1
|
Lu Q, Zhu Z, Zhang J, Xu C. Structure of GDP-bound Rab7 Q67L in complex with ORP1L. Biochem Biophys Res Commun 2024; 725:150232. [PMID: 38897042 DOI: 10.1016/j.bbrc.2024.150232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Molecular processes are orchestrated by various proteins that promote early endosomes to become late endosomes and eventually fuse with lysosomes, guaranteeing the degradation of the content. Rab7, which is localized to late endosomes, is one of the most well-known GTPases. ORP1L is recruited by Rab7 to facilitate the fusion of late endosomes and lysosomes. Here, we present the structure of GDP-bound Rab7 Q67L with ORP1L. Structural analysis, supported by biochemical and ITC binding experiments, not only provides structural insight into the interactions between the ORP1L ANK domain and Rab7 but also suggests that the GTPase activity of Rab7 does not interfere with its ORP1L-binding capacity.
Collapse
Affiliation(s)
- Qian Lu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Zhongliang Zhu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Jiahai Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| | - Chao Xu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| |
Collapse
|
2
|
Olkkonen VM, Ikonen E. Getting to Grips with the Oxysterol-Binding Protein Family - a Forty Year Perspective. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241273598. [PMID: 39210909 PMCID: PMC11359446 DOI: 10.1177/25152564241273598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
This review discusses how research around the oxysterol-binding protein family has evolved. We briefly summarize how this protein family, designated OSBP-related (ORP) or OSBP-like (OSBPL) proteins, was discovered, how protein domains highly conserved among family members between taxa paved the way for understanding their mechanisms of action, and how insights into protein structural and functional features help to understand their versatility as lipid transporters. We also discuss questions and future avenues of research opened by these findings. The investigations on oxysterol-binding protein family serve as a real-life example of the notion that science often advances as a collective effort of multiple lines of enquiry, including serendipitous routes. While original articles invariably explain the motivation of the research undertaken in rational terms, the actual paths to findings may be less intentional. Fortunately, this does not reduce the impact of the discoveries made. Besides hopefully providing a useful account of ORP family proteins, we aim to convey this message.
Collapse
Affiliation(s)
- Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Faculty of Medicine, Dept of Anatomy and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Abstract
Cholesterol is an essential lipid species of mammalian cells. Cells acquire it through synthesis in the endoplasmic reticulum (ER) and uptake from lipoprotein particles. Newly synthesized cholesterol is efficiently distributed from the ER to other organelles via lipid-binding/transfer proteins concentrated at membrane contact sites (MCSs) to reach the trans-Golgi network, endosomes, and plasma membrane. Lipoprotein-derived cholesterol is exported from the plasma membrane and endosomal compartments via a combination of vesicle/tubule-mediated membrane transport and transfer through MCSs. In this review, we provide an overview of intracellular cholesterol trafficking pathways, including cholesterol flux from the ER to other membranes, cholesterol uptake from lipoprotein donors and transport from the plasma membrane to the ER, cellular cholesterol efflux to lipoprotein acceptors, as well as lipoprotein cholesterol secretion from enterocytes, hepatocytes, and astrocytes. We also briefly discuss human diseases caused by defects in these processes and therapeutic strategies available in such conditions.
Collapse
Affiliation(s)
- Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00100 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| |
Collapse
|
4
|
Tan S, Yang Y, Yang W, Han Y, Huang L, Yang R, Hu Z, Tao Y, Liu L, Li Y, Oyang L, Lin J, Peng Q, Jiang X, Xu X, Xia L, Peng M, Wu N, Tang Y, Cao D, Liao Q, Zhou Y. Exosomal cargos-mediated metabolic reprogramming in tumor microenvironment. J Exp Clin Cancer Res 2023; 42:59. [PMID: 36899389 PMCID: PMC9999652 DOI: 10.1186/s13046-023-02634-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of cancer. As nutrients are scarce in the tumor microenvironment (TME), tumor cells adopt multiple metabolic adaptations to meet their growth requirements. Metabolic reprogramming is not only present in tumor cells, but exosomal cargos mediates intercellular communication between tumor cells and non-tumor cells in the TME, inducing metabolic remodeling to create an outpost of microvascular enrichment and immune escape. Here, we highlight the composition and characteristics of TME, meanwhile summarize the components of exosomal cargos and their corresponding sorting mode. Functionally, these exosomal cargos-mediated metabolic reprogramming improves the "soil" for tumor growth and metastasis. Moreover, we discuss the abnormal tumor metabolism targeted by exosomal cargos and its potential antitumor therapy. In conclusion, this review updates the current role of exosomal cargos in TME metabolic reprogramming and enriches the future application scenarios of exosomes.
Collapse
Affiliation(s)
- Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Wenjuan Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Lisheng Huang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Ruiqian Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Zifan Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yi Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Lin Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yun Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
5
|
Ye H, Gao J, Liang Z, Lin Y, Yu Q, Huang S, Jiang L. Arabidopsis ORP2A mediates ER-autophagosomal membrane contact sites and regulates PI3P in plant autophagy. Proc Natl Acad Sci U S A 2022; 119:e2205314119. [PMID: 36252028 PMCID: PMC9618059 DOI: 10.1073/pnas.2205314119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/21/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an intracellular degradation system for cytoplasmic constituents which is mediated by the formation of a double-membrane organelle termed the autophagosome and its subsequent fusion with the lysosome/vacuole. The formation of the autophagosome requires membrane from the endoplasmic reticulum (ER) and is tightly regulated by a series of autophagy-related (ATG) proteins and lipids. However, how the ER contacts autophagosomes and regulates autophagy remain elusive in plants. In this study, we identified and demonstrated the roles of Arabidopsis oxysterol-binding protein-related protein 2A (ORP2A) in mediating ER-autophagosomal membrane contacts and autophagosome biogenesis. We showed that ORP2A localizes to both ER-plasma membrane contact sites (EPCSs) and autophagosomes, and that ORP2A interacts with both the ER-localized VAMP-associated protein (VAP) 27-1 and ATG8e on the autophagosomes to mediate the membrane contact sites (MCSs). In ORP2A artificial microRNA knockdown (KD) plants, seedlings display retarded growth and impaired autophagy levels. Both ATG1a and ATG8e accumulated and associated with the ER membrane in ORP2A KD lines. Moreover, ORP2A binds multiple phospholipids and shows colocalization with phosphatidylinositol 3-phosphate (PI3P) in vivo. Taken together, ORP2A mediates ER-autophagosomal MCSs and regulates autophagy through PI3P redistribution.
Collapse
Affiliation(s)
- Hao Ye
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiayang Gao
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zizhen Liang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Youshun Lin
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianyi Yu
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuxian Huang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Kadhim I, Begum N, King W, Xu L, Tang F. Up-regulation of Osh6 boosts an anti-aging membrane trafficking pathway toward vacuoles. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:145-157. [PMID: 35974810 PMCID: PMC9344199 DOI: 10.15698/mic2022.08.783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Members of the family of oxysterol-binding proteins mediate non-vesicular lipid transport between membranes and contribute to longevity in different manners. We previously found that a 2-fold up-regulation of Osh6, one of seven yeast oxysterol-binding proteins, remedies vacuolar morphology defects in mid-aged cells, partly down-regulates the target of rapamycin complex 1 (TORC1), and increases the replicative lifespan. At the molecular level, Osh6 transports phosphatidylserine (PS) and phosphatidylinositol-4-phosphate (PI4P) between the endoplasmic reticulum (ER) and the plasma membrane (PM). To decipher how an ER-PM working protein controls vacuolar morphology, we tested genetic interactions between OSH6 and DRS2, whose protein flips PS from the lumen to the cytosolic side of the Golgi, the organelle between ER and vacuoles in many pathways. Up-regulated OSH6 complemented vacuolar morphology of drs2Δ and enriched PI4P on the Golgi, indicating that Osh6 also works on the Golgi. This altered PI4P-enrichment led to a delay in the secretion of the proton ATPase Pma1 to the PM and a rerouting of Pma1 to vacuoles in a manner dependent on the trans-Golgi network (TGN) to late endosome (LE) trafficking pathway. Since the TGN-LE pathway controls endosomal and vacuolar TORC1, it may be the anti-aging pathway boosted by up-regulated Osh6.
Collapse
Affiliation(s)
- Ilham Kadhim
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - Nazneen Begum
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - William King
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - Licheng Xu
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - Fusheng Tang
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| |
Collapse
|
7
|
Linking Late Endosomal Cholesterol with Cancer Progression and Anticancer Drug Resistance. Int J Mol Sci 2022; 23:ijms23137206. [PMID: 35806209 PMCID: PMC9267071 DOI: 10.3390/ijms23137206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells undergo drastic metabolic adaptions to cover increased bioenergetic needs, contributing to resistance to therapies. This includes a higher demand for cholesterol, which often coincides with elevated cholesterol uptake from low-density lipoproteins (LDL) and overexpression of the LDL receptor in many cancers. This implies the need for cancer cells to accommodate an increased delivery of LDL along the endocytic pathway to late endosomes/lysosomes (LE/Lys), providing a rapid and effective distribution of LDL-derived cholesterol from LE/Lys to other organelles for cholesterol to foster cancer growth and spread. LDL-cholesterol exported from LE/Lys is facilitated by Niemann–Pick Type C1/2 (NPC1/2) proteins, members of the steroidogenic acute regulatory-related lipid transfer domain (StARD) and oxysterol-binding protein (OSBP) families. In addition, lysosomal membrane proteins, small Rab GTPases as well as scaffolding proteins, including annexin A6 (AnxA6), contribute to regulating cholesterol egress from LE/Lys. Here, we summarize current knowledge that links upregulated activity and expression of cholesterol transporters and related proteins in LE/Lys with cancer growth, progression and treatment outcomes. Several mechanisms on how cellular distribution of LDL-derived cholesterol from LE/Lys influences cancer cell behavior are reviewed, some of those providing opportunities for treatment strategies to reduce cancer progression and anticancer drug resistance.
Collapse
|
8
|
Olkkonen VM, Ikonen E. Cholesterol transport in the late endocytic pathway: Roles of ORP family proteins. J Steroid Biochem Mol Biol 2022; 216:106040. [PMID: 34864207 DOI: 10.1016/j.jsbmb.2021.106040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022]
Abstract
Oxysterol-binding protein (OSBP) homologues, designated ORP or OSBPL proteins, constitute one of the largest families of intracellular lipid-binding/transfer proteins (LTP). This review summarizes the mounting evidence that several members of this family participate in the machinery facilitating cholesterol trafficking in the late endocytic pathway. There are indications that OSBP, besides acting as a cholesterol/phosphatidylinositol 4-phosphate (PI4P) exchanger at the endoplasmic reticulum (ER)-trans-Golgi network (TGN) membrane contact sites (MCS), also exchanges these lipids at ER-lysosome (Lys) contacts, increasing Lys cholesterol content. The long isoform of ORP1 (ORP1L), which also targets ER-late endosome (LE)/Lys MCS, has the capacity to mediate cholesterol transport either from ER to LE or in the opposite direction. Moreover, it regulates the motility, positioning and fusion of LE as well as autophagic flux. ORP2, the closest relative of ORP1, is mainly cytosolic, but also targets PI(4,5)P2-rich endosomal compartments. Our latest data suggest that ORP2 transfers cholesterol from LE to recycling endosomes (RE) in exchange for PI(4,5)P2, thus stimulating the recruitment of focal adhesion kinase (FAK) on the RE and cell adhesion. FAK activates phosphoinositide kinase on the RE to enhance PI(4,5)P2 synthesis. ORP2 in turn transfers PI(4,5)P2 from RE to LE, thus regulating LE tubule formation and transport activity.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Arora A, Taskinen JH, Olkkonen VM. Coordination of inter-organelle communication and lipid fluxes by OSBP-related proteins. Prog Lipid Res 2022; 86:101146. [PMID: 34999137 DOI: 10.1016/j.plipres.2022.101146] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 12/31/2022]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute one of the largest families of lipid-binding/transfer proteins (LTPs) in eukaryotes. The current view is that many of them mediate inter-organelle lipid transfer over membrane contact sites (MCS). The transfer occurs in several cases in a 'counter-current' fashion: A lipid such as cholesterol or phosphatidylserine (PS) is transferred against its concentration gradient driven by transport of a phosphoinositide in the opposite direction. In this way ORPs are envisioned to maintain the distinct organelle lipid compositions, with impacts on multiple organelle functions. However, the functions of ORPs extend beyond lipid homeostasis to regulation of processes such as cell survival, proliferation and migration. Important expanding areas of mammalian ORP research include their roles in viral and bacterial infections, cancers, and neuronal function. The yeast OSBP homologue (Osh) proteins execute multifaceted functions in sterol and glycerophospholipid homeostasis, post-Golgi vesicle transport, phosphatidylinositol-4-phosphate, sphingolipid and target of rapamycin (TOR) signalling, and cell cycle control. These observations identify ORPs as lipid transporters and coordinators of signals with an unforeseen variety of cellular processes. Understanding their activities not only enlightens the biology of the living cell but also allows their employment as targets of new therapeutic approaches for disease.
Collapse
Affiliation(s)
- Amita Arora
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
10
|
Glitscher M, Hildt E. Endosomal Cholesterol in Viral Infections - A Common Denominator? Front Physiol 2021; 12:750544. [PMID: 34858206 PMCID: PMC8632007 DOI: 10.3389/fphys.2021.750544] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cholesterol has gained tremendous attention as an essential lipid in the life cycle of virtually all viruses. These seem to have developed manifold strategies to modulate the cholesterol metabolism to the side of lipid uptake and de novo synthesis. In turn, affecting the cholesterol homeostasis has emerged as novel broad-spectrum antiviral strategy. On the other hand, the innate immune system is similarly regulated by the lipid and stimulated by its derivatives. This certainly requires attention in the design of antiviral strategies aiming to decrease cellular cholesterol, as evidence accumulates that withdrawal of cholesterol hampers innate immunity. Secondly, there are exceptions to the rule of the abovementioned virus-induced metabolic shift toward cholesterol anabolism. It therefore is of interest to dissect underlying regulatory mechanisms, which we aimed for in this minireview. We further collected evidence for intracellular cholesterol concentrations being less important in viral life cycles as compared to the spatial distribution of the lipid. Various routes of cholesterol trafficking were found to be hijacked in viral infections with respect to organelle-endosome contact sites mediating cholesterol shuttling. Thus, re-distribution of cellular cholesterol in the context of viral infections requires more attention in ongoing research. As a final aim, a pan-antiviral treatment could be found just within the transport and re-adjustment of local cholesterol concentrations. Thus, we aimed to emphasize the importance of the regulatory roles the endosomal system fulfils herein and hope to stimulate research in this field.
Collapse
Affiliation(s)
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
11
|
de Rus Jacquet A, Tancredi JL, Lemire AL, DeSantis MC, Li WP, O'Shea EK. The LRRK2 G2019S mutation alters astrocyte-to-neuron communication via extracellular vesicles and induces neuron atrophy in a human iPSC-derived model of Parkinson's disease. eLife 2021; 10:e73062. [PMID: 34590578 PMCID: PMC8514240 DOI: 10.7554/elife.73062] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Astrocytes are essential cells of the central nervous system, characterized by dynamic relationships with neurons that range from functional metabolic interactions and regulation of neuronal firing activities, to the release of neurotrophic and neuroprotective factors. In Parkinson's disease (PD), dopaminergic neurons are progressively lost during the course of the disease, but the effects of PD on astrocytes and astrocyte-to-neuron communication remain largely unknown. This study focuses on the effects of the PD-related mutation LRRK2 G2019S in astrocytes generated from patient-derived induced pluripotent stem cells. We report the alteration of extracellular vesicle (EV) biogenesis in astrocytes and identify the abnormal accumulation of key PD-related proteins within multivesicular bodies (MVBs). We found that dopaminergic neurons internalize astrocyte-secreted EVs and that LRRK2 G2019S EVs are abnormally enriched in neurites and fail to provide full neurotrophic support to dopaminergic neurons. Thus, dysfunctional astrocyte-to-neuron communication via altered EV biological properties may participate in the progression of PD.
Collapse
Affiliation(s)
| | - Jenna L Tancredi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael C DeSantis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Wei-Ping Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Erin K O'Shea
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
12
|
Piggott CA, Wu Z, Nurrish S, Xu S, Kaplan JM, Chisholm AD, Jin Y. Caenorhabditis elegans junctophilin has tissue-specific functions and regulates neurotransmission with extended-synaptotagmin. Genetics 2021; 218:iyab063. [PMID: 33871019 PMCID: PMC8864756 DOI: 10.1093/genetics/iyab063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
The junctophilin family of proteins tether together plasma membrane (PM) and endoplasmic reticulum (ER) membranes, and couple PM- and ER-localized calcium channels. Understanding in vivo functions of junctophilins is of great interest for dissecting the physiological roles of ER-PM contact sites. Here, we show that the sole Caenorhabditis elegans junctophilin JPH-1 localizes to discrete membrane contact sites in neurons and muscles and has important tissue-specific functions. jph-1 null mutants display slow growth and development due to weaker contraction of pharyngeal muscles, leading to reduced feeding. In the body wall muscle, JPH-1 colocalizes with the PM-localized EGL-19 voltage-gated calcium channel and ER-localized UNC-68 RyR calcium channel, and is required for animal movement. In neurons, JPH-1 colocalizes with the membrane contact site protein Extended-SYnaptoTagmin 2 (ESYT-2) in the soma, and is present near presynaptic release sites. Interestingly, jph-1 and esyt-2 null mutants display mutual suppression in their response to aldicarb, suggesting that JPH-1 and ESYT-2 have antagonistic roles in neuromuscular synaptic transmission. Additionally, we find an unexpected cell nonautonomous effect of jph-1 in axon regrowth after injury. Genetic double mutant analysis suggests that jph-1 functions in overlapping pathways with two PM-localized voltage-gated calcium channels, egl-19 and unc-2, and with unc-68 for animal health and development. Finally, we show that jph-1 regulates the colocalization of EGL-19 and UNC-68 and that unc-68 is required for JPH-1 localization to ER-PM puncta. Our data demonstrate important roles for junctophilin in cellular physiology, and also provide insights into how junctophilin functions together with other calcium channels in vivo.
Collapse
Affiliation(s)
- Christopher A Piggott
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zilu Wu
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Stephen Nurrish
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Suhong Xu
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew D Chisholm
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Shirane M. Lipid Transfer-Dependent Endosome Maturation Mediated by Protrudin and PDZD8 in Neurons. Front Cell Dev Biol 2020; 8:615600. [PMID: 33385000 PMCID: PMC7769939 DOI: 10.3389/fcell.2020.615600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Endosome maturation refers to the conversion of early endosomes (EEs) to late endosomes (LEs) for subsequent fusion with lysosomes. It is an incremental process that involves a combination of endosome fusion and fission and which occurs at contact sites between endosomes and the endoplasmic reticulum (ER), with knowledge of the underlying mechanisms having increased greatly in recent years. Protrudin is an ER-resident protein that was originally shown to regulate neurite formation by promoting endosome trafficking, whereas PDZD8 is a mammalian paralog of a subunit of the yeast ERMES (ER-mitochondrial encounter structure) complex that possesses lipid transfer activity. A complex of protrudin and PDZD8 was recently found to promote endosome maturation by mediating lipid transfer at ER-endosome membrane contact sites. This review focuses on the roles of the protrudin-PDZD8 complex in tethering of endosomes to the ER, in mediating lipid transfer at such contact sites, and in regulating endosome dynamics, especially in neuronal cells. It also addresses the physiological contribution of endosome maturation mediated by this complex to neuronal polarity and integrity.
Collapse
Affiliation(s)
- Michiko Shirane
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
14
|
Protrudin and PDZD8 contribute to neuronal integrity by promoting lipid extraction required for endosome maturation. Nat Commun 2020; 11:4576. [PMID: 32917905 PMCID: PMC7486383 DOI: 10.1038/s41467-020-18413-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/21/2020] [Indexed: 01/08/2023] Open
Abstract
Endosome maturation depends on membrane contact sites (MCSs) formed between endoplasmic reticulum (ER) and endolysosomes (LyLEs). The mechanism underlying lipid supply for this process and its pathophysiological relevance remains unclear, however. Here, we identify PDZD8-the mammalian ortholog of a yeast ERMES subunit-as a protein that interacts with protrudin, which is located at ER-LyLE MCSs. Protrudin and PDZD8 promote the formation of ER-LyLE MCSs, and PDZD8 shows the ability to extract various lipids from the ER. Overexpression of both protrudin and PDZD8 in HeLa cells, as well as their depletion in mouse primary neurons, impairs endosomal homeostasis by inducing the formation of abnormal large vacuoles reminiscent of those apparent in spastin- or REEP1-deficient neurons. The protrudin-PDZD8 system is also essential for the establishment of neuronal polarity. Our results suggest that protrudin and PDZD8 cooperatively promote endosome maturation by mediating ER-LyLE tethering and lipid extraction at MCSs, thereby maintaining neuronal polarity and integrity.
Collapse
|
15
|
Adenovirus Reveals New Pathway for Cholesterol Egress from the Endolysosomal System. Int J Mol Sci 2020; 21:ijms21165808. [PMID: 32823559 PMCID: PMC7460884 DOI: 10.3390/ijms21165808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
In addition to providing invaluable insights to the host response to viral infection, adenovirus continues to be an important model system for discovering basic aspects of cell biology. This is especially true for products of early region three (E3), which have provided the foundation for understanding many new mechanisms regulating intracellular trafficking of host cell proteins involved in the host immune response. Cholesterol homeostasis is vital for proper cellular physiology, and disturbances in cholesterol balance are increasingly recognized as important factors in human disease. Despite its central role in numerous aspects of cellular functions, the mechanisms responsible for delivery of dietary cholesterol to the endoplasmic reticulum, where the lipid metabolic and regulatory machinery reside, remain poorly understood. In this review, we describe a novel intracellular pathway for cholesterol trafficking that has been co-opted by an adenovirus E3 gene product. We describe what is known about the molecular regulation of this pathway, how it might benefit viral replication, and its potential involvement in normal cell physiology. Finally, we make a case that adenovirus has co-opted a cellular pathway that may be dysregulated in various human diseases.
Collapse
|
16
|
Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ, Baer CE, Dixon SJ, Mercurio AM. Prominin2 Drives Ferroptosis Resistance by Stimulating Iron Export. Dev Cell 2019; 51:575-586.e4. [PMID: 31735663 PMCID: PMC8316835 DOI: 10.1016/j.devcel.2019.10.007] [Citation(s) in RCA: 352] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/28/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022]
Abstract
Ferroptosis, regulated cell death characterized by the iron-dependent accumulation of lethal lipid reactive oxygen species, contributes to tissue homeostasis and numerous pathologies, and it may be exploited for therapy. Cells differ in their sensitivity to ferroptosis, however, and a key challenge is to understand mechanisms that contribute to resistance. Using RNA-seq to identify genes that contribute to ferroptosis resistance, we discovered that pro-ferroptotic stimuli, including inhibition of the lipid hydroperoxidase GPX4 and detachment from the extracellular matrix, induce expression of prominin2, a pentaspanin protein implicated in regulation of lipid dynamics. Prominin2 facilitates ferroptosis resistance in mammary epithelial and breast carcinoma cells. Mechanistically, prominin2 promotes the formation of ferritin-containing multivesicular bodies (MVBs) and exosomes that transport iron out of the cell, inhibiting ferroptosis. These findings reveal that ferroptosis resistance can be driven by a prominin2-MVB-exosome-ferritin pathway and have broad implications for iron homeostasis, intracellular trafficking, and cancer.
Collapse
Affiliation(s)
- Caitlin W Brown
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - John J Amante
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Peter Chhoy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ameer L Elaimy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; Sanderson Center for Optical Examination, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
17
|
Nishimura T, Gecht M, Covino R, Hummer G, Surma MA, Klose C, Arai H, Kono N, Stefan CJ. Osh Proteins Control Nanoscale Lipid Organization Necessary for PI(4,5)P 2 Synthesis. Mol Cell 2019; 75:1043-1057.e8. [PMID: 31402097 PMCID: PMC6739424 DOI: 10.1016/j.molcel.2019.06.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/13/2019] [Accepted: 06/25/2019] [Indexed: 11/28/2022]
Abstract
The plasma membrane (PM) is composed of a complex lipid mixture that forms heterogeneous membrane environments. Yet, how small-scale lipid organization controls physiological events at the PM remains largely unknown. Here, we show that ORP-related Osh lipid exchange proteins are critical for the synthesis of phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2], a key regulator of dynamic events at the PM. In real-time assays, we find that unsaturated phosphatidylserine (PS) and sterols, both Osh protein ligands, synergistically stimulate phosphatidylinositol 4-phosphate 5-kinase (PIP5K) activity. Biophysical FRET analyses suggest an unconventional co-distribution of unsaturated PS and phosphatidylinositol 4-phosphate (PI4P) species in sterol-containing membrane bilayers. Moreover, using in vivo imaging approaches and molecular dynamics simulations, we show that Osh protein-mediated unsaturated PI4P and PS membrane lipid organization is sensed by the PIP5K specificity loop. Thus, ORP family members create a nanoscale membrane lipid environment that drives PIP5K activity and PI(4,5)P2 synthesis that ultimately controls global PM organization and dynamics. The Osh lipid exchange proteins are required to maintain PI(4,5)P2 levels in the PM Unsaturated PS and sterols synergistically stimulate PIP5K activity The specificity loop conserved in PIP5Ks serves as a lipid sensor A simulation model of the PIP5K specificity loop embedded in a lipid bilayer
Collapse
Affiliation(s)
- Taki Nishimura
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Michael Gecht
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Roberto Covino
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | | | | | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Christopher J Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
18
|
Nishimura T, Stefan CJ. Specialized ER membrane domains for lipid metabolism and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158492. [PMID: 31349025 DOI: 10.1016/j.bbalip.2019.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/15/2022]
Abstract
The endoplasmic reticulum (ER) is a highly organized organelle that performs vital functions including de novo membrane lipid synthesis and transport. Accordingly, numerous lipid biosynthesis enzymes are localized in the ER membrane. However, it is now evident that lipid metabolism is sub-compartmentalized within the ER and that lipid biosynthetic enzymes engage with lipid transfer proteins (LTPs) to rapidly shuttle newly synthesized lipids from the ER to other organelles. As such, intimate relationships between lipid metabolism and lipid transfer pathways exist within the ER network. Notably, certain LTPs enhance the activities of lipid metabolizing enzymes; likewise, lipid metabolism can ensure the specificity of LTP transfer/exchange reactions. Yet, our understanding of these mutual relationships is still emerging. Here, we highlight past and recent key findings on specialized ER membrane domains involved in efficient lipid metabolism and transport and consider unresolved issues in the field.
Collapse
Affiliation(s)
- Taki Nishimura
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Christopher J Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
19
|
Di Mattia T, Tomasetto C, Alpy F. Faraway, so close! Functions of Endoplasmic reticulum-Endosome contacts. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158490. [PMID: 31252175 DOI: 10.1016/j.bbalip.2019.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/27/2023]
Abstract
Eukaryotic cells are partitioned into functionally distinct organelles. Long considered as independent units in the cytosol, organelles are actually in constant and direct interaction with each other, mostly through the establishment of physical connections named membrane contact sites. Membrane contact sites constitute specific active regions involved in organelle dynamics, inter-organelle exchanges and communications. The endoplasmic reticulum (ER), which spreads throughout the cytosol, forms an extensive network that has many connections with the other organelles of the cell. Ample connections between the ER and endocytic organelles are observed in many cell types, highlighting their prominent physiological roles. Even though morphologically similar - a contact is a contact -, the identity of ER-Endosome contacts is defined by their specific molecular composition, which in turn determines the function of the contact. Here, we review the molecular mechanisms of ER-Endosome contact site formation and their associated cellular functions. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Thomas Di Mattia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Catherine Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
20
|
Koponen A, Arora A, Takahashi K, Kentala H, Kivelä AM, Jääskeläinen E, Peränen J, Somerharju P, Ikonen E, Viitala T, Olkkonen VM. ORP2 interacts with phosphoinositides and controls the subcellular distribution of cholesterol. Biochimie 2018; 158:90-101. [PMID: 30590084 DOI: 10.1016/j.biochi.2018.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023]
Abstract
ORP2 is a sterol-binding protein with documented functions in lipid and glucose metabolism, Akt signaling, steroidogenesis, cell adhesion, migration and proliferation. Here we investigate the interactions of ORP2 with phosphoinositides (PIPs) by surface plasmon resonance (SPR), its affinity for cholesterol with a pull-down assay, and its capacity to transfer sterol in vitro. Moreover, we determine the effects of wild-type (wt) ORP2 and a mutant with attenuated PIP binding, ORP2(mHHK), on the subcellular distribution of cholesterol, and analyze the interaction of ORP2 with the related cholesterol transporter ORP1L. ORP2 showed specific affinity for PI(4,5)P2, PI(3,4,5)P3 and PI(4)P, with suggestive Kd values in the μM range. Also binding of cholesterol by ORP2 was detectable, but a Kd could not be determined. Wt ORP2 was in HeLa cells mainly detected in the cytosol, ER, late endosomes, and occasionally on lipid droplets (LDs), while ORP2(mHHK) displayed an enhanced LD localization. Overexpression of wt ORP2 shifted the D4H cholesterol probe away from endosomes, while ORP2(mHHK) caused endosomal accumulation of the probe. Although ORP2 failed to transfer dehydroergosterol in an in vitro assay where OSBP is active, its knock-down resulted in the accumulation of cholesterol in late endocytic compartments, as detected by both D4H and filipin probes. Interestingly, ORP2 was shown to interact and partially co-localize on late endosomes with ORP1L, a cholesterol transporter/sensor at ER-late endosome junctions. Our data demonstrates that ORP2 binds several phosphoinositides, both PI(4)P and multiply phosphorylated species. ORP2 regulates the subcellular distribution of cholesterol dependent on its PIP-binding capacity. The interaction of ORP2 with ORP1L suggests a concerted action of the two ORPs.
Collapse
Affiliation(s)
- Annika Koponen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Amita Arora
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Kohta Takahashi
- Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Annukka M Kivelä
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Eeva Jääskeläinen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Johan Peränen
- Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Pentti Somerharju
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, FI-00014, University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland.
| |
Collapse
|
21
|
Kim KW, Tang NH, Piggott CA, Andrusiak MG, Park S, Zhu M, Kurup N, Cherra SJ, Wu Z, Chisholm AD, Jin Y. Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD + in axon regeneration. eLife 2018; 7:39756. [PMID: 30461420 PMCID: PMC6281318 DOI: 10.7554/elife.39756] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
The mechanisms underlying axon regeneration in mature neurons are relevant to the understanding of normal nervous system maintenance and for developing therapeutic strategies for injury. Here, we report novel pathways in axon regeneration, identified by extending our previous function-based screen using the C. elegans mechanosensory neuron axotomy model. We identify an unexpected role of the nicotinamide adenine dinucleotide (NAD+) synthesizing enzyme, NMAT-2/NMNAT, in axon regeneration. NMAT-2 inhibits axon regrowth via cell-autonomous and non-autonomous mechanisms. NMAT-2 enzymatic activity is required to repress regrowth. Further, we find differential requirements for proteins in membrane contact site, components and regulators of the extracellular matrix, membrane trafficking, microtubule and actin cytoskeleton, the conserved Kelch-domain protein IVNS-1, and the orphan transporter MFSD-6 in axon regrowth. Identification of these new pathways expands our understanding of the molecular basis of axonal injury response and regeneration.
Collapse
Affiliation(s)
- Kyung Won Kim
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Ngang Heok Tang
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Christopher A Piggott
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Matthew G Andrusiak
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Seungmee Park
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Ming Zhu
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Naina Kurup
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Salvatore J Cherra
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Zilu Wu
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Andrew D Chisholm
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla, United States
| |
Collapse
|
22
|
Pietrangelo A, Ridgway ND. Bridging the molecular and biological functions of the oxysterol-binding protein family. Cell Mol Life Sci 2018; 75:3079-3098. [PMID: 29536114 PMCID: PMC11105248 DOI: 10.1007/s00018-018-2795-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/18/2018] [Accepted: 03/07/2018] [Indexed: 12/19/2022]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large eukaryotic gene family that transports and regulates the metabolism of sterols and phospholipids. The original classification of the family based on oxysterol-binding activity belies the complex dual lipid-binding specificity of the conserved OSBP homology domain (OHD). Additional protein- and membrane-interacting modules mediate the targeting of select OSBP/ORPs to membrane contact sites between organelles, thus positioning the OHD between opposing membranes for lipid transfer and metabolic regulation. This unique subcellular location, coupled with diverse ligand preferences and tissue distribution, has identified OSBP/ORPs as key arbiters of membrane composition and function. Here, we will review how molecular models of OSBP/ORP-mediated intracellular lipid transport and regulation at membrane contact sites relate to their emerging roles in cellular and organismal functions.
Collapse
Affiliation(s)
- Antonietta Pietrangelo
- Atlantic Research Center, C306 CRC Bldg, Department of Pediatrics, and Biochemistry and Molecular Biology, Dalhousie University, 5849 University Av., Halifax, NS, B3H4R2, Canada
| | - Neale D Ridgway
- Atlantic Research Center, C306 CRC Bldg, Department of Pediatrics, and Biochemistry and Molecular Biology, Dalhousie University, 5849 University Av., Halifax, NS, B3H4R2, Canada.
| |
Collapse
|
23
|
Mechanisms of cellular cholesterol compartmentalization: recent insights. Curr Opin Cell Biol 2018; 53:77-83. [PMID: 29960186 DOI: 10.1016/j.ceb.2018.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 11/20/2022]
Abstract
This review discusses advances in understanding how the controlled delivery of cholesterol between subcellular compartments is achieved and what novel experimental strategies are being employed to address this fundamental question. Recent work has focused on cholesterol-binding proteins that can facilitate directional cholesterol transfer between contacts of the ER and Golgi or late endosomal membranes. Increasing structural information on cholesterol-binding proteins, new modules engineered from them as well as improved imaging and gene editing techniques are providing valuable insights. There is also mounting information on how the crosstalk between cholesterol transport and nutrient signaling is orchestrated and how cellular fatty acid metabolism and cholesterol homeostasis are intertwined.
Collapse
|
24
|
|
25
|
Stefan CJ, Trimble WS, Grinstein S, Drin G, Reinisch K, De Camilli P, Cohen S, Valm AM, Lippincott-Schwartz J, Levine TP, Iaea DB, Maxfield FR, Futter CE, Eden ER, Judith D, van Vliet AR, Agostinis P, Tooze SA, Sugiura A, McBride HM. Membrane dynamics and organelle biogenesis-lipid pipelines and vesicular carriers. BMC Biol 2017; 15:102. [PMID: 29089042 PMCID: PMC5663033 DOI: 10.1186/s12915-017-0432-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.
Collapse
Affiliation(s)
- Christopher J. Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - William S. Trimble
- Cell Biology Program, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Sergio Grinstein
- Cell Biology Program, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Guillaume Drin
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Karin Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Pietro De Camilli
- Department of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience and Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510 USA
| | | | | | | | - Tim P. Levine
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - David B. Iaea
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Frederick R. Maxfield
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065 USA
| | - Clare E. Futter
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Emily R. Eden
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Delphine Judith
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Alexander R. van Vliet
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Ayumu Sugiura
- Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Heidi M. McBride
- Montreal Neurological Institute, McGill University, 3801 University Avenue, Montreal, Quebec H3A 2B4 Canada
| |
Collapse
|
26
|
Xiao T, Zhang W, Jiao B, Pan CZ, Liu X, Shen L. The role of exosomes in the pathogenesis of Alzheimer' disease. Transl Neurodegener 2017; 6:3. [PMID: 28184302 PMCID: PMC5289036 DOI: 10.1186/s40035-017-0072-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Exosomes are small vesicles secreted by most cell types including neurons that function in intercellular communication through transfer of their cargo or encapsulate and eliminate unnecessary cellular components and therefore have a broad impact on nerve development, activation and regeneration. In addition, exosomes have been observed to be involved in spreading pathological misfolded proteins, thereby leading to the onset and propagation of disease. Alzheimer disease (AD) is the most common form of dementia and characterized by two types of lesions: amyloid plaques and neurofibrillary tangles. Accumulating evidence has demonstrated that exosomes are associated with amyloid precursor (APP) and Tau proteins and play a controversial role in Alzheimer’s disease process. In this review, we will discuss the role of exosomes in the metabolism and secretion of APP and Tau proteins and their subsequent impact on AD pathogenesis.
Collapse
Affiliation(s)
- Tingting Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chu-Zheng Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,State Key Laboratory of Medical Genetics, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
27
|
ER-endosome contact sites in endosome positioning and protrusion outgrowth. Biochem Soc Trans 2016; 44:441-6. [PMID: 27068952 DOI: 10.1042/bst20150246] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 01/09/2023]
Abstract
The endoplasmic reticulum (ER) makes abundant contacts with endosomes, and the numbers of contact sites increase as endosomes mature. It is already clear that such contact sites have diverse compositions and functions, but in this mini-review we will focus on two particular types of ER-endosome contact sites that regulate endosome positioning. Formation of ER-endosome contact sites that contain the cholesterol-binding protein oxysterol-binding protein-related protein 1L (ORP1L) is coordinated with loss of the minus-end-directed microtubule motor Dynein from endosomes. Conversely, formation of ER-endosome contact sites that contain the Kinesin-1-binding protein Protrudin results in transfer of the plus-end-directed microtubule motor Kinesin-1 from ER to endosomes. We discuss the possibility that formation of these two types of contact sites is coordinated as a 'gear-shift' mechanism for endosome motility, and we review evidence that Kinesin-1-mediated motility of late endosomes (LEs) to the cell periphery promotes outgrowth of neurites and other protrusions.
Collapse
|
28
|
Regulation of calcium and phosphoinositides at endoplasmic reticulum-membrane junctions. Biochem Soc Trans 2016; 44:467-73. [PMID: 27068956 DOI: 10.1042/bst20150262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 11/17/2022]
Abstract
Effective cellular function requires both compartmentalization of tasks in space and time, and coordination of those efforts. The endoplasmic reticulum's (ER) expansive and ramifying structure makes it ideally suited to serve as a regulatory platform for organelle-organelle communication through membrane contacts. These contact sites consist of two membranes juxtaposed at a distance less than 30 nm that mediate the exchange of lipids and ions without the need for membrane fission or fusion, a process distinct from classical vesicular transport. Membrane contact sites are positioned by organelle-specific membrane-membrane tethering proteins and contain a growing number of additional proteins that organize information transfer to shape membrane identity. Here we briefly review the role of ER-containing membrane junctions in two important cellular functions: calcium signalling and phosphoinositide processing.
Collapse
|
29
|
Abstract
Almost all cellular life forms are hosts to diverse genetic parasites with various levels of autonomy including plasmids, transposons and viruses. Theoretical modeling of the evolution of primordial replicators indicates that parasites (cheaters) necessarily evolve in such systems and can be kept at bay primarily via compartmentalization. Given the (near) ubiquity, abundance and diversity of genetic parasites, the question becomes pertinent: are such parasites intrinsic to life? At least in prokaryotes, the persistence of parasites is linked to the rate of horizontal gene transfer (HGT). We mathematically derive the threshold value of the minimal transfer rate required for selfish element persistence, depending on the element duplication and loss rates as well as the cost to the host. Estimation of the characteristic gene duplication, loss and transfer rates for transposons, plasmids and virus-related elements in multiple groups of diverse bacteria and archaea indicates that most of these rates are compatible with the long term persistence of parasites. Notably, a small but non-zero rate of HGT is also required for the persistence of non-parasitic genes. We hypothesize that cells cannot tune their horizontal transfer rates to be below the threshold required for parasite persistence without experiencing highly detrimental side-effects. As a lower boundary to the minimum DNA transfer rate that a cell can withstand, we consider the process of genome degradation and mutational meltdown of populations through Muller's ratchet. A numerical assessment of this hypothesis suggests that microbial populations cannot purge parasites while escaping Muller's ratchet. Thus, genetic parasites appear to be virtually inevitable in cellular organisms.
Collapse
Affiliation(s)
- Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda
| | - Pere Puigbò
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda Present address: Department of Biology, University of Turku, Finland
| | - Alexander E Lobkovsky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda
| |
Collapse
|
30
|
Justis AV, Hansen B, Beare PA, King KB, Heinzen RA, Gilk SD. Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L. Cell Microbiol 2016; 19. [PMID: 27345457 DOI: 10.1111/cmi.12637] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/06/2016] [Accepted: 06/17/2016] [Indexed: 01/07/2023]
Abstract
Coxiella burnetii is a gram-negative intracellular bacterium that forms a large, lysosome-like parasitophorous vacuole (PV) essential for bacterial replication. Host membrane lipids are critical for the formation and maintenance of this intracellular niche, yet the mechanisms by which Coxiella manipulates host cell lipid metabolism, trafficking and signalling are unknown. Oxysterol-binding protein-related protein 1 long (ORP1L) is a mammalian lipid-binding protein that plays a dual role in cholesterol-dependent endocytic trafficking as well as interactions between endosomes and the endoplasmic reticulum (ER). We found that ORP1L localized to the Coxiella PV within 12 h of infection through a process requiring the Coxiella Dot/Icm Type 4B secretion system, which secretes effector proteins into the host cell cytoplasm where they manipulate trafficking and signalling pathways. The ORP1L N-terminal ankyrin repeats were necessary and sufficient for PV localization, indicating that ORP1L binds a PV membrane protein. Strikingly, ORP1L simultaneously co-localized with the PV and ER, and electron microscopy revealed membrane contact sites between the PV and ER membranes. In ORP1L-depleted cells, PVs were significantly smaller than PVs from control cells. These data suggest that ORP1L is specifically recruited by the bacteria to the Coxiella PV, where it influences PV membrane dynamics and interactions with the ER.
Collapse
Affiliation(s)
- Anna V Justis
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bryan Hansen
- Research Technology Branch, National Institutes of Health, Hamilton, MT, USA
| | - Paul A Beare
- Laboratory of Bacteriology, Rocky Mountain Labs, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kourtney B King
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert A Heinzen
- Laboratory of Bacteriology, Rocky Mountain Labs, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
31
|
Kentala H, Weber-Boyvat M, Olkkonen VM. OSBP-Related Protein Family: Mediators of Lipid Transport and Signaling at Membrane Contact Sites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:299-340. [PMID: 26811291 DOI: 10.1016/bs.ircmb.2015.09.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxysterol-binding protein (OSBP) and its related protein homologs, ORPs, constitute a conserved family of lipid-binding/transfer proteins (LTPs) expressed ubiquitously in eukaryotes. The ligand-binding domain of ORPs accommodates cholesterol and oxysterols, but also glycerophospholipids, particularly phosphatidylinositol-4-phosphate (PI4P). ORPs have been implicated as intracellular lipid sensors or transporters. Most ORPs carry targeting determinants for the endoplasmic reticulum (ER) and non-ER organelle membrane. ORPs are located and function at membrane contact sites (MCSs), at which ER is closely apposed with other organelle limiting membranes. Such sites have roles in lipid transport and metabolism, control of Ca(2+) fluxes, and signaling events. ORPs are postulated either to transport lipids over MCSs to maintain the distinct lipid compositions of organelle membranes, or to control the activity of enzymes/protein complexes with functions in signaling and lipid metabolism. ORPs may transfer PI4P and another lipid class bidirectionally. Transport of PI4P followed by its hydrolysis would in this model provide the energy for transfer of the other lipid against its concentration gradient. Control of organelle lipid compositions by OSBP/ORPs is important for the life cycles of several pathogenic viruses. Targeting ORPs with small-molecular antagonists is proposed as a new strategy to combat viral infections. Several ORPs are reported to modulate vesicle transport along the secretory or endocytic pathways. Moreover, antagonists of certain ORPs inhibit cancer cell proliferation. Thus, ORPs are LTPs, which mediate interorganelle lipid transport and coordinate lipid signals with a variety of cellular regimes.
Collapse
Affiliation(s)
- Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Marion Weber-Boyvat
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| |
Collapse
|
32
|
Olkkonen VM. OSBP-Related Protein Family in Lipid Transport Over Membrane Contact Sites. Lipid Insights 2015; 8:1-9. [PMID: 26715851 PMCID: PMC4685180 DOI: 10.4137/lpi.s31726] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that oxysterol-binding protein-related proteins (ORPs) localize at membrane contact sites, which are high-capacity platforms for inter-organelle exchange of small molecules and information. ORPs can simultaneously associate with the two apposed membranes and transfer lipids across the interbilayer gap. Oxysterol-binding protein moves cholesterol from the endoplasmic reticulum to trans-Golgi, driven by the retrograde transport of phosphatidylinositol-4-phosphate (PI4P). Analogously, yeast Osh6p mediates the transport of phosphatidylserine from the endoplasmic reticulum to the plasma membrane in exchange for PI4P, and ORP5 and -8 are suggested to execute similar functions in mammalian cells. ORPs may share the capacity to bind PI4P within their ligand-binding domain, prompting the hypothesis that bidirectional transport of a phosphoinositide and another lipid may be a common theme among the protein family. This model, however, needs more experimental support and does not exclude a function of ORPs in lipid signaling.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland. ; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
33
|
Bao X, Zheng W, Hata Sugi N, Agarwala KL, Xu Q, Wang Z, Tendyke K, Lee W, Parent L, Li W, Cheng H, Shen Y, Taylor N, Dezso Z, Du H, Kotake Y, Zhao N, Wang J, Postema M, Woodall-Jappe M, Takase Y, Uenaka T, Kingston DGI, Nomoto K. Small molecule schweinfurthins selectively inhibit cancer cell proliferation and mTOR/AKT signaling by interfering with trans-Golgi-network trafficking. Cancer Biol Ther 2015; 16:589-601. [PMID: 25729885 DOI: 10.1080/15384047.2015.1019184] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Natural compound schweinfurthins are of considerable interest for novel therapy development because of their selective anti-proliferative activity against human cancer cells. We previously reported the isolation of highly active schweinfurthins E-H, and in the present study, mechanisms of the potent and selective anti-proliferation were investigated. We found that schweinfurthins preferentially inhibited the proliferation of PTEN deficient cancer cells by indirect inhibition of AKT phosphorylation. Mechanistically, schweinfurthins and their analogs arrested trans-Golgi-network trafficking, an intracellular vesicular trafficking system, resulting in the induction of endoplasmic reticulum stress and the suppression of both lipid raft-mediated PI3K activation and mTOR/RheB complex formation, which collectively led to an effective inhibition of mTOR/AKT signaling. The trans-Golgi-network traffic arresting effect of schweinfurthins was associated with their in vitro binding activity to oxysterol-binding proteins that are known to regulate intracellular vesicular trafficking. Moreover, schweinfurthins were found to be highly toxic toward PTEN-deficient B cell lymphoma cells, and displayed 2 orders of magnitude lower activity toward normal human peripheral blood mononuclear cells and primary fibroblasts in vitro. These results revealed a previously unrecognized role of schweinfurthins in regulating trans-Golgi-network trafficking, and linked mechanistically this cellular effect with mTOR/AKT signaling and with cancer cell survival and growth. Our findings suggest the schweinfurthin class of compounds as a novel approach to modulate oncogenic mTOR/AKT signaling for cancer treatment.
Collapse
|
34
|
Abstract
The counterbalancing action of the endocytosis and secretory pathways maintains a dynamic equilibrium that regulates the composition of the plasma membrane, allowing it to maintain homeostasis and to change rapidly in response to alterations in the extracellular environment and/or intracellular metabolism. These pathways are intimately integrated with intercellular signaling systems and play critical roles in all cells. Studies in Caenorhabditis elegans have revealed diverse roles of membrane trafficking in physiology and development and have also provided molecular insight into the fundamental mechanisms that direct cargo sorting, vesicle budding, and membrane fisson and fusion. In this review, we summarize progress in understanding membrane trafficking mechanisms derived from work in C. elegans, focusing mainly on work done in non-neuronal cell-types, especially the germline, early embryo, coelomocytes, and intestine.
Collapse
Affiliation(s)
- Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan. ;
| | | | | | | |
Collapse
|
35
|
van der Kant R, Neefjes J. Small regulators, major consequences - Ca²⁺ and cholesterol at the endosome-ER interface. J Cell Sci 2014; 127:929-38. [PMID: 24554437 DOI: 10.1242/jcs.137539] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The ER is the largest cellular compartment and a major storage site for lipids and ions. In recent years, much attention has focused on contacts between the ER and other organelles, and one particularly intimate relationship is that between the ER and the endosomal system. ER-endosome contacts intensify when endosomes mature, and the ER participates in endosomal processes, such as the termination of surface receptor signaling, multi-vesicular body formation, and transport and fusion events. Cholesterol and Ca(2+) are transferred between the ER and endosomes, possibly acting as messengers for ER-endosome crosstalk. Here, we summarize different types of ER-endosomal communication and discuss membrane contact sites that might facilitate this crosstalk. We review the protein pairs that interact at the ER-endosome interface and find that many of these have a role in cholesterol exchange. We also summarize Ca(2+) exchange between the ER and endosomes, and hypothesize that ER-endosome contacts integrate several cellular functions to guide endosomal maturation. We post the hypothesis that failure in ER-endosome contacts is an unrecognized but important contributor to diseases, such as Niemann-Pick type C disease, Alzheimer's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Rik van der Kant
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
36
|
Udagawa O, Ito C, Ogonuki N, Sato H, Lee S, Tripvanuntakul P, Ichi I, Uchida Y, Nishimura T, Murakami M, Ogura A, Inoue T, Toshimori K, Arai H. Oligo-astheno-teratozoospermia in mice lacking ORP4, a sterol-binding protein in the OSBP-related protein family. Genes Cells 2013; 19:13-27. [PMID: 24245814 DOI: 10.1111/gtc.12105] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/19/2013] [Indexed: 12/20/2022]
Abstract
Oligo-astheno-teratozoospermia (OAT), a condition that includes low sperm number, low sperm motility and abnormal sperm morphology, is the commonest cause of male infertility. Because genetic analysis is frequently impeded by the infertility phenotype, the genetic basis of many of OAT conditions has been hard to verify. Here, we show that deficiency of ORP4, a sterol-binding protein in the oxysterol-binding protein (OSBP)-related protein family, causes male infertility due to severe OAT in mice. In ORP4-deficient mice, spermatogonia proliferation and subsequent meiosis occurred normally, but the morphology of elongating and elongated spermatids was severely distorted, with round-shaped head, curled back head or symplast. Spermatozoa derived from ORP4-deficient mice had little or no motility and no fertilizing ability in vitro. In ORP4-deficient testis, postmeiotic spermatids underwent extensive apoptosis, leading to a severely reduced number of spermatozoa. At the ultrastructural level, nascent acrosomes appeared to normally develop in round spermatids, but acrosomes were detached from the nucleus in elongating spermatids. These results suggest that ORP4 is essential for the postmeiotic differentiation of germ cells.
Collapse
Affiliation(s)
- Osamu Udagawa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tan J, Brill JA. Cinderella story: PI4P goes from precursor to key signaling molecule. Crit Rev Biochem Mol Biol 2013; 49:33-58. [PMID: 24219382 DOI: 10.3109/10409238.2013.853024] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Phosphatidylinositol lipids are signaling molecules involved in nearly all aspects of cellular regulation. Production of phosphatidylinositol 4-phosphate (PI4P) has long been recognized as one of the first steps in generating poly-phosphatidylinositol phosphates involved in actin organization, cell migration, and signal transduction. In addition, progress over the last decade has brought to light independent roles for PI4P in membrane trafficking and lipid homeostasis. Here, we describe recent advances that reveal the breadth of processes regulated by PI4P, the spectrum of PI4P effectors, and the mechanisms of spatiotemporal control that coordinate crosstalk between PI4P and cellular signaling pathways.
Collapse
Affiliation(s)
- Julie Tan
- Department of Molecular Genetics, University of Toronto , Toronto, Ontario , Canada and
| | | |
Collapse
|
38
|
Olkkonen VM, Li S. Oxysterol-binding proteins: Sterol and phosphoinositide sensors coordinating transport, signaling and metabolism. Prog Lipid Res 2013; 52:529-38. [DOI: 10.1016/j.plipres.2013.06.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/15/2013] [Accepted: 06/22/2013] [Indexed: 01/27/2023]
|
39
|
Nishimura T, Uchida Y, Yachi R, Kudlyk T, Lupashin V, Inoue T, Taguchi T, Arai H. Oxysterol-binding protein (OSBP) is required for the perinuclear localization of intra-Golgi v-SNAREs. Mol Biol Cell 2013; 24:3534-44. [PMID: 24048449 PMCID: PMC3826991 DOI: 10.1091/mbc.e13-05-0250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
OSBP regulates the Golgi cholesterol level. This study demonstrates that OSBP and cholesterol are essential for localization of Golgi v-SNAREs. Knockdown of ArfGAP1 restores v-SNARE localization in OSBP-depleted cells, suggesting that OSBP-regulated cholesterol ensures proper COP-I vesicle transport. Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) have been implicated in the distribution of sterols among intracellular organelles. OSBP regulates the Golgi cholesterol level, but how it relates to Golgi function is elusive. Here we report that OSBP is essential for the localization of intra-Golgi soluble vesicle N-ethylmaleimide-sensitive fusion attachment protein receptors (v-SNAREs). Depletion of OSBP by small interfering RNA causes mislocalization of intra-Golgi v-SNAREs GS28 and GS15 throughout the cytoplasm without affecting the perinuclear localization of Golgi target-SNARE syntaxin5 and reduces the abundance of a Golgi enzyme, mannosidase II (Man II). GS28 mislocalization and Man II reduction are also induced by cellular cholesterol depletion. Three domains of OSBP—an endoplasmic reticulum–targeting domain, a Golgi-targeting domain, and a sterol-binding domain—are all required for Golgi localization of GS28. Finally, GS28 mislocalization and Man II reduction in OSBP-depleted cells are largely restored by depletion of ArfGAP1, a regulator of the budding of coat protein complex (COP)-I vesicles. From these results, we postulate that Golgi cholesterol level, which is controlled by OSBP, is essential for Golgi localization of intra-Golgi v-SNAREs by ensuring proper COP-I vesicle transport.
Collapse
Affiliation(s)
- Taki Nishimura
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan Pathological Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Koag MC, Cheun Y, Kou Y, Ouzon-Shubeita H, Min K, Monzingo AF, Lee S. Synthesis and structure of 16,22-diketocholesterol bound to oxysterol-binding protein Osh4. Steroids 2013; 78:938-44. [PMID: 23756172 DOI: 10.1016/j.steroids.2013.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 11/21/2022]
Abstract
We have synthesized 16,22-diketocholesterol, a novel ligand for oxysterol-binding protein Osh4, and determined X-ray structure of the diketocholesterol in complex with Osh4. The X-ray structure shows that α7 helix of Osh4 assumes open conformation while the rest of Osh4, closed conformation, implying this diketocholesterol-bound Osh4 structure may represent a structural intermediate between the two conformations.
Collapse
Affiliation(s)
- Myong Chul Koag
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Pietiäinen V, Vassilev B, Blom T, Wang W, Nelson J, Bittman R, Bäck N, Zelcer N, Ikonen E. NDRG1 functions in LDL receptor trafficking by regulating endosomal recycling and degradation. J Cell Sci 2013; 126:3961-71. [PMID: 23813961 DOI: 10.1242/jcs.128132] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
N-myc downstream-regulated gene 1 (NDRG1) mutations cause Charcot-Marie-Tooth disease type 4D (CMT4D). However, the cellular function of NDRG1 and how it causes CMT4D are poorly understood. We report that NDRG1 silencing in epithelial cells results in decreased uptake of low-density lipoprotein (LDL) due to reduced LDL receptor (LDLR) abundance at the plasma membrane. This is accompanied by the accumulation of LDLR in enlarged EEA1-positive endosomes that contain numerous intraluminal vesicles and sequester ceramide. Concomitantly, LDLR ubiquitylation is increased but its degradation is reduced and ESCRT (endosomal sorting complex required for transport) proteins are downregulated. Co-depletion of IDOL (inducible degrader of the LDLR), which ubiquitylates the LDLR and promotes its degradation, rescues plasma membrane LDLR levels and LDL uptake. In murine oligodendrocytes, Ndrg1 silencing not only results in reduced LDL uptake but also in downregulation of the oligodendrocyte differentiation factor Olig2. Both phenotypes are rescued by co-silencing of Idol, suggesting that ligand uptake through LDLR family members controls oligodendrocyte differentiation. These findings identify NDRG1 as a novel regulator of multivesicular body formation and endosomal LDLR trafficking. The deficiency of functional NDRG1 in CMT4D might impair lipid processing and differentiation of myelinating cells.
Collapse
Affiliation(s)
- Vilja Pietiäinen
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
van der Kant R, Zondervan I, Janssen L, Neefjes J. Cholesterol-binding molecules MLN64 and ORP1L mark distinct late endosomes with transporters ABCA3 and NPC1. J Lipid Res 2013; 54:2153-2165. [PMID: 23709693 DOI: 10.1194/jlr.m037325] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cholesterol is an essential lipid in eukaryotic cells and is present in membranes of all intracellular compartments. A major source for cellular cholesterol is internalized lipoprotein particles that are transported toward acidic late endosomes (LE) and lysosomes. Here the lipoprotein particles are hydrolyzed, and free cholesterol is redistributed to other organelles. The LE can contain over half of the cellular cholesterol and, as a major sorting station, can contain many cholesterol-binding proteins from the ABCA, STARD, and ORP families. Here, we show that metastatic lymph node 64 (MLN64, STARD3) and oxysterol-binding protein-related protein 1L (ORP1L) define two subpopulations of LE. MLN64 is present on a LE containing the cholesterol transporter ABCA3, whereas ORP1L localizes to another population of LE containing Niemann Pick type C1 (NPC1), a cholesterol exporter. Endocytosed cargo passes through MLN64/ABCA3-positive compartments before it reaches ORP1L/NPC1-positive LE. The MLN64/ABCA3 compartments cycle between LE and plasma membrane and frequently contact "later" ORP1L/NPC1-containing LE. We propose two stages of cholesterol handling in late endosomal compartments: first, cholesterol enters MLN64/ABCA3-positive compartments from where it can be recycled to the plasma membrane, and later, cholesterol enters ORP1L/NPC1 endosomes that mediate cholesterol export to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Rik van der Kant
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ilse Zondervan
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Lennert Janssen
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jacques Neefjes
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands.
| |
Collapse
|
43
|
Weber-Boyvat M, Zhong W, Yan D, Olkkonen VM. Oxysterol-binding proteins: functions in cell regulation beyond lipid metabolism. Biochem Pharmacol 2013; 86:89-95. [PMID: 23428468 DOI: 10.1016/j.bcp.2013.02.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 12/12/2022]
Abstract
Oxysterol-binding (OSBP)-related proteins (ORPs) constitute a family of sterol and phosphoinositide binding/transfer proteins in eukaryotes from yeast to man. While their functions have mainly been addressed in cellular lipid metabolism or sterol transport, increasing evidence points to more versatile regulatory roles in a spectrum of cellular regimes. In fact ORPs do not appear to be robust controllers of lipid homeostasis. Several ORPs localize at membrane contacts sites (MCS), where endoplasmic reticulum (ER) is apposed with other organelle limiting membranes. Apparently, ORPs have the capacity to control the formation of MCS or activity of enzymatic machineries at these sites. Thereby, ORPs most likely affect organelle membrane lipid compositions, with impacts on signaling and vesicle transport, but also cellular lipid metabolism. Moreover, an increasing number of protein interaction partners of ORPs have been identified, connecting these proteins with various aspects of cell regulation. Small molecular anti-proliferative compounds, ORPphilins, were recently found to target two members of the ORP family, OSBP and ORP4, revealing an essential function of ORPs in cancer cell proliferation and survival. Further functions assigned for ORPs include regulation of extracellular signal regulated kinase (ERK) activity (OSBP), control of ER-late endosome MCS and late endosome motility (ORP1L), regulation of β1-integrin activity (ORP3), modulation of hepatocyte insulin signaling and macrophage migration (ORP8), as well as post-Golgi vesicle transport, phosphatidylinositol-4-phosphate and target of rapamycin complex 1 signaling and nitrogen sensing (Saccharomyces cerevisiae Osh4p). These and other recent observations shed light on the ORPs as integrators of lipid signals with an unforeseen variety of vital cellular processes.
Collapse
Affiliation(s)
- Marion Weber-Boyvat
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland
| | | | | | | |
Collapse
|
44
|
Abstract
A powerful approach to gain understanding of molecular machinery responsible for membrane trafficking is through inactivation of gene function by RNA interference (RNAi). RNAi-mediated gene silencing occurs when a double-stranded RNA is introduced into cells and targets a complementary mRNA for degradation. The subsequent lack of mRNA prevents the synthesis of the corresponding protein and ultimately causes depletion of a particular gene product from the cell. The effects of such depletion can then by analyzed by functional, morphological, and biochemical assays. RNAi-mediated knockdowns of numerous gene products in cultured cells of mammalian and other species origins have provided significant new insight into traffic regulation and represent standard approaches in current cell biology. However, RNAi in the multicellular nematode Caenorhabditis elegans model allows RNAi studies within the context of a whole organism, and thus provides an unprecedented opportunity to explore effects of specific trafficking regulators within the context of distinct developmental stages and diverse cell types. In addition, various transgenic C. elegans strains have been developed that express marker proteins tagged with fluorescent proteins to facilitate the analysis of trafficking within the secretory and endocytic pathways. This chapter provides a detailed description of a basic RNAi approach that can be used to analyze the function of any gene of interest in secretory and endosomal trafficking in C. elegans.
Collapse
|
45
|
Du X, Kazim AS, Dawes IW, Brown AJ, Yang H. The AAA ATPase VPS4/SKD1 Regulates Endosomal Cholesterol Trafficking Independently of ESCRT-III. Traffic 2012; 14:107-19. [DOI: 10.1111/tra.12015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 09/21/2012] [Accepted: 09/25/2012] [Indexed: 01/31/2023]
Affiliation(s)
- Ximing Du
- School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney NSW 2052 Australia
| | - Abdulla S. Kazim
- School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney NSW 2052 Australia
| | - Ian W. Dawes
- School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney NSW 2052 Australia
| | - Andrew J. Brown
- School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney NSW 2052 Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney NSW 2052 Australia
| |
Collapse
|
46
|
Gorin A, Gabitova L, Astsaturov I. Regulation of cholesterol biosynthesis and cancer signaling. Curr Opin Pharmacol 2012; 12:710-6. [PMID: 22824431 DOI: 10.1016/j.coph.2012.06.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/24/2012] [Accepted: 06/29/2012] [Indexed: 12/18/2022]
Abstract
Cellular growth is highly dependent on sustained production of lipids. Sterol composition of cellular membranes determines multiple biochemical and biophysical properties of membrane-based processes including vesicle traffic, receptor signaling, and assembly of protein complexes. Lipid biogenesis has become an attractive biochemical target in cancer given the high level of dependency on sterols and lipids in a cancer cell. This review summarized the current knowledge of mechanisms of interaction between the metabolism of sterols and receptor signaling.
Collapse
Affiliation(s)
- Andrey Gorin
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
47
|
Vingtdeux V, Sergeant N, Buée L. Potential contribution of exosomes to the prion-like propagation of lesions in Alzheimer's disease. Front Physiol 2012; 3:229. [PMID: 22783199 PMCID: PMC3389776 DOI: 10.3389/fphys.2012.00229] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/06/2012] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of prion diseases, the concept has emerged that a protein could be a transmissible pathogen. As such, this transmissible pathogen agent can transfer its pathological mis-folded shape to the same but normally folded protein thus leading to the propagation of a disease. This idea is now extrapolated to several neurological diseases associated with protein mis-folding and aggregation, such as Alzheimer’s disease (AD). AD is a slowly developing dementing disease characterized by the coexistence of two types of lesions: the parenchymal amyloid deposits and the intraneuronal neurofibrillary tangles (NFT). Amyloid deposits are composed of amyloid-beta peptides that derive from sequential cleavages of its precursor named amyloid protein precursor. NFT are characterized by intraneuronal aggregation of abnormally modified microtubule-associated Tau proteins. A synergistic relationship between the two lesions may trigger the progression of the disease. Thus, starting in the medial temporal lobe and slowly progressing through temporal, frontal, parietal, and occipital cortex, the spreading of NFT is well correlated with clinical expression of the disease and likely follows cortico-cortical neuronal circuitry. However, little is known about the mechanism driving the spatiotemporal propagation of these lesions ultimately leading to the disease. A growing number of studies suggest that amyloid deposits and NFT are resulting from a prion-like spreading. In the present chapter, we will develop the current hypotheses regarding the molecular and cellular mechanisms driving the development and spreading of AD lesions from the window of multivesicular endosomes/bodies and exosomes.
Collapse
Affiliation(s)
- Valérie Vingtdeux
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Manhasset, NY, USA
| | | | | |
Collapse
|
48
|
Skorobogata O, Rocheleau CE. RAB-7 antagonizes LET-23 EGFR signaling during vulva development in Caenorhabditis elegans. PLoS One 2012; 7:e36489. [PMID: 22558469 PMCID: PMC3340361 DOI: 10.1371/journal.pone.0036489] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 04/07/2012] [Indexed: 12/20/2022] Open
Abstract
The Rab7 GTPase regulates late endosome trafficking of the Epidermal Growth Factor Receptor (EGFR) to the lysosome for degradation. However, less is known about how Rab7 activity, functioning late in the endocytic pathway, affects EGFR signaling. Here we used Caenorhabditis elegans vulva cell fate induction, a paradigm for genetic analysis of EGFR/Receptor Tyrosine Kinase (RTK) signaling, to assess the genetic requirements for rab-7. Using a rab-7 deletion mutant, we demonstrate that rab-7 antagonizes LET-23 EGFR signaling to a similar extent, but in a distinct manner, as previously described negative regulators such as sli-1 c-Cbl. Epistasis analysis places rab-7 upstream of or in parallel to lin-3 EGF and let-23 EGFR. However, expression of gfp::rab-7 in the Vulva Presursor Cells (VPCs) is sufficient to rescue the rab-7(-) VPC induction phenotypes indicating that RAB-7 functions in the signal receiving cell. We show that components of the Endosomal Sorting Complex Required for Transport (ESCRT)-0, and -I, complexes, hgrs-1 Hrs, and vps-28, also antagonize signaling, suggesting that LET-23 EGFR likely transits through Multivesicular Bodies (MVBs) en route to the lysosome. Consistent with RAB-7 regulating LET-23 EGFR trafficking, rab-7 mutants have increased number of LET-23::GFP-positive endosomes. Our data imply that Rab7, by mediating EGFR trafficking and degradation, plays an important role in downregulation of EGFR signaling. Failure to downregulate EGFR signaling contributes to oncogenesis, and thus Rab7 could possess tumor suppressor activity in humans.
Collapse
Affiliation(s)
- Olga Skorobogata
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Christian E. Rocheleau
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| |
Collapse
|
49
|
Olkkonen VM, Zhou Y, Yan D, Vihervaara T. Oxysterol-binding proteins-emerging roles in cell regulation. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201200044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
50
|
Membrane phospholipid asymmetry counters the adverse effects of sterol overloading in the Golgi membrane of Drosophila. Genetics 2012; 190:1299-308. [PMID: 22234859 DOI: 10.1534/genetics.111.137687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cholesterol and phospholipids serve as structural and functional components of cellular membranes in all eukaryotes. Heterogeneity in cholesterol and phospholipid content both within and between different organelles is an important characteristic of eukaryotic membranes. How this heterogeneity is achieved and orchestrated to maintain proper cellular physiology remains poorly understood. We previously found that overexpression of the Drosophila oxysterol-binding protein (OSBP) leads to sterol accumulation in the Golgi apparatus. Here, we show that Osbp overexpression in a set of neuroendocrine neurons compromises the function of the Golgi apparatus. It impairs trafficking of the neuropeptide bursicon and results in post-eclosion behavior defects characterized by unexpanded wings. We performed a genetic screen to identify modifiers that suppress the unexpanded wing phenotype. A putative phospholipid flippase-encoding gene, CG33298, was validated, suggesting that a membrane-asymmetry-directed mechanism balances cholesterol chaos within the Golgi membranes. Since the functional connection between cholesterol metabolism and the activity of phospholipid flippase has been implicated in studies in yeast and worms, our findings here support an evolutionarily conserved causal link between cholesterol homeostasis and phospholipid asymmetry that maintains normal cellular physiology.
Collapse
|