1
|
Sainty R, Silver MJ, Prentice AM, Monk D. The influence of early environment and micronutrient availability on developmental epigenetic programming: lessons from the placenta. Front Cell Dev Biol 2023; 11:1212199. [PMID: 37484911 PMCID: PMC10358779 DOI: 10.3389/fcell.2023.1212199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
DNA methylation is the most commonly studied epigenetic mark in humans, as it is well recognised as a stable, heritable mark that can affect genome function and influence gene expression. Somatic DNA methylation patterns that can persist throughout life are established shortly after fertilisation when the majority of epigenetic marks, including DNA methylation, are erased from the pre-implantation embryo. Therefore, the period around conception is potentially critical for influencing DNA methylation, including methylation at imprinted alleles and metastable epialleles (MEs), loci where methylation varies between individuals but is correlated across tissues. Exposures before and during conception can affect pregnancy outcomes and health throughout life. Retrospective studies of the survivors of famines, such as those exposed to the Dutch Hunger Winter of 1944-45, have linked exposures around conception to later disease outcomes, some of which correlate with DNA methylation changes at certain genes. Animal models have shown more directly that DNA methylation can be affected by dietary supplements that act as cofactors in one-carbon metabolism, and in humans, methylation at birth has been associated with peri-conceptional micronutrient supplementation. However, directly showing a role of micronutrients in shaping the epigenome has proven difficult. Recently, the placenta, a tissue with a unique hypomethylated methylome, has been shown to possess great inter-individual variability, which we highlight as a promising target tissue for studying MEs and mixed environmental exposures. The placenta has a critical role shaping the health of the fetus. Placenta-associated pregnancy complications, such as preeclampsia and intrauterine growth restriction, are all associated with aberrant patterns of DNA methylation and expression which are only now being linked to disease risk later in life.
Collapse
Affiliation(s)
- Rebecca Sainty
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Matt J. Silver
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrew M. Prentice
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - David Monk
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
2
|
Ma X, Wang B, Li Z, Ding X, Wen Y, Shan W, Hu W, Wang X, Xia Y. Effects of glufosinate-ammonium on male reproductive health: Focus on epigenome and transcriptome in mouse sperm. CHEMOSPHERE 2022; 287:132395. [PMID: 34597628 DOI: 10.1016/j.chemosphere.2021.132395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Glufosinate-ammonium (GLA) is a widely used herbicide with emerging concern over its neural and reproductive toxicity. To uncover potential effects of GLA on male reproductive health in mammals, adult male C57BL/6J mice were administered 0.2 mg/kg·d GLA for 5 weeks. After examination on fertility, testis histology and semen quality in the GLA group, we performed deep sequencing to identify repressive epigenetic marks including DNA methylation and histone modifications (H3K27me3 and H3K9me3), together with mRNA transcript levels in sperm. Then, we integrated multi-omics sequencing data to comprehensively explore GLA-induced epigenetic and transcriptomic alterations. We found no significant difference either on fertility, testis histology or semen quality-related indicators. As for epigenome, the protein level of H3K27me3 was significantly increased in GLA sperm. Next generation sequencing showed alterations of these epigenetic marks and extensive transcription inhibition in sperm. These differential repressive marks were mainly distributed at intergenic regions and introns. According to results by Gene Ontology enrichment analysis, both differentially methylated and expressed genes were mainly enriched in pathways related to synapse organization. Subtle differences in genomic imprinting were also observed between the two groups. These results suggested that GLA predominantly impaired sperm epigenome and transcriptome in mice, with little effect on fertility, testis histology or semen quality. Further studies on human sperm using similar strategies need to be conducted for a better understanding of the male reproductive toxicity of GLA.
Collapse
Affiliation(s)
- Xuan Ma
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Bingqian Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhe Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xingwang Ding
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ya Wen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wenqi Shan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Toschi P, Baratta M. Ruminant Placental Adaptation in Early Maternal Undernutrition: An Overview. Front Vet Sci 2021; 8:755034. [PMID: 34746288 PMCID: PMC8565373 DOI: 10.3389/fvets.2021.755034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Correct placental development during early gestation is considered the main determinant of fetal growth in late pregnancy. A reduction in maternal nourishment occurring across the early developmental window has been linked to a wide range of pregnancy disorders affecting placental transport capacity and consequently the fetal nutrient supply line, with long-term implications for offspring health and productivity. In livestock, ruminant species specifically experience maternal undernutrition in extensive systems due to seasonal changes in food availability, with significant economic losses for the farmer in some situations. In this review, we aim to discuss the effects of reduced maternal nutrition during early pregnancy on placental development with a specific focus on ruminant placenta physiology. Different types of placental adaptation strategies were examined, also considering the potential effects on the epigenetic landscape, which is known to undergo extensive reprogramming during early mammalian development. We also discussed the involvement of autophagy as a cellular degradation mechanism that may play a key role in the placental response to nutrient deficiency mediated by mammalian target of rapamycin, named the mTOR intracellular pathway.
Collapse
Affiliation(s)
- Paola Toschi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Mario Baratta
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, Viale delle Scienze, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Santini L, Halbritter F, Titz-Teixeira F, Suzuki T, Asami M, Ma X, Ramesmayer J, Lackner A, Warr N, Pauler F, Hippenmeyer S, Laue E, Farlik M, Bock C, Beyer A, Perry ACF, Leeb M. Genomic imprinting in mouse blastocysts is predominantly associated with H3K27me3. Nat Commun 2021; 12:3804. [PMID: 34155196 PMCID: PMC8217501 DOI: 10.1038/s41467-021-23510-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
In mammalian genomes, differentially methylated regions (DMRs) and histone marks including trimethylation of histone 3 lysine 27 (H3K27me3) at imprinted genes are asymmetrically inherited to control parentally-biased gene expression. However, neither parent-of-origin-specific transcription nor imprints have been comprehensively mapped at the blastocyst stage of preimplantation development. Here, we address this by integrating transcriptomic and epigenomic approaches in mouse preimplantation embryos. We find that seventy-one genes exhibit previously unreported parent-of-origin-specific expression in blastocysts (nBiX: novel blastocyst-imprinted expressed). Uniparental expression of nBiX genes disappears soon after implantation. Micro-whole-genome bisulfite sequencing (µWGBS) of individual uniparental blastocysts detects 859 DMRs. We further find that 16% of nBiX genes are associated with a DMR, whereas most are associated with parentally-biased H3K27me3, suggesting a role for Polycomb-mediated imprinting in blastocysts. nBiX genes are clustered: five clusters contained at least one published imprinted gene, and five clusters exclusively contained nBiX genes. These data suggest that early development undergoes a complex program of stage-specific imprinting involving different tiers of regulation. In most mammals, imprinted genes contain epigenetic marks that differ in each parental genome and control their parent-of-origin-specific expression. Here, the authors map imprinted genes in mouse preimplantation embryos and find that imprinted gene expression in blastocysts is mainly dependent on Polycomb-mediated H3K27me3-associated gene silencing.
Collapse
Affiliation(s)
- Laura Santini
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Florian Halbritter
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Fabian Titz-Teixeira
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Toru Suzuki
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Maki Asami
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Xiaoyan Ma
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Julia Ramesmayer
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Andreas Lackner
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Nick Warr
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, UK
| | - Florian Pauler
- Institute for Science and Technology Austria, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute for Science and Technology Austria, Klosterneuburg, Austria
| | - Ernest Laue
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Andreas Beyer
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Anthony C F Perry
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath, UK.
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria.
| |
Collapse
|
5
|
Abstract
Genomic imprinting is the monoallelic expression of a gene based on parent of origin and is a consequence of differential epigenetic marking between the male and female germlines. Canonically, genomic imprinting is mediated by allelic DNA methylation. However, recently it has been shown that maternal H3K27me3 can result in DNA methylation-independent imprinting, termed "noncanonical imprinting." In this review, we compare and contrast what is currently known about the underlying mechanisms, the role of endogenous retroviral elements, and the conservation of canonical and noncanonical genomic imprinting.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| |
Collapse
|
6
|
Castillo‐Fernandez J, Herrera‐Puerta E, Demond H, Clark SJ, Hanna CW, Hemberger M, Kelsey G. Increased transcriptome variation and localised DNA methylation changes in oocytes from aged mice revealed by parallel single-cell analysis. Aging Cell 2020; 19:e13278. [PMID: 33201571 PMCID: PMC7744954 DOI: 10.1111/acel.13278] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/27/2020] [Accepted: 10/18/2020] [Indexed: 01/08/2023] Open
Abstract
Advancing maternal age causes a progressive reduction in fertility. The decline in developmental competence of the oocyte with age is likely to be a consequence of multiple contributory factors. Loss of epigenetic quality of the oocyte could impair early developmental events or programme adverse outcomes in offspring that manifest only later in life. Here, we undertake joint profiling of the transcriptome and DNA methylome of individual oocytes from reproductively young and old mice undergoing natural ovulation. We find reduced complexity as well as increased variance in the transcriptome of oocytes from aged females. This transcriptome heterogeneity is reflected in the identification of discrete sub-populations. Oocytes with a transcriptome characteristic of immature chromatin configuration (NSN) clustered into two groups: one with reduced developmental competence, as indicated by lower expression of maternal effect genes, and one with a young-like transcriptome. Oocytes from older females had on average reduced CpG methylation, but the characteristic bimodal methylation landscape of the oocyte was preserved. Germline differentially methylated regions of imprinted genes were appropriately methylated irrespective of age. For the majority of differentially expressed transcripts, the absence of correlated methylation changes suggests a post-transcriptional basis for most age-related effects on the transcriptome. However, we did find differences in gene body methylation at which there were corresponding changes in gene expression, indicating age-related effects on transcription that translate into methylation differences. Interestingly, oocytes varied in expression and methylation of these genes, which could contribute to variable competence of oocytes or penetrance of maternal age-related phenotypes in offspring.
Collapse
Affiliation(s)
| | - Erika Herrera‐Puerta
- Epigenetics ProgrammeBabraham InstituteCambridgeUK
- Science and Biotechnology Faculty, Biology ProgramCES UniversityMedellinColombia
| | | | | | - Courtney W. Hanna
- Epigenetics ProgrammeBabraham InstituteCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Myriam Hemberger
- Epigenetics ProgrammeBabraham InstituteCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
- Departments of Biochemistry & Molecular Biology and Medical GeneticsCumming School of MedicineUniversity of CalgaryCalgaryALCanada
- Alberta Children’s Hospital Research InstituteUniversity of CalgaryCalgaryALCanada
| | - Gavin Kelsey
- Epigenetics ProgrammeBabraham InstituteCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| |
Collapse
|
7
|
Bogutz AB, Brind'Amour J, Kobayashi H, Jensen KN, Nakabayashi K, Imai H, Lorincz MC, Lefebvre L. Evolution of imprinting via lineage-specific insertion of retroviral promoters. Nat Commun 2019; 10:5674. [PMID: 31831741 PMCID: PMC6908575 DOI: 10.1038/s41467-019-13662-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023] Open
Abstract
Imprinted genes are expressed from a single parental allele, with the other allele often silenced by DNA methylation (DNAme) established in the germline. While species-specific imprinted orthologues have been documented, the molecular mechanisms underlying the evolutionary switch from biallelic to imprinted expression are unknown. During mouse oogenesis, gametic differentially methylated regions (gDMRs) acquire DNAme in a transcription-guided manner. Here we show that oocyte transcription initiating in lineage-specific endogenous retroviruses (ERVs) is likely responsible for DNAme establishment at 4/6 mouse-specific and 17/110 human-specific imprinted gDMRs. The latter are divided into Catarrhini- or Hominoidea-specific gDMRs embedded within transcripts initiating in ERVs specific to these primate lineages. Strikingly, imprinting of the maternally methylated genes Impact and Slc38a4 was lost in the offspring of female mice harboring deletions of the relevant murine-specific ERVs upstream of these genes. Our work reveals an evolutionary mechanism whereby maternally silenced genes arise from biallelically expressed progenitors. Although many species-specific imprinted genes have been identified, how the evolutionary switch from biallelic to imprinted expression occurs is still unknown. Here authors find that lineage-specific ERVs active as oocyte promoters can induce de novo DNA methylation at gDMRs and imprinting.
Collapse
Affiliation(s)
- Aaron B Bogutz
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Julie Brind'Amour
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kristoffer N Jensen
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Kazuhiko Nakabayashi
- Division of Developmental Genomics, Research Institute, National Center for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Hiroo Imai
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Matthew C Lorincz
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Louis Lefebvre
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
8
|
Nowialis P, Lopusna K, Opavska J, Haney SL, Abraham A, Sheng P, Riva A, Natarajan A, Guryanova O, Simpson M, Hlady R, Xie M, Opavsky R. Catalytically inactive Dnmt3b rescues mouse embryonic development by accessory and repressive functions. Nat Commun 2019; 10:4374. [PMID: 31558711 PMCID: PMC6763448 DOI: 10.1038/s41467-019-12355-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/04/2019] [Indexed: 01/19/2023] Open
Abstract
DNA methylation regulates gene expression in a variety of processes, including mouse embryonic development. Four catalytically active enzymes function in mice as DNA methyltransferases (Dnmts) and as transcriptional regulators. Inactivation of Dnmt3b results in mouse embryonic lethality, but which activities are involved is unclear. Here we show that catalytically inactive Dnmt3b restores a majority of methylation and expression changes deregulated in the absence of Dnmt3b, and as a result, mice survive embryonic development. Thus, Dnmt3b functions as an accessory cofactor supporting catalytic activities performed by other Dnmts. We further demonstrate that Dnmt3b is linked to a control of major developmental pathways, including Wnt and hedgehog signaling. Dnmt3b directly represses Wnt9b whose aberrant up-regulation contributes to embryonic lethality of Dnmt3b knockout embryos. Our results highlight that Dnmt3b is a multifaceted protein that serves as an enzyme, an accessory factor for other methyltransferases, and as a transcriptional repressor in mouse embryogenesis.
Collapse
Affiliation(s)
- Pawel Nowialis
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Katarina Lopusna
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Jana Opavska
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Staci L Haney
- Department of Internal Medicine, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ajay Abraham
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 263, Gainesville, FL, 32610, USA
| | - Alberto Riva
- ICBR Bioinformatics, Cancer and Genetics Research Complex, University of Florida, P.O. Box 103622, Gainesville, FL, 32610, USA
| | - Amarnath Natarajan
- University of Nebraska Medical Center, The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, 986805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Olga Guryanova
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 260, Gainesville, FL, 32610, USA
| | - Melanie Simpson
- Molecular and Structural Biochemistry, NC State University, Raleigh, NC, 27695, USA
| | - Ryan Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55901, USA
| | - Mingyi Xie
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 263, Gainesville, FL, 32610, USA
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
9
|
Spinelli P, Latchney SE, Reed JM, Fields A, Baier BS, Lu X, McCall MN, Murphy SP, Mak W, Susiarjo M. Identification of the novel Ido1 imprinted locus and its potential epigenetic role in pregnancy loss. Hum Mol Genet 2019; 28:662-674. [PMID: 30403776 DOI: 10.1093/hmg/ddy383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/29/2018] [Indexed: 11/14/2022] Open
Abstract
Previous studies show that aberrant tryptophan catabolism reduces maternal immune tolerance and adversely impacts pregnancy outcomes. Tryptophan depletion in pregnancy is facilitated by increased activity of tryptophan-depleting enzymes [i.e. the indolamine-2,3 dioxygenase (IDO)1 and IDO2) in the placenta. In mice, inhibition of IDO1 activity during pregnancy results in fetal loss; however, despite its important role, regulation of Ido1 gene transcription is unknown. The current study shows that the Ido1 and Ido2 genes are imprinted and maternally expressed in mouse placentas. DNA methylation analysis demonstrates that nine CpG sites at the Ido1 promoter constitute a differentially methylated region that is highly methylated in sperm but unmethylated in oocytes. Bisulfite cloning sequencing analysis shows that the paternal allele is hypermethylated while the maternal allele shows low levels of methylation in E9.5 placenta. Further study in E9.5 placentas from the CBA/J X DBA/2 spontaneous abortion mouse model reveals that aberrant methylation of Ido1 is linked to pregnancy loss. DNA methylation analysis in humans shows that IDO1 is hypermethylated in human sperm but partially methylated in placentas, suggesting similar methylation patterns to mouse. Importantly, analysis in euploid placentas from first trimester pregnancy loss reveals that IDO1 methylation significantly differs between the two placenta cohorts, with most CpG sites showing increased percent of methylation in miscarriage placentas. Our study suggests that DNA methylation is linked to regulation of Ido1/IDO1 expression and altered Ido1/IDO1 DNA methylation can adversely influence pregnancy outcomes.
Collapse
Affiliation(s)
- Philip Spinelli
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sarah E Latchney
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jasmine M Reed
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ashley Fields
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Brian S Baier
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xiang Lu
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Shawn P Murphy
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Winifred Mak
- Department of Obstetric Gynecology, Dell Medical School, University of Texas, Austin, TX, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
10
|
Ferguson-Smith AC, Bourc'his D. The discovery and importance of genomic imprinting. eLife 2018; 7:42368. [PMID: 30343680 PMCID: PMC6197852 DOI: 10.7554/elife.42368] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/07/2018] [Indexed: 11/29/2022] Open
Abstract
The discovery of genomic imprinting by Davor Solter, Azim Surani and co-workers in
the mid-1980s has provided a foundation for the study of epigenetic inheritance and
the epigenetic control of gene activity and repression, especially during
development. It also has shed light on a range of diseases, including both rare
genetic disorders and common diseases. This article is being published to celebrate
Solter and Surani receiving a 2018 Canada Gairdner International Award "for the
discovery of mammalian genomic imprinting that causes parent-of-origin specific gene
expression and its consequences for development and disease".
Collapse
Affiliation(s)
| | - Deborah Bourc'his
- Genetics and Developmental Biology Department, Institut Curie, Paris, France
| |
Collapse
|
11
|
Yarychkivska O, Shahabuddin Z, Comfort N, Boulard M, Bestor TH. BAH domains and a histone-like motif in DNA methyltransferase 1 (DNMT1) regulate de novo and maintenance methylation in vivo. J Biol Chem 2018; 293:19466-19475. [PMID: 30341171 DOI: 10.1074/jbc.ra118.004612] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/12/2018] [Indexed: 12/31/2022] Open
Abstract
DNA methyltransferase 1 (DNMT1) is a multidomain protein believed to be involved only in the passive transmission of genomic methylation patterns via maintenance methylation. The mechanisms that regulate DNMT1 activity and targeting are complex and poorly understood. We used embryonic stem (ES) cells to investigate the function of the uncharacterized bromo-adjacent homology (BAH) domains and the glycine-lysine (GK) repeats that join the regulatory and catalytic domains of DNMT1. We removed the BAH domains by means of a CRISPR/Cas9-mediated deletion within the endogenous Dnmt1 locus. The internally deleted protein failed to associate with replication foci during S phase in vivo and lost the ability to mediate maintenance methylation. The data indicate that ablation of the BAH domains causes DNMT1 to be excluded from replication foci even in the presence of the replication focus-targeting sequence (RFTS). The GK repeats resemble the N-terminal tails of histones H2A and H4 and are normally acetylated. Substitution of lysines within the GK repeats with arginines to prevent acetylation did not alter the maintenance activity of DNMT1 but unexpectedly activated de novo methylation of paternal imprinting control regions (ICRs) in mouse ES cells; maternal ICRs remained unmethylated. We propose a model under which DNMT1 deposits paternal imprints in male germ cells in an acetylation-dependent manner. These data reveal that DNMT1 responds to multiple regulatory inputs that control its localization as well as its activity and is not purely a maintenance methyltransferase but can participate in the de novo methylation of a small but essential compartment of the genome.
Collapse
Affiliation(s)
| | | | - Nicole Comfort
- Environmental Health Science, College of Physicians and Surgeons of Columbia University, New York, New York 10032, and
| | | | | |
Collapse
|
12
|
Cowley M, Skaar DA, Jima DD, Maguire RL, Hudson KM, Park SS, Sorrow P, Hoyo C. Effects of Cadmium Exposure on DNA Methylation at Imprinting Control Regions and Genome-Wide in Mothers and Newborn Children. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:037003. [PMID: 29529597 PMCID: PMC6071808 DOI: 10.1289/ehp2085] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Imprinted genes are defined by their preferential expression from one of the two parental alleles. This unique mode of gene expression is dependent on allele-specific DNA methylation profiles established at regulatory sequences called imprinting control regions (ICRs). These loci have been used as biosensors to study how environmental exposures affect methylation and transcription. However, a critical unanswered question is whether they are more, less, or equally sensitive to environmental stressors as the rest of the genome. OBJECTIVES Using cadmium exposure in humans as a model, we aimed to determine the relative sensitivity of ICRs to perturbation of methylation compared to similar, nonimprinted loci in the genome. METHODS We assayed DNA methylation genome-wide using bisulfite sequencing of 19 newborn cord blood and 20 maternal blood samples selected on the basis of maternal blood cadmium levels. Differentially methylated regions (DMRs) associated with cadmium exposure were identified. RESULTS In newborn cord blood and maternal blood, 641 and 1,945 cadmium-associated DMRs were identified, respectively. DMRs were more common at the 15 maternally methylated ICRs than at similar nonimprinted loci in newborn cord blood (p=5.64×10-8) and maternal blood (p=6.22×10-14), suggesting a higher sensitivity for ICRs to cadmium. Genome-wide, Enrichr analysis indicated that the top three functional categories for genes that overlapped DMRs in maternal blood were body mass index (BMI) (p=2.0×10-5), blood pressure (p=3.8×10-5), and body weight (p=0.0014). In newborn cord blood, the top three functional categories were BMI, atrial fibrillation, and hypertension, although associations were not significant after correction for multiple testing (p=0.098). These findings suggest that epigenetic changes may contribute to the etiology of cadmium-associated diseases. CONCLUSIONS We analyzed cord blood and maternal blood DNA methylation profiles genome-wide at nucleotide resolution in individuals selected for high and low blood cadmium levels in the first trimester. Our findings suggest that ICRs may be hot spots for perturbation by cadmium, motivating further study of these loci to investigate potential mechanisms of cadmium action. https://doi.org/10.1289/EHP2085.
Collapse
Affiliation(s)
- Michael Cowley
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
- W.M. Keck Center for Behavioral Biology , North Carolina State University , Raleigh, North Carolina, USA
| | - David A Skaar
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Dereje D Jima
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University , Raleigh, North Carolina, USA
| | - Rachel L Maguire
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Kathleen M Hudson
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Sarah S Park
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Patricia Sorrow
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| |
Collapse
|
13
|
Sex chromosomes drive gene expression and regulatory dimorphisms in mouse embryonic stem cells. Biol Sex Differ 2017; 8:28. [PMID: 28818098 PMCID: PMC5561606 DOI: 10.1186/s13293-017-0150-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/10/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Pre-implantation embryos exhibit sexual dimorphisms in both primates and rodents. To determine whether these differences reflected sex-biased expression patterns, we generated transcriptome profiles for six 40,XX, six 40,XY, and two 39,X mouse embryonic stem (ES) cells by RNA sequencing. RESULTS We found hundreds of coding and non-coding RNAs that were differentially expressed between male and female cells. Surprisingly, the majority of these were autosomal and included RNA encoding transcription and epigenetic and chromatin remodeling factors. We showed differential Prdm14-responsive enhancer activity in male and female cells, correlating with the sex-specific levels of Prdm14 expression. This is the first time sex-specific enhancer activity in ES cells has been reported. Evaluation of X-linked gene expression patterns between our XX and XY lines revealed four distinct categories: (1) genes showing 2-fold greater expression in the female cells; (2) a set of genes with expression levels well above 2-fold in female cells; (3) genes with equivalent RNA levels in male and female cells; and strikingly, (4) a small number of genes with higher expression in the XY lines. Further evaluation of autosomal gene expression revealed differential expression of imprinted loci, despite appropriate parent-of-origin patterns. The 39,X lines aligned closely with the XY cells and provided insights into potential regulation of genes associated with Turner syndrome in humans. Moreover, inclusion of the 39,X lines permitted three-way comparisons, delineating X and Y chromosome-dependent patterns. CONCLUSIONS Overall, our results support the role of the sex chromosomes in establishing sex-specific networks early in embryonic development and provide insights into effects of sex chromosome aneuploidies originating at those stages.
Collapse
|
14
|
Heterochromatin and the molecular mechanisms of ‘parent-of-origin’ effects in animals. J Biosci 2016; 41:759-786. [DOI: 10.1007/s12038-016-9650-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Hanna CW, Peñaherrera MS, Saadeh H, Andrews S, McFadden DE, Kelsey G, Robinson WP. Pervasive polymorphic imprinted methylation in the human placenta. Genome Res 2016; 26:756-67. [PMID: 26769960 PMCID: PMC4889973 DOI: 10.1101/gr.196139.115] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/07/2016] [Indexed: 01/19/2023]
Abstract
The maternal and paternal copies of the genome are both required for mammalian development, and this is primarily due to imprinted genes, those that are monoallelically expressed based on parent-of-origin. Typically, this pattern of expression is regulated by differentially methylated regions (DMRs) that are established in the germline and maintained after fertilization. There are a large number of germline DMRs that have not yet been associated with imprinting, and their function in development is unknown. In this study, we developed a genome-wide approach to identify novel imprinted DMRs in the human placenta and investigated the dynamics of these imprinted DMRs during development in somatic and extraembryonic tissues. DNA methylation was evaluated using the Illumina HumanMethylation450 array in 134 human tissue samples, publicly available reduced representation bisulfite sequencing in the human embryo and germ cells, and targeted bisulfite sequencing in term placentas. Forty-three known and 101 novel imprinted DMRs were identified in the human placenta by comparing methylation between diandric and digynic triploid conceptions in addition to female and male gametes. Seventy-two novel DMRs showed a pattern consistent with placental-specific imprinting, and this monoallelic methylation was entirely maternal in origin. Strikingly, these DMRs exhibited polymorphic imprinted methylation between placental samples. These data suggest that imprinting in human development is far more extensive and dynamic than previously reported and that the placenta preferentially maintains maternal germline-derived DNA methylation.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Maria S Peñaherrera
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada; Child & Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Heba Saadeh
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom; Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Deborah E McFadden
- Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Wendy P Robinson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada; Child & Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
16
|
Guo J, He H, Liu Q, Zhang F, Lv J, Zeng T, Gu N, Wu Q. Identification and Epigenetic Analysis of a Maternally Imprinted Gene Qpct. Mol Cells 2015; 38:859-65. [PMID: 26447138 PMCID: PMC4625067 DOI: 10.14348/molcells.2015.0098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 11/27/2022] Open
Abstract
Most imprinted genes are concerned with embryonic development, especially placental development. Here, we identified a placenta-specific imprinted gene Qpct. Our results show that Qpct is widely expressed during early embryonic development and can be detected in the telecephalon, midbrain, and rhombencephalon at E9.5b-E11.5. Moreover, Qpct is strikingly expressed in the brain, lung and liver in E15.5. Expression signals for Qpct achieved a peak at E15.5 during placental development and were only detected in the labyrinth layer in E15.5 placenta. ChIP assay results suggest that the modification of histone H3K4me3 can result in maternal activating of Qpct.
Collapse
Affiliation(s)
- Jing Guo
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150001, Heilongjiang,
China
| | - Hongjuan He
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150001, Heilongjiang,
China
| | - Qi Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150001, Heilongjiang,
China
| | - Fengwei Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150001, Heilongjiang,
China
| | - Jie Lv
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150001, Heilongjiang,
China
| | - Tiebo Zeng
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150001, Heilongjiang,
China
| | - Ning Gu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150001, Heilongjiang,
China
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150001, Heilongjiang,
China
| |
Collapse
|
17
|
Koppes E, Himes KP, Chaillet JR. Partial Loss of Genomic Imprinting Reveals Important Roles for Kcnq1 and Peg10 Imprinted Domains in Placental Development. PLoS One 2015; 10:e0135202. [PMID: 26241757 PMCID: PMC4524636 DOI: 10.1371/journal.pone.0135202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/19/2015] [Indexed: 01/24/2023] Open
Abstract
Mutations in imprinted genes or their imprint control regions (ICRs) produce changes in imprinted gene expression and distinct abnormalities in placental structure, indicating the importance of genomic imprinting to placental development. We have recently shown that a very broad spectrum of placental abnormalities associated with altered imprinted gene expression occurs in the absence of the oocyte-derived DNMT1o cytosine methyltransferase, which normally maintains parent-specific imprinted methylation during preimplantation. The absence of DNMT1o partially reduces inherited imprinted methylation while retaining the genetic integrity of imprinted genes and their ICRs. Using this novel system, we undertook a broad and inclusive approach to identifying key ICRs involved in placental development by correlating loss of imprinted DNA methylation with abnormal placental phenotypes in a mid-gestation window (E12.5-E15.5). To these ends we measured DNA CpG methylation at 15 imprinted gametic differentially methylated domains (gDMDs) that overlap known ICRs using EpiTYPER-mass array technology, and linked these epigenetic measurements to histomorphological defects. Methylation of some imprinted gDMDs, most notably Dlk1, was nearly normal in mid-gestation DNMT1o-deficient placentas, consistent with the notion that cells having lost methylation on these DMDs do not contribute significantly to placental development. Most imprinted gDMDs however showed a wide range of methylation loss among DNMT1o-deficient placentas. Two striking associations were observed. First, loss of DNA methylation at the Peg10 imprinted gDMD associated with decreased embryonic viability and decreased labyrinthine volume. Second, loss of methylation at the Kcnq1 imprinted gDMD was strongly associated with trophoblast giant cell (TGC) expansion. We conclude that the Peg10 and Kcnq1 ICRs are key regulators of mid-gestation placental function.
Collapse
Affiliation(s)
- Erik Koppes
- Magee-Womens Research Institute, Program in Integrative Molecular Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Katherine P. Himes
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - J. Richard Chaillet
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Miyahara H, Hirose O, Satou K, Yamada Y. Factors to preserve CpG-rich sequences in methylated CpG islands. BMC Genomics 2015; 16:144. [PMID: 25879481 PMCID: PMC4417305 DOI: 10.1186/s12864-015-1286-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/26/2015] [Indexed: 12/31/2022] Open
Abstract
Background Mammalian CpG islands (CGIs) normally escape DNA methylation in all adult tissues and developmental stages. However, in our previous study we unexpectedly identified many methylated CGIs in human peripheral blood leukocytes. Methylated CpG dinucleotides convert to TpG dinucleotides through deaminization of their cytosine bases more frequently than hypomethylated CpG dinucleotides. Therefore, we wondered how methylated CGIs in germline or non-germline cells maintain their CpG-rich sequences. It is known that events such as germline hypomethylation, CpG selection, biased gene conversion (BGC), and frequent CpG fixation can contribute to the maintenance of CpG-rich sequences in methylated CGIs in germline or non-germline cells. However, it has not been investigated which of the processes maintain CpG-rich sequences of methylated CGIs in each genomic position. Results In this study, we comprehensively examined the contribution of the processes described above to the maintenance of CpG-rich sequences in methylated CGIs in germline and non-germline cells which were classified by genomic positions. Approximately 60–80% of CGIs with high methylation in H1 cell line (H1-HM) in all the genomic positions showed a low average CpG → TpG/CpA substitution rate. In contrast, fewer than half the numbers of CGIs with H1-HM in all the genomic positions showed a low average CpG → TpG/CpA substitution rate and low levels of methylation in sperm cells (SPM-LM). Furthermore, a small fraction of CGIs with a low average CpG → TpG/CpA substitution rate and high levels of methylation in sperm cells (SPM-HM) showed CpG selection. On the other hand, independent of the positions in genes, most CGIs with SPM-HM showed a slightly higher average TpG/CpA → CpG substitution rate compared with those with SPM-LM. Conclusions Relatively high numbers (approximately 60–80%) of CGIs with H1-HM in all the genomic positions preserve their CpG-rich sequences by a low CpG → TpG/CpA substitution rate caused mainly by their SPM-LM, and for those with SPM-HM partly by CpG selection and TpG/CpA → CpG fixation. BGC has little contribution to the maintenance of CpG-rich sequences of CGIs with SPM-HM which were classified by genomic positions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1286-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroki Miyahara
- Division of Electrical and Computer Engineering, Graduate School of Natural Science and Technology, Kanazawa University, 920-1192, Kanazawa, Japan.
| | - Osamu Hirose
- Faculty of Electrical and Computer Engineering, Institute of Science and Engineering, Kanazawa University, 920-1192, Kanazawa, Japan.
| | - Kenji Satou
- Faculty of Electrical and Computer Engineering, Institute of Science and Engineering, Kanazawa University, 920-1192, Kanazawa, Japan.
| | - Yoichi Yamada
- Faculty of Electrical and Computer Engineering, Institute of Science and Engineering, Kanazawa University, 920-1192, Kanazawa, Japan.
| |
Collapse
|
19
|
O'Doherty AM, McGettigan PA. Epigenetic processes in the male germline. Reprod Fertil Dev 2015; 27:725-38. [DOI: 10.1071/rd14167] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/01/2014] [Indexed: 12/12/2022] Open
Abstract
Sperm undergo some of the most extensive chromatin modifications seen in mammalian biology. During male germline development, paternal DNA methylation marks are erased and established on a global scale through waves of demethylation and de novo methylation. As spermatogenesis progresses, the majority of the histones are removed and replaced by protamines, enabling a tighter packaging of the DNA and transcriptional shutdown. Following fertilisation, the paternal genome is rapidly reactivated, actively demethylated, the protamines are replaced with histones and the embryonic genome is activated. The development of new assays, made possible by high-throughput sequencing technology, has resulted in the revisiting of what was considered settled science regarding the state of DNA packaging in mammalian spermatozoa. Researchers have discovered that not all histones are replaced by protamines and, in certain experiments, various species of RNA have been detected in what was previously considered transcriptionally quiescent spermatozoa. Most controversially, several groups have suggested that environmental modifications of the epigenetic state of spermatozoa may operate as a non-DNA-based form of inheritance, a process known as ‘transgenerational epigenetic inheritance’. Other developments in the field include the increased focus on the involvement of short RNAs, such as microRNAs, long non-coding RNAs and piwi-interacting RNAs. There has also been an accumulation of evidence illustrating associations between defects in sperm DNA packaging and disease and fertility. In this paper we review the literature, recent findings and areas of controversy associated with epigenetic processes in the male germline, focusing on DNA methylation dynamics, non-coding RNAs, the biology of sperm chromatin packaging and transgenerational inheritance.
Collapse
|
20
|
Ke X, Cortina-Borja M, Silva BC, Lowe R, Rakyan V, Balding D. Integrated analysis of genome-wide genetic and epigenetic association data for identification of disease mechanisms. Epigenetics 2014; 8:1236-44. [DOI: 10.4161/epi.26407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
21
|
The specification of imprints in mammals. Heredity (Edinb) 2014; 113:176-83. [PMID: 24939713 PMCID: PMC4105455 DOI: 10.1038/hdy.2014.54] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 02/01/2023] Open
Abstract
At the heart of genomic imprinting in mammals are imprinting control regions (ICRs), which are the discrete genetic elements that confer imprinted monoallelic expression to several genes in imprinted gene clusters. A characteristic of the known ICRs is that they acquire different epigenetic states, exemplified by differences in DNA methylation, in the sperm and egg, and these imprint marks remain on the sperm- and oocyte-derived alleles into the next generation as a lifelong memory of parental origin. Although there has been much focus on gametic marking of ICRs as the point of imprint specification, recent mechanistic studies and genome-wide DNA methylation profiling do not support the existence of a specific imprinting machinery in germ cells. Rather, ICRs are part of more widespread methylation events that occur during gametogenesis. Instead, a decisive component in the specification of imprints is the choice of which sites of gamete-derived methylation to maintain in the zygote and preimplantation embryo at a time when much of the remainder of the genome is being demethylated. Among the factors involved in this selection, the zinc-finger protein Zfp57 can be regarded as an imprint-specific, sequence-specific DNA binding factor responsible for maintaining methylation at most ICRs. The recent insights into the balance of gametic and zygotic contributions to imprint specification should help understand mechanistic opportunities and constraints on the evolution of imprinting in mammals.
Collapse
|
22
|
Ptak GE, Toschi P, Fidanza A, Czernik M, Zacchini F, Modlinski JA, Loi P. Autophagy and apoptosis: parent-of-origin genome-dependent mechanisms of cellular self-destruction. Open Biol 2014; 4:140027. [PMID: 24898141 PMCID: PMC4077060 DOI: 10.1098/rsob.140027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/12/2014] [Indexed: 12/15/2022] Open
Abstract
Functional genomic imprinting is necessary for the transfer of maternal resources to mammalian embryos. Imprint-free embryos are unable to establish a viable placental vascular network necessary for the transfer of resources such as nutrients and oxygen. How the parental origin of inherited genes influences cellular response to resource limitation is currently not well understood. Because such limitations are initially realized by the placenta, we studied how maternal and paternal genomes influence the cellular self-destruction responses of this organ specifically. Here, we show that cellular autophagy is prevalent in androgenetic (i.e. having only a paternal genome) placentae, while apoptosis is prevalent in parthenogenetic (i.e. having only a maternal genome) placentae. Our findings indicate that the parental origin of inherited genes determines the placenta's cellular death pathway: autophagy for androgenotes and apoptosis for parthenogenotes. The difference in time of arrest between androgenotes and parthenogenotes can be attributed, at least in part, to their placentae's selective use of these two cell death pathways. We anticipate our findings to be a starting point for general studies on the parent-of-origin regulation of autophagy. Furthermore, our work opens the door to new studies on the involvement of autophagy in pathologies of pregnancy in which the restricted transfer of maternal resources is diagnosed.
Collapse
Affiliation(s)
- Grazyna E Ptak
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec Poland
| | - Paola Toschi
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy
| | - Antonella Fidanza
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy
| | - Marta Czernik
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy
| | - Federica Zacchini
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy
| | - Jacek A Modlinski
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec Poland
| | - Pasqualino Loi
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy
| |
Collapse
|
23
|
Tian X, Anthony K, Neuberger T, Diaz FJ. Preconception zinc deficiency disrupts postimplantation fetal and placental development in mice. Biol Reprod 2014; 90:83. [PMID: 24599289 DOI: 10.1095/biolreprod.113.113910] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Zinc is an essential nutrient for optimal fertility, but the effects of preconception zinc deficiency on postimplantation development are not known. Female mice were fed a control or a zinc-deficient diet (ZDD) for 4-5 days before ovulation (preconception). Embryonic and/or placental development were evaluated on Days 3.5, 6.5, 10.5, 12.5, and 16.5 of pregnancy. The findings show a decrease in embryo length (31%, Day 10.5; 13%, Day 12.5; 10%, Day 16.5) and weight (23%, Day 16.5) in embryos from mothers fed a ZDD preconception. Zinc deficiency also caused a high incidence of pregnancy loss (46%, Day 10.5; 34%, Day 12.5; 51%, Day 16.5) compared to control (2%, Day 10.5; 7%, Day 12.5; 9%, Day 16.5). ZDD embryos transferred to normal recipients were 38% smaller and implantation rate was only 10% compared to 40% for controls. Trophoblast cell differentiation and implantation on Day 6.5 of pregnancy were compromised by preconception zinc deficiency. On Day 12.5 of pregnancy, placenta weight and area of fetal placenta were decreased 37% and 31%, respectively, by preconception zinc deficiency. Consistent with a smaller fetal placenta, expression of key placental transcripts, including Ar, Esx1, Syna, Tfeb, Dlx3, and Gcm1 mRNA, but not Ctsq mRNA, were decreased 30%-70% in the ZDD group. Preconception zinc deficiency caused 41%-57% of embryos to exhibit delayed or aberrant neural tube development, as examined by light microscopy and magnetic resonance imaging. Collectively, the findings provide evidence for the importance of preconception zinc in promoting optimal fertility and oocyte developmental potential.
Collapse
Affiliation(s)
- Xi Tian
- Center for Reproductive Biology and Health and Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania
| | | | | | | |
Collapse
|
24
|
Wolf JB, Oakey RJ, Feil R. Imprinted gene expression in hybrids: perturbed mechanisms and evolutionary implications. Heredity (Edinb) 2014; 113:167-75. [PMID: 24619185 DOI: 10.1038/hdy.2014.11] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 01/21/2023] Open
Abstract
Diverse mechanisms contribute to the evolution of reproductive barriers, a process that is critical in speciation. Amongst these are alterations in gene products and in gene dosage that affect development and reproductive success in hybrid offspring. Because of its strict parent-of-origin dependence, genomic imprinting is thought to contribute to the aberrant phenotypes observed in interspecies hybrids in mammals and flowering plants, when the abnormalities depend on the directionality of the cross. In different groups of mammals, hybrid incompatibility has indeed been linked to loss of imprinting. Aberrant expression levels have been reported as well, including imprinted genes involved in development and growth. Recent studies in humans emphasize that genetic diversity within a species can readily perturb imprinted gene expression and phenotype as well. Despite novel insights into the underlying mechanisms, the full extent of imprinted gene perturbation still remains to be determined in the different hybrid systems. Here we review imprinted gene expression in intra- and interspecies hybrids and examine the evolutionary scenarios under which imprinting could contribute to hybrid incompatibilities. We discuss effects on development and reproduction and possible evolutionary implications.
Collapse
Affiliation(s)
- J B Wolf
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - R J Oakey
- Division of Genetics and Molecular Medicine, King's College London, London, UK
| | - R Feil
- Institute of Molecular Genetics (IGMM), CNRS, UMR-5535 and University of Montpellier, Montpellier, France
| |
Collapse
|
25
|
The Evolution of Reproduction-Related NLRP Genes. J Mol Evol 2014; 78:194-201. [DOI: 10.1007/s00239-014-9614-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/19/2014] [Indexed: 12/23/2022]
|
26
|
Keverne EB. Mammalian viviparity: a complex niche in the evolution of genomic imprinting. Heredity (Edinb) 2014; 113:138-44. [PMID: 24569636 DOI: 10.1038/hdy.2014.8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/17/2013] [Accepted: 01/14/2014] [Indexed: 12/22/2022] Open
Abstract
Evolution of mammalian reproductive success has witnessed a strong dependence on maternal resources through placental in utero development. Genomic imprinting, which has an active role in mammalian viviparity, also reveals a biased role for matrilineal DNA in its regulation. The co-existence of three matrilineal generations as one (mother, foetus and post-meiotic oocytes) has provided a maternal niche for transgenerational co-adaptive selection pressures to operate. In utero foetal growth has required increased maternal feeding in advance of foetal energetic demands; the mammary glands are primed for milk production in advance of birth, while the maternal hypothalamus is hormonally primed by the foetal placenta for nest building and post-natal care. Such biological forward planning resulted from maternal-foetal co-adaptation facilitated by co-expression of the same imprinted allele in the developing hypothalamus and placenta. This co-expression is concurrent with the placenta interacting with the adult maternal hypothalamus thereby providing a transgenerational template on which selection pressures may operate ensuring optimal maternalism in this and the next generation. Invasive placentation has further required the maternal immune system to adapt and positively respond to the foetal allotype. Pivotal to these mammalian evolutionary developments, genomic imprinting emerged as a monoallelic gene dosage regulatory mechanism of tightly interconnected gene networks providing developmental genetic stability for in utero development.
Collapse
Affiliation(s)
- E B Keverne
- Sub-Department of Animal Behaviour, University of Cambridge, Cambridge, UK
| |
Collapse
|
27
|
Kanber D, Buiting K, Roos C, Gromoll J, Kaya S, Horsthemke B, Lohmann D. The origin of the RB1 imprint. PLoS One 2013; 8:e81502. [PMID: 24282601 PMCID: PMC3839921 DOI: 10.1371/journal.pone.0081502] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/23/2013] [Indexed: 11/19/2022] Open
Abstract
The human RB1 gene is imprinted due to a differentially methylated CpG island in intron 2. This CpG island is part of PPP1R26P1, a truncated retrocopy of PPP1R26, and serves as a promoter for an alternative RB1 transcript. We show here by in silico analyses that the parental PPP1R26 gene is present in the analysed members of Haplorrhini, which comprise Catarrhini (Old World Monkeys, Small apes, Great Apes and Human), Platyrrhini (New World Monkeys) and tarsier, and Strepsirrhini (galago). Interestingly, we detected the retrocopy, PPP1R26P1, in all Anthropoidea (Catarrhini and Platyrrhini) that we studied but not in tarsier or galago. Additional retrocopies are present in human and chimpanzee on chromosome 22, but their distinct composition indicates that they are the result of independent retrotransposition events. Chimpanzee and marmoset have further retrocopies on chromosome 8 and chromosome 4, respectively. To examine the origin of the RB1 imprint, we compared the methylation patterns of the parental PPP1R26 gene and its retrocopies in different primates (human, chimpanzee, orangutan, rhesus macaque, marmoset and galago). Methylation analysis by deep bisulfite sequencing showed that PPP1R26 is methylated whereas the retrocopy in RB1 intron 2 is differentially methylated in all primates studied. All other retrocopies are fully methylated, except for the additional retrocopy on marmoset chromosome 4, which is also differentially methylated. Using an informative SNP for the methylation analysis in marmoset, we could show that the differential methylation pattern of the retrocopy on chromosome 4 is allele-specific. We conclude that the epigenetic fate of a PPP1R26 retrocopy after integration depends on the DNA sequence and selective forces at the integration site.
Collapse
Affiliation(s)
- Deniz Kanber
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany
- * E-mail:
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany
| | - Christian Roos
- Gene Bank of Primates und Abteilung Primatengenetik, Deutsches Primatenzentrum, Leibniz-Institut für Primatenforschung, Göttingen, Germany
| | - Jörg Gromoll
- Centrum für Reproduktionsmedizin und Andrologie, Universitätsklinikum Münster, Münster, Germany
| | - Sabine Kaya
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany
| | | | - Dietmar Lohmann
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
28
|
Haig D. Coadaptation and conflict, misconception and muddle, in the evolution of genomic imprinting. Heredity (Edinb) 2013; 113:96-103. [PMID: 24129605 DOI: 10.1038/hdy.2013.97] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 12/31/2022] Open
Abstract
Common misconceptions of the 'parental conflict' theory of genomic imprinting are addressed. Contrary to widespread belief, the theory defines conditions for cooperation as well as conflict in mother-offspring relations. Moreover, conflict between genes of maternal and paternal origin is not the same as conflict between mothers and fathers. In theory, imprinting can evolve either because genes of maternal and paternal origin have divergent interests or because offspring benefit from a phenotypic match, or mismatch, to one or other parent. The latter class of models usually require maintenance of polymorphism at imprinted loci for the maintenance of imprinted expression. The conflict hypothesis does not require maintenance of polymorphism and is therefore a more plausible explanation of evolutionarily conserved imprinting.
Collapse
Affiliation(s)
- D Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
29
|
Fauque P. Ovulation induction and epigenetic anomalies. Fertil Steril 2013; 99:616-23. [PMID: 23714436 DOI: 10.1016/j.fertnstert.2012.12.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/19/2012] [Accepted: 12/26/2012] [Indexed: 01/26/2023]
Abstract
In this systematic review of ovulation induction and epigenetic control, studies mainly done in the mouse model highlight how hormone treatments may be prejudicial to the epigenetic reprogramming of gametes as well as early embryos. Moreover, the hormone protocols used in assisted reproduction may also modify the physiologic environment of the uterus, a potential link to endometrial epigenetic disturbances. At present, the few available data in humans are insufficient to allow us to independently determine the impact of a woman's age and infertility problems and treatment protocols and hormone doses on such processes as genomic imprinting.
Collapse
Affiliation(s)
- Patricia Fauque
- Laboratoire de Biologie de la Reproduction, Hôpital de Dijon, Université de Bourgogne, Dijon, France.
| |
Collapse
|
30
|
Guenatri M, Duffié R, Iranzo J, Fauque P, Bourc'his D. Plasticity in Dnmt3L-dependent and -independent modes of de novo methylation in the developing mouse embryo. Development 2013; 140:562-72. [DOI: 10.1242/dev.089268] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A stimulatory DNA methyltransferase co-factor, Dnmt3L, has evolved in mammals to assist the process of de novo methylation, as genetically demonstrated in the germline. The function of Dnmt3L in the early embryo remains unresolved. By combining developmental and genetic approaches, we find that mouse embryos begin development with a maternal store of Dnmt3L, which is rapidly degraded and does not participate in embryonic de novo methylation. A zygotic-specific promoter of Dnmt3l is activated following gametic methylation loss and the potential recruitment of pluripotency factors just before implantation. Importantly, we find that zygotic Dnmt3L deficiency slows down the rate of de novo methylation in the embryo by affecting methylation density at some, but not all, genomic sequences. Dnmt3L is not strictly required, however, as methylation patterns are eventually established in its absence, in the context of increased Dnmt3A protein availability. This study proves that the postimplantation embryo is more plastic than the germline in terms of DNA methylation mechanistic choices and, importantly, that de novo methylation can be achieved in vivo without Dnmt3L.
Collapse
Affiliation(s)
- Mounia Guenatri
- INSERM U934/UMR3215, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Rachel Duffié
- INSERM U934/UMR3215, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Julian Iranzo
- INSERM U934/UMR3215, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Patricia Fauque
- INSERM U934/UMR3215, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Déborah Bourc'his
- INSERM U934/UMR3215, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
31
|
de Assis S, Warri A, Cruz MI, Laja O, Tian Y, Zhang B, Wang Y, Huang THM, Hilakivi-Clarke L. High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring. Nat Commun 2013; 3:1053. [PMID: 22968699 PMCID: PMC3570979 DOI: 10.1038/ncomms2058] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/10/2012] [Indexed: 01/05/2023] Open
Abstract
Maternal exposures to environmental factors during pregnancy influence the risk of many chronic adult-onset diseases in the offspring. Here we investigate whether feeding pregnant rats a high-fat (HF)- or ethinyl-oestradiol (EE2)-supplemented diet affects carcinogen-induced mammary cancer risk in daughters, granddaughters and great-granddaughters. We show that mammary tumourigenesis is higher in daughters and granddaughters of HF rat dams and in daughters and great-granddaughters of EE2 rat dams. Outcross experiments suggest that the increase in mammary cancer risk is transmitted to HF granddaughters equally through the female or male germ lines, but it is only transmitted to EE2 granddaughters through the female germ line. The effects of maternal EE2 exposure on offspring's mammary cancer risk are associated with changes in the DNA methylation machinery and methylation patterns in mammary tissue of all three EE2 generations. We conclude that dietary and oestrogenic exposures in pregnancy increase breast cancer risk in multiple generations of offspring, possibly through epigenetic means. Environmental factors can influence one's susceptibility to cancer, but it is not clear whether such an influence extends beyond the directly exposed generations. Here, feeding pregnant rats with a high-fat diet or a hormone derivative, the authors observe increased breast cancer risk in up to three subsequent generations.
Collapse
Affiliation(s)
- Sonia de Assis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, The Research Building, Room E407, Washington, District of Columbia 20057, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Keverne EB. Importance of the matriline for genomic imprinting, brain development and behaviour. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110327. [PMID: 23166391 PMCID: PMC3539356 DOI: 10.1098/rstb.2011.0327] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammalian brain development commences during foeto-placental development and is strongly influenced by the epigenetic regulation of imprinted genes. The foetal placenta exerts considerable influence over the functioning of the adult maternal hypothalamus, and this occurs at the same time as the foetus itself is developing a hypothalamus. Thus, the action and interaction of two genomes in one individual, the mother, has provided a template for co-adaptive functions across generations that are important for maternal care and resource transfer, while co-adaptively shaping the mothering capabilities of each subsequent generation. The neocortex is complex, enabling behavioural diversity and cultural learning such that human individuals are behaviourally unique. Retrotransposons may, in part, be epigenetic mediators of such brain diversity. Interestingly some imprinted genes are themselves retrotransposon-derived, and retrotransposon silencing by DNA methylation is thought to have contributed to the evolutionary origins of imprint control regions. The neocortex has evolved to be adaptable and sustain both short-term and long-term synaptic connections that underpin learning and memory. The adapted changes are not themselves inherited, but the predisposing mechanisms for such epigenetic changes are heritable. This provides each generation with the same ability to make new adaptations while constrained by a transgenerational knowledge-based predisposition to preserve others.
Collapse
Affiliation(s)
- E B Keverne
- Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge CB23 8AA, UK.
| |
Collapse
|
33
|
Abstract
The early mammalian embryo is marked by genome-wide parental epigenetic asymmetries, which are directly inherited from the sperm and the oocyte, but are also amplified a few hours after fertilization. The yin-yang of these complementary parental programs is essential for proper development, as uniparental embryos are not viable. The majority of these parental asymmetries are erased, as the embryonic genome assumes its own chromatin signature toward pluripotency and then differentiation, reducing the risk for haploinsufficiency. At a few loci, however, parent-of-origin information persists through development, via maintenance and protective complexes. In this review, we discuss the parental asymmetries that are inherited from the gametes, the forces involved in their elimination, reinforcement or protection, and how this influences the embryonic program. We highlight the gradual loss of all parental asymmetries occurring throughout development, except at imprinted loci, which maintain distinct parent-of-origin chromatin and transcriptional characteristics for life. A deeper understanding of the nongenetic contributions of each germline is important to provide insight into the origin of non-Mendelian inheritance of phenotypic traits, as well as the risk of incompatibilities between parental genomes.
Collapse
Affiliation(s)
- Rachel Duffié
- Unité Génétique Biologie du Développement, Institut Curie, UMR3215/INSERM U394, Paris, France
| | | |
Collapse
|
34
|
Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, Popp C, Thienpont B, Dean W, Reik W. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 2012; 48:849-62. [PMID: 23219530 PMCID: PMC3533687 DOI: 10.1016/j.molcel.2012.11.001] [Citation(s) in RCA: 701] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/04/2012] [Accepted: 11/01/2012] [Indexed: 11/29/2022]
Abstract
Genome-wide DNA methylation reprogramming occurs in mouse primordial germ cells (PGCs) and preimplantation embryos, but the precise dynamics and biological outcomes are largely unknown. We have carried out whole-genome bisulfite sequencing (BS-Seq) and RNA-Seq across key stages from E6.5 epiblast to E16.5 PGCs. Global loss of methylation takes place during PGC expansion and migration with evidence for passive demethylation, but sequences that carry long-term epigenetic memory (imprints, CpG islands on the X chromosome, germline-specific genes) only become demethylated upon entry of PGCs into the gonads. The transcriptional profile of PGCs is tightly controlled despite global hypomethylation, with transient expression of the pluripotency network, suggesting that reprogramming and pluripotency are inextricably linked. Our results provide a framework for the understanding of the epigenetic ground state of pluripotency in the germline.
Collapse
|
35
|
Abstract
Two major environmental developments have occurred in mammalian evolution which have impacted on the genetic and epigenetic regulation of brain development. The first of these was viviparity and development of the placenta which placed a considerable burden of time and energy investment on the matriline, and which resulted in essential hypothalamic modifications. Maternal feeding, maternal care, parturition, milk letdown and the suspension of fertility and sexual behaviour are all determined by the maternal hypothalamus and have evolved to meet foetal needs under the influence of placental hormones. Viviparity itself provided a new environmental variable for selection pressures to operate via the co-existence over three generations of matrilineal genomes (mother, developing offspring and developing oocytes) in one individual. Also of importance for the matriline has been the evolution of epigenetic marks (imprint control regions) which are heritable and undergo reprogramming primarily in the oocyte to regulate imprinted gene expression according to parent of origin. Imprinting of autosomal genes has played a significant role in mammalian evolutionary development, particularly that of the hypothalamus and placenta. Indeed, many imprinted genes that are co-expressed in the placenta and hypothalamus play an important role in the co-adapted functioning of these organs. Thus the action and interaction of two genomes (maternal and foetal) have provided a template for transgenerational selection pressures to operate in shaping the mothering capabilities of each subsequent generation. The advanced aspects of neocortical brain evolution in primates have emancipated much of behaviour from the determining effects of hormonal action. Thus in large brain primates, most of the sexual behaviour is not reproductive hormone dependent and maternal care can and does occur outside the context of pregnancy and parturition. The neocortex has evolved to be adaptable and while the adapted changes are not inherited, the epigenetic predisposing processes can be. This provides each generation with the same ability to generate new adaptations while retaining a "cultural" predisposition to retain others. A significant evolutionary contribution to this epigenetic dimension has again been the matriline. The extensive neocortical development which takes place post-natally does so in an environment which is predominantly that of the caring guidance of the mother. Evidence for the epigenetic regulation of neocortical development is best illustrated by the GABA-ergic neurons and their long tangential migratory pathway from the ganglionic eminence, in contrast to the radial migration of principle neurons. GABA-ergic neurons play an integral role both in the developmental formation of canonical localised circuits and in synchronising widespread functional activity by the regulation of network oscillations. Such synchronisation enables distributed regions of the neocortex to coordinate firing. GABA-ergic dysfunction contributes to a broad spectrum of neurological and psychiatric disorders which can differ even across identical monozygotic twins. Moreover, major treatments for schizophrenia over the past 40 years have included the drugs lithium and valproate, both of which we now know are histone deacetylases. It is rarely the heritable dysfunctioning of these epigenetic mechanisms that is at fault, but the timing, duration and place where they are deployed. The timing and complexity in the development of the neocortex makes this region of the brain more vulnerable to perturbations.
Collapse
Affiliation(s)
- E B Keverne
- Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge CB23 8AA, UK.
| |
Collapse
|
36
|
Ptak GE, D'Agostino A, Toschi P, Fidanza A, Zacchini F, Czernik M, Monaco F, Loi P. Post-implantation mortality of in vitro produced embryos is associated with DNA methyltransferase 1 dysfunction in sheep placenta. Hum Reprod 2012; 28:298-305. [DOI: 10.1093/humrep/des397] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
37
|
Bell CG, Wilson GA, Butcher LM, Roos C, Walter L, Beck S. Human-specific CpG "beacons" identify loci associated with human-specific traits and disease. Epigenetics 2012; 7:1188-99. [PMID: 22968434 PMCID: PMC3469460 DOI: 10.4161/epi.22127] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Regulatory change has long been hypothesized to drive the delineation of the human phenotype from other closely related primates. Here we provide evidence that CpG dinucleotides play a special role in this process. CpGs enable epigenome variability via DNA methylation, and this epigenetic mark functions as a regulatory mechanism. Therefore, species-specific CpGs may influence species-specific regulation. We report non-polymorphic species-specific CpG dinucleotides (termed “CpG beacons”) as a distinct genomic feature associated with CpG island (CGI) evolution, human traits and disease. Using an inter-primate comparison, we identified 21 extreme CpG beacon clusters (≥ 20/kb peaks, empirical p < 1.0 × 10−3) in humans, which include associations with four monogenic developmental and neurological disease related genes (Benjamini-Hochberg corrected p = 6.03 × 10−3). We also demonstrate that beacon-mediated CpG density gain in CGIs correlates with reduced methylation in these species in orthologous CGIs over time, via human, chimpanzee and macaque MeDIP-seq. Therefore mapping into both the genomic and epigenomic space the identified CpG beacon clusters define points of intersection where a substantial two-way interaction between genetic sequence and epigenetic state has occurred. Taken together, our data support a model for CpG beacons to contribute to CGI evolution from genesis to tissue-specific to constitutively active CGIs.
Collapse
Affiliation(s)
- Christopher G Bell
- Medical Genomics, UCL Cancer Institute, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Proudhon C, Duffié R, Ajjan S, Cowley M, Iranzo J, Carbajosa G, Saadeh H, Holland ML, Oakey RJ, Rakyan VK, Schulz R, Bourc'his D. Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes. Mol Cell 2012; 47:909-20. [PMID: 22902559 PMCID: PMC3778900 DOI: 10.1016/j.molcel.2012.07.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/01/2012] [Accepted: 07/06/2012] [Indexed: 11/25/2022]
Abstract
Identifying loci with parental differences in DNA methylation is key to unraveling parent-of-origin phenotypes. By conducting a MeDIP-Seq screen in maternal-methylation free postimplantation mouse embryos (Dnmt3L-/+), we demonstrate that maternal-specific methylation exists very scarcely at midgestation. We reveal two forms of oocyte-specific methylation inheritance: limited to preimplantation, or with longer duration, i.e. maternally imprinted loci. Transient and imprinted maternal germline DMRs (gDMRs) are indistinguishable in gametes and preimplantation embryos, however, de novo methylation of paternal alleles at implantation delineates their fates and acts as a major leveling factor of parent-inherited differences. We characterize two new imprinted gDMRs, at the Cdh15 and AK008011 loci, with tissue-specific imprinting loss, again by paternal methylation gain. Protection against demethylation after fertilization has been emphasized as instrumental in maintaining parent-of-origin methylation inherited from the gametes. Here we provide evidence that protection against de novo methylation acts as an equal major pivot, at implantation and throughout life.
Collapse
|
39
|
A survey of tissue-specific genomic imprinting in mammals. Mol Genet Genomics 2012; 287:621-30. [PMID: 22821278 DOI: 10.1007/s00438-012-0708-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/03/2012] [Indexed: 01/20/2023]
Abstract
In mammals, most somatic cells contain two copies of each autosomal gene, one inherited from each parent. When a gene is expressed, both parental alleles are usually transcribed. However, a subset of genes is subject to the epigenetic silencing of one of the parental copies by genomic imprinting. In this review, we explore the evidence for variability in genomic imprinting between different tissue and cell types. We also consider why the imprinting of particular genes may be restricted to, or lost in, specific tissues and discuss the potential for high-throughput sequencing technologies in facilitating the characterisation of tissue-specific imprinting and assaying the potentially functional variations in epigenetic marks.
Collapse
|
40
|
Abstract
Fundamental aspects of mammalian brain evolution occurred in the context of viviparity and placentation brought about by the epigenetic regulation of imprinted genes. Since the fetal placenta hormonally primes the maternal brain, two genomes in one individual are transgenerationally co-adapted to ensure maternal care and nurturing. Advanced aspects of neocortical brain evolution has shown very few genetic changes between monkeys and humans. Although these lineages diverged at approximately the same time as the rat and mouse (20 million years ago), synonymous sequence divergence between the rat and mouse is double that when comparing monkey with human sequences. Paradoxically, encephalization of rat and mouse are remarkably similar, while comparison of the human and monkey shows the human cortex to be three times the size of the monkey. This suggests an element of genetic stability between the brains of monkey and man with a greater emphasis on epigenetics providing adaptable variability.
Collapse
Affiliation(s)
- Eric B Keverne
- Sub-Department of Animal Behavior, University of Cambridge, Madingley, Cambridge CB23 8AA, UK.
| |
Collapse
|
41
|
Meaburn E, Schulz R. Next generation sequencing in epigenetics: Insights and challenges. Semin Cell Dev Biol 2012; 23:192-9. [DOI: 10.1016/j.semcdb.2011.10.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/19/2011] [Accepted: 10/13/2011] [Indexed: 10/16/2022]
|
42
|
Suzuki S, Shaw G, Kaneko-Ishino T, Ishino F, Renfree MB. The evolution of mammalian genomic imprinting was accompanied by the acquisition of novel CpG islands. Genome Biol Evol 2011; 3:1276-83. [PMID: 22016334 PMCID: PMC3217256 DOI: 10.1093/gbe/evr104] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parent-of-origin–dependent expression of imprinted genes is mostly associated with allele-specific DNA methylation of the CpG islands (CGIs) called germ line differentially methylated regions (gDMRs). Although the essential role of gDMRs for genomic imprinting has been well established, little is known about how they evolved. In several imprinted loci, the CGIs forming gDMRs may have emerged with the insertion of a retrotransposon or retrogene. To examine the generality of the hypothesis that the CGIs forming gDMRs were novel CGIs recently acquired during mammalian evolution, we reviewed the time of novel CGI emergence for all the maternal gDMR loci using the novel data analyzed in this study combined with the data from previous reports. The comparative sequence analyses using mouse, human, dog, cow, elephant, tammar, opossum, platypus, and chicken genomic sequences were carried out for Peg13, Meg1/Grb10, Plagl1/Zac1, Gnas, and Slc38a4 imprinted loci to obtain comprehensive results. The combined data showed that emergence of novel CGIs occurred universally in the maternal gDMR loci at various time points during mammalian evolution. Furthermore, the analysis of Meg1/Grb10 locus provided evidence that gradual base pair–wise sequence change was involved in the accumulation of CpG sequence, suggesting the mechanism of novel CGI emergence is more complex than the suggestion that CpG sequences originated solely by insertion of CpG-rich transposable elements. We propose that acquisition of novel CGIs was a key genomic change for the evolution of imprinting and that it usually occurred in the maternal gDMR loci.
Collapse
Affiliation(s)
- Shunsuke Suzuki
- Australian Research Council Centre of Excellence for Kangaroo Genomics, The University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
43
|
Varga F, Karlic H, Thaler R, Klaushofer K. Functional aspects of cytidine-guanosine dinucleotides and their locations in genes. Biomol Concepts 2011; 2:391-405. [DOI: 10.1515/bmc.2011.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/12/2011] [Indexed: 12/31/2022] Open
Abstract
AbstractOriginally, the finding of a particular distribution of cytidine-guanosine dinucleotides (CpGs) in genomic DNA was considered to be an interesting structural feature of eukaryotic genome organization. Despite a global depletion of CpGs, genes are frequently associated with CpG clusters called CpG islands (CGIs). CGIs are prevalently unmethylated but often found methylated in pathologic situations. On the other hand, CpGs outside of CGIs are generally methylated and are found mainly in the heterochromatic fraction of the genome. Hypomethylation of those CpGs is associated with genomic instability in malignancy. Additionally, CpG-rich and CpG-poor regions, as well as CpG-shores, are defined. Usually, the methylation status inversely correlates with gene expression. Methylation of CpGs, as well as demethylation and generation of hydroxmethyl-cytosines, is strictly regulated during development and differentiation. This review deals with the relevance of the organizational features of CpGs and their relation to each other.
Collapse
Affiliation(s)
- Franz Varga
- 1Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - Heidrun Karlic
- 2Ludwig Boltzmann Institute for Leukemia Research and Hematology, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria and Ludwig Boltzmann Cluster Oncology, Vienna, Austria
| | - Roman Thaler
- 1Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - Klaus Klaushofer
- 1Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| |
Collapse
|
44
|
Primate CpG islands are maintained by heterogeneous evolutionary regimes involving minimal selection. Cell 2011; 145:773-86. [PMID: 21620139 DOI: 10.1016/j.cell.2011.04.024] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 03/28/2011] [Accepted: 04/26/2011] [Indexed: 12/13/2022]
Abstract
Mammalian CpG islands are key epigenomic elements that were first characterized experimentally as genomic fractions with low levels of DNA methylation. Currently, CpG islands are defined based on their genomic sequences alone. Here, we develop evolutionary models to show that several distinct evolutionary processes generate and maintain CpG islands. One central evolutionary regime resulting in enriched CpG content is driven by low levels of DNA methylation and consequentially low rates of CpG deamination. Another major force forming CpG islands is biased gene conversion that stabilizes constitutively methylated CpG islands by balancing rapid deamination with CpG fixation. Importantly, evolutionary analysis and population genetics data suggest that selection for high CpG content is not a significant factor contributing to conservation of CpGs in differentially methylated regions. The heterogeneous, but not selective, origins of CpG islands have direct implications for the understanding of DNA methylation patterns in healthy and diseased cells.
Collapse
|
45
|
Yuen RK, Jiang R, Peñaherrera MS, McFadden DE, Robinson WP. Genome-wide mapping of imprinted differentially methylated regions by DNA methylation profiling of human placentas from triploidies. Epigenetics Chromatin 2011; 4:10. [PMID: 21749726 PMCID: PMC3154142 DOI: 10.1186/1756-8935-4-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 07/13/2011] [Indexed: 12/01/2022] Open
Abstract
Background Genomic imprinting is an important epigenetic process involved in regulating placental and foetal growth. Imprinted genes are typically associated with differentially methylated regions (DMRs) whereby one of the two alleles is DNA methylated depending on the parent of origin. Identifying imprinted DMRs in humans is complicated by species- and tissue-specific differences in imprinting status and the presence of multiple regulatory regions associated with a particular gene, only some of which may be imprinted. In this study, we have taken advantage of the unbalanced parental genomic constitutions in triploidies to further characterize human DMRs associated with known imprinted genes and identify novel imprinted DMRs. Results By comparing the promoter methylation status of over 14,000 genes in human placentas from ten diandries (extra paternal haploid set) and ten digynies (extra maternal haploid set) and using 6 complete hydatidiform moles (paternal origin) and ten chromosomally normal placentas for comparison, we identified 62 genes with apparently imprinted DMRs (false discovery rate <0.1%). Of these 62 genes, 11 have been reported previously as DMRs that act as imprinting control regions, and the observed parental methylation patterns were concordant with those previously reported. We demonstrated that novel imprinted genes, such as FAM50B, as well as novel imprinted DMRs associated with known imprinted genes (for example, CDKN1C and RASGRF1) can be identified by using this approach. Furthermore, we have demonstrated how comparison of DNA methylation for known imprinted genes (for example, GNAS and CDKN1C) between placentas of different gestations and other somatic tissues (brain, kidney, muscle and blood) provides a detailed analysis of specific CpG sites associated with tissue-specific imprinting and gestational age-specific methylation. Conclusions DNA methylation profiling of triploidies in different tissues and developmental ages can be a powerful and effective way to map and characterize imprinted regions in the genome.
Collapse
Affiliation(s)
- Ryan Kc Yuen
- Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada.
| | | | | | | | | |
Collapse
|
46
|
Cowley M, de Burca A, McCole RB, Chahal M, Saadat G, Oakey RJ, Schulz R. Short interspersed element (SINE) depletion and long interspersed element (LINE) abundance are not features universally required for imprinting. PLoS One 2011; 6:e18953. [PMID: 21533089 PMCID: PMC3080381 DOI: 10.1371/journal.pone.0018953] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 03/18/2011] [Indexed: 01/22/2023] Open
Abstract
Genomic imprinting is a form of gene dosage regulation in which a gene is expressed from only one of the alleles, in a manner dependent on the parent of origin. The mechanisms governing imprinted gene expression have been investigated in detail and have greatly contributed to our understanding of genome regulation in general. Both DNA sequence features, such as CpG islands, and epigenetic features, such as DNA methylation and non-coding RNAs, play important roles in achieving imprinted expression. However, the relative importance of these factors varies depending on the locus in question. Defining the minimal features that are absolutely required for imprinting would help us to understand how imprinting has evolved mechanistically. Imprinted retrogenes are a subset of imprinted loci that are relatively simple in their genomic organisation, being distinct from large imprinting clusters, and have the potential to be used as tools to address this question. Here, we compare the repeat element content of imprinted retrogene loci with non-imprinted controls that have a similar locus organisation. We observe no significant differences that are conserved between mouse and human, suggesting that the paucity of SINEs and relative abundance of LINEs at imprinted loci reported by others is not a sequence feature universally required for imprinting.
Collapse
Affiliation(s)
- Michael Cowley
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| | - Anna de Burca
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| | - Ruth B. McCole
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| | - Mandeep Chahal
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| | - Ghazal Saadat
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| | - Rebecca J. Oakey
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
| | - Reiner Schulz
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
|