M.M.); (C.D.)
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy; (E.L.); (D.G.); (A.L.)
- Department of Pathophysiology and Transplantation, University of Milan, Via F. Sforza, 35, 20122 Milan, Italy
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy; (E.L.); (D.G.); (A.L.)
| | - Fulvio Celsi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy; (L.Z.); (F.C.); (F.M.M.); (V.C.); (M.C.); (M.Z.)
| | - Flora Maria Murru
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy; (L.Z.); (F.C.); (F.M.M.); (V.C.); (M.C.); (M.Z.)
| | - Valeria Capaci
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy; (L.Z.); (F.C.); (F.M.M.); (V.C.); (M.C.); (M.Z.)
| | - Maurizio Pinamonti
- Institute of Pathological Anatomy and Histology, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Via Giacomo Puccini, 50, 34148 Trieste, Italy; (M.P.); (R.B.)
| | - Rossana Bussani
- Institute of Pathological Anatomy and Histology, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Via Giacomo Puccini, 50, 34148 Trieste, Italy; (M.P.); (R.B.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, Via Giacomo Puccini, 50, 34148 Trieste, Italy
| | - Marco Carrozzi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy; (L.Z.); (F.C.); (F.M.M.); (V.C.); (M.C.); (M.Z.)
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, 43124 Parma, Italy; (M.M.); (C.D.)
| | - Massimo Zeviani
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy; (L.Z.); (F.C.); (F.M.M.); (V.C.); (M.C.); (M.Z.)
| | - Maria Teresa Bonati
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy; (L.Z.); (F.C.); (F.M.M.); (V.C.); (M.C.); (M.Z.)
| |
Collapse
|
2
|
Jones DJ, Soundararajan D, Taylor NK, Aimiuwu OV, Mathkar P, Shore A, Teoh JJ, Wang W, Sands TT, Weston MC, Harper SQ, Frankel WN. Effective knockdown-replace gene therapy in a novel mouse model of DNM1 developmental and epileptic encephalopathy. Mol Ther 2024; 32:3318-3330. [PMID: 39127888 PMCID: PMC11489538 DOI: 10.1016/j.ymthe.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Effective gene therapy for gain-of-function or dominant-negative disease mutations may require eliminating expression of the mutant copy together with wild-type replacement. We evaluated such a knockdown-replace strategy in a mouse model of DNM1 disease, a debilitating and intractable neurodevelopmental epilepsy. To challenge the approach robustly, we expressed a patient-based variant in GABAergic neurons-which resulted in growth delay and lethal seizures evident by postnatal week three-and delivered to newborn pups an AAV9-based vector encoding a ubiquitously expressed, Dnm1-specific interfering RNA (RNAi) bivalently in tail-to-tail configuration with a neuron-specific, RNAi-resistant, codon-optimized Dnm1 cDNA. Pups receiving RNAi or cDNA alone fared no better than untreated pups, whereas the vast majority of mutants receiving modest doses survived with almost full growth recovery. Synaptic recordings of cortical neurons derived from treated pups revealed that significant alterations in transmission from inhibitory to excitatory neurons were rectified by bivalent vector application. To examine the mutant transcriptome and impact of treatment, we used RNA sequencing and functional annotation clustering. Mutants displayed abnormal expression of more than 1,000 genes in highly significant and relevant functional clusters, clusters that were abrogated by treatment. Together these results suggest knockdown-replace as a potentially effective strategy for treating DNM1 and related genetic neurodevelopmental disease.
Collapse
Affiliation(s)
- Devin J Jones
- Department of Genetics and Development and Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Divya Soundararajan
- Department of Genetics and Development and Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Noah K Taylor
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Osasumwen V Aimiuwu
- Department of Genetics and Development and Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Pranav Mathkar
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Amy Shore
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Jia Jie Teoh
- Department of Genetics and Development and Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Wanqi Wang
- Department of Genetics and Development and Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Tristan T Sands
- Department of Genetics and Development and Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthew C Weston
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Scott Q Harper
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Wayne N Frankel
- Department of Genetics and Development and Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Peng H, Wang L, Gao Y, Liu H, Lin G, Kong Y, Xu P, Liu H, Yuan Q, Liu H, Song L, Yang T, Wu H. DMXL2 Is Required for Endocytosis and Recycling of Synaptic Vesicles in Auditory Hair Cells. J Neurosci 2024; 44:e1405232024. [PMID: 39147590 PMCID: PMC11411588 DOI: 10.1523/jneurosci.1405-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/10/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
Ribbon synapses of inner hair cells (IHCs) are uniquely designed for ultrafast and indefatigable neurotransmission of the sound. The molecular machinery ensuring the efficient, compensatory recycling of the synaptic vesicles (SVs), however, remains elusive. This study showed that hair cell knock-out of murine Dmxl2, whose human homolog is responsible for nonsyndromic sensorineural hearing loss DFNA71, resulted in auditory synaptopathy by impairing synaptic endocytosis and recycling. The mutant mice in the C57BL/6J background of either sex had mild hearing loss with severely diminished wave I amplitude of the auditory brainstem response. Membrane capacitance measurements of the IHCs revealed deficiency in sustained synaptic exocytosis and endocytic membrane retrieval. Consistent with the electrophysiological findings, 3D electron microscopy reconstruction showed reduced reserve pool of SVs and endocytic compartments, while the membrane-proximal and ribbon-associated vesicles remain intact. Our results propose an important role of DMXL2 in hair cell endocytosis and recycling of the SVs.
Collapse
Affiliation(s)
- Hu Peng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Longhao Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Yunge Gao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Guotong Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Yu Kong
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Pengcheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Hongchao Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Qingyue Yuan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Huanhai Liu
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| |
Collapse
|
4
|
Cepeda AP, Ninov M, Neef J, Parfentev I, Kusch K, Reisinger E, Jahn R, Moser T, Urlaub H. Proteomic Analysis Reveals the Composition of Glutamatergic Organelles of Auditory Inner Hair Cells. Mol Cell Proteomics 2024; 23:100704. [PMID: 38128648 PMCID: PMC10832297 DOI: 10.1016/j.mcpro.2023.100704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/08/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
In the ear, inner hair cells (IHCs) employ sophisticated glutamatergic ribbon synapses with afferent neurons to transmit auditory information to the brain. The presynaptic machinery responsible for neurotransmitter release in IHC synapses includes proteins such as the multi-C2-domain protein otoferlin and the vesicular glutamate transporter 3 (VGluT3). Yet, much of this likely unique molecular machinery remains to be deciphered. The scarcity of material has so far hampered biochemical studies which require large amounts of purified samples. We developed a subcellular fractionation workflow combined with immunoisolation of VGluT3-containing membrane vesicles, allowing for the enrichment of glutamatergic organelles that are likely dominated by synaptic vesicles (SVs) of IHCs. We have characterized their protein composition in mice before and after hearing onset using mass spectrometry and confocal imaging and provide a fully annotated proteome with hitherto unidentified proteins. Despite the prevalence of IHC marker proteins across IHC maturation, the profiles of trafficking proteins differed markedly before and after hearing onset. Among the proteins enriched after hearing onset were VAMP-7, syntaxin-7, syntaxin-8, syntaxin-12/13, SCAMP1, V-ATPase, SV2, and PKCα. Our study provides an inventory of the machinery associated with synaptic vesicle-mediated trafficking and presynaptic activity at IHC ribbon synapses and serves as a foundation for future functional studies.
Collapse
Affiliation(s)
- Andreia P Cepeda
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Momchil Ninov
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience & Synaptic Nanophysiology Group Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Iwan Parfentev
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kathrin Kusch
- Functional Auditory Genomics Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Ellen Reisinger
- Gene Therapy for Hearing Impairment and Deafness, Department for Otolaryngology, Head & Neck Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience & Synaptic Nanophysiology Group Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Afsar T, Huang X, Shah AA, Abbas S, Bano S, Mahmood A, Hu J, Razak S, Umair M. Truncated DNM1 variant underlines developmental delay and epileptic encephalopathy. Front Pediatr 2023; 11:1266376. [PMID: 37900685 PMCID: PMC10601988 DOI: 10.3389/fped.2023.1266376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/06/2023] [Indexed: 10/31/2023] Open
Abstract
Background Developmental and epileptic encephalopathies (DEEs) signify a group of heterogeneous neurodevelopmental disorder associated with early-onset seizures accompanied by developmental delay, hypotonia, mild to severe intellectual disability, and developmental regression. Variants in the DNM1 gene have been associated with autosomal dominant DEE type 31A and autosomal recessive DEE type 31B. Methods In the current study, a consanguineous Pakistani family consisting of a proband (IV-2) was clinically evaluated and genetically analyzed manifesting in severe neurodevelopmental phenotypes. WES followed by Sanger sequencing was performed to identify the disease-causing variant. Furthermore, 3D protein modeling and dynamic simulation of wild-type and mutant proteins along with reverse transcriptase (RT)-based mRNA expression were checked using standard methods. Results Data analysis of WES revealed a novel homozygous non-sense variant (c.1402G>T; p. Glu468*) in exon 11 of the DNM1 gene that was predicted as pathogenic class I. Variants in the DNM1 gene have been associated with DEE types 31A and B. Different bioinformatics prediction tools and American College of Medical Genetics guidelines were used to verify the identified variant. Sanger sequencing was used to validate the disease-causing variant. Our approach validated the pathogenesis of the variant as a cause of heterogeneous neurodevelopmental disorders. In addition, 3D protein modeling showed that the mutant protein would lose most of the amino acids and might not perform the proper function if the surveillance non-sense-mediated decay mechanism was skipped. Molecular dynamics analysis showed varied trajectories of wild-type and mutant DNM1 proteins in terms of root mean square deviation, root mean square fluctuation and radius of gyration. Similarly, RT-qPCR revealed a substantial reduction of the DNM1 gene in the index patient. Conclusion Our finding further confirms the association of homozygous, loss-of-function variants in DNM1 associated with DEE type 31B. The study expands the genotypic and phenotypic spectrum of pathogenic DNM1 variants related to DNM1-associated pathogenesis.
Collapse
Affiliation(s)
- Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
| | - Xiaoyun Huang
- Department of Neurology, SSL Central Hospital of Dongguan City, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, China
| | - Abid Ali Shah
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Safdar Abbas
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Shazia Bano
- Department of Optometry and Vision Sciences, University of Lahore, Lahore, Pakistan
| | - Arif Mahmood
- Department of Neurology, SSL Central Hospital of Dongguan City, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, China
| | - Junjian Hu
- Department of Central Laboratory, SSL Central Hospital of Dongguan City, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, China
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
| | - Muhammad Umair
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Bonnycastle K, Dobson KL, Blumrich EM, Gajbhiye A, Davenport EC, Pronot M, Steinruecke M, Trost M, Gonzalez-Sulser A, Cousin MA. Reversal of cell, circuit and seizure phenotypes in a mouse model of DNM1 epileptic encephalopathy. Nat Commun 2023; 14:5285. [PMID: 37648685 PMCID: PMC10468497 DOI: 10.1038/s41467-023-41035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Dynamin-1 is a large GTPase with an obligatory role in synaptic vesicle endocytosis at mammalian nerve terminals. Heterozygous missense mutations in the dynamin-1 gene (DNM1) cause a novel form of epileptic encephalopathy, with pathogenic mutations clustering within regions required for its essential GTPase activity. We reveal the most prevalent pathogenic DNM1 mutation, R237W, disrupts dynamin-1 enzyme activity and endocytosis when overexpressed in central neurons. To determine how this mutation impacted cell, circuit and behavioural function, we generated a mouse carrying the R237W mutation. Neurons from heterozygous mice display dysfunctional endocytosis, in addition to altered excitatory neurotransmission and seizure-like phenotypes. Importantly, these phenotypes are corrected at the cell, circuit and in vivo level by the drug, BMS-204352, which accelerates endocytosis. Here, we demonstrate a credible link between dysfunctional endocytosis and epileptic encephalopathy, and importantly reveal that synaptic vesicle recycling may be a viable therapeutic target for monogenic intractable epilepsies.
Collapse
Affiliation(s)
- Katherine Bonnycastle
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK.
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK.
- Muir Maxwell Epilepsy Centre, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK.
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Université de Montréal, Montreal, QC, Canada.
| | - Katharine L Dobson
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
- Muir Maxwell Epilepsy Centre, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
| | - Eva-Maria Blumrich
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
- Muir Maxwell Epilepsy Centre, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
| | - Akshada Gajbhiye
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, NE2 4HH, Newcastle upon Tyne, UK
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
- Muir Maxwell Epilepsy Centre, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
| | - Marie Pronot
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
- Muir Maxwell Epilepsy Centre, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
| | - Moritz Steinruecke
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
- Muir Maxwell Epilepsy Centre, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
| | - Matthias Trost
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, NE2 4HH, Newcastle upon Tyne, UK
| | - Alfredo Gonzalez-Sulser
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
- Muir Maxwell Epilepsy Centre, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK.
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK.
- Muir Maxwell Epilepsy Centre, Hugh Robson Building, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK.
| |
Collapse
|
7
|
Odell LR, Jones NC, Chau N, Robertson MJ, Ambrus JI, Deane FM, Young KA, Whiting A, Xue J, Prichard K, Daniel JA, Gorgani NN, O'Brien TJ, Robinson PJ, McCluskey A. The sulfonadyns: a class of aryl sulfonamides inhibiting dynamin I GTPase and clathrin mediated endocytosis are anti-seizure in animal models. RSC Med Chem 2023; 14:1492-1511. [PMID: 37593570 PMCID: PMC10429932 DOI: 10.1039/d2md00371f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/15/2023] [Indexed: 08/19/2023] Open
Abstract
We show that dansylcadaverine (1) a known in-cell inhibitor of clathrin mediated endocytosis (CME), moderately inhibits dynamin I (dynI) GTPase activity (IC50 45 μM) and transferrin (Tfn) endocytosis in U2OS cells (IC50 205 μM). Synthesis gave a new class of GTP-competitive dynamin inhibitors, the Sulfonadyns™. The introduction of a terminal cinnamyl moiety greatly enhanced dynI inhibition. Rigid diamine or amide links between the dansyl and cinnamyl moieties were detrimental to dynI inhibition. Compounds with in vitro inhibition of dynI activity <10 μM were tested in-cell for inhibition of CME. These data unveiled a number of compounds, e.g. analogues 33 ((E)-N-(6-{[(3-(4-bromophenyl)-2-propen-1-yl]amino}hexyl)-5-isoquinolinesulfonamide)) and 47 ((E)-N-(3-{[3-(4-bromophenyl)-2-propen-1-yl]amino}propyl)-1-naphthalenesulfonamide)isomers that showed dyn IC50 <4 μM, IC50(CME) <30 μM and IC50(SVE) from 12-265 μM. Both analogues (33 and 47) are at least 10 times more potent that the initial lead, dansylcadaverine (1). Enzyme kinetics revealed these sulfonamide analogues as being GTP competitive inhibitors of dynI. Sulfonadyn-47, the most potent SVE inhibitor observed (IC50(SVE) = 12.3 μM), significantly increased seizure threshold in a 6 Hz mouse psychomotor seizure test at 30 (p = 0.003) and 100 mg kg-1 ip (p < 0.0001), with similar anti-seizure efficacy to the established anti-seizure medication, sodium valproate (400 mg kg-1). The Sulfonadyn™ class of drugs target dynamin and show promise as novel leads for future anti-seizure medications.
Collapse
Affiliation(s)
- Luke R Odell
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University Melbourne Victoria 3004 Australia
- Department of Neurology, The Alfred Hospital Commercial Road Melbourne Victoria 3004 Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne Parkville Victoria 3052 Australia
| | - Ngoc Chau
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Mark J Robertson
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Joseph I Ambrus
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Fiona M Deane
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Kelly A Young
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Ainslie Whiting
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Jing Xue
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Kate Prichard
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - James A Daniel
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Nick N Gorgani
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Terence J O'Brien
- Department of Neurology, The Alfred Hospital Commercial Road Melbourne Victoria 3004 Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne Parkville Victoria 3052 Australia
| | - Phillip J Robinson
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Adam McCluskey
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| |
Collapse
|
8
|
Bragato C, Pistocchi A, Bellipanni G, Confalonieri S, Balciunie J, Monastra FM, Carra S, Vitale G, Mantecca P, Cotelli F, Gaudenzi G. Zebrafish dnm1a gene plays a role in the formation of axons and synapses in the nervous tissue. J Neurosci Res 2023. [PMID: 37031448 DOI: 10.1002/jnr.25197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Classical dynamins (DNMs) are GTPase proteins engaged in endocytosis, a fundamental process for cargo internalization from the plasma membrane. In mammals, three DNM genes are present with different expression patterns. DNM1 is expressed at high levels in neurons, where it takes place in the recycling of synaptic vesicles; DNM2 is ubiquitously expressed, while DNM3 is found in the brain and in the testis. Due to the conservation of genes in comparison to mammals, we took advantage of a zebrafish model for functional characterization of dnm1a, ortholog of mammalian DNM1. Our data strongly demonstrated that dnm1a has a nervous tissue-specific expression pattern and plays a role in the formation of both axon and synapse. This is the first in vivo study that collects evidence about the effects of dnm1a loss of function in zebrafish, thus providing a new excellent model to be used in different scientific fields.
Collapse
Affiliation(s)
- Cinzia Bragato
- Department of Earth and Environmental Sciences, POLARIS Research Center, University of Milano-Bicocca, Milan, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Gianfranco Bellipanni
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
- Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | | | - Jorune Balciunie
- Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Federica Maria Monastra
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Silvia Carra
- Laboratory of Endocrine and Metabolic Research, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Giovanni Vitale
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Paride Mantecca
- Department of Earth and Environmental Sciences, POLARIS Research Center, University of Milano-Bicocca, Milan, Italy
| | - Franco Cotelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Germano Gaudenzi
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
9
|
Laiman J, Lin SS, Liu YW. Dynamins in human diseases: differential requirement of dynamin activity in distinct tissues. Curr Opin Cell Biol 2023; 81:102174. [PMID: 37230036 DOI: 10.1016/j.ceb.2023.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Dynamin, a 100-kDa GTPase, is one of the most-characterized membrane fission machineries catalyzing vesicle release from plasma membrane during endocytosis. The human genome encodes three dynamins: DNM1, DNM2 and DNM3, with high amino acid similarity but distinct expression patterns. Ever since the discoveries of dynamin mutations associated with human diseases in 2005, dynamin has become a paradigm for studying pathogenic mechanisms of mutant proteins from the aspects of structural biology, cell biology, model organisms as well as therapeutic strategy development. Here, we review the diseases and pathogenic mechanisms caused by mutations of DNM1 and DNM2, focusing on the activity requirement and regulation of dynamins in different tissues.
Collapse
Affiliation(s)
- Jessica Laiman
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Kontaxi C, Ivanova D, Davenport EC, Kind PC, Cousin MA. Epilepsy-Related CDKL5 Deficiency Slows Synaptic Vesicle Endocytosis in Central Nerve Terminals. J Neurosci 2023; 43:2002-2020. [PMID: 36759195 PMCID: PMC10027047 DOI: 10.1523/jneurosci.1537-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a severe early-onset epileptic encephalopathy resulting mainly from de novo mutations in the X-linked CDKL5 gene. To determine whether loss of presynaptic CDKL5 function contributes to CDD, we examined synaptic vesicle (SV) recycling in primary hippocampal neurons generated from Cdkl5 knockout rat males. Using a genetically encoded reporter, we revealed that CDKL5 is selectively required for efficient SV endocytosis. We showed that CDKL5 kinase activity is both necessary and sufficient for optimal SV endocytosis, since kinase-inactive mutations failed to correct endocytosis in Cdkl5 knockout neurons, whereas the isolated CDKL5 kinase domain fully restored SV endocytosis kinetics. Finally, we demonstrated that CDKL5-mediated phosphorylation of amphiphysin 1, a putative presynaptic target, is not required for CDKL5-dependent control of SV endocytosis. Overall, our findings reveal a key presynaptic role for CDKL5 kinase activity and enhance our insight into how its dysfunction may culminate in CDD.SIGNIFICANCE STATEMENT Loss of cyclin-dependent kinase like 5 (CDKL5) function is a leading cause of monogenic childhood epileptic encephalopathy. However, information regarding its biological role is scarce. In this study, we reveal a selective presynaptic role for CDKL5 in synaptic vesicle endocytosis and that its protein kinase activity is both necessary and sufficient for this role. The isolated protein kinase domain is sufficient to correct this loss of function, which may facilitate future gene therapy strategies if presynaptic dysfunction is proven to be central to the disorder. It also reveals that a CDKL5-specific substrate is located at the presynapse, the phosphorylation of which is required for optimal SV endocytosis.
Collapse
Affiliation(s)
- Christiana Kontaxi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Daniela Ivanova
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| |
Collapse
|
11
|
Michetti C, Falace A, Benfenati F, Fassio A. Synaptic genes and neurodevelopmental disorders: From molecular mechanisms to developmental strategies of behavioral testing. Neurobiol Dis 2022; 173:105856. [PMID: 36070836 DOI: 10.1016/j.nbd.2022.105856] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
Synaptopathies are a class of neurodevelopmental disorders caused by modification in genes coding for synaptic proteins. These proteins oversee the process of neurotransmission, mainly controlling the fusion and recycling of synaptic vesicles at the presynaptic terminal, the expression and localization of receptors at the postsynapse and the coupling between the pre- and the postsynaptic compartments. Murine models, with homozygous or heterozygous deletion for several synaptic genes or knock-in for specific pathogenic mutations, have been developed. They have proved to be extremely informative for understanding synaptic physiology, as well as for clarifying the patho-mechanisms leading to developmental delay, epilepsy and motor, cognitive and social impairments that are the most common clinical manifestations of neurodevelopmental disorders. However, the onset of these disorders emerges during infancy and adolescence while the behavioral phenotyping is often conducted in adult mice, missing important information about the impact of synaptic development and maturation on the manifestation of the behavioral phenotype. Here, we review the main achievements obtained by behavioral testing in murine models of synaptopathies and propose a battery of behavioral tests to improve classification, diagnosis and efficacy of potential therapeutic treatments. Our aim is to underlie the importance of studying behavioral development and better focusing on disease onset and phenotypes.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Antonio Falace
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
12
|
Shu L, Xiao N, Qin J, Tian Q, Zhang Y, Li H, Liu J, Li Q, Gu W, Wang P, Wang H, Mao X. The Role of Microtubule Associated Serine/Threonine Kinase 3 Variants in Neurodevelopmental Diseases: Genotype-Phenotype Association. Front Mol Neurosci 2022; 14:775479. [PMID: 35095415 PMCID: PMC8790505 DOI: 10.3389/fnmol.2021.775479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To prove microtubule associated serine/threonine kinase 3 (MAST3) gene is associated with neurodevelopmental diseases (NDD) and the genotype-phenotype correlation.Methods: Trio exome sequencing (trio ES) was performed on four NDD trios. Bioinformatic analysis was conducted based on large-scale genome sequencing data and human brain transcriptomic data. Further in vivo zebrafish studies were performed.Results: In our study, we identified four de novo MAST3 variants (NM_015016.1: c.302C > T:p.Ser101Phe; c.311C > T:p.Ser104Leu; c.1543G > A:p.Gly515Ser; and c.1547T > C:p.Leu516Pro) in four patients with developmental and epileptic encephalopathy (DEE) separately. Clinical heterogeneities were observed in patients carrying variants in domain of unknown function (DUF) and serine-threonine kinase (STK) domain separately. Using the published large-scale exome sequencing data, higher CADD scores of missense variants in DUF domain were found in NDD cohort compared with gnomAD database. In addition, we obtained an excess of missense variants in DUF domain when compared autistic spectrum disorder (ASD) cohort with gnomAD database, similarly an excess of missense variants in STK domain when compared DEE cohort with gnomAD database. Based on Brainspan datasets, we showed that MAST3 expression was significantly upregulated in ASD and DEE-related brain regions and was functionally linked with DEE genes. In zebrafish model, abnormal morphology of central nervous system was observed in mast3a/b crispants.Conclusion: Our results support the possibility that MAST3 is a novel gene associated with NDD which could expand the genetic spectrum for NDD. The genotype-phenotype correlation may contribute to future genetic counseling.
Collapse
Affiliation(s)
- Li Shu
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Department of School of Life Sciences, Central South University, Changsha, China
| | - Neng Xiao
- Department of Pediatric Neurology, Chenzhou First People’s Hospital, Chenzhou, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People’s Hospital, Beijing, China
| | - Qi Tian
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Yanghui Zhang
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Haoxian Li
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | | | - Qinrui Li
- Department of Pediatrics, Peking University People’s Hospital, Beijing, China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, China
| | - Pengchao Wang
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, China
| | - Hua Wang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Hua Wang,
| | - Xiao Mao
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- *Correspondence: Xiao Mao,
| |
Collapse
|
13
|
Russell CC, Prichard KL, O'Brien NS, McCluskey A, Robinson PJ, Baker JR. Synthesis of Phthaladyn-29 and Naphthalimide-10, GTP Site Directed Dynamin GTPase Inhibitors. Methods Mol Biol 2022; 2417:239-258. [PMID: 35099804 DOI: 10.1007/978-1-0716-1916-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein we describe the detailed synthesis of the dynamin inhibitors Phthaladyn-29 and Napthaladyn-10, and their chemical scaffold matched partner inactive compounds. Combined with the assay data provided, this allows the interrogation of dynamin in vitro and potentially in vivo.
Collapse
Affiliation(s)
- Cecilia C Russell
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Kate L Prichard
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Nicholas S O'Brien
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Phillip J Robinson
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Jennifer R Baker
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
14
|
Luo JK, Melland H, Nithianantharajah J, Gordon SL. Postsynaptic Neuroligin-1 Mediates Presynaptic Endocytosis During Neuronal Activity. Front Mol Neurosci 2021; 14:744845. [PMID: 34690694 PMCID: PMC8531268 DOI: 10.3389/fnmol.2021.744845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 01/31/2023] Open
Abstract
Fast, high-fidelity neurotransmission and synaptic efficacy requires tightly regulated coordination of pre- and postsynaptic compartments and alignment of presynaptic release sites with postsynaptic receptor nanodomains. Neuroligin-1 (Nlgn1) is a postsynaptic cell-adhesion protein exclusively localised to excitatory synapses that is crucial for coordinating the transsynaptic alignment of presynaptic release sites with postsynaptic AMPA receptors as well as postsynaptic transmission and plasticity. However, little is understood about whether the postsynaptic machinery can mediate the molecular architecture and activity of the presynaptic nerve terminal, and thus it remains unclear whether there are presynaptic contributions to Nlgn1-dependent control of signalling and plasticity. Here, we employed a presynaptic reporter of neurotransmitter release and synaptic vesicle dynamics, synaptophysin-pHluorin (sypHy), to directly assess the presynaptic impact of loss of Nlgn1. We show that lack of Nlgn1 had no effect on the size of the readily releasable or entire recycling pool of synaptic vesicles, nor did it impact exocytosis. However, we observed significant changes in the retrieval of synaptic vesicles by compensatory endocytosis, specifically during activity. Our data extends growing evidence that synaptic adhesion molecules critical for forming transsynaptic scaffolds are also important for regulating activity-induced endocytosis at the presynapse.
Collapse
Affiliation(s)
- Jiaqi Keith Luo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Holly Melland
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Choi E, Dale B, RamachandranNair R, Ejaz R. Pathogenic DNM1 Gene Variant Presenting With Unusually Nonsevere Neurodevelopmental Phenotype: A Case Report. NEUROLOGY-GENETICS 2021; 7:e618. [PMID: 34386584 PMCID: PMC8356699 DOI: 10.1212/nxg.0000000000000618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/28/2021] [Indexed: 11/15/2022]
Abstract
Background and Objectives To date, all reports of pathogenic variants affecting the GTPase domain of the DNM1 gene have a clinically severe neurodevelopmental phenotype, including severe delays or intractable epilepsy. We describe a case with moderate developmental delays and self-resolved epilepsy. Methods The patient was followed by our neurology and genetics teams. After clinical examination and EEG to characterize the patient's presentation, we conducted etiologic workup including brain MRI, chromosomal microarray, genetic and metabolic investigations, and nerve conduction studies. Subsequently, we arranged an Intellectual Disability Plus Trio Panel. Results Our patient presented with seizures at 2 days old, requiring phenobarbital. She also had hypotonia, mild dysmorphic features, and mild ataxia. Although initial workup returned unremarkable, the trio gene panel identified a de novo heterozygous pathogenic missense variant in the DNM1 GTPase domain. Now 4 years old, she has been seizure-free for 3 years without ongoing treatment and has nonsevere developmental delays (e.g., ambulates independently and speaks 2-word phrases). Discussion Our case confirms that not all individuals with DNM1 pathogenic variants, even affecting the GTPase domain, will present with intractable epilepsy or severe delays. Expanding the known clinical spectrum of dynamin-related neurodevelopmental disorder is crucial for patient prognostication and counseling.
Collapse
Affiliation(s)
- Elaine Choi
- Division of Neurology (E.C., R.R.), and Division of Genetics (B.D., R.E.), McMaster Children's Hospital, Hamilton, ON, Canada
| | - Breanne Dale
- Division of Neurology (E.C., R.R.), and Division of Genetics (B.D., R.E.), McMaster Children's Hospital, Hamilton, ON, Canada
| | - Rajesh RamachandranNair
- Division of Neurology (E.C., R.R.), and Division of Genetics (B.D., R.E.), McMaster Children's Hospital, Hamilton, ON, Canada
| | - Resham Ejaz
- Division of Neurology (E.C., R.R.), and Division of Genetics (B.D., R.E.), McMaster Children's Hospital, Hamilton, ON, Canada
| |
Collapse
|
16
|
Motta M, Consentino MC, Fontana A, Sciuto L, Falsaperla R, Praticò ER, Salafia S, Zanghì A, Praticò AD. DNM1 Gene and Its Related Epileptic Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe phenotypic variety associated to mutations in dynamin 1 (DNM1), codifying the presynaptic protein DNM1 has been increasingly reported, mainly related to encephalopathy with intractable epilepsy; currently, it is known the phenotype related to DNM1 gene mutations is relatively homogeneous with developmental delay, hypotonia, and epilepsy characterized by infantile spasms and possible progression to Lennox-Gastaut syndrome. By examining all the papers published until 2020 (18 articles), we compared data from 30 patients (extrapolated from 5 papers) with DNM1 mutations, identifying 26 patients with de novo mutations in DNM1. Nine patients (33.3%) reported the recurrent mutation p.Arg237Trp. A usual phenotype observed comprises severe to deep developmental delay and muscular hypotonia in all patients with epilepsy beginning with infantile spasms, which often evolved into Lennox-Gastaut syndrome. Data about GTPase or central domains mutations, and existing structural modeling and functional suggest a dominant negative effect on DMN1 function. Generally genetic epilepsies consist of a wide spectrum of clinical features, unlike that, DNM1-related CNS impairment phenotype is quite uniform. In up to one third of patients it has been found variant p.Arg237Trp, which is one of the most frequent variant detected in epileptic encephalopathies. The understanding of DNM1 function opens up the chance that this gene would become a new therapeutic target for epilepsies.
Collapse
Affiliation(s)
- Milena Motta
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Chiara Consentino
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandra Fontana
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | | | | | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Department of Clinical and Experimental Medicine, Unit of Rare Diseases of the Nervous System in Childhood, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Altered Fast Synaptic Transmission in a Mouse Model of DNM1-Associated Developmental Epileptic Encephalopathy. eNeuro 2021; 8:ENEURO.0269-20.2020. [PMID: 33372033 PMCID: PMC7986544 DOI: 10.1523/eneuro.0269-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/05/2022] Open
Abstract
Developmental epileptic encephalopathies (DEEs) are severe seizure disorders that occur in infants and young children, characterized by developmental delay, cognitive decline, and early mortality. Recent efforts have identified a wide variety of genetic variants that cause DEEs. Among these, variants in the DNM1 gene have emerged as definitive causes of DEEs, including infantile spasms and Lennox–Gastaut syndrome. A mouse model of Dnm1-associated DEE, known as “Fitful” (Dnm1Ftfl), recapitulates key features of the disease, including spontaneous seizures, early lethality, and neuronal degeneration. Previous work showed that DNM1 is a key regulator of synaptic vesicle (SV) endocytosis and synaptic transmission and suggested that inhibitory neurotransmission may be more reliant on DNM1 function than excitatory transmission. The Dnm1Ftfl variant is thought to encode a dominant negative DNM1 protein; however, the effects of the Dnm1Ftfl variant on synaptic transmission are largely unknown. To understand these synaptic effects, we recorded from pairs of cultured mouse cortical neurons and characterized all four major connection types [excitation of excitation (E-E), inhibition of inhibition (I-I), E-I, I-E]. Miniature and spontaneous EPSCs and IPSCs were larger, but less frequent, at all Dnm1Ftfl synaptic types, and Dnm1Ftfl neurons had reduced expression of excitatory and inhibitory SV markers. Baseline evoked transmission, however, was reduced only at inhibitory synapses onto excitatory neurons, because of a smaller pool of releasable SVs. In addition to these synaptic alterations, Dnm1Ftfl neurons degenerated later in development, although their activity levels were reduced, suggesting that Dnm1Ftfl may impair synaptic transmission and neuronal health through distinct mechanisms.
Collapse
|
18
|
Huang G, Eckrich S. Quantitative Fluorescent in situ Hybridization Reveals Differential Transcription Profile Sharpening of Endocytic Proteins in Cochlear Hair Cells Upon Maturation. Front Cell Neurosci 2021; 15:643517. [PMID: 33716676 PMCID: PMC7952526 DOI: 10.3389/fncel.2021.643517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/09/2021] [Indexed: 12/04/2022] Open
Abstract
The organ of Corti (OC) comprises two types of sensory cells: outer hair cells (OHCs) and inner hair cells (IHCs). While both are mechanotransducers, OHCs serve as cochlear amplifiers, whereas IHCs transform sound into transmitter release. Reliable sound encoding is ensured by indefatigable exocytosis of synaptic vesicles associated with efficient replenishment of the vesicle pool. Vesicle reformation requires retrieval of vesicle membrane from the hair cell’s membrane via endocytosis. So far, the protein machinery for endocytosis in pre-mature and terminally differentiated hair cells has only partially been deciphered. Here, we studied three endocytic proteins, dynamin-1, dynamin-3, and endophilin-A1, by assessing their transcription profiles in pre-mature and mature mouse OCs. State-of-the-art RNAscope® fluorescent in situ hybridization (FISH) of whole-mount OCs was used for quantification of target mRNAs on single-cell level. We found that pre-mature IHCs contained more mRNA transcripts of dnm1 (encoding dynamin-1) and sh3gl2 (endophilin-A1), but less of dnm3 (dynamin-3) than OHCs. These differential transcription profiles between OHCs and IHCs were sharpened upon maturation. It is noteworthy that low but heterogeneous signal numbers were found between individual negative controls, which highlights the importance of corresponding analyses in RNAscope® assays. Complementary immunolabeling revealed strong expression of dynamin-1 in the soma of mature IHCs, which was much weaker in pre-mature IHCs. By contrast, dynamin-3 was predominantly found in the soma and at the border of the cuticular plates of pre-mature and mature OHCs. In summary, using quantitative RNAscope® FISH and immunohistochemistry on whole-mount tissue of both pre-mature and mature OCs, we disclosed the cellular upregulation of endocytic proteins at the level of transcription/translation during terminal differentiation of the OC. Dynamin-1 and endophilin-A1 likely contribute to the strengthening of the endocytic machinery in IHCs after the onset of hearing, whereas expression of dynamin-3 at the cuticular plate of pre-mature and mature OHCs suggests its possible involvement in activity-independent apical endocytosis.
Collapse
Affiliation(s)
- Guobin Huang
- Center for Integrative Physiology and Molecular Medicine, School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
| | - Stephanie Eckrich
- Center for Integrative Physiology and Molecular Medicine, School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
| |
Collapse
|
19
|
Turner TJ, Zourray C, Schorge S, Lignani G. Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. J Neurochem 2020; 157:229-262. [PMID: 32880951 PMCID: PMC8436749 DOI: 10.1111/jnc.15168] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
Neurodevelopmental disorders can be caused by mutations in neuronal genes fundamental to brain development. These disorders have severe symptoms ranging from intellectually disability, social and cognitive impairments, and a subset are strongly linked with epilepsy. In this review, we focus on those neurodevelopmental disorders that are frequently characterized by the presence of epilepsy (NDD + E). We loosely group the genes linked to NDD + E with different neuronal functions: transcriptional regulation, intrinsic excitability and synaptic transmission. All these genes have in common a pivotal role in defining the brain architecture and function during early development, and when their function is altered, symptoms can present in the first stages of human life. The relationship with epilepsy is complex. In some NDD + E, epilepsy is a comorbidity and in others seizures appear to be the main cause of the pathology, suggesting that either structural changes (NDD) or neuronal communication (E) can lead to these disorders. Furthermore, grouping the genes that cause NDD + E, we review the uses and limitations of current models of the different disorders, and how different gene therapy strategies are being developed to treat them. We highlight where gene replacement may not be a treatment option, and where innovative therapeutic tools, such as CRISPR‐based gene editing, and new avenues of delivery are required. In general this group of genetically defined disorders, supported increasing knowledge of the mechanisms leading to neurological dysfunction serve as an excellent collection for illustrating the translational potential of gene therapy, including newly emerging tools.
Collapse
Affiliation(s)
- Thomas J Turner
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Clara Zourray
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Department of Pharmacology, UCL School of Pharmacy, London, UK
| | | | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
20
|
Aimiuwu OV, Fowler AM, Sah M, Teoh JJ, Kanber A, Pyne NK, Petri S, Rosenthal-Weiss C, Yang M, Harper SQ, Frankel WN. RNAi-Based Gene Therapy Rescues Developmental and Epileptic Encephalopathy in a Genetic Mouse Model. Mol Ther 2020; 28:1706-1716. [PMID: 32353324 PMCID: PMC7335739 DOI: 10.1016/j.ymthe.2020.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/19/2020] [Accepted: 04/08/2020] [Indexed: 01/23/2023] Open
Abstract
Developmental and epileptic encephalopathy (DEE) associated with de novo variants in the gene encoding dynamin-1 (DNM1) is a severe debilitating disease with no pharmacological remedy. Like most genetic DEEs, the majority of DNM1 patients suffer from therapy-resistant seizures and comorbidities such as intellectual disability, developmental delay, and hypotonia. We tested RNAi gene therapy in the Dnm1 fitful mouse model of DEE using a Dnm1-targeted therapeutic microRNA delivered by a self-complementary adeno-associated virus vector. Untreated or control-injected fitful mice have growth delay, severe ataxia, and lethal tonic-clonic seizures by 3 weeks of age. These major impairments are mitigated following a single treatment in newborn mice, along with key underlying cellular features including gliosis, cell death, and aberrant neuronal metabolic activity typically associated with recurrent seizures. Our results underscore the potential for RNAi gene therapy to treat DNM1 disease and other genetic DEEs where treatment would require inhibition of the pathogenic gene product.
Collapse
Affiliation(s)
- Osasumwen V Aimiuwu
- Institute for Genomic Medicine and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Allison M Fowler
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Megha Sah
- Institute for Genomic Medicine and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jia Jie Teoh
- Institute for Genomic Medicine and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ayla Kanber
- Institute for Genomic Medicine and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nettie K Pyne
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sabrina Petri
- Institute for Genomic Medicine and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chana Rosenthal-Weiss
- Institute for Genomic Medicine and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mu Yang
- Institute for Genomic Medicine and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Scott Q Harper
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Wayne N Frankel
- Institute for Genomic Medicine and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
21
|
Bonnycastle K, Davenport EC, Cousin MA. Presynaptic dysfunction in neurodevelopmental disorders: Insights from the synaptic vesicle life cycle. J Neurochem 2020; 157:179-207. [PMID: 32378740 DOI: 10.1111/jnc.15035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
The activity-dependent fusion, retrieval and recycling of synaptic vesicles is essential for the maintenance of neurotransmission. Until relatively recently it was believed that most mutations in genes that were essential for this process would be incompatible with life, because of this fundamental role. However, an ever-expanding number of mutations in this very cohort of genes are being identified in individuals with neurodevelopmental disorders, including autism, intellectual disability and epilepsy. This article will summarize the current state of knowledge linking mutations in presynaptic genes to neurodevelopmental disorders by sequentially covering the various stages of the synaptic vesicle life cycle. It will also discuss how perturbations of specific stages within this recycling process could translate into human disease. Finally, it will also provide perspectives on the potential for future therapy that are targeted to presynaptic function.
Collapse
Affiliation(s)
- Katherine Bonnycastle
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol Rev 2020; 100:103-144. [DOI: 10.1152/physrev.00026.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Chad P. Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
23
|
Huang S, Liu C, Li N, Wu Z, Li T, Han D, Li Z, Zhao J, Wang J. Membrane proteomic analysis reveals the intestinal development is deteriorated by intrauterine growth restriction in piglets. Funct Integr Genomics 2019; 20:277-291. [PMID: 31586277 DOI: 10.1007/s10142-019-00714-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022]
Abstract
The alterations of the intestinal proteome were observed in intrauterine growth restriction (IUGR) piglets during early life by gel-based approaches. Nevertheless, how IUGR affects the intestinal membrane proteome during neonatal development remains unclear. Here, we applied the iTRAQ-based proteomics technology and biochemical analysis to investigate the impact of IUGR on the membrane proteome of the jejunal mucosa in the piglets. Three hundred sixty-one membrane proteins were screened by functional prediction. Among them, eight, five, and one differentially expressed membrane proteins were identified between IUGR and NBW piglets at day 0, day 7, and day 21 after birth, respectively. Differentially expressed membrane proteins (DEMPs) including F1SBL3, F1RRW8, F1S539, F1S2Z2, F1RIR2, F1RUF2 I3LP60, Q2EN79, and F1SIH8 were reduced while the relative abundance of I3L6A2, F1SCJ1, F1RI18, I3LRJ7, and F1RNN0 were increased in IUGR piglets than NBW piglets. From the aspects of function, F1RRW8, F1S539, F1S2Z2, and F1RIR2 are mainly associated with D2 dopamine receptor binding, transmembrane transport of small molecules, signal transduction, and translocation of GLUT4, respectively, and F1SIH8, I3LRJ7, and F1RNN0 are related to autophagy, metabolism of vitamins, and intracellular protein transport. Additionally, IUGR decreased the level of proteins (F1RRW8, Q2EN79, and F1RI18) that are involved in response to oxidative stress.
Collapse
Affiliation(s)
- Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Cong Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
24
|
Kroll J, Jaime Tobón LM, Vogl C, Neef J, Kondratiuk I, König M, Strenzke N, Wichmann C, Milosevic I, Moser T. Endophilin-A regulates presynaptic Ca 2+ influx and synaptic vesicle recycling in auditory hair cells. EMBO J 2019; 38:e100116. [PMID: 30733243 PMCID: PMC6396150 DOI: 10.15252/embj.2018100116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
Ribbon synapses of cochlear inner hair cells (IHCs) operate with high rates of neurotransmission; yet, the molecular regulation of synaptic vesicle (SV) recycling at these synapses remains poorly understood. Here, we studied the role of endophilins-A1-3, endocytic adaptors with curvature-sensing and curvature-generating properties, in mouse IHCs. Single-cell RT-PCR indicated the expression of endophilins-A1-3 in IHCs, and immunoblotting confirmed the presence of endophilin-A1 and endophilin-A2 in the cochlea. Patch-clamp recordings from endophilin-A-deficient IHCs revealed a reduction of Ca2+ influx and exocytosis, which we attribute to a decreased abundance of presynaptic Ca2+ channels and impaired SV replenishment. Slow endocytic membrane retrieval, thought to reflect clathrin-mediated endocytosis, was impaired. Otoferlin, essential for IHC exocytosis, co-immunoprecipitated with purified endophilin-A1 protein, suggestive of a molecular interaction that might aid exocytosis-endocytosis coupling. Electron microscopy revealed lower SV numbers, but an increased occurrence of coated structures and endosome-like vacuoles at IHC active zones. In summary, endophilins regulate Ca2+ influx and promote SV recycling in IHCs, likely via coupling exocytosis to endocytosis, and contributing to membrane retrieval and SV reformation.
Collapse
Affiliation(s)
- Jana Kroll
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), University Medical Center Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Lina M Jaime Tobón
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Christian Vogl
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Jakob Neef
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Ilona Kondratiuk
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), University Medical Center Göttingen, Göttingen, Germany
| | - Melanie König
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Nicola Strenzke
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Auditory Systems Physiology Group and InnerEarLab, Department of Otolaryngology, University of Göttingen Medical Center, Göttingen, Germany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Ira Milosevic
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
25
|
Kroll J, Özçete ÖD, Jung S, Maritzen T, Milosevic I, Wichmann C, Moser T. AP180 promotes release site clearance and clathrin-dependent vesicle reformation in mouse cochlear inner hair cells. J Cell Sci 2019; 133:jcs.236737. [DOI: 10.1242/jcs.236737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
High-throughput neurotransmission at ribbon synapses of cochlear inner hair cells (IHCs) requires tight coupling of neurotransmitter release and balanced recycling of synaptic vesicles (SVs) as well as rapid restoration of release sites. Here, we examined the role of the adaptor protein AP180 for IHC synaptic transmission in AP180-KO mice using high-pressure freezing and electron tomography, confocal microscopy, patch-clamp membrane-capacitance measurements and systems physiology. AP180 was found predominantly at the synaptic pole of IHCs. AP180-deficient IHCs had severely reduced SV numbers, slowed endocytic membrane retrieval, and accumulated endocytic intermediates near ribbon synapses, indicating that AP180 is required for clathrin-dependent endocytosis and SV reformation in IHCs. Moreover, AP180 deletion led to a high prevalence of SVs in a multi-tethered or docked state after stimulation, a reduced rate of SV replenishment, and a hearing impairment. We conclude that, in addition to its role in clathrin recruitment, AP180 contributes to release site clearance in IHCs.
Collapse
Affiliation(s)
- Jana Kroll
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-Society, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Özge Demet Özçete
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sangyong Jung
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Neuro Modulation and Neuro Circuitry Group, Singapore Bioimaging Consortium (SBIC), Biomedical Sciences Institutes, 138667 Singapore
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Ira Milosevic
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-Society, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Moser
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
26
|
Smits JJ, Oostrik J, Beynon AJ, Kant SG, de Koning Gans PAM, Rotteveel LJC, Klein Wassink-Ruiter JS, Free RH, Maas SM, van de Kamp J, Merkus P, Koole W, Feenstra I, Admiraal RJC, Lanting CP, Schraders M, Yntema HG, Pennings RJE, Kremer H. De novo and inherited loss-of-function variants of ATP2B2 are associated with rapidly progressive hearing impairment. Hum Genet 2018; 138:61-72. [PMID: 30535804 PMCID: PMC6514080 DOI: 10.1007/s00439-018-1965-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/30/2018] [Indexed: 01/21/2023]
Abstract
ATP2B2 encodes the PMCA2 Ca2+ pump that plays an important role in maintaining ion homeostasis in hair cells among others by extrusion of Ca2+ from the stereocilia to the endolymph. Several mouse models have been described for this gene; mice heterozygous for loss-of-function defects display a rapidly progressive high-frequency hearing impairment. Up to now ATP2B2 has only been reported as a modifier, or in a digenic mechanism with CDH23 for hearing impairment in humans. Whole exome sequencing in hearing impaired index cases of Dutch and Polish origins revealed five novel heterozygous (predicted to be) loss-of-function variants of ATP2B2. Two variants, c.1963G>T (p.Glu655*) and c.955delG (p.Ala319fs), occurred de novo. Three variants c.397+1G>A (p.?), c.1998C>A (p.Cys666*), and c.2329C>T (p.Arg777*), were identified in families with an autosomal dominant inheritance pattern of hearing impairment. After normal newborn hearing screening, a rapidly progressive high-frequency hearing impairment was diagnosed at the age of about 3–6 years. Subjects had no balance complaints and vestibular testing did not yield abnormalities. There was no evidence for retrocochlear pathology or structural inner ear abnormalities. Although a digenic inheritance pattern of hearing impairment has been reported for heterozygous missense variants of ATP2B2 and CDH23, our findings indicate a monogenic cause of hearing impairment in cases with loss-of-function variants of ATP2B2.
Collapse
Affiliation(s)
- Jeroen J Smits
- Hearing and Genes, Department of Otorhinolaryngology, Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Oostrik
- Hearing and Genes, Department of Otorhinolaryngology, Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andy J Beynon
- Hearing and Genes, Department of Otorhinolaryngology, Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sarina G Kant
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Pia A M de Koning Gans
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Rolien H Free
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Saskia M Maas
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jiddeke van de Kamp
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul Merkus
- Department of Otolaryngology, Head and Neck Surgery, Ear and Hearing, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wouter Koole
- Hearing and Genes, Department of Human Genetics, Radboud University Medical Center, Internal postal code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ilse Feenstra
- Hearing and Genes, Department of Human Genetics, Radboud University Medical Center, Internal postal code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ronald J C Admiraal
- Hearing and Genes, Department of Otorhinolaryngology, Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cornelis P Lanting
- Hearing and Genes, Department of Otorhinolaryngology, Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Margit Schraders
- Hearing and Genes, Department of Otorhinolaryngology, Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
- Hearing and Genes, Department of Human Genetics, Radboud University Medical Center, Internal postal code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Helger G Yntema
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Hearing and Genes, Department of Human Genetics, Radboud University Medical Center, Internal postal code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ronald J E Pennings
- Hearing and Genes, Department of Otorhinolaryngology, Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hannie Kremer
- Hearing and Genes, Department of Otorhinolaryngology, Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
- Hearing and Genes, Department of Human Genetics, Radboud University Medical Center, Internal postal code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Nowakowski TJ, Rani N, Golkaram M, Zhou HR, Alvarado B, Huch K, West JA, Leyrat A, Pollen AA, Kriegstein AR, Petzold LR, Kosik KS. Regulation of cell-type-specific transcriptomes by microRNA networks during human brain development. Nat Neurosci 2018; 21:1784-1792. [PMID: 30455455 PMCID: PMC6312854 DOI: 10.1038/s41593-018-0265-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 10/02/2018] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) regulate many cellular events during brain development by interacting with hundreds of mRNA transcripts. However, miRNAs operate nonuniformly upon the transcriptional profile with an as yet unknown logic. Shortcomings in defining miRNA-mRNA networks include limited knowledge of in vivo miRNA targets and their abundance in single cells. By combining multiple complementary approaches, high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation with an antibody to AGO2 (AGO2-HITS-CLIP), single-cell profiling and computational analyses using bipartite and coexpression networks, we show that miRNA-mRNA interactions operate as functional modules that often correspond to cell-type identities and undergo dynamic transitions during brain development. These networks are highly dynamic during development and over the course of evolution. One such interaction is between radial-glia-enriched ORC4 and miR-2115, a great-ape-specific miRNA, which appears to control radial glia proliferation rates during human brain development.
Collapse
Affiliation(s)
- Tomasz J Nowakowski
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA.
| | - Neha Rani
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Mahdi Golkaram
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Hongjun R Zhou
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Beatriz Alvarado
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kylie Huch
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jay A West
- New Technologies, Fluidigm Corporation, South San Francisco, CA, USA
| | - Anne Leyrat
- New Technologies, Fluidigm Corporation, South San Francisco, CA, USA
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Linda R Petzold
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
28
|
An H, Wei D, Qian Y, Li N, Wang X. SQYZ granules, a traditional Chinese herbal, attenuate cognitive deficits in AD transgenic mice by modulating on multiple pathogenesis processes. Am J Transl Res 2018; 10:3857-3875. [PMID: 30662636 PMCID: PMC6291719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/14/2018] [Indexed: 06/09/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) involves multiple contributing factors, including amyloid β (Aβ) peptide aggregation, inflammation, oxidative stress, and others. Effective therapeutic drugs for treating AD are urgently needed. SQYZ granules (SQYZ), a Chinese herbal preparation, are mainly composed of the ginsenoside Rg1, astragaloside A and baicalin, and have been widely used to treat dementias for decades in China. In this study, we found the therapeutic effects of SQYZ on the cognitive impairments in an AD mouse model, the β-amyloid precursor protein (APP) and presenilin-1 (PS1) double-transgenic mouse, which co-expresses five familial AD mutations (5XFAD); next, we further explored the underlying mechanism and observed that after SQYZ treatment, the Aβ burden and inflammatory reactions in the brain were significantly attenuated. Through a proteomic approach, we found that SQYZ regulated the expression of 27 proteins, mainly those related to neuroinflammation, stress responses and energy metabolism. These results suggested that SQYZ has the ability to improve the cognitive impairment and ameliorate the neural pathological changes in AD, and the therapeutic mechanism may be related to the modulation of multiple processes related to AD pathogenesis, especially anti-neuroinflammation, promotion of stress recovery and improvement of energy metabolism.
Collapse
Affiliation(s)
- Haiting An
- Department of Neurobiology, Capital Medical UniversityBeijing 100069, China
- Key Laboratory for The Neurodegenerative Disorders of The Chinese Ministry of EducationBeijing 100069, China
- Beijing Institute for Brain DisordersBeijing 100069, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical SciencesBeijing 100700, China
| | - Yanjing Qian
- Department of Neurobiology, Capital Medical UniversityBeijing 100069, China
- Key Laboratory for The Neurodegenerative Disorders of The Chinese Ministry of EducationBeijing 100069, China
- Beijing Institute for Brain DisordersBeijing 100069, China
| | - Ning Li
- Department of Neurobiology, Capital Medical UniversityBeijing 100069, China
- Key Laboratory for The Neurodegenerative Disorders of The Chinese Ministry of EducationBeijing 100069, China
- Beijing Institute for Brain DisordersBeijing 100069, China
| | - Xiaomin Wang
- Department of Neurobiology, Capital Medical UniversityBeijing 100069, China
- Key Laboratory for The Neurodegenerative Disorders of The Chinese Ministry of EducationBeijing 100069, China
- Beijing Institute for Brain DisordersBeijing 100069, China
| |
Collapse
|
29
|
Pangrsic T, Vogl C. Balancing presynaptic release and endocytic membrane retrieval at hair cell ribbon synapses. FEBS Lett 2018; 592:3633-3650. [PMID: 30251250 DOI: 10.1002/1873-3468.13258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 11/07/2022]
Abstract
The timely and reliable processing of auditory and vestibular information within the inner ear requires highly sophisticated sensory transduction pathways. On a cellular level, these demands are met by hair cells, which respond to sound waves - or alterations in body positioning - by releasing glutamate-filled synaptic vesicles (SVs) from their presynaptic active zones with unprecedented speed and exquisite temporal fidelity, thereby initiating the auditory and vestibular pathways. In order to achieve this, hair cells have developed anatomical and molecular specializations, such as the characteristic and name-giving 'synaptic ribbons' - presynaptically anchored dense bodies that tether SVs prior to release - as well as other unique or unconventional synaptic proteins. The tightly orchestrated interplay between these molecular components enables not only ultrafast exocytosis, but similarly rapid and efficient compensatory endocytosis. So far, the knowledge of how endocytosis operates at hair cell ribbon synapses is limited. In this Review, we summarize recent advances in our understanding of the SV cycle and molecular anatomy of hair cell ribbon synapses, with a focus on cochlear inner hair cells.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, University Medical Center Göttingen, Germany
| | - Christian Vogl
- Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, University Medical Center Göttingen, Germany
| |
Collapse
|
30
|
Yang Y, Wang X, Liu Y, Fu Q, Tian C, Wu C, Shi H, Yuan Z, Tan S, Liu S, Gao D, Dunham R, Liu Z. Transcriptome analysis reveals enrichment of genes associated with auditory system in swimbladder of channel catfish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 27:30-39. [DOI: 10.1016/j.cbd.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/20/2022]
|
31
|
Evaluating the pathogenic potential of genes with de novo variants in epileptic encephalopathies. Genet Med 2018; 21:17-27. [PMID: 29895856 PMCID: PMC6752304 DOI: 10.1038/s41436-018-0011-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/20/2018] [Indexed: 01/08/2023] Open
Abstract
Epileptic encephalopathies comprise a group of catastrophic epilepsies with heterogeneous genetic etiology. Although next-generation sequencing techniques can reveal a number of de novo variants in epileptic encephalopathies, evaluating the pathogenicity of these variants can be challenging. Determining the pathogenic potential of genes in epileptic encephalopathies is critical before evaluating the pathogenicity of variants identified in an individual. We reviewed de novo variants in epileptic encephalopathies, including their genotypes and functional consequences. We then evaluated the pathogenic potential of genes, with the following additional considerations: (1) recurrence of variants in unrelated cases, (2) information of previously defined phenotypes, and (3) data from genetic experimental studies. Genes related to epileptic encephalopathy revealed pathogenicity with distinct functional alterations, i.e., either a gain of function or loss of function in the majority; however, several genes warranted further study to confirm their pathogenic potential. Whether a gene was associated with distinct phenotype, the genotype (or functional alteration)-–phenotype correlation, and quantitative correlation between genetic impairment and phenotype severity were suggested to be specific evidence in determining the pathogenic role of genes. Data from epileptic encephalopathy-related genes would be helpful in outlining guidelines for evaluating the pathogenic potential of genes in other genetic disorders.
Collapse
|
32
|
Luo J, Norris RH, Gordon SL, Nithianantharajah J. Neurodevelopmental synaptopathies: Insights from behaviour in rodent models of synapse gene mutations. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:424-439. [PMID: 29217145 DOI: 10.1016/j.pnpbp.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 11/15/2022]
Abstract
The genomic revolution has begun to unveil the enormous complexity and heterogeneity of the genetic basis of neurodevelopmental disorders such as such epilepsy, intellectual disability, autism spectrum disorder and schizophrenia. Increasingly, human mutations in synapse genes are being identified across these disorders. These neurodevelopmental synaptopathies highlight synaptic homeostasis pathways as a convergence point underlying disease mechanisms. Here, we review some of the key pre- and postsynaptic genes in which penetrant human mutations have been identified in neurodevelopmental disorders for which genetic rodent models have been generated. Specifically, we focus on the main behavioural phenotypes that have been documented in these animal models, to consolidate our current understanding of how synapse genes regulate key behavioural and cognitive domains. These studies provide insights into better understanding the basis of the overlapping genetic and cognitive heterogeneity observed in neurodevelopmental disorders.
Collapse
Affiliation(s)
- J Luo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - R H Norris
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - S L Gordon
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - J Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
33
|
Blue RE, Curry EG, Engels NM, Lee EY, Giudice J. How alternative splicing affects membrane-trafficking dynamics. J Cell Sci 2018; 131:jcs216465. [PMID: 29769303 PMCID: PMC6031328 DOI: 10.1242/jcs.216465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cell biology field has outstanding working knowledge of the fundamentals of membrane-trafficking pathways, which are of critical importance in health and disease. Current challenges include understanding how trafficking pathways are fine-tuned for specialized tissue functions in vivo and during development. In parallel, the ENCODE project and numerous genetic studies have revealed that alternative splicing regulates gene expression in tissues and throughout development at a post-transcriptional level. This Review summarizes recent discoveries demonstrating that alternative splicing affects tissue specialization and membrane-trafficking proteins during development, and examines how this regulation is altered in human disease. We first discuss how alternative splicing of clathrin, SNAREs and BAR-domain proteins influences endocytosis, secretion and membrane dynamics, respectively. We then focus on the role of RNA-binding proteins in the regulation of splicing of membrane-trafficking proteins in health and disease. Overall, our aim is to comprehensively summarize how trafficking is molecularly influenced by alternative splicing and identify future directions centered on its physiological relevance.
Collapse
Affiliation(s)
- R Eric Blue
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ennessa G Curry
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nichlas M Engels
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eunice Y Lee
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jimena Giudice
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Myers CT, Stong N, Mountier EI, Helbig KL, Freytag S, Sullivan JE, Ben Zeev B, Nissenkorn A, Tzadok M, Heimer G, Shinde DN, Rezazadeh A, Regan BM, Oliver KL, Ernst ME, Lippa NC, Mulhern MS, Ren Z, Poduri A, Andrade DM, Bird LM, Bahlo M, Berkovic SF, Lowenstein DH, Scheffer IE, Sadleir LG, Goldstein DB, Mefford HC, Heinzen EL. De Novo Mutations in PPP3CA Cause Severe Neurodevelopmental Disease with Seizures. Am J Hum Genet 2017; 101:516-524. [PMID: 28942967 DOI: 10.1016/j.ajhg.2017.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/10/2017] [Indexed: 12/30/2022] Open
Abstract
Exome sequencing has readily enabled the discovery of the genetic mutations responsible for a wide range of diseases. This success has been particularly remarkable in the severe epilepsies and other neurodevelopmental diseases for which rare, often de novo, mutations play a significant role in disease risk. Despite significant progress, the high genetic heterogeneity of these disorders often requires large sample sizes to identify a critical mass of individuals with disease-causing mutations in a single gene. By pooling genetic findings across multiple studies, we have identified six individuals with severe developmental delay (6/6), refractory seizures (5/6), and similar dysmorphic features (3/6), each harboring a de novo mutation in PPP3CA. PPP3CA encodes the alpha isoform of a subunit of calcineurin. Calcineurin encodes a calcium- and calmodulin-dependent serine/threonine protein phosphatase that plays a role in a wide range of biological processes, including being a key regulator of synaptic vesicle recycling at nerve terminals. Five individuals with de novo PPP3CA mutations were identified among 4,760 trio probands with neurodevelopmental diseases; this is highly unlikely to occur by chance (p = 1.2 × 10-8) given the size and mutability of the gene. Additionally, a sixth individual with a de novo mutation in PPP3CA was connected to this study through GeneMatcher. Based on these findings, we securely implicate PPP3CA in early-onset refractory epilepsy and further support the emerging role for synaptic dysregulation in epilepsy.
Collapse
Affiliation(s)
- Candace T Myers
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Emily I Mountier
- Department of Paediatrics and Child Health, University of Otago, Wellington 6242, New Zealand
| | | | - Saskia Freytag
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Joseph E Sullivan
- Department of Neurology & Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bruria Ben Zeev
- Sheba Medical Center, Ramat Gan, Israel, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Andreea Nissenkorn
- Sheba Medical Center, Ramat Gan, Israel, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Michal Tzadok
- Sheba Medical Center, Ramat Gan, Israel, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gali Heimer
- Sheba Medical Center, Ramat Gan, Israel, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Arezoo Rezazadeh
- Division of Neurology, Epilepsy Genetics Research Program, Toronto Western Hospital, Krembil Neuroscience Centre, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Brigid M Regan
- Division of Neurology, Epilepsy Genetics Research Program, Toronto Western Hospital, Krembil Neuroscience Centre, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Karen L Oliver
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Michelle E Ernst
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Natalie C Lippa
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Maureen S Mulhern
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Zhong Ren
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Danielle M Andrade
- Division of Neurology, Epilepsy Genetics Research Program, Toronto Western Hospital, Krembil Neuroscience Centre, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Lynne M Bird
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92037, USA; Rady Children's Hospital, San Diego, CA 92037, USA
| | - Melanie Bahlo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Daniel H Lowenstein
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington 6242, New Zealand
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.
| | - Erin L Heinzen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
35
|
Kang JQ. Defects at the crossroads of GABAergic signaling in generalized genetic epilepsies. Epilepsy Res 2017; 137:9-18. [PMID: 28865303 DOI: 10.1016/j.eplepsyres.2017.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/14/2017] [Accepted: 08/22/2017] [Indexed: 12/16/2022]
Abstract
Seizure disorders are very common and affect 3% of the general population. The recurrent unprovoked seizures that are also called epilepsies are highly diverse as to both underlying genetic basis and clinic presentations. Recent genetic advances and sequencing technologies indicate that many epilepsies previously thought to be without known causes, or idiopathic generalized epilepsies (IGEs), are virtually genetic epilepsy as they are caused by genetic variations. IGEs are estimated to account for ∼15-20% of all epilepsies. Initially IGEs were primarily considered channelopathies, because the first genetic defects identified in IGEs involved ion channel genes. However, new findings indicate that mutations in many non ion channel genes are also involved in addition to those in ion channel genes. Interestingly, mutations in many genes associated with epilepsy affect GABAergic signaling, a major biological pathway in epilepsy. Additionally, many antiepileptic drugs work via enhancing GABAergic signaling. Hence, the review will focus on the mutations that impair GABAergic signaling and selectively discuss the newly identified STXBP1, PRRT2, and DNM1 in addition to those long-established epilepsy ion channel genes that also impair GABAergic signaling like SCN1A and GABAA receptor subunit genes. GABAergic signaling includes the pre- and post- synaptic mechanisms. Some mutations, such as STXBP1, PRRT2, DNM1, and SCN1A, impair GABAergic signaling mainly via pre-synaptic mechanisms while those mutations in GABAA receptor subunit genes impair GABAergic signaling via post-synaptic mechanisms. Nevertheless, these findings suggest impaired GABAergic signaling is a converging pathway of defects for many ion channel or non ion channel mutations associated with genetic epilepsies.
Collapse
Affiliation(s)
- Jing-Qiong Kang
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232-8552, USA; Affiliated Hospital of Nantong University, Jiangsu, 226001, China; Vanderbilt Brain Institute, Vanderbilt Kennedy Center of Human Development, Vanderbilt University, Nashville, TN, 37232-8522, USA.
| |
Collapse
|
36
|
Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons. Neuron 2017; 93:882-896.e5. [PMID: 28231468 DOI: 10.1016/j.neuron.2017.01.019] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/22/2016] [Accepted: 01/20/2017] [Indexed: 01/10/2023]
Abstract
Synaptojanin 1 (SJ1) is a major presynaptic phosphatase that couples synaptic vesicle endocytosis to the dephosphorylation of PI(4,5)P2, a reaction needed for the shedding of endocytic factors from their membranes. While the role of SJ1's 5-phosphatase module in this process is well recognized, the contribution of its Sac phosphatase domain, whose preferred substrate is PI4P, remains unclear. Recently a homozygous mutation in its Sac domain was identified in early-onset parkinsonism patients. We show that mice carrying this mutation developed neurological manifestations similar to those of human patients. Synapses of these mice displayed endocytic defects and a striking accumulation of clathrin-coated intermediates, strongly implicating Sac domain's activity in endocytic protein dynamics. Mutant brains had elevated auxilin (PARK19) and parkin (PARK2) levels. Moreover, dystrophic axonal terminal changes were selectively observed in dopaminergic axons in the dorsal striatum. These results strengthen evidence for a link between synaptic endocytic dysfunction and Parkinson's disease.
Collapse
|
37
|
Epilepsy and synaptic proteins. Curr Opin Neurobiol 2017; 45:1-8. [DOI: 10.1016/j.conb.2017.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 12/22/2022]
|
38
|
Dynamin 1- and 3-Mediated Endocytosis Is Essential for the Development of a Large Central Synapse In Vivo. J Neurosci 2017; 36:6097-115. [PMID: 27251629 DOI: 10.1523/jneurosci.3804-15.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 04/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Dynamin is a large GTPase crucial for endocytosis and sustained neurotransmission, but its role in synapse development in the mammalian brain has received little attention. We addressed this question using the calyx of Held (CH), a large nerve terminal in the auditory brainstem in mice. Tissue-specific ablation of different dynamin isoforms bypasses the early lethality of conventional knock-outs and allows us to examine CH development in a native brain circuit. Individual gene deletion of dynamin 1, a primary dynamin isoform in neurons, as well as dynamin 2 and 3, did not affect CH development. However, combined tissue-specific knock-out of both dynamin 1 and 3 (cDKO) severely impaired CH formation and growth during the first postnatal week, and the phenotypes were exacerbated by further additive conditional knock-out of dynamin 2. The developmental defect of CH in cDKO first became evident on postnatal day 3 (P3), a time point when CH forms and grows abruptly. This is followed by a progressive loss of postsynaptic neurons and increased glial infiltration late in development. However, early CH synaptogenesis before protocalyx formation was not altered in cDKO. Functional maturation of synaptic transmission in the medial nucleus of the trapezoid body in cDKO was impeded during development and accompanied by an increase in the membrane excitability of medial nucleus of the trapezoid body neurons. This study provides compelling genetic evidence that CH formation requires dynamin 1- and 3-mediated endocytosis in vivo, indicating a critical role of dynamin in synaptic development, maturation, and subsequent maintenance in the mammalian brain. SIGNIFICANCE STATEMENT Synaptic development has been increasingly implicated in numerous brain disorders. Dynamin plays a crucial role in clathrin-mediated endocytosis and synaptic transmission at nerve terminals, but its potential role in synaptic development in the native brain circuitry is unclear. Using the calyx of Held, a giant nerve terminal in the mouse brainstem, we evaluated the role of dynamin in this process by using tissue-specific knock-out (KO) of three different dynamin isoforms (dynamin 1, 2, and 3) individually and in combination. Our data demonstrated that dynamin is required for the formation, functional maturation, and subsequent survival of the calyx of Held. This study highlights the important role of dynamin-mediated endocytosis in the development of central synapses in the mammalian brain.
Collapse
|
39
|
von Spiczak S, Helbig KL, Shinde DN, Huether R, Pendziwiat M, Lourenço C, Nunes ME, Sarco DP, Kaplan RA, Dlugos DJ, Kirsch H, Slavotinek A, Cilio MR, Cervenka MC, Cohen JS, McClellan R, Fatemi A, Yuen A, Sagawa Y, Littlejohn R, McLean SD, Hernandez-Hernandez L, Maher B, Møller RS, Palmer E, Lawson JA, Campbell CA, Joshi CN, Kolbe DL, Hollingsworth G, Neubauer BA, Muhle H, Stephani U, Scheffer IE, Pena SDJ, Sisodiya SM, Helbig I. DNM1 encephalopathy: A new disease of vesicle fission. Neurology 2017; 89:385-394. [PMID: 28667181 PMCID: PMC5574673 DOI: 10.1212/wnl.0000000000004152] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/26/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling. METHODS We reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function. RESULTS We identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function. CONCLUSIONS The phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Robert Huether
- Author affiliations are provided at the end of the article
| | | | | | - Mark E Nunes
- Author affiliations are provided at the end of the article
| | - Dean P Sarco
- Author affiliations are provided at the end of the article
| | | | | | - Heidi Kirsch
- Author affiliations are provided at the end of the article
| | | | - Maria R Cilio
- Author affiliations are provided at the end of the article
| | | | - Julie S Cohen
- Author affiliations are provided at the end of the article
| | | | - Ali Fatemi
- Author affiliations are provided at the end of the article
| | - Amy Yuen
- Author affiliations are provided at the end of the article
| | - Yoshimi Sagawa
- Author affiliations are provided at the end of the article
| | | | - Scott D McLean
- Author affiliations are provided at the end of the article
| | | | - Bridget Maher
- Author affiliations are provided at the end of the article
| | - Rikke S Møller
- Author affiliations are provided at the end of the article
| | | | - John A Lawson
- Author affiliations are provided at the end of the article
| | | | | | - Diana L Kolbe
- Author affiliations are provided at the end of the article
| | | | | | - Hiltrud Muhle
- Author affiliations are provided at the end of the article
| | | | | | | | | | - Ingo Helbig
- Author affiliations are provided at the end of the article.
| | | | | |
Collapse
|
40
|
Steward CA, Parker APJ, Minassian BA, Sisodiya SM, Frankish A, Harrow J. Genome annotation for clinical genomic diagnostics: strengths and weaknesses. Genome Med 2017; 9:49. [PMID: 28558813 PMCID: PMC5448149 DOI: 10.1186/s13073-017-0441-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Human Genome Project and advances in DNA sequencing technologies have revolutionized the identification of genetic disorders through the use of clinical exome sequencing. However, in a considerable number of patients, the genetic basis remains unclear. As clinicians begin to consider whole-genome sequencing, an understanding of the processes and tools involved and the factors to consider in the annotation of the structure and function of genomic elements that might influence variant identification is crucial. Here, we discuss and illustrate the strengths and weaknesses of approaches for the annotation and classification of important elements of protein-coding genes, other genomic elements such as pseudogenes and the non-coding genome, comparative-genomic approaches for inferring gene function, and new technologies for aiding genome annotation, as a practical guide for clinicians when considering pathogenic sequence variation. Complete and accurate annotation of structure and function of genome features has the potential to reduce both false-negative (from missing annotation) and false-positive (from incorrect annotation) errors in causal variant identification in exome and genome sequences. Re-analysis of unsolved cases will be necessary as newer technology improves genome annotation, potentially improving the rate of diagnosis.
Collapse
Affiliation(s)
- Charles A Steward
- Congenica Ltd, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1DR, UK. .,The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | | | - Berge A Minassian
- Department of Pediatrics (Neurology), University of Texas Southwestern, Dallas, TX, USA.,Program in Genetics and Genome Biology and Department of Paediatrics (Neurology), The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, UK.,Chalfont Centre for Epilepsy, Chesham Lane, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK
| | - Adam Frankish
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Jennifer Harrow
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Illumina Inc, Great Chesterford, Essex, CB10 1XL, UK
| |
Collapse
|
41
|
Li YC, Kavalali ET. Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets. Pharmacol Rev 2017; 69:141-160. [PMID: 28265000 DOI: 10.1124/pr.116.013342] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle-such as exocytosis and endocytosis-require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ying C Li
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ege T Kavalali
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
42
|
Ahrens-Nicklas RC, Umanah GKE, Sondheimer N, Deardorff MA, Wilkens AB, Conlin LK, Santani AB, Nesbitt A, Juulsola J, Ma E, Dawson TM, Dawson VL, Marsh ED. Precision therapy for a new disorder of AMPA receptor recycling due to mutations in ATAD1. NEUROLOGY-GENETICS 2017; 3:e130. [PMID: 28180185 PMCID: PMC5289017 DOI: 10.1212/nxg.0000000000000130] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/13/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE ATAD1 encodes Thorase, a mediator of α-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) receptor recycling; in this work, we characterized the phenotype resulting from ATAD1 mutations and developed a targeted therapy in both mice and humans. METHODS Using exome sequencing, we identified a novel ATAD1 mutation (p.E276X) as the etiology of a devastating neurologic disorder characterized by hypertonia, seizures, and death in a consanguineous family. We postulated that pathogenesis was a result of excessive AMPA receptor activity and designed a targeted therapeutic approach using perampanel, an AMPA-receptor antagonist. RESULTS Perampanel therapy in ATAD1 knockout mice reversed behavioral defects, normalized brain MRI abnormalities, prevented seizures, and prolonged survival. The ATAD1 patients treated with perampanel showed improvement in hypertonicity and resolution of seizures. CONCLUSIONS This work demonstrates that identification of novel monogenic neurologic disorders and observation of response to targeted therapeutics can provide important insights into human nervous system functioning.
Collapse
Affiliation(s)
- Rebecca C Ahrens-Nicklas
- Section of Biochemical Genetics (R.C.A.-N., N.S.), Division of Human Genetics (R.C.A.-N., M.A.D., A.B.W.), Department of Pathology and Laboratory Medicine (L.K.C., A.B.S., A.N.), Division of Child Neurology (E.D.M.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.C.A.-N., N.S., M.A.D., E.D.M.) and Department of Neurology (E.D.M.), Perelman School of Medicine, and Department of Clinical Pathology (L.K.C., A.B.S.), University of Pennsylvania, Philadelphia; GeneDx (J.J.), Gaithersburg, MD; Neuroregeneration and Stem Cell Programs (G.K.E.U., T.M.D., V.L.D.), Institute for Cell Engineering; Departments of Neurology (G.K.E.U., T.M.D.), Solomon H. Snyder Department of Neuroscience (T.M.D., V.L.D.), Pharmacology and Molecular Sciences (T.M.D., V.L.D.), Physiology (V.L.D.), and Public Health (E.M.), Johns Hopkins University, Baltimore, MD
| | - George K E Umanah
- Section of Biochemical Genetics (R.C.A.-N., N.S.), Division of Human Genetics (R.C.A.-N., M.A.D., A.B.W.), Department of Pathology and Laboratory Medicine (L.K.C., A.B.S., A.N.), Division of Child Neurology (E.D.M.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.C.A.-N., N.S., M.A.D., E.D.M.) and Department of Neurology (E.D.M.), Perelman School of Medicine, and Department of Clinical Pathology (L.K.C., A.B.S.), University of Pennsylvania, Philadelphia; GeneDx (J.J.), Gaithersburg, MD; Neuroregeneration and Stem Cell Programs (G.K.E.U., T.M.D., V.L.D.), Institute for Cell Engineering; Departments of Neurology (G.K.E.U., T.M.D.), Solomon H. Snyder Department of Neuroscience (T.M.D., V.L.D.), Pharmacology and Molecular Sciences (T.M.D., V.L.D.), Physiology (V.L.D.), and Public Health (E.M.), Johns Hopkins University, Baltimore, MD
| | - Neal Sondheimer
- Section of Biochemical Genetics (R.C.A.-N., N.S.), Division of Human Genetics (R.C.A.-N., M.A.D., A.B.W.), Department of Pathology and Laboratory Medicine (L.K.C., A.B.S., A.N.), Division of Child Neurology (E.D.M.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.C.A.-N., N.S., M.A.D., E.D.M.) and Department of Neurology (E.D.M.), Perelman School of Medicine, and Department of Clinical Pathology (L.K.C., A.B.S.), University of Pennsylvania, Philadelphia; GeneDx (J.J.), Gaithersburg, MD; Neuroregeneration and Stem Cell Programs (G.K.E.U., T.M.D., V.L.D.), Institute for Cell Engineering; Departments of Neurology (G.K.E.U., T.M.D.), Solomon H. Snyder Department of Neuroscience (T.M.D., V.L.D.), Pharmacology and Molecular Sciences (T.M.D., V.L.D.), Physiology (V.L.D.), and Public Health (E.M.), Johns Hopkins University, Baltimore, MD
| | - Matthew A Deardorff
- Section of Biochemical Genetics (R.C.A.-N., N.S.), Division of Human Genetics (R.C.A.-N., M.A.D., A.B.W.), Department of Pathology and Laboratory Medicine (L.K.C., A.B.S., A.N.), Division of Child Neurology (E.D.M.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.C.A.-N., N.S., M.A.D., E.D.M.) and Department of Neurology (E.D.M.), Perelman School of Medicine, and Department of Clinical Pathology (L.K.C., A.B.S.), University of Pennsylvania, Philadelphia; GeneDx (J.J.), Gaithersburg, MD; Neuroregeneration and Stem Cell Programs (G.K.E.U., T.M.D., V.L.D.), Institute for Cell Engineering; Departments of Neurology (G.K.E.U., T.M.D.), Solomon H. Snyder Department of Neuroscience (T.M.D., V.L.D.), Pharmacology and Molecular Sciences (T.M.D., V.L.D.), Physiology (V.L.D.), and Public Health (E.M.), Johns Hopkins University, Baltimore, MD
| | - Alisha B Wilkens
- Section of Biochemical Genetics (R.C.A.-N., N.S.), Division of Human Genetics (R.C.A.-N., M.A.D., A.B.W.), Department of Pathology and Laboratory Medicine (L.K.C., A.B.S., A.N.), Division of Child Neurology (E.D.M.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.C.A.-N., N.S., M.A.D., E.D.M.) and Department of Neurology (E.D.M.), Perelman School of Medicine, and Department of Clinical Pathology (L.K.C., A.B.S.), University of Pennsylvania, Philadelphia; GeneDx (J.J.), Gaithersburg, MD; Neuroregeneration and Stem Cell Programs (G.K.E.U., T.M.D., V.L.D.), Institute for Cell Engineering; Departments of Neurology (G.K.E.U., T.M.D.), Solomon H. Snyder Department of Neuroscience (T.M.D., V.L.D.), Pharmacology and Molecular Sciences (T.M.D., V.L.D.), Physiology (V.L.D.), and Public Health (E.M.), Johns Hopkins University, Baltimore, MD
| | - Laura K Conlin
- Section of Biochemical Genetics (R.C.A.-N., N.S.), Division of Human Genetics (R.C.A.-N., M.A.D., A.B.W.), Department of Pathology and Laboratory Medicine (L.K.C., A.B.S., A.N.), Division of Child Neurology (E.D.M.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.C.A.-N., N.S., M.A.D., E.D.M.) and Department of Neurology (E.D.M.), Perelman School of Medicine, and Department of Clinical Pathology (L.K.C., A.B.S.), University of Pennsylvania, Philadelphia; GeneDx (J.J.), Gaithersburg, MD; Neuroregeneration and Stem Cell Programs (G.K.E.U., T.M.D., V.L.D.), Institute for Cell Engineering; Departments of Neurology (G.K.E.U., T.M.D.), Solomon H. Snyder Department of Neuroscience (T.M.D., V.L.D.), Pharmacology and Molecular Sciences (T.M.D., V.L.D.), Physiology (V.L.D.), and Public Health (E.M.), Johns Hopkins University, Baltimore, MD
| | - Avni B Santani
- Section of Biochemical Genetics (R.C.A.-N., N.S.), Division of Human Genetics (R.C.A.-N., M.A.D., A.B.W.), Department of Pathology and Laboratory Medicine (L.K.C., A.B.S., A.N.), Division of Child Neurology (E.D.M.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.C.A.-N., N.S., M.A.D., E.D.M.) and Department of Neurology (E.D.M.), Perelman School of Medicine, and Department of Clinical Pathology (L.K.C., A.B.S.), University of Pennsylvania, Philadelphia; GeneDx (J.J.), Gaithersburg, MD; Neuroregeneration and Stem Cell Programs (G.K.E.U., T.M.D., V.L.D.), Institute for Cell Engineering; Departments of Neurology (G.K.E.U., T.M.D.), Solomon H. Snyder Department of Neuroscience (T.M.D., V.L.D.), Pharmacology and Molecular Sciences (T.M.D., V.L.D.), Physiology (V.L.D.), and Public Health (E.M.), Johns Hopkins University, Baltimore, MD
| | - Addie Nesbitt
- Section of Biochemical Genetics (R.C.A.-N., N.S.), Division of Human Genetics (R.C.A.-N., M.A.D., A.B.W.), Department of Pathology and Laboratory Medicine (L.K.C., A.B.S., A.N.), Division of Child Neurology (E.D.M.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.C.A.-N., N.S., M.A.D., E.D.M.) and Department of Neurology (E.D.M.), Perelman School of Medicine, and Department of Clinical Pathology (L.K.C., A.B.S.), University of Pennsylvania, Philadelphia; GeneDx (J.J.), Gaithersburg, MD; Neuroregeneration and Stem Cell Programs (G.K.E.U., T.M.D., V.L.D.), Institute for Cell Engineering; Departments of Neurology (G.K.E.U., T.M.D.), Solomon H. Snyder Department of Neuroscience (T.M.D., V.L.D.), Pharmacology and Molecular Sciences (T.M.D., V.L.D.), Physiology (V.L.D.), and Public Health (E.M.), Johns Hopkins University, Baltimore, MD
| | - Jane Juulsola
- Section of Biochemical Genetics (R.C.A.-N., N.S.), Division of Human Genetics (R.C.A.-N., M.A.D., A.B.W.), Department of Pathology and Laboratory Medicine (L.K.C., A.B.S., A.N.), Division of Child Neurology (E.D.M.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.C.A.-N., N.S., M.A.D., E.D.M.) and Department of Neurology (E.D.M.), Perelman School of Medicine, and Department of Clinical Pathology (L.K.C., A.B.S.), University of Pennsylvania, Philadelphia; GeneDx (J.J.), Gaithersburg, MD; Neuroregeneration and Stem Cell Programs (G.K.E.U., T.M.D., V.L.D.), Institute for Cell Engineering; Departments of Neurology (G.K.E.U., T.M.D.), Solomon H. Snyder Department of Neuroscience (T.M.D., V.L.D.), Pharmacology and Molecular Sciences (T.M.D., V.L.D.), Physiology (V.L.D.), and Public Health (E.M.), Johns Hopkins University, Baltimore, MD
| | - Erica Ma
- Section of Biochemical Genetics (R.C.A.-N., N.S.), Division of Human Genetics (R.C.A.-N., M.A.D., A.B.W.), Department of Pathology and Laboratory Medicine (L.K.C., A.B.S., A.N.), Division of Child Neurology (E.D.M.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.C.A.-N., N.S., M.A.D., E.D.M.) and Department of Neurology (E.D.M.), Perelman School of Medicine, and Department of Clinical Pathology (L.K.C., A.B.S.), University of Pennsylvania, Philadelphia; GeneDx (J.J.), Gaithersburg, MD; Neuroregeneration and Stem Cell Programs (G.K.E.U., T.M.D., V.L.D.), Institute for Cell Engineering; Departments of Neurology (G.K.E.U., T.M.D.), Solomon H. Snyder Department of Neuroscience (T.M.D., V.L.D.), Pharmacology and Molecular Sciences (T.M.D., V.L.D.), Physiology (V.L.D.), and Public Health (E.M.), Johns Hopkins University, Baltimore, MD
| | - Ted M Dawson
- Section of Biochemical Genetics (R.C.A.-N., N.S.), Division of Human Genetics (R.C.A.-N., M.A.D., A.B.W.), Department of Pathology and Laboratory Medicine (L.K.C., A.B.S., A.N.), Division of Child Neurology (E.D.M.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.C.A.-N., N.S., M.A.D., E.D.M.) and Department of Neurology (E.D.M.), Perelman School of Medicine, and Department of Clinical Pathology (L.K.C., A.B.S.), University of Pennsylvania, Philadelphia; GeneDx (J.J.), Gaithersburg, MD; Neuroregeneration and Stem Cell Programs (G.K.E.U., T.M.D., V.L.D.), Institute for Cell Engineering; Departments of Neurology (G.K.E.U., T.M.D.), Solomon H. Snyder Department of Neuroscience (T.M.D., V.L.D.), Pharmacology and Molecular Sciences (T.M.D., V.L.D.), Physiology (V.L.D.), and Public Health (E.M.), Johns Hopkins University, Baltimore, MD
| | - Valina L Dawson
- Section of Biochemical Genetics (R.C.A.-N., N.S.), Division of Human Genetics (R.C.A.-N., M.A.D., A.B.W.), Department of Pathology and Laboratory Medicine (L.K.C., A.B.S., A.N.), Division of Child Neurology (E.D.M.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.C.A.-N., N.S., M.A.D., E.D.M.) and Department of Neurology (E.D.M.), Perelman School of Medicine, and Department of Clinical Pathology (L.K.C., A.B.S.), University of Pennsylvania, Philadelphia; GeneDx (J.J.), Gaithersburg, MD; Neuroregeneration and Stem Cell Programs (G.K.E.U., T.M.D., V.L.D.), Institute for Cell Engineering; Departments of Neurology (G.K.E.U., T.M.D.), Solomon H. Snyder Department of Neuroscience (T.M.D., V.L.D.), Pharmacology and Molecular Sciences (T.M.D., V.L.D.), Physiology (V.L.D.), and Public Health (E.M.), Johns Hopkins University, Baltimore, MD
| | - Eric D Marsh
- Section of Biochemical Genetics (R.C.A.-N., N.S.), Division of Human Genetics (R.C.A.-N., M.A.D., A.B.W.), Department of Pathology and Laboratory Medicine (L.K.C., A.B.S., A.N.), Division of Child Neurology (E.D.M.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.C.A.-N., N.S., M.A.D., E.D.M.) and Department of Neurology (E.D.M.), Perelman School of Medicine, and Department of Clinical Pathology (L.K.C., A.B.S.), University of Pennsylvania, Philadelphia; GeneDx (J.J.), Gaithersburg, MD; Neuroregeneration and Stem Cell Programs (G.K.E.U., T.M.D., V.L.D.), Institute for Cell Engineering; Departments of Neurology (G.K.E.U., T.M.D.), Solomon H. Snyder Department of Neuroscience (T.M.D., V.L.D.), Pharmacology and Molecular Sciences (T.M.D., V.L.D.), Physiology (V.L.D.), and Public Health (E.M.), Johns Hopkins University, Baltimore, MD
| |
Collapse
|
43
|
Abstract
The epileptic encephalopathies are severe and often treatment-resistant conditions that are associated with a progressive disturbance of brain function, resulting in a broad range of neurological and non-neurological comorbidities. The concept of epileptic encephalopathies entails that the encephalopathy aspect of the overall condition is primarily driven by the epileptic activity of the disease, which often manifests as specific and pathological features on the electroencephalogram. Genetic factors in epileptic encephalopathies are increasingly recognized. As of 2016, more than 30 genes have been securely implicated as causative genes for genetic epileptic encephalopathies. Even though the traditional concept of epileptic encephalopathies entails that the progressive disturbance of brain dysfunction is primarily due to the abnormal hypersynchronous activity that underlies the seizure disorders, this strict concept rarely holds true for patients with identified genetic etiologies. More commonly, an underlying genetic etiology is thought to predispose both to the neurodevelopmental comorbidities and to the seizure phenotype with a complex interaction between both. In this chapter, we will elucidate to what extent neurodegeneration rather than epilepsy-related regression is a feature of the common epileptic encephalopathies, drawing parallels between two relatively separate fields of neurogenetic research.
Collapse
|
44
|
Odell LR, Abdel-Hamid MK, Hill TA, Chau N, Young KA, Deane FM, Sakoff JA, Andersson S, Daniel JA, Robinson PJ, McCluskey A. Pyrimidine-Based Inhibitors of Dynamin I GTPase Activity: Competitive Inhibition at the Pleckstrin Homology Domain. J Med Chem 2016; 60:349-361. [DOI: 10.1021/acs.jmedchem.6b01422] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Luke R. Odell
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mohammed K. Abdel-Hamid
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Timothy A. Hill
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ngoc Chau
- Children’s
Medical Research Institute, The University of Sydney, 214 Hawkesbury
Road, Westmead New South
Wales 2145, Australia
| | - Kelly A. Young
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Fiona M. Deane
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Jennette A. Sakoff
- Experimental
Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, 2298, New South Wales Australia
| | - Sofia Andersson
- Department
of Biology and Chemical Engineering, Mälardalens University, Box 325, S-631
05, Eskilstuna, Sweden
| | - James A. Daniel
- Children’s
Medical Research Institute, The University of Sydney, 214 Hawkesbury
Road, Westmead New South
Wales 2145, Australia
| | - Phillip J. Robinson
- Children’s
Medical Research Institute, The University of Sydney, 214 Hawkesbury
Road, Westmead New South
Wales 2145, Australia
| | - Adam McCluskey
- Chemistry,
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
45
|
Liu JY, Reeves C, Diehl B, Coppola A, Al-Hajri A, Hoskote C, Mughairy SA, Tachrount M, Groves M, Michalak Z, Mills K, McEvoy AW, Miserocchi A, Sisodiya SM, Thom M. Early lipofuscin accumulation in frontal lobe epilepsy. Ann Neurol 2016; 80:882-895. [DOI: 10.1002/ana.24803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Joan Y.W. Liu
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery; London United Kingdom
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London United Kingdom
| | - Cheryl Reeves
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery; London United Kingdom
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London United Kingdom
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London United Kingdom
- Department of Clinical Neurophysiology; National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - Antonietta Coppola
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London United Kingdom
| | - Aliya Al-Hajri
- The Lysholm Department of Neuroradiology in National Hospital for Neurology and Neurosurgery; London United Kingdom and Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Chandrashekar Hoskote
- The Lysholm Department of Neuroradiology in National Hospital for Neurology and Neurosurgery; London United Kingdom and Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Salim al Mughairy
- The Lysholm Department of Neuroradiology in National Hospital for Neurology and Neurosurgery; London United Kingdom and Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Mohamed Tachrount
- The Lysholm Department of Neuroradiology in National Hospital for Neurology and Neurosurgery; London United Kingdom and Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Michael Groves
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - Zuzanna Michalak
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery; London United Kingdom
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London United Kingdom
| | - Kevin Mills
- Biological Mass Spectrometry Centre, Institute of Child Health; University College London; London United Kingdom
| | - Andrew W. McEvoy
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London United Kingdom
- Victor Horsley Department of Neurosurgery; National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Anna Miserocchi
- Victor Horsley Department of Neurosurgery; National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London United Kingdom
- Epilepsy Society, Chesham Lane; Chalfont St Peter United Kingdom
| | - Maria Thom
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery; London United Kingdom
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London United Kingdom
| |
Collapse
|
46
|
Singh M, Jadhav HR, Bhatt T. Dynamin Functions and Ligands: Classical Mechanisms Behind. Mol Pharmacol 2016; 91:123-134. [PMID: 27879341 DOI: 10.1124/mol.116.105064] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022] Open
Abstract
Dynamin is a GTPase that plays a vital role in clathrin-dependent endocytosis and other vesicular trafficking processes by acting as a pair of molecular scissors for newly formed vesicles originating from the plasma membrane. Dynamins and related proteins are important components for the cleavage of clathrin-coated vesicles, phagosomes, and mitochondria. These proteins help in organelle division, viral resistance, and mitochondrial fusion/fission. Dysfunction and mutations in dynamin have been implicated in the pathophysiology of various disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Charcot-Marie-Tooth disease, heart failure, schizophrenia, epilepsy, cancer, dominant optic atrophy, osteoporosis, and Down's syndrome. This review is an attempt to illustrate the dynamin-related mechanisms involved in the above-mentioned disorders and to help medicinal chemists to design novel dynamin ligands, which could be useful in the treatment of dynamin-related disorders.
Collapse
Affiliation(s)
- Mahaveer Singh
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Rajasthan, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Rajasthan, India
| | - Tanya Bhatt
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Rajasthan, India
| |
Collapse
|
47
|
Abstract
The inner ear uses specialized synapses to indefatigably transmit sound information from hair cells to spiral ganglion neurons at high rates with submillisecond precision. The emerging view is that hair cell synapses achieve their demanding function by employing an unconventional presynaptic molecular composition. Hair cell active zones hold the synaptic ribbon, an electron-dense projection made primarily of RIBEYE, which tethers a halo of synaptic vesicles and is thought to enable a large readily releasable pool of vesicles and to contribute to its rapid replenishment. Another important presynaptic player is otoferlin, coded by a deafness gene, which assumes a multi-faceted role in vesicular exocytosis and, when disrupted, causes auditory synaptopathy. A functional peculiarity of hair cell synapses is the massive heterogeneity in the sizes and shapes of excitatory postsynaptic currents. Currently, there is controversy as to whether this reflects multiquantal release with a variable extent of synchronization or uniquantal release through a dynamic fusion pore. Another important question in the field has been the precise mechanisms of coupling presynaptic Ca
2+ channels and vesicular Ca
2+ sensors. This commentary provides an update on the current understanding of sound encoding in the cochlea with a focus on presynaptic mechanisms.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; Auditory Neuroscience and Optogenetics Group, German Primate Center, Göttingen, Germany
| | - Christian Vogl
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
48
|
Ehaideb SN, Wignall EA, Kasuya J, Evans WH, Iyengar A, Koerselman HL, Lilienthal AJ, Bassuk AG, Kitamoto T, Manak JR. Mutation of orthologous prickle genes causes a similar epilepsy syndrome in flies and humans. Ann Clin Transl Neurol 2016; 3:695-707. [PMID: 27648459 PMCID: PMC5018582 DOI: 10.1002/acn3.334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Genetically tractable fruit flies have been used for decades to study seizure disorders. However, there is a paucity of data specifically correlating fly and human seizure phenotypes. We have previously shown that mutation of orthologous PRICKLE genes from flies to humans produce seizures. This study aimed to determine whether the prickle-mediated seizure phenotypes in flies closely parallel the epilepsy syndrome found in PRICKLE patients. METHODS Virtually all fly seizure studies have relied upon characterizing seizures that are evoked. We have developed two novel approaches to more precisely characterize seizure-related phenotypes in their native state in prickle mutant flies. First, we used high-resolution videography to document spontaneous, unprovoked seizure events. Second, we developed a locomotion coordination assay to assess whether the prickle mutant flies were ataxic. Third, we treated the mutant flies with levetiracetam to determine whether the behavioral phenotypes could be suppressed by a common antiepileptic drug. RESULTS We find that the prickle mutant flies exhibit myoclonic-like spontaneous seizure events and are severely ataxic. Both these phenotypes are found in human patients with PRICKLE mutations, and can be suppressed by levetiracetam, providing evidence that the phenotypes are due to neurological dysfunction. These results document for the first time spontaneous, unprovoked seizure events at high resolution in a fly human seizure disorder model, capturing seizures in their native state. INTERPRETATION Collectively, these data underscore the striking similarities between the fly and human PRICKLE-mediated epilepsy syndromes, and provide a genetically tractable model for dissecting the underlying causes of the human syndromic phenotypes.
Collapse
Affiliation(s)
- Salleh N Ehaideb
- Interdisciplinary Graduate Program in Genetics University of Iowa Iowa City Iowa; King Abdullah International Medical Research Cente rKing Abdulaziz Medical City Riyadh Saudi Arabia; Department of Biology University of Iowa Iowa City Iowa
| | | | - Junko Kasuya
- Department of Anesthesia University of Iowa Iowa City Iowa
| | | | - Atulya Iyengar
- Department of Biology University of Iowa Iowa City Iowa; Interdisciplinary Graduate Program in Neuroscience University of Iowa Iowa City Iowa
| | | | | | | | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics University of Iowa Iowa City Iowa; Department of Anesthesia University of Iowa Iowa City Iowa; Interdisciplinary Graduate Program in Neuroscience University of Iowa Iowa City Iowa
| | - J Robert Manak
- Interdisciplinary Graduate Program in Genetics University of Iowa Iowa City Iowa; Department of Biology University of Iowa Iowa City Iowa; Interdisciplinary Graduate Program in Neuroscience University of Iowa Iowa City Iowa; Department of Pediatrics University of Iowa Iowa City Iowa
| |
Collapse
|
49
|
Dynamin 1 isoform roles in a mouse model of severe childhood epileptic encephalopathy. Neurobiol Dis 2016; 95:1-11. [PMID: 27363778 DOI: 10.1016/j.nbd.2016.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 01/05/2023] Open
Abstract
Dynamin 1 is a large neuron-specific GTPase involved in the endocytosis and recycling of pre-synaptic membranes and synaptic vesicles. Mutations in the gene encoding dynamin 1 (DNM1) underlie two epileptic encephalopathy syndromes, Lennox-Gastaut Syndrome and Infantile Spasms. Mice homozygous for the Dnm1 "fitful" mutation, a non-synonymous coding variant in an alternatively spliced exon of Dnm1 (exon 10a; isoform designation: Dnm1a(Ftfl)) have an epileptic encephalopathy-like disorder including lethal early onset seizures, locomotor and neurosensory deficits. Although fitful heterozygotes have milder recurrent seizures later in life, suggesting an additive or semi-dominant mechanism, the molecular etiology must also consider the fact that Dnm1a(Ftfl) exerts a dominant negative effect on endocytosis in vitro. Another complication is that the fitful mutation induces alterations in the relative abundance of Dnm1 splice variants; mutants have a downregulation of Dnm1a and an upregulation of Dnm1b, changes which may contribute to the epileptic pathology. To examine whether Dnm1a loss of function, Dnm1a(Ftfl) dominance or compensation by Dnm1b is the most critical for severe seizures, we studied alternate isoform-specific mutant mice. Mice lacking Dnm1 exon 10a or Dnm1 exon 10b have neither spontaneous seizures nor other overt abnormalities, suggesting that in normal conditions the major role of each isoform is redundant. However, in the presence of Dnm1a(Ftfl) only exon 10a deleted mice experience severe seizures. These results reveal functional differences between Dnm1a and Dnm1b isoforms in the presence of a challenge, i.e. toxic Dnm1(Ftfl), while reinforcing its effect explicitly in this model of severe pediatric epilepsy.
Collapse
|
50
|
Tissue-specific dynamin-1 deletion at the calyx of Held decreases short-term depression through a mechanism distinct from vesicle resupply. Proc Natl Acad Sci U S A 2016; 113:E3150-8. [PMID: 27185948 DOI: 10.1073/pnas.1520937113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dynamin is a large GTPase with a crucial role in synaptic vesicle regeneration. Acute dynamin inhibition impairs neurotransmitter release, in agreement with the protein's established role in vesicle resupply. Here, using tissue-specific dynamin-1 knockout [conditional knockout (cKO)] mice at a fast central synapse that releases neurotransmitter at high rates, we report that dynamin-1 deletion unexpectedly leads to enhanced steady-state neurotransmission and consequently less synaptic depression during brief periods of high-frequency stimulation. These changes are also accompanied by increased transmission failures. Interestingly, synaptic vesicle resupply and several other synaptic properties remain intact, including basal neurotransmission, presynaptic Ca(2+) influx, initial release probability, and postsynaptic receptor saturation and desensitization. However, acute application of Latrunculin B, a reagent known to induce actin depolymerization and impair bulk and ultrafast endocytosis, has a stronger effect on steady-state depression in cKO than in control and brings the depression down to a control level. The slow phase of presynaptic capacitance decay following strong stimulation is impaired in cKO; the rapid capacitance changes immediately after strong depolarization are also different between control and cKO and sensitive to Latrunculin B. These data raise the possibility that, in addition to its established function in regenerating synaptic vesicles, the endocytosis protein dynamin-1 may have an impact on short-term synaptic depression. This role comes into play primarily during brief high-frequency stimulation.
Collapse
|