1
|
Jiang YY, Kumar S, Turkewitz AP. The secretory pathway in Tetrahymena is organized for efficient constitutive secretion at ciliary pockets. iScience 2024; 27:111123. [PMID: 39498308 PMCID: PMC11532953 DOI: 10.1016/j.isci.2024.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/19/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024] Open
Abstract
In ciliates, membrane cisternae called alveoli interpose between the plasma membrane and the cytoplasm, posing a barrier to endocytic and exocytic membrane trafficking. One exception to this barrier is plasma membrane invaginations called parasomal sacs, which are adjacent to ciliary basal bodies. By following a fluorescent secretory marker called ESCargo, we imaged secretory compartments and secretion in these cells. A cortical endoplasmic reticulum is organized along cytoskeletal ridges and cradles a cohort of mitochondria. One cohort of Golgi are highly mobile in a subcortical layer, while the remainder appear stably positioned at periodic sites close to basal bodies, except near the cell tip where, interestingly, Golgi are more closely spaced. Strikingly, ESCargo secretion was readily visible at positions aligned with basal bodies and parasomal sacs. Thus peri-ciliary zones in ciliates are organized, like ciliary pockets in the highly unrelated trypanosomids, as unique hubs of exo-endocytic trafficking.
Collapse
Affiliation(s)
- Yu-Yang Jiang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- AbCellera Boston, Inc. 91 Mystic St, Arlington, MA 02474, USA
| | - Santosh Kumar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind Road, Pune, Maharashtra State 411007, India
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
More KJ, Kaur H, Simpson AGB, Spiegel FW, Dacks JB. Contractile vacuoles: a rapidly expanding (and occasionally diminishing?) understanding. Eur J Protistol 2024; 94:126078. [PMID: 38688044 DOI: 10.1016/j.ejop.2024.126078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Osmoregulation is the homeostatic mechanism essential for the survival of organisms in hypoosmotic and hyperosmotic conditions. In freshwater or soil dwelling protists this is frequently achieved through the action of an osmoregulatory organelle, the contractile vacuole. This endomembrane organelle responds to the osmotic challenges and compensates by collecting and expelling the excess water to maintain the cellular osmolarity. As compared with other endomembrane organelles, this organelle is underappreciated and under-studied. Here we review the reported presence or absence of contractile vacuoles across eukaryotic diversity, as well as the observed variability in the structure, function, and molecular machinery of this organelle. Our findings highlight the challenges and opportunities for constructing cellular and evolutionary models for this intriguing organelle.
Collapse
Affiliation(s)
- Kiran J More
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Harpreet Kaur
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Frederick W Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Centre for Life's Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, United Kingdom.
| |
Collapse
|
3
|
Yang H, Wang Z, Xiao J, Hu J, Tu X, Gu Z. Integrated morphological and transcriptome profiles reveal a highly-developed extrusome system associated to virulence in the notorious fish parasite, Ichthyophthirius multifiliis. Virulence 2023; 14:2242622. [PMID: 37551042 PMCID: PMC10411306 DOI: 10.1080/21505594.2023.2242622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Ichthyophthirius multifiliis is an obligate parasitic ciliate that causes severe economic damage in aquaculture. The parasite contains numerous extrusive organelles (extrusomes) that assist in its pathogenesis and reproduction. However, the structure of these extrusomes and the molecular profiles involved in exocytosis remain unclear. In the present study, through comparative ultrastructural observations across the life cycle of I. multifiliis, we demonstrated that all three of its life stages (theront, trophont, and tomont) exhibited an abundance of extrusomes. In addition, two different types of extrusomes were identified according to their unique structures. Type I extrusomes (mucocysts) are crystalline, oval-shaped, 0.7-1.4 × 0.6-1.1 μm, and distributed as "rosettes" below the trophont membrane. Type II extrusomes, 2.0-3.0 × 0.2-0.3 μm, are rod-shaped with tubular cores and identified as toxicysts, the aggregation of which in the anterior part of the theront and cortex of the trophont revealed their potential roles in I. multifiliis invasion. This was confirmed by our transcriptome investigations of the three stages of I. multifiliis, which revealed that a set of genes involved in proteolysis and DNA/protein biogenesis was highly expressed in the theront and trophont. Furthermore, to map the molecular mechanisms of extrusome release, we characterized 25 Rab family genes in I. multifiliis and determined their expression profiles across the life cycle, reflecting the distribution patterns of the two extrusomes. Collectively, our data revealed that a highly developed extrusome system could play a potential role in the virulence of I. multifiliis, which facilitates a better understanding of the parasite's development.
Collapse
Affiliation(s)
- Hao Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
- National Aquatic Animal Diseases Para-Reference Laboratory (HZAU), Wuhan, China
| | - Zhe Wang
- Marine College, Shandong University, Weihai, China
| | - Jieyin Xiao
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
- National Aquatic Animal Diseases Para-Reference Laboratory (HZAU), Wuhan, China
| | - Jingbo Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
- National Aquatic Animal Diseases Para-Reference Laboratory (HZAU), Wuhan, China
| | - Xiao Tu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
- National Aquatic Animal Diseases Para-Reference Laboratory (HZAU), Wuhan, China
| | - Zemao Gu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
- National Aquatic Animal Diseases Para-Reference Laboratory (HZAU), Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
4
|
Cheng CY, Romero DP, Zoltner M, Yao MC, Turkewitz AP. Structure and dynamics of the contractile vacuole complex in Tetrahymena thermophila. J Cell Sci 2023; 136:jcs261511. [PMID: 37902010 PMCID: PMC10729820 DOI: 10.1242/jcs.261511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
The contractile vacuole complex (CVC) is a dynamic and morphologically complex membrane organelle, comprising a large vesicle (bladder) linked with a tubular reticulum (spongiome). CVCs provide key osmoregulatory roles across diverse eukaryotic lineages, but probing the mechanisms underlying their structure and function is hampered by the limited tools available for in vivo analysis. In the experimentally tractable ciliate Tetrahymena thermophila, we describe four proteins that, as endogenously tagged constructs, localize specifically to distinct CVC zones. The DOPEY homolog Dop1p and the CORVET subunit Vps8Dp localize both to the bladder and spongiome but with different local distributions that are sensitive to osmotic perturbation, whereas the lipid scramblase Scr7p colocalizes with Vps8Dp. The H+-ATPase subunit Vma4 is spongiome specific. The live imaging permitted by these probes revealed dynamics at multiple scales including rapid exchange of CVC-localized and soluble protein pools versus lateral diffusion in the spongiome, spongiome extension and branching, and CVC formation during mitosis. Although the association with DOP1 and VPS8D implicate the CVC in endosomal trafficking, both the bladder and spongiome might be isolated from bulk endocytic input.
Collapse
Affiliation(s)
- Chao-Yin Cheng
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Daniel P. Romero
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martin Zoltner
- Biotechnology Biomedicine Centre of the Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Cheng CY, Hernández J, Turkewitz AP. VPS8D, a CORVET subunit, is required to maintain the contractile vacuole complex in Tetrahymena thermophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566071. [PMID: 37986963 PMCID: PMC10659352 DOI: 10.1101/2023.11.07.566071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Contractile vacuole complexes (CVCs) are complex osmoregulatory organelles, with vesicular (bladder) and tubular (spongiome) subcompartments. The mechanisms that underlie their formation and maintenance within the eukaryotic endomembrane network are poorly understood. In the Ciliate Tetrahymena thermophila, six differentiated CORVETs (class C core vacuole/endosome tethering complexes), with Vps8 subunits designated A-F, are likely to direct endosomal trafficking. Vps8Dp localizes to both bladder and spongiome. We show by inducible knockdown that VPS8D is essential to CVC organization and function. VPS8D knockdown increased susceptibility to osmotic shock, tolerated in the wildtype but triggering irreversible lethal swelling in the mutant. The knockdown rapidly triggered contraction of the spongiome and lengthened the period of the bladder contractile cycle. More prolonged knockdown resulted in disassembly of both the spongiome and bladder, and dispersal of proteins associated with those compartments. In stressed cells where the normally singular bladder is replaced by numerous vesicles bearing bladder markers, Vps8Dp concentrated conspicuously at long-lived inter-vesicle contact sites, consistent with tethering activity. Similarly, Vps8Dp in cell-free preparations accumulated at junctions formed after vacuoles came into close contact. Also consistent with roles for Vps8Dp in tethering and/or fusion were the emergence in knockdown cells of multiple vacuole-related structures, replacing the single bladder.
Collapse
Affiliation(s)
- Chao-Yin Cheng
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Josefina Hernández
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Cole ES, Maier W, Joachimiak E, Jiang YY, Lee C, Collet E, Chmelik C, Romero DP, Chalker D, Alli NK, Ruedlin TM, Ozzello C, Gaertig J. The Tetrahymena bcd1 mutant implicates endosome trafficking in ciliate, cortical pattern formation. Mol Biol Cell 2023; 34:ar82. [PMID: 37163326 PMCID: PMC10398878 DOI: 10.1091/mbc.e22-11-0501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/15/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023] Open
Abstract
Ciliates, such as Tetrahymena thermophila, evolved complex mechanisms to determine both the location and dimensions of cortical organelles such as the oral apparatus (OA: involved in phagocytosis), cytoproct (Cyp: for eliminating wastes), and contractile vacuole pores (CVPs: involved in water expulsion). Mutations have been recovered in Tetrahymena that affect both the localization of such organelles along anterior-posterior and circumferential body axes and their dimensions. Here we describe BCD1, a ciliate pattern gene that encodes a conserved Beige-BEACH domain-containing protein a with possible protein kinase A (PKA)-anchoring activity. Similar proteins have been implicated in endosome trafficking and are linked to human Chediak-Higashi syndrome and autism. Mutations in the BCD1 gene broaden cortical organelle domains as they assemble during predivision development. The Bcd1 protein localizes to membrane pockets at the base of every cilium that are active in endocytosis. PKA activity has been shown to promote endocytosis in other organisms, so we blocked clathrin-mediated endocytosis (using "dynasore") and inhibited PKA (using H89). In both cases, treatment produced partial phenocopies of the bcd1 pattern mutant. This study supports a model in which the dimensions of diverse cortical organelle assembly-platforms may be determined by regulated balance between constitutive exocytic delivery and PKA-regulated endocytic retrieval of organelle materials and determinants.
Collapse
Affiliation(s)
- Eric S. Cole
- Biology Department, St. Olaf College, Northfield, MN 55057
| | - Wolfgang Maier
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Yu-yang Jiang
- Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Chinkyu Lee
- Department of Cellular Biology, University of Georgia, Athens, GA 30605
| | - Erik Collet
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Carl Chmelik
- Biology Department, St. Olaf College, Northfield, MN 55057
| | - Daniel P. Romero
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Chalker
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63021
| | - Nurudeen K. Alli
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63021
| | - Tina M. Ruedlin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63021
| | - Courtney Ozzello
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30605
| |
Collapse
|
7
|
Plattner H. Ciliate Research. From Myth to Trendsetting Science. J Eukaryot Microbiol 2022; 69:e12926. [PMID: 35608570 DOI: 10.1111/jeu.12926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
This special issue of the Journal of Eukaryotic Microbiology (JEM) summarizes achievements obtained by generations of researchers with ciliates in widely different disciplines. In fact, ciliates range among the first cells seen under the microscope centuries ago. Their beauty made them an object of scientia amabilis and their manifold reactions made them attractive for college experiments and finally challenged causal analyses at the cellular level. Some of this work was honored by a Nobel Prize. Some observations yielded a baseline for additional novel discoveries, occasionally facilitated by specific properties of some ciliates. This also offers some advantage in the exploration of closely related parasites (malaria). Articles contributed here by colleagues from all over the world encompass a broad spectrum of ciliate life, from genetics to evolution, from molecular cell biology to ecology, from intercellular signaling to epigenetics etc. This introductory chapter, largely based on my personal perception, aims at integrating work presented in this special issue of JEM into a broader historical context up to current research.
Collapse
|
8
|
Plattner H. Membrane Traffic and Ca 2+ -Signals in Ciliates. J Eukaryot Microbiol 2022; 69:e12895. [PMID: 35156735 DOI: 10.1111/jeu.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
A Paramecium cell has as many types of membrane interactions as mammalian cells, as established with monoclonal antibodies by R. Allen and A. Fok. Since then, we have identified key-players, such as SNARE-proteins, Ca2+ -regulating proteins, including Ca2+ -channels, Ca2+ -pumps, Ca2+ -binding proteins of different affinity etc. at the molecular level, probed their function and localized them at the light and electron microscopy level. SNARE-proteins, in conjunction with a synaptotagmin-like Ca2+ -sensor protein, mediate membrane fusion. This interaction is additionally regulated by monomeric GTPases whose spectrum in Tetrahymena and Paramecium has been established by A. Turkewitz. As known from mammalian cells, GTPases are activated on membranes in conjunction with lumenal acidification by an H+ -ATPase. For these complex molecules we found in Paramecium an unsurpassed number of 17 a-subunit paralogs which connect the polymeric head and basis part, V1 and V0. (This multitude may reflect different local functional requirements.) Together with plasmalemmal Ca2+ -influx-channels, locally enriched intracellular InsP3 -type (InsP3 R, mainly in osmoregulatory system) and ryanodine receptor-like Ca2+ -release channels (ryanodine receptor-like proteins, RyR-LP), this complexity mediates Ca2+ signals for most flexible local membrane-to-membrane interactions. As we found, the latter channel types miss a substantial portion of the N-terminal part. Caffeine and 4-chloro-meta-cresol (the agent used to probe mutations of RyRs in man during surgery in malignant insomnia patients) initiate trichocyst exocytosis by activating Ca2+ -release channels type CRC-IV in the peripheral part of alveolar sacs. This is superimposed by Ca2+ -influx, i.e. a mechanism called "store-operated Ca2+ -entry" (SOCE). For the majority of key players, we have mapped paralogs throughout the Paramecium cell, with features in common or at variance in the different organelles participating in vesicle trafficking. Local values of free Ca2+ -concentration, [Ca2+ ]i , and their change, e.g. upon exocytosis stimulation, have been registered by flurochromes and chelator effects. In parallel we have registered release of Ca2+ from alveolar sacs by quenched-flow analysis combined with cryofixation and x-ray microanalysis.
Collapse
|
9
|
Porfírio-Sousa AL, Tice AK, Brown MW, J. G. Lahr D. Phylogenetic reconstruction and evolution of the Rab GTPase gene family in Amoebozoa. Small GTPases 2022; 13:100-113. [PMID: 33779495 PMCID: PMC9707542 DOI: 10.1080/21541248.2021.1903794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rab GTPase is a paralog-rich gene family that controls the maintenance of the eukaryotic cell compartmentalization system. Diverse eukaryotes have varying numbers of Rab paralogs. Currently, little is known about the evolutionary pattern of Rab GTPase in most major eukaryotic 'supergroups'. Here, we present a comprehensive phylogenetic reconstruction of the Rab GTPase gene family in the eukaryotic 'supergroup' Amoebozoa, a diverse lineage represented by unicellular and multicellular organisms. We demonstrate that Amoebozoa conserved 20 of the 23 ancestral Rab GTPases predicted to be present in the last eukaryotic common ancestor and massively expanded several 'novel' in-paralogs. Due to these 'novel' in-paralogs, the Rab family composition dramatically varies between the members of Amoebozoa; as a consequence, 'supergroup'-based studies may significantly change our current understanding of the evolution and diversity of this gene family. The high diversity of the Rab GTPase gene family in Amoebozoa makes this 'supergroup' a key lineage to study and advance our knowledge of the evolution of Rab in Eukaryotes.
Collapse
Affiliation(s)
| | - Alexander K. Tice
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, USA,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, Mississippi, USA
| | - Matthew W. Brown
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, USA,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, Mississippi, USA,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Daniel J. G. Lahr
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil,CONTACT Daniel J. G. Lahr Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Sparvoli D, Lebrun M. Unraveling the Elusive Rhoptry Exocytic Mechanism of Apicomplexa. Trends Parasitol 2021; 37:622-637. [PMID: 34045149 DOI: 10.1016/j.pt.2021.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Apicomplexan parasites are unicellular eukaryotes that invade the cells in which they proliferate. The development of genetic tools in Toxoplasma, and then in Plasmodium, in the 1990s allowed the first description of the molecular machinery used for motility and invasion, revealing a crucial role for two different secretory organelles, micronemes and rhoptries. Rhoptry proteins are injected directly into the host cytoplasm not only to promote invasion but also to manipulate host functions. Nonetheless, the injection machinery has remained mysterious, a major conundrum in the field. Here we review recent progress in uncovering structural components and proteins implicated in rhoptry exocytosis and explain how revisiting early findings and considering the evolutionary origins of Apicomplexa contributed to some of these discoveries.
Collapse
Affiliation(s)
- Daniela Sparvoli
- LPHI UMR5235, Univ Montpellier, CNRS, F-34095 Montpellier, France
| | - Maryse Lebrun
- LPHI UMR5235, Univ Montpellier, CNRS, F-34095 Montpellier, France.
| |
Collapse
|
11
|
EhRab21 associates with the Golgi apparatus in Entamoeba histolytica. Parasitol Res 2020; 119:1629-1640. [PMID: 32219551 DOI: 10.1007/s00436-020-06667-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/15/2020] [Indexed: 01/12/2023]
Abstract
Rab proteins constitute the largest group of small GTPases and act as molecular switches in a wide variety of cellular processes, including proliferation, cytoskeleton assembly, and membrane trafficking in all eukaryotic cells. Rab21 has been reported in several eukaryotic cells, and our results suggest that in Entamoeba histolytica, Rab21 is involved in the vesicular traffic associated with the Golgi apparatus, where its function appears to be important to maintain the structure of this organelle. In addition, proteins such as Rab1A and Sec24, identified in this work associated with EhRab21, participate in the traffic of COPII vesicles from the endoplasmic reticulum to the Golgi apparatus and are necessary to maintain the latter's structure in human cells. In addition, EhRab21 probably affects the lysosome biogenesis, as indicated by an increase in the number of lysosomes as a result of the increase in EhRab21 activity. The participation of EhRab21 in the pathogenesis of amebiasis was verified on the amoebic liver abscess formation model using hamsters (Mesocricetus auratus), in which the overexpression of EhRab21Q64L (positive dominant mutant protein) decreased the number of liver abscesses formed.
Collapse
|
12
|
Sparvoli D, Zoltner M, Cheng CY, Field MC, Turkewitz AP. Diversification of CORVET tethers facilitates transport complexity in Tetrahymena thermophila. J Cell Sci 2020; 133:jcs238659. [PMID: 31964712 PMCID: PMC7033735 DOI: 10.1242/jcs.238659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
In endolysosomal networks, two hetero-hexameric tethers called HOPS and CORVET are found widely throughout eukaryotes. The unicellular ciliate Tetrahymena thermophila possesses elaborate endolysosomal structures, but curiously both it and related protozoa lack the HOPS tether and several other trafficking proteins, while retaining the related CORVET complex. Here, we show that Tetrahymena encodes multiple paralogs of most CORVET subunits, which assemble into six distinct complexes. Each complex has a unique subunit composition and, significantly, shows unique localization, indicating participation in distinct pathways. One pair of complexes differ by a single subunit (Vps8), but have late endosomal versus recycling endosome locations. While Vps8 subunits are thus prime determinants for targeting and functional specificity, determinants exist on all subunits except Vps11. This unprecedented expansion and diversification of CORVET provides a potent example of tether flexibility, and illustrates how 'backfilling' following secondary losses of trafficking genes can provide a mechanism for evolution of new pathways.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Daniela Sparvoli
- Department of Molecular Genetics and Cell Biology, 920 E 58th Street, The University of Chicago, Chicago, IL, 60637, USA
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Chao-Yin Cheng
- Department of Molecular Genetics and Cell Biology, 920 E 58th Street, The University of Chicago, Chicago, IL, 60637, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, 920 E 58th Street, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
13
|
Fumagalli M, Camus SM, Diekmann Y, Burke A, Camus MD, Norman PJ, Joseph A, Abi-Rached L, Benazzo A, Rasteiro R, Mathieson I, Topf M, Parham P, Thomas MG, Brodsky FM. Genetic diversity of CHC22 clathrin impacts its function in glucose metabolism. eLife 2019; 8:41517. [PMID: 31159924 PMCID: PMC6548504 DOI: 10.7554/elife.41517] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 05/01/2019] [Indexed: 01/29/2023] Open
Abstract
CHC22 clathrin plays a key role in intracellular membrane traffic of the insulin-responsive glucose transporter GLUT4 in humans. We performed population genetic and phylogenetic analyses of the CHC22-encoding CLTCL1 gene, revealing independent gene loss in at least two vertebrate lineages, after arising from gene duplication. All vertebrates retained the paralogous CLTC gene encoding CHC17 clathrin, which mediates endocytosis. For vertebrates retaining CLTCL1, strong evidence for purifying selection supports CHC22 functionality. All human populations maintained two high frequency CLTCL1 allelic variants, encoding either methionine or valine at position 1316. Functional studies indicated that CHC22-V1316, which is more frequent in farming populations than in hunter-gatherers, has different cellular dynamics than M1316-CHC22 and is less effective at controlling GLUT4 membrane traffic, altering its insulin-regulated response. These analyses suggest that ancestral human dietary change influenced selection of allotypes that affect CHC22's role in metabolism and have potential to differentially influence the human insulin response.
Collapse
Affiliation(s)
- Matteo Fumagalli
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom.,Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom.,Research Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Stephane M Camus
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Yoan Diekmann
- Research Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Alice Burke
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Marine D Camus
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Paul J Norman
- Division of Bioinformatics and Personalized Medicine, University of Colorado, Aurora, United States.,Department of Microbiology and Immunology, University of Colorado, Aurora, United States
| | - Agnel Joseph
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, United Kingdom
| | - Laurent Abi-Rached
- Aix-Marseille Univ, IRD, MEPHI, IHU Méditerranée Infection, CNRS, Marseille, France
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Rita Rasteiro
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, United Kingdom
| | - Peter Parham
- Department of Structural Biology, Stanford University, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Mark G Thomas
- Research Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Frances M Brodsky
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, United Kingdom
| |
Collapse
|
14
|
Mancini A, Eyassu F, Conway M, Occhipinti A, Liò P, Angione C, Pucciarelli S. CiliateGEM: an open-project and a tool for predictions of ciliate metabolic variations and experimental condition design. BMC Bioinformatics 2018; 19:442. [PMID: 30497359 PMCID: PMC6266953 DOI: 10.1186/s12859-018-2422-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study of cell metabolism is becoming central in several fields such as biotechnology, evolution/adaptation and human disease investigations. Here we present CiliateGEM, the first metabolic network reconstruction draft of the freshwater ciliate Tetrahymena thermophila. We also provide the tools and resources to simulate different growth conditions and to predict metabolic variations. CiliateGEM can be extended to other ciliates in order to set up a meta-model, i.e. a metabolic network reconstruction valid for all ciliates. Ciliates are complex unicellular eukaryotes of presumably monophyletic origin, with a phylogenetic position that is equal from plants and animals. These cells represent a new concept of unicellular system with a high degree of species, population biodiversity and cell complexity. Ciliates perform in a single cell all the functions of a pluricellular organism, including locomotion, feeding, digestion, and sexual processes. RESULTS After generating the model, we performed an in-silico simulation with the presence and absence of glucose. The lack of this nutrient caused a 32.1% reduction rate in biomass synthesis. Despite the glucose starvation, the growth did not stop due to the use of alternative carbon sources such as amino acids. CONCLUSIONS The future models obtained from CiliateGEM may represent a new approach to describe the metabolism of ciliates. This tool will be a useful resource for the ciliate research community in order to extend these species as model organisms in different research fields. An improved understanding of ciliate metabolism could be relevant to elucidate the basis of biological phenomena like genotype-phenotype relationships, population genetics, and cilia-related disease mechanisms.
Collapse
Affiliation(s)
- Alessio Mancini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
- Computer Laboratory, University of Cambridge, Cambridge, UK
| | - Filmon Eyassu
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, UK
| | - Maxwell Conway
- Computer Laboratory, University of Cambridge, Cambridge, UK
| | | | - Pietro Liò
- Computer Laboratory, University of Cambridge, Cambridge, UK
| | - Claudio Angione
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, UK
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
15
|
Classifying the molecular functions of Rab GTPases in membrane trafficking using deep convolutional neural networks. Anal Biochem 2018; 555:33-41. [DOI: 10.1016/j.ab.2018.06.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 01/26/2023]
|
16
|
The remembrance of the things past: Conserved signalling pathways link protozoa to mammalian nervous system. Cell Calcium 2018; 73:25-39. [DOI: 10.1016/j.ceca.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/01/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
|
17
|
Sparvoli D, Richardson E, Osakada H, Lan X, Iwamoto M, Bowman GR, Kontur C, Bourland WA, Lynn DH, Pritchard JK, Haraguchi T, Dacks JB, Turkewitz AP. Remodeling the Specificity of an Endosomal CORVET Tether Underlies Formation of Regulated Secretory Vesicles in the Ciliate Tetrahymena thermophila. Curr Biol 2018; 28:697-710.e13. [PMID: 29478853 DOI: 10.1016/j.cub.2018.01.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/09/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022]
Abstract
In the endocytic pathway of animals, two related complexes, called CORVET (class C core vacuole/endosome transport) and HOPS (homotypic fusion and protein sorting), act as both tethers and fusion factors for early and late endosomes, respectively. Mutations in CORVET or HOPS lead to trafficking defects and contribute to human disease, including immune dysfunction. HOPS and CORVET are conserved throughout eukaryotes, but remarkably, in the ciliate Tetrahymena thermophila, the HOPS-specific subunits are absent, while CORVET-specific subunits have proliferated. VPS8 (vacuolar protein sorting), a CORVET subunit, expanded to 6 paralogs in Tetrahymena. This expansion correlated with loss of HOPS within a ciliate subgroup, including the Oligohymenophorea, which contains Tetrahymena. As uncovered via forward genetics, a single VPS8 paralog in Tetrahymena (VPS8A) is required to synthesize prominent secretory granules called mucocysts. More specifically, Δvps8a cells fail to deliver a subset of cargo proteins to developing mucocysts, instead accumulating that cargo in vesicles also bearing the mucocyst-sorting receptor Sor4p. Surprisingly, although this transport step relies on CORVET, it does not appear to involve early endosomes. Instead, Vps8a associates with the late endosomal/lysosomal marker Rab7, indicating that target specificity switching occurred in CORVET subunits during the evolution of ciliates. Mucocysts belong to a markedly diverse and understudied class of protist secretory organelles called extrusomes. Our results underscore that biogenesis of mucocysts depends on endolysosomal trafficking, revealing parallels with invasive organelles in apicomplexan parasites and suggesting that a wide array of secretory adaptations in protists, like in animals, depend on mechanisms related to lysosome biogenesis.
Collapse
Affiliation(s)
- Daniela Sparvoli
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | | | - Hiroko Osakada
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan
| | - Xun Lan
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Masaaki Iwamoto
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan
| | - Grant R Bowman
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Cassandra Kontur
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - William A Bourland
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA
| | - Denis H Lynn
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tokuko Haraguchi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Mazumdar R, Endler L, Monoyios A, Hess M, Bilic I. Establishment of a de novo Reference Transcriptome of Histomonas meleagridis Reveals Basic Insights About Biological Functions and Potential Pathogenic Mechanisms of the Parasite. Protist 2017; 168:663-685. [DOI: 10.1016/j.protis.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/21/2017] [Accepted: 09/23/2017] [Indexed: 12/28/2022]
|
19
|
Barlow LD, Dacks JB. Seeing the endomembrane system for the trees: Evolutionary analysis highlights the importance of plants as models for eukaryotic membrane-trafficking. Semin Cell Dev Biol 2017; 80:142-152. [PMID: 28939036 DOI: 10.1016/j.semcdb.2017.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/22/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Plant cells show many signs of a unique evolutionary history. This is seen in the system of intracellular organelles and vesicle transport pathways plants use to traffic molecular cargo. Bioinformatic and cell biological work in this area is beginning to tackle the question of how plant cells have evolved, and what this tells us about the evolution of other eukaryotes. Key protein families with membrane trafficking function, including Rabs, SNAREs, vesicle coat proteins, and ArfGAPs, show patterns of evolution that indicate both specialization and conservation in plants. These changes are accompanied by changes at the level of organelles and trafficking pathways between them. Major specializations include losses of several ancient Rabs, novel functions of many proteins, and apparent modification of trafficking in endocytosis and cytokinesis. Nevertheless, plants show extensive conservation of ancestral membrane trafficking genes, and conservation of their ancestral function in most duplicates. Moreover, plants have retained several ancient membrane trafficking genes lost in the evolution of animals and fungi. Considering this, plants such as Arabidopsis are highly valuable for investigating not only plant-specific aspects of membrane trafficking, but also general eukaryotic mechanisms.
Collapse
Affiliation(s)
- L D Barlow
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta,5-31 Medical Sciences Building, Edmonton, Alberta, T6G 2H7, Canada
| | - J B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta,5-31 Medical Sciences Building, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
20
|
Elguero ME, Sanchez Granel ML, Montes MG, Cid NG, Favale NO, Nudel CB, Nusblat AD. Uptake of cholesterol by Tetrahymena thermophila is mainly due to phagocytosis. Rev Argent Microbiol 2017; 50:105-107. [PMID: 28916309 DOI: 10.1016/j.ram.2017.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/01/2017] [Accepted: 03/30/2017] [Indexed: 10/18/2022] Open
Affiliation(s)
- María Eugenia Elguero
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - María Luz Sanchez Granel
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - María Guadalupe Montes
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Nicolás G Cid
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Nicolás O Favale
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Clara B Nudel
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Alejandro D Nusblat
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
21
|
Plattner H. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. J Eukaryot Microbiol 2017; 65:255-289. [PMID: 28719054 DOI: 10.1111/jeu.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023]
Abstract
During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+ -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional "inventions."
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P. O. Box M625, Konstanz, 78457, Germany
| |
Collapse
|
22
|
Cid NG, Sanchez Granel ML, Montes MG, Elguero ME, Nudel CB, Nusblat AD. Phylogenomic analysis of integral diiron membrane histidine motif-containing enzymes in ciliates provides insights into their function and evolutionary relationships. Mol Phylogenet Evol 2017; 114:1-13. [PMID: 28559213 DOI: 10.1016/j.ympev.2017.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 01/08/2023]
Abstract
The Integral Membrane Histidine Motif-containing Enzymes (IMHME) are a class of binuclear non-heme iron proteins widely distributed among prokaryotes and eukaryotes. They are characterized by a conserved tripartite motif consisting of eight to ten histidine residues. Their known function is the activation of the dioxygen moiety to serve as efficient catalysts for reactions of hydroxylation, desaturation or reduction. To date most studies on IMHME were carried out in metazoan, phototrophic or parasitic organisms, whereas genome-wide analysis in heterotrophic free living protozoa, such as the Ciliophora phylum, has not been undertaken. In the seven fully sequenced genomes available we retrieved 118 putative sequences of the IMHME type, albeit with large differences in number among the ciliates: 11 sequences in Euplotes octocarinatus, 7 in Ichthyophthirius multifiliis, 13 in Oxytricha trifallax, 18 in Stylonychia lemnae, 25 in Tetrahymena thermophila, 31 in Paramecium tetraurelia and 13 in Pseudocohnilembus persalinus. The pool of putative sequences was classified in 16 orthologous groups from which 11 were related to fatty acid desaturase (FAD) and 5 to the fatty acid hydroxylase (FAH) superfamilies. Noteworthy, a large diversity on the number and type of FAD / FAH proteins were found among the ciliates, a feature that, in principle, may be attributed to peculiarities of the evolutionary process, such as gene expansion and reduction, but also to horizontal gene transfer, as we demonstrate in this work. We identified twelve putative enzymatic activities, from which four were newly assigned activities: sphingolipid Δ4-desaturase, ω3/Δ15 fatty acid desaturase, a large group of alkane 1-monooxygenases, and acylamide-delta-3(E)-desaturase, although unequivocal allocation would require additional experiments. We also combined the phylogenetics analysis with lipids analysis, thereby allowing the detection of two enzymatic activities not previously reported: a C-5 sterol desaturase in P. tetraurelia and a delta-9 fatty acid desaturase in Cohnilembus reniformis. The analysis revealed a significant lower number of FAD's sequences in the spirotrichea ciliates than in the oligohymenophorea, emphasizing the importance of fatty acids trophic transfer among aquatic organisms as a source of variation in metabolic activity, individual and population growth rates, and reproduction.
Collapse
Affiliation(s)
- Nicolas G Cid
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina
| | - María L Sanchez Granel
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina
| | - María G Montes
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina
| | - María E Elguero
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina
| | - Clara B Nudel
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina
| | - Alejandro D Nusblat
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina.
| |
Collapse
|
23
|
De Luca BM, Nudel CB, Gonzalez RH, Nusblat AD. Introducing the concept of biocatalysis in the classroom: The conversion of cholesterol to provitamin D 3. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 45:105-114. [PMID: 27666582 DOI: 10.1002/bmb.20995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/28/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Biocatalysis is a fundamental concept in biotechnology. The topic integrates knowledge of several disciplines; therefore, it was included in the course "design and optimization of biological systems" which is offered in the biochemistry curricula. We selected the ciliate tetrahymena as an example of a eukaryotic system with potential for the biotransformation of sterol metabolites of industrial interest; in particular, we focused on the conversion of cholesterol to provitamin D3. The students work with wild type and recombinant strains and learn how sterol pathways could be modified to obtain diverse sterol moieties. During the course the students identify and measure the concentration of sterols. They also search for related genes by bioinformatic analysis. Additionally, the students compare biotransformation rates, growing the ciliate in plate and in a bioreactor. Finally, they use fluorescence microscopy to localize an enzyme involved in biotransformation. The last day each team makes an oral presentation, explaining the results obtained and responds to a series of key questions posed by the teachers, which determine the final mark. In our experience, this course enables undergraduate students to become acquainted with the principles of biocatalysis as well as with standard and modern techniques, through a simple and robust laboratory exercise, using a biological system for the conversion of valuable pharmaceutical moieties. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):105-114, 2017.
Collapse
Affiliation(s)
- Belén M De Luca
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, Argentina, C1113AAD
| | - Clara B Nudel
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, Argentina, C1113AAD
| | - Rodrigo H Gonzalez
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, Argentina, C1113AAD
| | - Alejandro D Nusblat
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, Argentina, C1113AAD
| |
Collapse
|
24
|
Bright LJ, Gout JF, Lynch M. Early stages of functional diversification in the Rab GTPase gene family revealed by genomic and localization studies in Paramecium species. Mol Biol Cell 2017; 28:1101-1110. [PMID: 28251922 PMCID: PMC5391186 DOI: 10.1091/mbc.e16-06-0361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 01/08/2023] Open
Abstract
Rab GTPase family members in Paramecium have higher retention rates and more-divergent expression levels than other genes after whole-genome duplications, consistent with early steps in functional diversification. Localization analysis also uncovers functionally diversifying Rab11 genes. New gene functions arise within existing gene families as a result of gene duplication and subsequent diversification. To gain insight into the steps that led to the functional diversification of paralogues, we tracked duplicate retention patterns, expression-level divergence, and subcellular markers of functional diversification in the Rab GTPase gene family in three Paramecium aurelia species. After whole-genome duplication, Rab GTPase duplicates are more highly retained than other genes in the genome but appear to be diverging more rapidly in expression levels, consistent with early steps in functional diversification. However, by localizing specific Rab proteins in Paramecium cells, we found that paralogues from the two most recent whole-genome duplications had virtually identical localization patterns, and that less closely related paralogues showed evidence of both conservation and diversification. The functionally conserved paralogues appear to target to compartments associated with both endocytic and phagocytic recycling functions, confirming evolutionary and functional links between the two pathways in a divergent eukaryotic lineage. Because the functionally diversifying paralogues are still closely related to and derived from a clade of functionally conserved Rab11 genes, we were able to pinpoint three specific amino acid residues that may be driving the change in the localization and thus the function in these proteins.
Collapse
Affiliation(s)
- Lydia J Bright
- Department of Biology, Indiana University, Bloomington, IN 47405 .,Department of Biology, State University of New York at New Paltz, New Paltz, NY 12561
| | | | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
25
|
Guerrier S, Plattner H, Richardson E, Dacks JB, Turkewitz AP. An evolutionary balance: conservation vs innovation in ciliate membrane trafficking. Traffic 2016; 18:18-28. [PMID: 27696651 DOI: 10.1111/tra.12450] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022]
Abstract
As most of eukaryotic diversity lies in single-celled protists, they represent unique opportunities to ask questions about the balance of conservation and innovation in cell biological features. Among free-living protists the ciliates offer ease of culturing, a rich array of experimental approaches, and versatile molecular tools, particularly in Tetrahymena thermophila and Paramecium tetraurelia. These attributes have been exploited by researchers to analyze a wealth of cellular structures in these large and complex cells. This mini-review focuses on 3 aspects of ciliate membrane dynamics, all linked with endolysosomal trafficking. First is nutrition based on phagocytosis and maturation of food vacuoles. Secondly, we discuss regulated exocytosis from vesicles that have features of both dense core secretory granules but also lysosome-related organelles. The third topic is the targeting, breakdown and resorption of parental nuclei in mating partners. For all 3 phenomena, it is clear that elements of the canonical membrane-trafficking system have been retained and in some cases repurposed. In addition, there is evidence that recently evolved, lineage-specific proteins provide determinants in these pathways.
Collapse
Affiliation(s)
| | - Helmut Plattner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
26
|
Klinger CM, Ramirez-Macias I, Herman EK, Turkewitz AP, Field MC, Dacks JB. Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Mol Biochem Parasitol 2016; 209:88-103. [PMID: 27444378 PMCID: PMC5140719 DOI: 10.1016/j.molbiopara.2016.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
27
|
Whole Genome Sequencing Identifies a Novel Factor Required for Secretory Granule Maturation in Tetrahymena thermophila. G3-GENES GENOMES GENETICS 2016; 6:2505-16. [PMID: 27317773 PMCID: PMC4978903 DOI: 10.1534/g3.116.028878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Unbiased genetic approaches have a unique ability to identify novel genes associated with specific biological pathways. Thanks to next generation sequencing, forward genetic strategies can be expanded to a wider range of model organisms. The formation of secretory granules, called mucocysts, in the ciliate Tetrahymena thermophila relies, in part, on ancestral lysosomal sorting machinery, but is also likely to involve novel factors. In prior work, multiple strains with defects in mucocyst biogenesis were generated by nitrosoguanidine mutagenesis, and characterized using genetic and cell biological approaches, but the genetic lesions themselves were unknown. Here, we show that analyzing one such mutant by whole genome sequencing reveals a novel factor in mucocyst formation. Strain UC620 has both morphological and biochemical defects in mucocyst maturation-a process analogous to dense core granule maturation in animals. Illumina sequencing of a pool of UC620 F2 clones identified a missense mutation in a novel gene called MMA1 (Mucocyst maturation). The defects in UC620 were rescued by expression of a wild-type copy of MMA1, and disrupting MMA1 in an otherwise wild-type strain phenocopies UC620. The product of MMA1, characterized as a CFP-tagged copy, encodes a large soluble cytosolic protein. A small fraction of Mma1p-CFP is pelletable, which may reflect association with endosomes. The gene has no identifiable homologs except in other Tetrahymena species, and therefore represents an evolutionarily recent innovation that is required for granule maturation.
Collapse
|
28
|
Plattner H. Trichocysts-Paramecium'sProjectile-like Secretory Organelles. J Eukaryot Microbiol 2016; 64:106-133. [DOI: 10.1111/jeu.12332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/09/2016] [Accepted: 05/21/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Helmut Plattner
- Department of Biology; University of Konstanz; PO Box M625 78457 Konstanz Germany
| |
Collapse
|
29
|
Boutte CC, Baer CE, Papavinasasundaram K, Liu W, Chase MR, Meniche X, Fortune SM, Sassetti CM, Ioerger TR, Rubin EJ. A cytoplasmic peptidoglycan amidase homologue controls mycobacterial cell wall synthesis. eLife 2016; 5. [PMID: 27304077 PMCID: PMC4946905 DOI: 10.7554/elife.14590] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
Regulation of cell wall assembly is essential for bacterial survival and contributes to pathogenesis and antibiotic tolerance in Mycobacterium tuberculosis (Mtb). However, little is known about how the cell wall is regulated in stress. We found that CwlM, a protein homologous to peptidoglycan amidases, coordinates peptidoglycan synthesis with nutrient availability. Surprisingly, CwlM is sequestered from peptidoglycan (PG) by localization in the cytoplasm, and its enzymatic function is not essential. Rather, CwlM is phosphorylated and associates with MurA, the first enzyme in PG precursor synthesis. Phosphorylated CwlM activates MurA ~30 fold. CwlM is dephosphorylated in starvation, resulting in lower MurA activity, decreased cell wall metabolism, and increased tolerance to multiple antibiotics. A phylogenetic analysis of cwlM implies that localization in the cytoplasm drove the evolution of this factor. We describe a system that controls cell wall metabolism in response to starvation, and show that this regulation contributes to antibiotic tolerance.
Collapse
Affiliation(s)
- Cara C Boutte
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
| | - Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Weiru Liu
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
| | - Michael R Chase
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
| | - Xavier Meniche
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Thomas R Ioerger
- Department of Computer Science, Texas A and M University, Texas, United States
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
30
|
Rab32 and Rab38 genes in chordate pigmentation: an evolutionary perspective. BMC Evol Biol 2016; 16:26. [PMID: 26818140 PMCID: PMC4728774 DOI: 10.1186/s12862-016-0596-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/18/2016] [Indexed: 11/25/2022] Open
Abstract
Background The regulation of cellular membrane trafficking in all eukaryotes is a very complex mechanism, mostly regulated by the Rab family proteins. Among all membrane-enclosed organelles, melanosomes are the cellular site for synthesis, storage and transport of melanin granules, making them an excellent model for studies on organelle biogenesis and motility. Specific Rab proteins, as Rab32 and Rab38, have been shown to play a key role in melanosome biogenesis. We analysed the Rab32 and Rab38 genes in the teleost zebrafish and in the cephalochordate amphioxus, gaining insight on their evolutionary history following gene and genome duplications. Results We studied the molecular evolution of Rab supergroup III in deuterostomes by phylogenetic reconstruction, intron and synteny conservation. We discovered a novel amino acid stretch, named FALK, shared by three related classes belonging to Rab supergroup III: Rab7L1, Rab32LO and Rab32/Rab38. Among these, we demonstrated that the Rab32LO class, already present in the last common eukaryotic ancestor, was lost in urochordates and vertebrates. Synteny shows that one zebrafish gene, Rab38a, which is expressed in pigmented cells, retained the linkage with tyrosinase, a protein essential for pigmentation. Moreover, the chromosomal linkage of Rab32 or Rab38 with a member of the glutamate receptor metabotropic (Grm) family has been retained in all analysed gnathostomes, suggesting a conserved microsynteny in the vertebrate ancestor. Expression patterns of Rab32 and Rab38 genes in zebrafish, and Rab32/38 in amphioxus, indicate their involvement in development of pigmented cells and notochord. Conclusions Phylogenetic, intron conservation and synteny analyses point towards an evolutionary scenario based on a duplication of a single invertebrate Rab32/38 gene giving rise to vertebrate Rab32 and Rab38. The expression patterns of Rab38 paralogues highlight sub-functionalization event. Finally, the discovery of a chromosomal linkage between the Rab32 or Rab38 gene with a Grm opens new perspectives on possible conserved bystander gene regulation across the vertebrate evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0596-1) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Plattner H. Signalling in ciliates: long- and short-range signals and molecular determinants for cellular dynamics. Biol Rev Camb Philos Soc 2015; 92:60-107. [PMID: 26487631 DOI: 10.1111/brv.12218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
In ciliates, unicellular representatives of the bikont branch of evolution, inter- and intracellular signalling pathways have been analysed mainly in Paramecium tetraurelia, Paramecium multimicronucleatum and Tetrahymena thermophila and in part also in Euplotes raikovi. Electrophysiology of ciliary activity in Paramecium spp. is a most successful example. Established signalling mechanisms include plasmalemmal ion channels, recently established intracellular Ca2+ -release channels, as well as signalling by cyclic nucleotides and Ca2+ . Ca2+ -binding proteins (calmodulin, centrin) and Ca2+ -activated enzymes (kinases, phosphatases) are involved. Many organelles are endowed with specific molecules cooperating in signalling for intracellular transport and targeted delivery. Among them are recently specified soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), monomeric GTPases, H+ -ATPase/pump, actin, etc. Little specification is available for some key signal transducers including mechanosensitive Ca2+ -channels, exocyst complexes and Ca2+ -sensor proteins for vesicle-vesicle/membrane interactions. The existence of heterotrimeric G-proteins and of G-protein-coupled receptors is still under considerable debate. Serine/threonine kinases dominate by far over tyrosine kinases (some predicted by phosphoproteomic analyses). Besides short-range signalling, long-range signalling also exists, e.g. as firmly installed microtubular transport rails within epigenetically determined patterns, thus facilitating targeted vesicle delivery. By envisaging widely different phenomena of signalling and subcellular dynamics, it will be shown (i) that important pathways of signalling and cellular dynamics are established already in ciliates, (ii) that some mechanisms diverge from higher eukaryotes and (iii) that considerable uncertainties still exist about some essential aspects of signalling.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, PO Box M625, 78457, Konstanz, Germany
| |
Collapse
|
32
|
Niyogi S, Jimenez V, Girard-Dias W, de Souza W, Miranda K, Docampo R. Rab32 is essential for maintaining functional acidocalcisomes, and for growth and infectivity of Trypanosoma cruzi. J Cell Sci 2015; 128:2363-73. [PMID: 25964650 DOI: 10.1242/jcs.169466] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/30/2015] [Indexed: 02/01/2023] Open
Abstract
The contractile vacuole complex (CVC) of Trypanosoma cruzi, the etiologic agent of Chagas disease, collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress; it also has a role in cell shrinking after hyperosmotic stress. Here, we report that, in addition to its role in osmoregulation, the CVC of T. cruzi has a role in the biogenesis of acidocalcisomes. Expression of dominant-negative mutants of the CVC-located small GTPase Rab32 (TcCLB.506289.80) results in lower numbers of less-electron-dense acidocalcisomes, lower content of polyphosphate, lower capacity for acidocalcisome acidification and Ca(2+) uptake that is driven by the vacuolar proton pyrophosphatase and the Ca(2+)-ATPase, respectively, as well as less-infective parasites, revealing the role of this organelle in parasite infectivity. By using fluorescence, electron microscopy and electron tomography analyses, we provide further evidence of the active contact of acidocalcisomes with the CVC, indicating an active exchange of proteins between the two organelles.
Collapse
Affiliation(s)
- Sayantanee Niyogi
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Veronica Jimenez
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Wendell Girard-Dias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens - Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens - Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Xerém, Rio de Janeiro 25250-020, Brazil
| | - Kildare Miranda
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens - Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Xerém, Rio de Janeiro 25250-020, Brazil
| | - Roberto Docampo
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
33
|
Plattner H. Molecular aspects of calcium signalling at the crossroads of unikont and bikont eukaryote evolution – The ciliated protozoan Paramecium in focus. Cell Calcium 2015; 57:174-85. [DOI: 10.1016/j.ceca.2014.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/19/2022]
|
34
|
Kumar S, Briguglio JS, Turkewitz AP. An aspartyl cathepsin, CTH3, is essential for proprotein processing during secretory granule maturation in Tetrahymena thermophila. Mol Biol Cell 2014; 25:2444-60. [PMID: 24943840 PMCID: PMC4142616 DOI: 10.1091/mbc.e14-03-0833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In animal cells, the assembly of dense cores in secretory granules is controlled by proteolytic processing of proproteins. The same phenomenon occurs in the ciliate Tetrahymena thermophila, but the proteases involved appear to be highly unrelated, suggesting that similar regulatory mechanisms have different molecular origins. In Tetrahymena thermophila, peptides secreted via dense-core granules, called mucocysts, are generated by proprotein processing. We used expression profiling to identify candidate processing enzymes, which localized as cyan fluorescent protein fusions to mucocysts. Of note, the aspartyl cathepsin Cth3p plays a key role in mucocyst-based secretion, since knockdown of this gene blocked proteolytic maturation of the entire set of mucocyst proproteins and dramatically reduced mucocyst accumulation. The activity of Cth3p was eliminated by mutation of two predicted active-site mutations, and overexpression of the wild-type gene, but not the catalytic-site mutant, partially rescued a Mendelian mutant defective in mucocyst proprotein processing. Our results provide the first direct evidence for the role of proprotein processing in this system. Of interest, both localization and the CTH3 disruption phenotype suggest that the enzyme provides non–mucocyst-related functions. Phylogenetic analysis of the T. thermophila cathepsins, combined with prior work on the role of sortilin receptors in mucocyst biogenesis, suggests that repurposing of lysosomal enzymes was an important step in the evolution of secretory granules in ciliates.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Joseph S Briguglio
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
35
|
Briguglio JS, Turkewitz AP. Tetrahymena thermophila: a divergent perspective on membrane traffic. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:500-16. [PMID: 24634411 DOI: 10.1002/jez.b.22564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/13/2014] [Accepted: 01/22/2014] [Indexed: 12/12/2022]
Abstract
Tetrahymena thermophila, a member of the Ciliates, represents a class of organisms distantly related from commonly used model organisms in cell biology, and thus offers an opportunity to explore potentially novel mechanisms and their evolution. Ciliates, like all eukaryotes, possess a complex network of organelles that facilitate both macromolecular uptake and secretion. The underlying endocytic and exocytic pathways are key mediators of a cell's interaction with its environment, and may therefore show niche-specific adaptations. Our laboratory has taken a variety of approaches to identify key molecular determinants for membrane trafficking pathways in Tetrahymena. Studies of Rab GTPases, dynamins, and sortilin-family receptors substantiate the widespread conservation of some features but also uncover surprising roles for lineage-restricted innovation.
Collapse
Affiliation(s)
- Joseph S Briguglio
- The Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
| | | |
Collapse
|
36
|
Simon M, Plattner H. Unicellular Eukaryotes as Models in Cell and Molecular Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:141-98. [DOI: 10.1016/b978-0-12-800255-1.00003-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Genome-wide analysis of the phosphoinositide kinome from two ciliates reveals novel evolutionary links for phosphoinositide kinases in eukaryotic cells. PLoS One 2013; 8:e78848. [PMID: 24244373 PMCID: PMC3823935 DOI: 10.1371/journal.pone.0078848] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
Background The complexity of phosphoinositide signaling in higher eukaryotes is partly due to expansion of specific families and types of phosphoinositide kinases (PIKs) that can generate all phosphoinositides via multiple routes. This is particularly evident in the PI3Ks and PIPKs, and it is considered an evolutionary trait associated with metazoan diversification. Yet, there are limited comprehensive studies on the PIK repertoire of free living unicellular organisms. Methodology/Principal Findings We undertook a genome-wide analysis of putative PIK genes in two free living ciliated cells, Tetrahymena and Paramecium. The Tetrahymena thermophila and Paramecium tetraurelia genomes were probed with representative kinases from all families and types. Putative homologs were verified by EST, microarray and deep RNA sequencing database searches and further characterized for domain structure, catalytic efficiency, expression patterns and phylogenetic relationships. In total, we identified and characterized 22 genes in the Tetrahymena thermophila genome and 62 highly homologues genes in Paramecium tetraurelia suggesting a tight evolutionary conservation in the ciliate lineage. Comparison to the kinome of fungi reveals a significant expansion of PIK genes in ciliates. Conclusions/Significance Our study highlights four important aspects concerning ciliate and other unicellular PIKs. First, ciliate-specific expansion of PI4KIII-like genes. Second, presence of class I PI3Ks which, at least in Tetrahymena, are associated with a metazoan-type machinery for PIP3 signaling. Third, expansion of divergent PIPK enzymes such as the recently described type IV transmembrane PIPKs. Fourth, presence of possible type II PIPKs and presumably inactive PIKs (hence, pseudo-PIKs) not previously described. Taken together, our results provide a solid framework for future investigation of the roles of PIKs in ciliates and indicate that novel functions and novel regulatory pathways of phosphoinositides may be more widespread than previously thought in unicellular organisms.
Collapse
|
38
|
Briguglio JS, Kumar S, Turkewitz AP. Lysosomal sorting receptors are essential for secretory granule biogenesis in Tetrahymena. ACTA ACUST UNITED AC 2013; 203:537-50. [PMID: 24189272 PMCID: PMC3824020 DOI: 10.1083/jcb.201305086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The delivery of nonaggregated cargo proteins to Tetrahymena secretory granules requires receptors of the sortilin/VPS10 family, proteins classically associated with lysosome biogenesis. Secretory granules, such as neuronal dense core vesicles, are specialized for storing cargo at high concentration and releasing it via regulated exocytosis in response to extracellular stimuli. Here, we used expression profiling to identify new components of the machinery for sorting proteins into mucocysts, secretory granule-like vesicles in the ciliate Tetrahymena thermophila. We show that assembly of mucocysts depends on proteins classically associated with lysosome biogenesis. In particular, the delivery of nonaggregated, but not aggregated, cargo proteins requires classical receptors of the sortilin/VPS10 family, which indicates that dual mechanisms are involved in sorting to this secretory compartment. In addition, sortilins are required for delivery of a key protease involved in T. thermophila mucocyst maturation. Our results suggest potential similarities in the formation of regulated secretory organelles between even very distantly related eukaryotes.
Collapse
Affiliation(s)
- Joseph S Briguglio
- Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | | | | |
Collapse
|
39
|
Plattner H. The contractile vacuole complex of protists--new cues to function and biogenesis. Crit Rev Microbiol 2013; 41:218-27. [PMID: 23919298 DOI: 10.3109/1040841x.2013.821650] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The contractile vacuole complex (CVC) of freshwater protists sequesters the excess of water and ions (Ca(2+)) for exocytosis cycles at the pore. Sequestration is based on a chemiosmotic proton gradient produced by a V-type H(+)-ATPase. So far, many pieces of information available have not been combined to a comprehensive view on CVC biogenesis and function. One main function now appears as follows. Ca(2+)-release channels, type inositol 1,4,5-trisphosphate receptors (InsP3R), may serve for fine-tuning of local cytosolic Ca(2+) concentration and mediate numerous membrane-to-membrane interactions within the tubular spongiome meshwork. Such activity is suggested by the occurrence of organelle-specific soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) and Ras-related in brain (Rab) proteins, which may regulate functional requirements. For tubulation, F-Bin-amphiphysin-Rvs (F-BAR) proteins are available. In addition, there is indirect evidence for the occurrence of H(+)/Ca(2+) exchangers (to sequester Ca(2+)) and mechanosensitive Ca(2+)-channels (for signaling the filling sate). The periodic activity of the CVC may be regulated by the mechanosensitive Ca(2+)-channels. Such channels are known to colocalize with and to be functionally supported by stomatins, which were recently detected in the CVC. A Kif18-related kinesin motor protein might control the length of radial arms. Two additional InsP3-related channels and several SNAREs are associated with the pore. De novo organelle biogenesis occurs under epigenetic control during mitotic activity and may involve the assembly of γ-tubulin, centrin, calmodulin and a never in mitosis A-type (NIMA) kinase - components also engaged in mitotic processes.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz , Konstanz , Germany
| |
Collapse
|
40
|
Gotesman M, Soliman H, El-Matbouli M. Antibody screening identifies 78 putative host proteins involved in Cyprinid herpesvirus 3 infection or propagation in common carp, Cyprinus carpio L. JOURNAL OF FISH DISEASES 2013; 36:721-33. [PMID: 23347276 PMCID: PMC3961710 DOI: 10.1111/jfd.12073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/16/2012] [Accepted: 11/17/2012] [Indexed: 05/15/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a serious and notifiable disease afflicting common and koi carp, Cyprinus carpio L., termed koi herpesvirus disease (KHVD). Significant progress has been achieved in the last 15 years, since the initial reports surfaced from Germany, USA and Israel of the CyHV-3 virus, in terms of pathology and detection. However, relatively few studies have been carried out in understanding viral replication and propagation. Antibody-based affinity has been used for detection of CyHV-3 in enzyme-linked immunosorbent assay and PCR-based techniques, and immunohistological assays have been used to describe a CyHV-3 membrane protein, termed ORF81. In this study, monoclonal antibodies linked to N-hydroxysuccinimide (NHS)-activated spin columns were used to purify CyHV-3 and host proteins from tissue samples originating in either CyHV-3 symptomatic or asymptomatic fish. The samples were next analysed either by polyacrylamide gel electrophoresis (PAGE) and subsequently by electrospray ionization coupled to mass spectrometry (ESI-MS) or by ESI-MS analysis directly after purification. A total of 78 host proteins and five CyHV-3 proteins were identified in the two analyses. These data can be used to develop novel control methods for CyHV-3, based on pathways or proteins identified in this study.
Collapse
Affiliation(s)
- M Gotesman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | | | | |
Collapse
|
41
|
Abstract
Early in evolution, Ca(2+) emerged as the most important second messenger for regulating widely different cellular functions. In eukaryotic cells Ca(2+) signals originate from several sources, i.e. influx from the outside medium, release from internal stores or from both. In mammalian cells, Ca(2+)-release channels represented by inositol 1,4,5-trisphosphate receptors and ryanodine receptors (InsP3R and RyR, respectively) are the most important. In unicellular organisms and plants, these channels are characterised with much less precision. In the ciliated protozoan, Paramecium tetraurelia, 34 molecularly distinct Ca(2+)-release channels that can be grouped in six subfamilies, based on criteria such as domain structure, pore, selectivity filter and activation mechanism have been identified. Some of these channels are genuine InsP3Rs and some are related to RyRs. Others show some--but not all--features that are characteristic for one or the other type of release channel. Localisation and gene silencing experiments revealed widely different--yet distinct--localisation, activation and functional engagement of the different Ca(2+)-release channels. Here, we shall discuss early evolutionary routes of Ca(2+)-release machinery in protozoa and demonstrate that detailed domain analyses and scrutinised functional analyses are instrumental for in-depth evolutionary mapping of Ca(2+)-release channels in unicellular organisms.
Collapse
Affiliation(s)
- Helmut Plattner
- Faculty of Biology, University of Konstanz, 78457 Konstanz, Germany.
| | | |
Collapse
|
42
|
Najle SR, Nusblat AD, Nudel CB, Uttaro AD. The Sterol-C7 desaturase from the ciliate Tetrahymena thermophila is a Rieske Oxygenase, which is highly conserved in animals. Mol Biol Evol 2013; 30:1630-43. [PMID: 23603937 DOI: 10.1093/molbev/mst076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ciliate Tetrahymena thermophila incorporates sterols from its environment that desaturates at positions C5(6), C7(8), and C22(23). Phytosterols are additionally modified by removal of the ethyl group at carbon 24 (C24). The enzymes involved are oxygen-, NAD(P)H-, and cytochrome b5 dependent, reason why they were classified as members of the hydroxylases/desaturases superfamily. The ciliate's genome revealed the presence of seven putative sterol desaturases belonging to this family, two of which we have previously characterized as the C24-de-ethylase and C5(6)-desaturase. A Rieske oxygenase was also identified; this type of enzyme, with sterol C7(8)-desaturase activity, was observed only in animals, called Neverland in insects and DAF-36 in nematodes. They perform the conversion of cholesterol into 7-dehydrocholesterol, first step in the synthesis of the essential hormones ecdysteroids and dafachronic acids. By adapting an RNA interference-by-feeding protocol, we easily screened six of the eight genes described earlier, allowing the characterization of the Rieske-like oxygenase as the ciliate's C7(8)-desaturase (Des7p). This characterization was confirmed by obtaining the corresponding knockout mutant, making Des7p the first nonanimal Rieske-sterol desaturase described. To our knowledge, this is the first time that the feeding-RNAi technique was successfully applied in T. thermophila, enabling to consider such methodology for future reverse genetics high-throughput screenings in this ciliate. Bioinformatics analyses revealed the presence of Des7p orthologs in other Oligohymenophorean ciliates and in nonanimal Opisthokonts, like the protists Salpingoeca rosetta and Capsaspora owczarzaki. A horizontal gene transfer event from a unicellular Opisthokont to an ancient phagotrophic Oligohymenophorean could explain the acquisition of the Rieske oxygenase by Tetrahymena.
Collapse
Affiliation(s)
- Sebastián R Najle
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | |
Collapse
|
43
|
Abstract
We live on a microbial planet. Microorganisms dominate in terms of numbers of lineages, numbers of organisms, biomass and evolutionary innovations. Yet much remains to be learned about our microbial neighbours. We have gotten to know a few species that have been transformed into 'laboratory rats' (i.e. model organisms), but even here our understanding of the natural history of these lineages remains inadequate as there are few data from populations living in natural habitats. Zufall et al. (2013) move beyond this trend by providing insights into the natural history of Tetrahymena thermophila, a ciliate that has been used in many studies of cellular and molecular biology. Characterization of T. thermophila sampled from numerous ponds across this ciliate's range in Eastern North America reveals the following: (i) considerable differentiation among isolates, with the greatest diversity among lineages in New England, and (ii) a relatively small effective population size for this model ciliate. Such population data are fundamental for inferences about the origins of the numerous remarkable features of T. thermophila.
Collapse
Affiliation(s)
- Laura A Katz
- Biological Sciences, Smith College, Northampton, MA, USA.
| | | |
Collapse
|
44
|
Kremer K, Kamin D, Rittweger E, Wilkes J, Flammer H, Mahler S, Heng J, Tonkin CJ, Langsley G, Hell SW, Carruthers VB, Ferguson DJP, Meissner M. An overexpression screen of Toxoplasma gondii Rab-GTPases reveals distinct transport routes to the micronemes. PLoS Pathog 2013; 9:e1003213. [PMID: 23505371 PMCID: PMC3591302 DOI: 10.1371/journal.ppat.1003213] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/10/2013] [Indexed: 12/20/2022] Open
Abstract
The basic organisation of the endomembrane system is conserved in all eukaryotes and comparative genome analyses provides compelling evidence that the endomembrane system of the last common eukaryotic ancestor (LCEA) is complex with many genes required for regulated traffic being present. Although apicomplexan parasites, causative agents of severe human and animal diseases, appear to have only a basic set of trafficking factors such as Rab-GTPases, they evolved unique secretory organelles (micronemes, rhoptries and dense granules) that are sequentially secreted during invasion of the host cell. In order to define the secretory pathway of apicomplexans, we performed an overexpression screen of Rabs in Toxoplasma gondii and identified Rab5A and Rab5C as important regulators of traffic to micronemes and rhoptries. Intriguingly, we found that not all microneme proteins traffic depends on functional Rab5A and Rab5C, indicating the existence of redundant microneme targeting pathways. Using two-colour super-resolution stimulated emission depletion (STED) we verified distinct localisations of independent microneme proteins and demonstrate that micronemal organelles are organised in distinct subsets or subcompartments. Our results suggest that apicomplexan parasites modify classical regulators of the endocytic system to carryout essential parasite-specific roles in the biogenesis of their unique secretory organelles. Eukaryotic cells evolved a highly complex endomembrane system, consisting of secretory and endocytic organelles. In the case of apicomplexan parasites unique secretory organelles have evolved that are essential for the invasion of the host cell. Surprisingly these protozoans show a paucity of trafficking factors, such as Rabs and it appears that they lost several factors involved in endocytosis. Here, we demonstrate that Rab5A and Rab5C, normally involved in endocytic uptake, actually regulate secretion in Toxoplasma gondii, since functional ablation of Rab5A or Rab5C results in aberrant transport of proteins to specialised secretory organelles called micronemes and rhoptries. Furthermore, we demonstrate that independent transport routes to micronemes exist indicating that apicomplexans have remodelled Rab5-mediated vesicular traffic into a secretory system that is essential for host cell invasion.
Collapse
Affiliation(s)
- Katrin Kremer
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Dirk Kamin
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Eva Rittweger
- German Cancer Research Center/BioQuant, Heidelberg, Germany
| | - Jonathan Wilkes
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Halley Flammer
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Sabine Mahler
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Joanne Heng
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Institut Cochin, Inserm, U567, CNRS, UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
| | - Stefan W. Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vernon B. Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - David J. P. Ferguson
- Nuffield Department of Pathology, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Markus Meissner
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Hadwiger JA. Role of the Vps9-domain protein RgfA in Dictyostelium chemotaxis and development. Can J Microbiol 2013; 59:22-7. [PMID: 23391225 DOI: 10.1139/cjm-2012-0519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteins with a Vps9 domain function as guanine nucleotide exchange factors for Rab proteins and can mediate the uptake of cell surface receptors or other molecules through endocytosis. However, genes encoding these proteins have not been previously studied in cells with robust chemotactic capabilities. Several genes encoding Vps9 domains were identified in the genome of Dictyostelium discoideum, and one of the genes, designated as rgfA (DDB_G0272038), was examined for functions in cell growth, development, and chemotaxis. The rgfA gene was expressed during vegetative growth and throughout development, but disruption of this gene resulted in no major alterations in cell growth, macropinocytosis, developmental morphology, or chemotactic movement. However, heterologous expression of RgfA resulted in a delay of developmental morphogenesis and impaired chemotaxis of cells to folate but did not affect macropinocytosis. These results suggest that RgfA might share redundant functions with other Dictyostelium Vps9-domain proteins and that heterologous expression of this protein can alter processes that depend on the reception of external signals.
Collapse
Affiliation(s)
- Jeffrey A Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA.
| |
Collapse
|
46
|
Contractile Vacuole Complex—Its Expanding Protein Inventory. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:371-416. [DOI: 10.1016/b978-0-12-407694-5.00009-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Schönemann B, Bledowski A, Sehring IM, Plattner H. A set of SNARE proteins in the contractile vacuole complex of Paramecium regulates cellular calcium tolerance and also contributes to organelle biogenesis. Cell Calcium 2012; 53:204-16. [PMID: 23280185 DOI: 10.1016/j.ceca.2012.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/15/2012] [Accepted: 11/29/2012] [Indexed: 02/07/2023]
Abstract
The contractile vacuole complex (CVC) of freshwater protists serves the extrusion of water and ions, including Ca(2+). No vesicle trafficking based on SNAREs has been detected so far in any CVC. SNAREs (soluble NSF [N-ethylmaleimide sensitive factor] attachment protein receptors) are required for membrane-to-membrane interaction, i.e. docking and fusion also in Paramecium. We have identified three v-/R- and three t/Q-SNAREs selectively in the CVC. Posttranscriptional silencing of Syb2, Syb6 or Syx2 slows down the pumping cycle; silencing of the latter two also causes vacuole swelling. Increase in extracellular Ca(2+) after Syb2, Syb6 or Syx2 silencing causes further swelling of the contractile vacuole and deceleration of its pulsation. Silencing of Syx14 or Syx15 entails lethality in the Ca(2+) stress test. Thus, the effects of silencing strictly depend on the type of the silenced SNARE and on the concentration of Ca(2+) in the medium. This shows the importance of organelle-resident SNARE functions (which may encompass the vesicular delivery of other organelle-resident proteins) for Ca(2+) tolerance. A similar principle may be applicable also to the CVC in widely different unicellular organisms. In addition, in Paramecium, silencing particularly of Syx6 causes aberrant positioning of the CVC during de novo biogenesis before cytokinesis.
Collapse
|
48
|
Abstract
Phage-encoded Shiga toxin (Stx) acts as a bacterial defense against the eukaryotic predator Tetrahymena thermophila. It is unknown how Stx enters Tetrahymena protozoa or how it kills them. Tetrahymena protozoa are phagocytotic; hence, Stx could gain entry to the cytoplasm through the oral apparatus or via endocytosis. We find that Stx2 can kill T. thermophila protozoa that lack an oral apparatus, indicating that Stx2 can enter these cells via endocytosis. As opposed to the lack of effect on mammalian phagocytes, Stx2 produced by bacteria encapsulated within phagocytotic vesicles is also capable of killing Tetrahymena. Addition of an excess of the carbohydrate binding subunits of Stx2 (StxB) and/or ricin (ricin B) blocks Stx2 cytotoxicity. Thus, regardless of whether Stx2 enters the cytoplasm by endocytosis or from the phagocytotic vesicle, this transport is mediated by a putative glycoconjugate receptor. Bacteriophage-mediated lysis of Stx-encoding bacteria is necessary for Stx toxicity in Tetrahymena; i.e., toxin released as a consequence of digestion of bacteria by Tetrahymena is harmless to the cell. This finding provides a rationale as to why the genes encoding Stx are found almost exclusively on bacteriophages; Stx must be released from the bacteria prior to the digestion of the cell, or it will not be able to exert its cytotoxic effect. It also suggests a reason why other bacterial exotoxins are also found only on temperate bacteriophages. Incubation of Tetrahymena with purified Stx2 decreases total protein synthesis. This finding indicates that, similar to mammalian cells, Stx2 kills Tetrahymena by inactivating its ribosomes. Tetrahymena is a bacterial predator and a model for mammalian phagocytosis and intracellular vesicular trafficking. Phage-encoded exotoxins apparently have evolved for the purpose of bacterial antipredator defense. These exotoxins kill mammalian cells by inactivating universally conserved factors and/or pathways. Tetrahymena and susceptible mammalian cells are killed when exposed to bacteriophage-encoded Shiga toxin (Stx). Stx toxicity in mammalian cells requires Stx binding to the globotriaosyl ceramide (Gb3) receptor, followed by receptor-mediated endocytosis (RME). We show that, similar to mammalian cells, internalized Stx inhibits protein synthesis in Tetrahymena. Although Tetrahymena lacks Gb3, our results suggest that the cytotoxic effect of Stx on Tetrahymena is apparently mediated by a receptor, thereby arguing for the existence of RME in Tetrahymena. As opposed to the case with mammalian phagocytes, Stx produced by bacteria inside Tetrahymena is cytotoxic, suggesting that these cells may represent a “missing link” between unicellular eukaryotic bacterial predators and phagocytotic mammalian cells.
Collapse
|
49
|
Poklepovich TJ, Rinaldi MA, Tomazic ML, Favale NO, Turkewitz AP, Nudel CB, Nusblat AD. The cytochrome b5 dependent C-5(6) sterol desaturase DES5A from the endoplasmic reticulum of Tetrahymena thermophila complements ergosterol biosynthesis mutants in Saccharomyces cerevisiae. Steroids 2012; 77:1313-20. [PMID: 22982564 PMCID: PMC3501532 DOI: 10.1016/j.steroids.2012.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 11/23/2022]
Abstract
Tetrahymena thermophila is a free-living ciliate with no exogenous sterol requirement. However, it can perform several modifications on externally added sterols including desaturation at C5(6), C7(8), and C22(23). Sterol desaturases in Tetrahymena are microsomal enzymes that require Cyt b(5), Cyt b(5) reductase, oxygen, and reduced NAD(P)H for their activity, and some of the genes encoding these functions have recently been identified. The DES5A gene encodes a C-5(6) sterol desaturase, as shown by gene knockout in Tetrahymena. To confirm and extend that result, and to develop new approaches to gene characterization in Tetrahymena, we have now, expressed DES5A in Saccharomyces cerevisiae. The DES5A gene was codon optimized and expressed in a yeast mutant, erg3Δ, which is disrupted for the gene encoding the S. cerevisiae C-5(6) sterol desaturase ERG3. The complemented strain was able to accumulate 74% of the wild type level of ergosterol, and also lost the hypersensitivity to cycloheximide associated with the lack of ERG3 function. C-5(6) sterol desaturases are expected to function at the endoplasmic reticulum. Consistent with this, a GFP-tagged copy of Des5Ap was localized to the endoplasmic reticulum in both Tetrahymena and yeast. This work shows for the first time that both function and localization are conserved for a microsomal enzyme between ciliates and fungi, notwithstanding the enormous evolutionary distance between these lineages. The results suggest that heterologous expression of ciliate genes in S. cerevisiae provides a useful tool for the characterization of genes in Tetrahymena, including genes encoding membrane protein complexes.
Collapse
Affiliation(s)
- Tomas J. Poklepovich
- Cátedra de Biotecnología y Microbiología Industrial, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (C1113AAD) Buenos Aires, Argentina
| | - Mauro A. Rinaldi
- Cátedra de Biotecnología y Microbiología Industrial, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (C1113AAD) Buenos Aires, Argentina
| | - Mariela L. Tomazic
- Cátedra de Biotecnología y Microbiología Industrial, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (C1113AAD) Buenos Aires, Argentina
| | - Nicolas O. Favale
- Cátedra de Biología Celular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (C1113AAD) Buenos Aires, Argentina
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 E. 58th Street, Chicago, IL, USA
| | - Clara B. Nudel
- Cátedra de Biotecnología y Microbiología Industrial, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (C1113AAD) Buenos Aires, Argentina
| | - Alejandro D. Nusblat
- Cátedra de Biotecnología y Microbiología Industrial, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (C1113AAD) Buenos Aires, Argentina
- Corresponding author at all stages of refereeing and publication, also post-publication: * Alejandro D. Nusblat, , Address: Cátedra de Biotecnología y Microbiología Industrial, Facultad de Farmacia y Bioquímica, Universidad de Buenos, Aires, Junín 956, (C1113AAD) Buenos Aires, Argentina. Phone: +54-11-4964-8270, Fax: +54-11-4964-8200
| |
Collapse
|
50
|
Klöpper TH, Kienle N, Fasshauer D, Munro S. Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biol 2012; 10:71. [PMID: 22873208 PMCID: PMC3425129 DOI: 10.1186/1741-7007-10-71] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Membrane-bound organelles are a defining feature of eukaryotic cells, and play a central role in most of their fundamental processes. The Rab G proteins are the single largest family of proteins that participate in the traffic between organelles, with 66 Rabs encoded in the human genome. Rabs direct the organelle-specific recruitment of vesicle tethering factors, motor proteins, and regulators of membrane traffic. Each organelle or vesicle class is typically associated with one or more Rab, with the Rabs present in a particular cell reflecting that cell's complement of organelles and trafficking routes. RESULTS Through iterative use of hidden Markov models and tree building, we classified Rabs across the eukaryotic kingdom to provide the most comprehensive view of Rab evolution obtained to date. A strikingly large repertoire of at least 20 Rabs appears to have been present in the last eukaryotic common ancestor (LECA), consistent with the 'complexity early' view of eukaryotic evolution. We were able to place these Rabs into six supergroups, giving a deep view into eukaryotic prehistory. CONCLUSIONS Tracing the fate of the LECA Rabs revealed extensive losses with many extant eukaryotes having fewer Rabs, and none having the full complement. We found that other Rabs have expanded and diversified, including a large expansion at the dawn of metazoans, which could be followed to provide an account of the evolutionary history of all human Rabs. Some Rab changes could be correlated with differences in cellular organization, and the relative lack of variation in other families of membrane-traffic proteins suggests that it is the changes in Rabs that primarily underlies the variation in organelles between species and cell types.
Collapse
Affiliation(s)
- Tobias H Klöpper
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | |
Collapse
|