1
|
Zhang Q, Chen C, Ma Y, Yan X, Lai N, Wang H, Gao B, Gu AM, Han Q, Zhang Q, La L, Sun X. PGAM5 interacts with and maintains BNIP3 to license cancer-associated muscle wasting. Autophagy 2024; 20:2205-2220. [PMID: 38919131 PMCID: PMC11423673 DOI: 10.1080/15548627.2024.2360340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Regressing the accelerated degradation of skeletal muscle protein is a significant goal for cancer cachexia management. Here, we show that genetic deletion of Pgam5 ameliorates skeletal muscle atrophy in various tumor-bearing mice. pgam5 ablation represses excessive myoblast mitophagy and effectively suppresses mitochondria meltdown and muscle wastage. Next, we define BNIP3 as a mitophagy receptor constitutively associating with PGAM5. bnip3 deletion restricts body weight loss and enhances the gastrocnemius mass index in the age- and tumor size-matched experiments. The NH2-terminal region of PGAM5 binds to the PEST motif-containing region of BNIP3 to dampen the ubiquitination and degradation of BNIP3 to maintain continuous mitophagy. Finally, we identify S100A9 as a pro-cachectic chemokine via activating AGER/RAGE. AGER deficiency or S100A9 inhibition restrains skeletal muscle loss by weakening the interaction between PGAM5 and BNIP3. In conclusion, the AGER-PGAM5-BNIP3 axis is a novel but common pathway in cancer-associated muscle wasting that can be targetable. Abbreviation: AGER/RAGE: advanced glycation end-product specific receptor; BA1: bafilomycin A1; BNIP3: BCL2 interacting protein 3; BNIP3L: BCL2 interacting protein 3 like; Ckm-Cre: creatinine kinase, muscle-specific Cre; CM: conditioned medium; CON/CTRL: control; CRC: colorectal cancer; FUNDC1: FUN14 domain containing 1; MAP1LC3A/LC3A: microtubule associated protein 1 light chain 3 alpha; PGAM5: PGAM family member 5, mitochondrial serine/threonine protein phosphatase; S100A9: S100 calcium binding protein A9; SQSTM1/p62: sequestosome 1; TOMM20: translocase of outer mitochondrial membrane 20; TIMM23: translocase of inner mitochondrial membrane 23; TSKO: tissue-specific knockout; VDAC1: voltage dependent anion channel 1.
Collapse
Affiliation(s)
- Qingyuan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunhui Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ye Ma
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xinyi Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Nianhong Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hao Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Baogui Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Anna Meilin Gu
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Qinrui Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qingling Zhang
- Department of Pathology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lei La
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuegang Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Stahl A, Tomchik SM. Modeling neurodegenerative and neurodevelopmental disorders in the Drosophila mushroom body. Learn Mem 2024; 31:a053816. [PMID: 38876485 PMCID: PMC11199955 DOI: 10.1101/lm.053816.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/01/2024] [Indexed: 06/16/2024]
Abstract
The common fruit fly Drosophila melanogaster provides a powerful platform to investigate the genetic, molecular, cellular, and neural circuit mechanisms of behavior. Research in this model system has shed light on multiple aspects of brain physiology and behavior, from fundamental neuronal function to complex behaviors. A major anatomical region that modulates complex behaviors is the mushroom body (MB). The MB integrates multimodal sensory information and is involved in behaviors ranging from sensory processing/responses to learning and memory. Many genes that underlie brain disorders are conserved, from flies to humans, and studies in Drosophila have contributed significantly to our understanding of the mechanisms of brain disorders. Genetic mutations that mimic human diseases-such as Fragile X syndrome, neurofibromatosis type 1, Parkinson's disease, and Alzheimer's disease-affect MB structure and function, altering behavior. Studies dissecting the effects of disease-causing mutations in the MB have identified key pathological mechanisms, and the development of a complete connectome promises to add a comprehensive anatomical framework for disease modeling. Here, we review Drosophila models of human neurodevelopmental and neurodegenerative disorders via the effects of their underlying mutations on MB structure, function, and the resulting behavioral alterations.
Collapse
Affiliation(s)
- Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Seth M Tomchik
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
- Hawk-IDDRC, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
3
|
Tang H, Yu Q, Chen X, Zhang J, Guo D, Guo W, Zhang S, Shi X. Phosphoglycerate mutase 5 exacerbates liver ischemia-reperfusion injury by activating mitochondrial fission. Sci Rep 2024; 14:8535. [PMID: 38609411 PMCID: PMC11014912 DOI: 10.1038/s41598-024-58748-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Although the death of hepatocytes is a crucial trigger of liver ischemia-reperfusion (I/R) injury, the regulation of liver I/R-induced hepatocyte death is still poorly understood. Phosphoglycerate mutase 5 (PGAM5), a mitochondrial Serine/Threonine protein phosphatase, regulates mitochondrial dynamics and is involved in the process of both apoptosis and necrotic. However, it is still unclear what role PGAM5 plays in the death of hepatocytes induced by I/R. Using a PGAM5-silence mice model, we investigated the role of PGAM5 in liver I/R injury and its relevant molecular mechanisms. Our data showed that PGAM5 was highly expressed in mice with liver I/R injury. Silence of PGAM5 could decrease I/R-induced hepatocyte death in mice. In subcellular levels, the silence of PGAM5 could restore mitochondrial membrane potential, increase mitochondrial DNA copy number and transcription levels, inhibit ROS generation, and prevent I/R-induced opening of abnormal mPTP. As for the molecular mechanisms, we indicated that the silence of PGAM5 could inhibit Drp1(S616) phosphorylation, leading to a partial reduction of mitochondrial fission. In addition, Mdivi-1 could inhibit mitochondrial fission, decrease hepatocyte death, and attenuate liver I/R injury in mice. In conclusion, our data reveal the molecular mechanism of PGAM5 in driving hepatocyte death through activating mitochondrial fission in liver I/R injury.
Collapse
Affiliation(s)
- Hongwei Tang
- Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou, 450052, Henan, China
- ZhengZhou Engineering Laboratory of Organ Transplantation Technique and Application, Zhengzhou, 450052, Henan, China
| | - Qiwen Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Xu Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Jiakai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Danfeng Guo
- Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou, 450052, Henan, China
- ZhengZhou Engineering Laboratory of Organ Transplantation Technique and Application, Zhengzhou, 450052, Henan, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou, 450052, Henan, China
- ZhengZhou Engineering Laboratory of Organ Transplantation Technique and Application, Zhengzhou, 450052, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou, 450052, Henan, China
- ZhengZhou Engineering Laboratory of Organ Transplantation Technique and Application, Zhengzhou, 450052, Henan, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
4
|
Xu C, Wang M, Cheng A, Yang Q, Huang J, Ou X, Sun D, He Y, Wu Z, Wu Y, Zhang S, Tian B, Zhao X, Liu M, Zhu D, Jia R, Chen S. Multiple functions of the nonstructural protein 3D in picornavirus infection. Front Immunol 2024; 15:1365521. [PMID: 38629064 PMCID: PMC11018997 DOI: 10.3389/fimmu.2024.1365521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
3D polymerase, also known as RNA-dependent RNA polymerase, is encoded by all known picornaviruses, and their structures are highly conserved. In the process of picornavirus replication, 3D polymerase facilitates the assembly of replication complexes and directly catalyzes the synthesis of viral RNA. The nuclear localization signal carried by picornavirus 3D polymerase, combined with its ability to interact with other viral proteins, viral RNA and cellular proteins, indicate that its noncatalytic role is equally important in viral infections. Recent studies have shown that 3D polymerase has multiple effects on host cell biological functions, including inducing cell cycle arrest, regulating host cell translation, inducing autophagy, evading immune responses, and triggering inflammasome formation. Thus, 3D polymerase would be a very valuable target for the development of antiviral therapies. This review summarizes current studies on the structure of 3D polymerase and its regulation of host cell responses, thereby improving the understanding of picornavirus-mediated pathogenesis caused by 3D polymerase.
Collapse
Affiliation(s)
- Chenxia Xu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Moehlman AT, Kanfer G, Youle RJ. Loss of STING in parkin mutant flies suppresses muscle defects and mitochondria damage. PLoS Genet 2023; 19:e1010828. [PMID: 37440574 PMCID: PMC10368295 DOI: 10.1371/journal.pgen.1010828] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/25/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The early pathogenesis and underlying molecular causes of motor neuron degeneration in Parkinson's Disease (PD) remains unresolved. In the model organism Drosophila melanogaster, loss of the early-onset PD gene parkin (the ortholog of human PRKN) results in impaired climbing ability, damage to the indirect flight muscles, and mitochondrial fragmentation with swelling. These stressed mitochondria have been proposed to activate innate immune pathways through release of damage associated molecular patterns (DAMPs). Parkin-mediated mitophagy is hypothesized to suppress mitochondrial damage and subsequent activation of the cGAS/STING innate immunity pathway, but the relevance of this interaction in the fly remains unresolved. Using a combination of genetics, immunoassays, and RNA sequencing, we investigated a potential role for STING in the onset of parkin-null phenotypes. Our findings demonstrate that loss of Drosophila STING in flies rescues the thorax muscle defects and the climbing ability of parkin-/- mutants. Loss of STING also suppresses the disrupted mitochondrial morphology in parkin-/- flight muscles, suggesting unexpected feedback of STING on mitochondria integrity or activation of a compensatory mitochondrial pathway. In the animals lacking both parkin and sting, PINK1 is activated and cell death pathways are suppressed. These findings support a unique, non-canonical role for Drosophila STING in the cellular and organismal response to mitochondria stress.
Collapse
Affiliation(s)
- Andrew T. Moehlman
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gil Kanfer
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
6
|
Roşianu F, Mihaylov SR, Eder N, Martiniuc A, Claxton S, Flynn HR, Jalal S, Domart MC, Collinson L, Skehel M, Snijders AP, Krause M, Tooze SA, Ultanir SK. Loss of NDR1/2 kinases impairs endomembrane trafficking and autophagy leading to neurodegeneration. Life Sci Alliance 2023; 6:6/2/e202201712. [PMID: 36446521 PMCID: PMC9711861 DOI: 10.26508/lsa.202201712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Autophagy is essential for neuronal development and its deregulation contributes to neurodegenerative diseases. NDR1 and NDR2 are highly conserved kinases, implicated in neuronal development, mitochondrial health and autophagy, but how they affect mammalian brain development in vivo is not known. Using single and double Ndr1/2 knockout mouse models, we show that only dual loss of Ndr1/2 in neurons causes neurodegeneration. This phenotype was present when NDR kinases were deleted both during embryonic development, as well as in adult mice. Proteomic and phosphoproteomic comparisons between Ndr1/2 knockout and control brains revealed novel kinase substrates and indicated that endocytosis is significantly affected in the absence of NDR1/2. We validated the endocytic protein Raph1/Lpd1, as a novel NDR1/2 substrate, and showed that both NDR1/2 and Raph1 are critical for endocytosis and membrane recycling. In NDR1/2 knockout brains, we observed prominent accumulation of transferrin receptor, p62 and ubiquitinated proteins, indicative of a major impairment of protein homeostasis. Furthermore, the levels of LC3-positive autophagosomes were reduced in knockout neurons, implying that reduced autophagy efficiency mediates p62 accumulation and neurotoxicity. Mechanistically, pronounced mislocalisation of the transmembrane autophagy protein ATG9A at the neuronal periphery, impaired axonal ATG9A trafficking and increased ATG9A surface levels further confirm defects in membrane trafficking, and could underlie the impairment in autophagy. We provide novel insight into the roles of NDR1/2 kinases in maintaining neuronal health.
Collapse
Affiliation(s)
- Flavia Roşianu
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Noreen Eder
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Antonie Martiniuc
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Suzanne Claxton
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Helen R Flynn
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Shamsinar Jalal
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Mark Skehel
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
7
|
Zhong F, Gan Y, Song J, Zhang W, Yuan S, Qin Z, Wu J, Lü Y, Yu W. The inhibition of PGAM5 suppresses seizures in a kainate-induced epilepsy model via mitophagy reduction. Front Mol Neurosci 2022; 15:1047801. [PMID: 36618822 PMCID: PMC9813404 DOI: 10.3389/fnmol.2022.1047801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background Epilepsy is a common neurological disease, and excessive mitophagy is considered as one of the major triggers of epilepsy. Mitophagy is a crucial pathway affecting reactive oxygen species. Phosphoglycerate mutase 5 (PGAM5) is a protein phosphatase present in mitochondria that regulates many biological processes including mitophagy and cell death. However, the mechanism of PGAM5 in epilepsy remains unclear. The purpose of the present study was to examine whether PGAM5 affects epilepsy through PTEN-induced putative kinase 1 (PINK1)-mediated mitophagy. Methods After the knockdown of PGAM5 expression by the adeno-associated virus, an epilepsy model was created by kainic acid. Next, the seizure activity was recorded by local field potentials before evaluating the level of mitochondrial autophagy marker proteins. Lastly, the ultrastructure of mitochondria, neuronal damage and oxidative stress levels were further observed. Results A higher PGAM5 level was found in epilepsy, and its cellular localization was in neurons. The interactions between PGAM5 and PINK1 in epilepsy were further found. After the knockdown of PGAM5, the level of PINK1 and light chain 3B was decreased and the expression of the translocase of the inner mitochondrial membrane 23 and translocase of the outer mitochondrial membrane 20 were both increased. Knockdown of PGAM5 also resulted in reduced neuronal damage, decreased malondialdehyde levels, decreased reactive oxygen species production and increased superoxide dismutase activity. In addition, the duration of spontaneous seizure-like events (SLEs), the number of SLEs and the time spent in SLEs were all reduced in the epilepsy model after inhibition of PGAM5 expression. Conclusion Inhibition of PGAM5 expression reduces seizures via inhibiting PINK1-mediated mitophagy.
Collapse
Affiliation(s)
- Fuxin Zhong
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Yunhao Gan
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaqi Song
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Wenbo Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiyun Yuan
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhangjin Qin
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jiani Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weihua Yu
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China,*Correspondence: Weihua Yu,
| |
Collapse
|
8
|
Kataoka T. Biological properties of the BCL-2 family protein BCL-RAMBO, which regulates apoptosis, mitochondrial fragmentation, and mitophagy. Front Cell Dev Biol 2022; 10:1065702. [PMID: 36589739 PMCID: PMC9800997 DOI: 10.3389/fcell.2022.1065702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria play an essential role in the regulation of cellular stress responses, including cell death. Damaged mitochondria are removed by fission and fusion cycles and mitophagy, which counteract cell death. BCL-2 family proteins possess one to four BCL-2 homology domains and regulate apoptosis signaling at mitochondria. BCL-RAMBO, also known as BCL2-like 13 (BCL2L13), was initially identified as one of the BCL-2 family proteins inducing apoptosis. Mitophagy receptors recruit the ATG8 family proteins MAP1LC3/GABARAP via the MAP1LC3-interacting region (LIR) motif to initiate mitophagy. In addition to apoptosis, BCL-RAMBO has recently been identified as a mitophagy receptor that possesses the LIR motif and regulates mitochondrial fragmentation and mitophagy. In the 20 years since its discovery, many important findings on BCL-RAMBO have been increasingly reported. The biological properties of BCL-RAMBO are reviewed herein.
Collapse
Affiliation(s)
- Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan,Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan,*Correspondence: Takao Kataoka,
| |
Collapse
|
9
|
Mao Y, Ren J, Yang L. FUN14 Domain Containing 1 (FUNDC1): A Promising Mitophagy Receptor Regulating Mitochondrial Homeostasis in Cardiovascular Diseases. Front Pharmacol 2022; 13:887045. [PMID: 35645834 PMCID: PMC9136072 DOI: 10.3389/fphar.2022.887045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria, the intracellular organelles for cellular aerobic respiration and energy production, play an important role in the regulation of cell metabolism and cell fate. Mitophagy, a selective form of autophagy, maintains dynamic homeostasis of cells through targeting long-lived or defective mitochondria for timely clearance and recycling. Dysfunction in mitophagy is involved in the molecular mechanism responsible for the onset and development of human diseases. FUN14 domain containing 1 (FUNDC1) is a mitochondrial receptor located in the outer mitochondria membrane (OMM) to govern mitophagy process. Emerging evidence has demonstrated that levels and phosphorylation states of FUNDC1 are closely related to the occurrence, progression and prognosis of cardiovascular diseases, indicating a novel role for this mitophagy receptor in the regulation of mitochondrial homeostasis in cardiovascular system. Here we review mitophagy mediated by FUNDC1 in mitochondria and its role in various forms of cardiovascular diseases.
Collapse
Affiliation(s)
- Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- *Correspondence: Jun Ren, ; Lifang Yang,
| | - Lifang Yang
- Department of Anesthesiology, Xi’an Children’s Hospital, Xi’an, China
- *Correspondence: Jun Ren, ; Lifang Yang,
| |
Collapse
|
10
|
Static Magnetic Fields Reduce Oxidative Stress to Improve Wound Healing and Alleviate Diabetic Complications. Cells 2022; 11:cells11030443. [PMID: 35159252 PMCID: PMC8834397 DOI: 10.3390/cells11030443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Although some studies have shown that some static magnetic fields (SMFs) can promote wound healing in diabetic mice, it is not clear whether the other diabetes complications, such as liver disease and diabetic nephropathy, can also be alleviated. Here, we constructed two simple magnetic plates using neodymium permanent magnets to examine the comprehensive effects of moderate SMFs on genetically obese leptin receptor-deficient db/db diabetic mice. We found that although the blood glucose was not obviously reduced by these two SMF settings, both of the glycated serum protein (GSP) and malondialdehyde (MDA) levels were significantly decreased (Cohen’s d = 2.57–3.04). Moreover, the wound healing, liver lipid accumulation, and renal defects were all significantly improved by SMF treatment (Cohen’s d = 0.91–2.05). Wound tissue examination showed obvious nuclear factor erythroid 2-related factor 2 (NRF2) level decrease (Cohen’s d = 2.49–5.40) and Ki-67 level increase (Cohen’s d = 2.30–3.40), indicating decreased oxidative stress and increased cell proliferation. In vitro cellular studies with fibroblast NIH3T3 cells showed that SMFs could reduce high glucose-induced NRF2 nucleus translocation (Cohen’s d = 0.87–1.15) and cellular reactive oxygen species (ROS) elevation (Cohen’s d = 0.92), indicating decreased oxidative stress. Consequently, high glucose-induced impairments in cell vitality, proliferation, and migration were all improved by SMF treatment. Therefore, our results demonstrate that these simple SMF devices could effectively reduce oxidative stress in diabetic mice and may provide a cost-effective physical therapy strategy to alleviate multiple diabetic complications in the future.
Collapse
|
11
|
Yang Z, Zheng H, Li H, Chen Y, Hou D, Fan Q, Song J, Guo L, Liu L. The expression of IFN-β is suppressed by the viral 3D polymerase via its impact on PGAM5 expression during enterovirus D68 infection. Virus Res 2021; 304:198549. [PMID: 34425164 DOI: 10.1016/j.virusres.2021.198549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022]
Abstract
Enterovirus D68 (EV-D68) belongs to the Picornaviridae family and can lead to severe clinical manifestations in the respiratory system. The 3D-polymerase (3Dpoly) is an important nonstructural protein during EV-D68 replication, but few studies have addressed its interaction with the host antiviral response during EV-D68 infection. Here, we used human bronchial epithelial cells to investigate the impact of the 3Dpoly on the mitochondrial dynamics and innate immune response. The results showed that the number and morphology of the mitochondria in 16HBE cells was affected during the early stage of infection, and these effects included the cellular apoptosis. Moreover, we found that the 3Dpoly of EV-D68 can interact with PGAM5 and promote mitofusin 2 protein upregulation, and subsequently, 3Dpoly impairs IFN-β expression by impacting the activation of the RIG-I receptor signaling pathway. Our findings suggest that during EV-D68 replication, the 3Dpoly, via its interaction with PGAM5, can affect the mitochondrial dynamics and suppress the expression of IFN-β by impacting the RIG-I-like receptor signal pathway.
Collapse
Affiliation(s)
- Zening Yang
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Huiwen Zheng
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Heng Li
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Yanli Chen
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Dongpei Hou
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Qiqi Fan
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Jie Song
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Lei Guo
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China.
| | - Longding Liu
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China.
| |
Collapse
|
12
|
Lei L, Yang S, Lu X, Zhang Y, Li T. Research Progress on the Mechanism of Mitochondrial Autophagy in Cerebral Stroke. Front Aging Neurosci 2021; 13:698601. [PMID: 34335233 PMCID: PMC8319822 DOI: 10.3389/fnagi.2021.698601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial autophagy is an early defense and protection process that selectively clears dysfunctional or excessive mitochondria through a distinctive mechanism to maintain intracellular homeostasis. Mitochondrial dysfunction during cerebral stroke involves metabolic disbalance, oxidative stress, apoptosis, endoplasmic reticulum stress, and abnormal mitochondrial autophagy. This article reviews the research progress on the mechanism of mitochondrial autophagy in ischemic stroke to provide a theoretical basis for further research on mitochondrial autophagy and the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Li Lei
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Kunming, China
| | - Shuaifeng Yang
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Kunming, China
| | - Xiaoyang Lu
- Translational Neurosurgery and Neurobiology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | - Yongfa Zhang
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Kunming, China
| | - Tao Li
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Kunming, China
| |
Collapse
|
13
|
Chen Y, Gong K, Xu Q, Meng J, Long T, Chang C, Wang Z, Liu W. Phosphoglycerate Mutase 5 Knockdown Alleviates Neuronal Injury After Traumatic Brain Injury Through Drp1-Mediated Mitochondrial Dysfunction. Antioxid Redox Signal 2021; 34:154-170. [PMID: 32253918 DOI: 10.1089/ars.2019.7982] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aims: Traumatic brain injury (TBI) is a major cause of disability and death, and a better understanding of the underlying mechanisms of mitochondrial dysfunction will provide important targets for preventing damage from neuronal insults. Phosphoglycerate mutase 5 (PGAM5) is localized to the mitochondrial outer-inner membrane contact sites, and the PGAM5-Drp1 pathway is involved in mitochondrial dysfunction and cell death. The purpose of this project was to evaluate the effects of PGAM5 on neuronal injury and mitochondrial dysfunction. Results: PGAM5 was overexpressed in mice subjected to TBI and in primary cortical neurons injured by mechanical equiaxial stretching. PGAM5 deficiency alleviated neuroinflammation, blocked Parkin, PINK1, and Drp1 translocation to mitochondria and abnormal phosphorylation of Drp1, mitochondrial ultrastructural changes, and nerve malfunction in TBI mouse model. PGAM5-shRNA (short hairpin RNA) reduced Drp1 translocation and activation, including dephosphorylation of p-Drp1 on Ser622 (human Drp1 Ser616) and phosphorylation of Drp1 on Ser643 (human Drp1 Ser637). The levels of inflammatory cytokines, the degree of mitochondrial impairment (mitochondrial membrane potential, ADP/ATP, AMP/ADP, antioxidant capacity), and neuronal injury in stretch-induced primary cortical neurons were reduced by blocking expression of PGAM5. The inhibition of PGAM5 is neuroprotective via attenuation of Drp1 activation, similar to that achieved by mitochondrial division inhibitor-1 (Mdivi1)-mediated Drp1 inhibition. Innovation and Conclusion: Our findings demonstrate the critical role of PGAM5 in progression of neuronal injury from TBI via Drp1 activation (dephosphorylation of p-Drp1 on Ser622 and phosphorylation of Drp1 on Ser643)-mediated mitochondrial dysfunction. The data may open a window for developing new drugs to prevent the neuropathology of TBI.
Collapse
Affiliation(s)
- Yuhua Chen
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China
| | - Kai Gong
- Department of Neurosurgery, First Affiliated Hospital of Xia'men University, Xia'men, China
| | - Quanhua Xu
- Department of Neurosurgery, Bijie First People's Hospital, Bijie, China
| | - Jiao Meng
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China
| | - Tianlin Long
- Department of Neurosurgery, Bijie First People's Hospital, Bijie, China
| | - Cuicui Chang
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China
| | - Zhanxiang Wang
- Department of Neurosurgery, First Affiliated Hospital of Xia'men University, Xia'men, China
| | - Wei Liu
- Department of Neurosurgery, Bijie First People's Hospital, Bijie, China
| |
Collapse
|
14
|
Xue C, Gu X, Li G, Bao Z, Li L. Mitochondrial Mechanisms of Necroptosis in Liver Diseases. Int J Mol Sci 2020; 22:ijms22010066. [PMID: 33374660 PMCID: PMC7793526 DOI: 10.3390/ijms22010066] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Cell death represents a basic biological paradigm that governs outcomes and long-term sequelae in almost every hepatic disease. Necroptosis is a common form of programmed cell death in the liver. Necroptosis can be activated by ligands of death receptors, which then interact with receptor-interactive protein kinases 1 (RIPK1). RIPK1 mediates receptor interacting receptor-interactive protein kinases 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL) and necrosome formation. Regarding the molecular mechanisms of mitochondrial-mediated necroptosis, the RIPK1/RIPK3/MLKL necrosome complex can enhance oxidative respiration and generate reactive oxygen species, which can be a crucial factor in the susceptibility of cells to necroptosis. The necrosome complex is also linked to mitochondrial components such as phosphoglycerate mutase family member 5 (PGAM5), metabolic enzymes in the mitochondrial matrix, mitochondrial permeability protein, and cyclophilin D. In this review, we focus on the role of mitochondria-mediated cell necroptosis in acute liver injury, chronic liver diseases, and hepatocellular carcinoma, and its possible translation into clinical applications.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; (C.X.); (X.G.); (Z.B.)
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; (C.X.); (X.G.); (Z.B.)
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China;
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; (C.X.); (X.G.); (Z.B.)
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; (C.X.); (X.G.); (Z.B.)
- Correspondence:
| |
Collapse
|
15
|
Phosphoglycerate mutase 5 exacerbates cardiac ischemia-reperfusion injury through disrupting mitochondrial quality control. Redox Biol 2020; 38:101777. [PMID: 33166869 PMCID: PMC7658715 DOI: 10.1016/j.redox.2020.101777] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
The death of cardiomyocytes either through apoptosis or necroptosis is the pathological feature of cardiac ischemia-reperfusion (I/R) injury. Phosphoglycerate mutase 5 (PGAM5), a mitochondrially-localized serine/threonine-protein phosphatase, functions as a novel inducer of necroptosis. However, intense debate exists regarding the effect of PGAM5 on I/R-related cardiomyocyte death. Using cardiac-specific PGAM5 knockout (PGAM5CKO) mice, we comprehensively investigated the precise contribution and molecular mechanism of PGAM5 in cardiomyocyte death. Our data showed that both PGAM5 transcription and expression were upregulated in reperfused myocardium. Genetic ablation of PGAM5 suppressed I/R-mediated necroptosis but failed to prevent apoptosis activation, a result that went along with improved heart function and decreased inflammation response. Regardless of PGAM5 status, mitophagy-related cell death was not apparent following I/R. Under physiological conditions, PGAM5 overexpression in primary cardiomyocytes was sufficient to induce cardiomyocyte necroptosis rather than apoptosis. At the sub-cellular levels, PGAM5 deficiency increased mitochondrial DNA copy number and transcript levels, normalized mitochondrial respiration, repressed mitochondrial ROS production, and prevented abnormal mPTP opening upon I/R. Molecular investigation demonstrated that PGAM5 deletion interrupted I/R-mediated DrpS637 dephosphorylation but failed to abolish I/R-induce Drp1S616 phosphorylation, resulting in partial inhibition of mitochondrial fission. In addition, declining Mfn2 and OPA1 levels were restored in PGAM5CKO cardiomyocytes following I/R. Nevertheless, PGAM5 depletion did not rescue suppressed mitophagy upon I/R injury. In conclusion, our results provide an insight into the specific role and working mechanism of PGAM5 in driving cardiomyocyte necroptosis through imposing mitochondrial quality control in cardiac I/R injury.
Collapse
|
16
|
Pirooznia SK, Yuan C, Khan MR, Karuppagounder SS, Wang L, Xiong Y, Kang SU, Lee Y, Dawson VL, Dawson TM. PARIS induced defects in mitochondrial biogenesis drive dopamine neuron loss under conditions of parkin or PINK1 deficiency. Mol Neurodegener 2020; 15:17. [PMID: 32138754 PMCID: PMC7057660 DOI: 10.1186/s13024-020-00363-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mutations in PINK1 and parkin cause autosomal recessive Parkinson's disease (PD). Evidence placing PINK1 and parkin in common pathways regulating multiple aspects of mitochondrial quality control is burgeoning. However, compelling evidence to causatively link specific PINK1/parkin dependent mitochondrial pathways to dopamine neuron degeneration in PD is lacking. Although PINK1 and parkin are known to regulate mitophagy, emerging data suggest that defects in mitophagy are unlikely to be of pathological relevance. Mitochondrial functions of PINK1 and parkin are also tied to their proteasomal regulation of specific substrates. In this study, we examined how PINK1/parkin mediated regulation of the pathogenic substrate PARIS impacts dopaminergic mitochondrial network homeostasis and neuronal survival in Drosophila. METHODS The UAS-Gal4 system was employed for cell-type specific expression of the various transgenes. Effects on dopamine neuronal survival and function were assessed by anti-TH immunostaining and negative geotaxis assays. Mitochondrial effects were probed by quantitative analysis of mito-GFP labeled dopaminergic mitochondria, assessment of mitochondrial abundance in dopamine neurons isolated by Fluorescence Activated Cell Sorting (FACS) and qRT-PCR analysis of dopaminergic factors that promote mitochondrial biogenesis. Statistical analyses employed two-tailed Student's T-test, one-way or two-way ANOVA as required and data considered significant when P < 0.05. RESULTS We show that defects in mitochondrial biogenesis drive adult onset progressive loss of dopamine neurons and motor deficits in Drosophila models of PINK1 or parkin insufficiency. Such defects result from PARIS dependent repression of dopaminergic PGC-1α and its downstream transcription factors NRF1 and TFAM that cooperatively promote mitochondrial biogenesis. Dopaminergic accumulation of human or Drosophila PARIS recapitulates these neurodegenerative phenotypes that are effectively reversed by PINK1, parkin or PGC-1α overexpression in vivo. To our knowledge, PARIS is the only co-substrate of PINK1 and parkin to specifically accumulate in the DA neurons and cause neurodegeneration and locomotor defects stemming from disrupted dopamine signaling. CONCLUSIONS Our findings identify a highly conserved role for PINK1 and parkin in regulating mitochondrial biogenesis and promoting mitochondrial health via the PARIS/ PGC-1α axis. The Drosophila models described here effectively recapitulate the cardinal PD phenotypes and thus will facilitate identification of novel regulators of mitochondrial biogenesis for physiologically relevant therapeutic interventions.
Collapse
Affiliation(s)
- Sheila K. Pirooznia
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685 USA
| | - Changqing Yuan
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
| | - Mohammed Repon Khan
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
| | - Senthilkumar S. Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685 USA
| | - Luan Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685 USA
| | - Yulan Xiong
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| | - Sung Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685 USA
| | - Yunjong Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685 USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Departments of Physiology, Baltimore, USA
- Solomon H. Snyder Department of Neuroscience, Baltimore, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205 USA
- Departments of Neurology, Iowa City, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685 USA
- Solomon H. Snyder Department of Neuroscience, Baltimore, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
17
|
Scott HL, Buckner N, Fernandez-Albert F, Pedone E, Postiglione L, Shi G, Allen N, Wong LF, Magini L, Marucci L, O'Sullivan GA, Cole S, Powell J, Maycox P, Uney JB. A dual druggable genome-wide siRNA and compound library screening approach identifies modulators of parkin recruitment to mitochondria. J Biol Chem 2020; 295:3285-3300. [PMID: 31911436 PMCID: PMC7062187 DOI: 10.1074/jbc.ra119.009699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/20/2019] [Indexed: 01/07/2023] Open
Abstract
Genetic and biochemical evidence points to an association between mitochondrial dysfunction and Parkinson's disease (PD). PD-associated mutations in several genes have been identified and include those encoding PTEN-induced putative kinase 1 (PINK1) and parkin. To identify genes, pathways, and pharmacological targets that modulate the clearance of damaged or old mitochondria (mitophagy), here we developed a high-content imaging-based assay of parkin recruitment to mitochondria and screened both a druggable genome-wide siRNA library and a small neuroactive compound library. We used a multiparameter principal component analysis and an unbiased parameter-agnostic machine-learning approach to analyze the siRNA-based screening data. The hits identified in this analysis included specific genes of the ubiquitin proteasome system, and inhibition of ubiquitin-conjugating enzyme 2 N (UBE2N) with a specific antagonist, Bay 11-7082, indicated that UBE2N modulates parkin recruitment and downstream events in the mitophagy pathway. Screening of the compound library identified kenpaullone, an inhibitor of cyclin-dependent kinases and glycogen synthase kinase 3, as a modulator of parkin recruitment. Validation studies revealed that kenpaullone augments the mitochondrial network and protects against the complex I inhibitor MPP+. Finally, we used a microfluidics platform to assess the timing of parkin recruitment to depolarized mitochondria and its modulation by kenpaullone in real time and with single-cell resolution. We demonstrate that the high-content imaging-based assay presented here is suitable for both genetic and pharmacological screening approaches, and we also provide evidence that pharmacological compounds modulate PINK1-dependent parkin recruitment.
Collapse
Affiliation(s)
- Helen L Scott
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Nicola Buckner
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | - Elisa Pedone
- Department of Engineering and Mathematics, University of Bristol, Bristol BS8 1TD, United Kingdom; School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Lorena Postiglione
- Department of Engineering and Mathematics, University of Bristol, Bristol BS8 1TD, United Kingdom; School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Gongyu Shi
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Nicholas Allen
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Liang-Fong Wong
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Lorenzo Magini
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Lucia Marucci
- Department of Engineering and Mathematics, University of Bristol, Bristol BS8 1TD, United Kingdom; BrisSynBio, Bristol BS8 1QU, United Kingdom
| | - Gregory A O'Sullivan
- Takeda Cambridge Ltd., Cambridge Science Park, Cambridge CB4 0PZ, United Kingdom
| | - Sarah Cole
- Takeda Ventures, Inc., 61 Aldwych, London WC2B 4A, United Kingdom
| | - Justin Powell
- Takeda Cambridge Ltd., Cambridge Science Park, Cambridge CB4 0PZ, United Kingdom
| | - Peter Maycox
- Takeda Ventures, Inc., 61 Aldwych, London WC2B 4A, United Kingdom
| | - James B Uney
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
18
|
Feng ST, Wang ZZ, Yuan YH, Wang XL, Sun HM, Chen NH, Zhang Y. Dynamin-related protein 1: A protein critical for mitochondrial fission, mitophagy, and neuronal death in Parkinson’s disease. Pharmacol Res 2020; 151:104553. [DOI: 10.1016/j.phrs.2019.104553] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 01/14/2023]
|
19
|
Ikeda A, Nishioka K, Meng H, Takanashi M, Hasegawa I, Inoshita T, Shiba-Fukushima K, Li Y, Yoshino H, Mori A, Okuzumi A, Yamaguchi A, Nonaka R, Izawa N, Ishikawa KI, Saiki H, Morita M, Hasegawa M, Hasegawa K, Elahi M, Funayama M, Okano H, Akamatsu W, Imai Y, Hattori N. Mutations in CHCHD2 cause α-synuclein aggregation. Hum Mol Genet 2019; 28:3895-3911. [DOI: 10.1093/hmg/ddz241] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/02/2023] Open
Abstract
Abstract
Mutations in CHCHD2 are linked to a familial, autosomal dominant form of Parkinson’s disease (PD). The gene product may regulate mitochondrial respiratory function. However, whether mitochondrial dysfunction induced by CHCHD2 mutations further yields α-synuclein pathology is unclear. Here, we provide compelling genetic evidence that mitochondrial dysfunction induced by PD-linked CHCHD2 T61I mutation promotes α-synuclein aggregation using brain autopsy, induced pluripotent stem cells (iPSCs) and Drosophila genetics. An autopsy of an individual with CHCHD2 T61I revealed widespread Lewy pathology with both amyloid plaques and neurofibrillary tangles that appeared in the brain stem, limbic regions and neocortex. A prominent accumulation of sarkosyl-insoluble α-synuclein aggregates, the extent of which was comparable to that of a case with α-synuclein (SNCA) duplication, was observed in CHCHD2 T61I brain tissue. The prion-like activity and morphology of α-synuclein fibrils from the CHCHD2 T61I brain tissue were similar to those of fibrils from SNCA duplication and sporadic PD brain tissues. α-Synuclein insolubilization was reproduced in dopaminergic neuron cultures from CHCHD2 T61I iPSCs and Drosophila lacking the CHCHD2 ortholog or expressing the human CHCHD2 T61I. Moreover, the combination of ectopic α-synuclein expression and CHCHD2 null or T61I enhanced the toxicity in Drosophila dopaminergic neurons, altering the proteolysis pathways. Furthermore, CHCHD2 T61I lost its mitochondrial localization by α-synuclein in Drosophila. The mislocalization of CHCHD2 T61I was also observed in the patient brain. Our study suggests that CHCHD2 is a significant mitochondrial factor that determines α-synuclein stability in the etiology of PD.
Collapse
Affiliation(s)
- Aya Ikeda
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Hongrui Meng
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Masashi Takanashi
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Iwao Hasegawa
- University Center of Legal Medicine, Kanagawa Dental University, Kanagawa 238-8580, Japan
| | - Tsuyoshi Inoshita
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kahori Shiba-Fukushima
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Akio Mori
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Ayami Okuzumi
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Akihiro Yamaguchi
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Risa Nonaka
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Nana Izawa
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Kei-ichi Ishikawa
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Hidemoto Saiki
- Department of Neurology, Tazuke Kofukai Medical Research Institute and Kitano Hospital, Osaka 530-8480, Japan
| | - Masayo Morita
- Department of Neurology, Jikei University Katsushika Medical Center, Tokyo 125-8506, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kazuko Hasegawa
- Department of Neurology, NHO Sagamihara National Hospital, Kanagawa 252-0392, Japan
| | - Montasir Elahi
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
20
|
Parkinson's disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling. Proc Natl Acad Sci U S A 2019; 116:20689-20699. [PMID: 31548400 PMCID: PMC6789907 DOI: 10.1073/pnas.1902958116] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The mechanisms of α-synuclein aggregation and subsequent Lewy body formation are a key pathogenesis of Parkinson’s disease (PD). PARK14-linked PD, which is caused by mutations of the iPLA2-VIA/PLA2G6 gene, exhibits a marked Lewy body pathology. iPLA2-VIA, which belongs to the phospholipase A2 family, is another causative gene of neurodegeneration with brain iron accumulation (NBIA). Here, we demonstrate that iPLA2-VIA loss results in acyl-chain shortening in phospholipids, which affects ER homeostasis and neurotransmission and promotes α-synuclein aggregation. The administration of linoleic acid or the overexpression of C19orf12, one of the NBIA-causative genes, also suppresses the acyl-chain shortening by iPLA2-VIA loss. The rescue of iPLA2-VIA phenotypes by C19orf12 provides significant molecular insight into the underlying common pathogenesis of PD and NBIA. Mutations in the iPLA2-VIA/PLA2G6 gene are responsible for PARK14-linked Parkinson’s disease (PD) with α-synucleinopathy. However, it is unclear how iPLA2-VIA mutations lead to α-synuclein (α-Syn) aggregation and dopaminergic (DA) neurodegeneration. Here, we report that iPLA2-VIA–deficient Drosophila exhibits defects in neurotransmission during early developmental stages and progressive cell loss throughout the brain, including degeneration of the DA neurons. Lipid analysis of brain tissues reveals that the acyl-chain length of phospholipids is shortened by iPLA2-VIA loss, which causes endoplasmic reticulum (ER) stress through membrane lipid disequilibrium. The introduction of wild-type human iPLA2-VIA or the mitochondria–ER contact site-resident protein C19orf12 in iPLA2-VIA–deficient flies rescues the phenotypes associated with altered lipid composition, ER stress, and DA neurodegeneration, whereas the introduction of a disease-associated missense mutant, iPLA2-VIA A80T, fails to suppress these phenotypes. The acceleration of α-Syn aggregation by iPLA2-VIA loss is suppressed by the administration of linoleic acid, correcting the brain lipid composition. Our findings suggest that membrane remodeling by iPLA2-VIA is required for the survival of DA neurons and α-Syn stability.
Collapse
|
21
|
Dynamic PGAM5 multimers dephosphorylate BCL-xL or FUNDC1 to regulate mitochondrial and cellular fate. Cell Death Differ 2019; 27:1036-1051. [PMID: 31367011 DOI: 10.1038/s41418-019-0396-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 11/08/2022] Open
Abstract
Mitochondria are highly dynamic organelles and respond to stress by changing their fission-fusion cycle, undergoing mitophagy, or releasing apoptotic proteins to initiate cell death. The molecular mechanisms that sense different stresses and coordinate distinct effectors still await full characterization. Here, we show that PGAM5, which exists in an equilibrium between dimeric and multimeric states, dephosphorylates BCL-xL to inhibit apoptosis or FUNDC1 to activate mitofission and mitophagy in response to distinct stresses. In vinblastine-treated cells, PGAM5 dephosphorylates BCL-xL at Ser62 to restore BCL-xL sequestration of BAX and BAK and thereby resistance to apoptosis. Selenite-induced oxidative stress increases the multimerization of PGAM5, resulting in its dissociation from BCL-xL, which causes increased BCL-xL phosphorylation and apoptosis. Once freed, the more multimeric and active PGAM5 dephosphorylates FUNDC1 to initiate mitofission and mitophagy. The reciprocal interaction of PGAM5 with FUNDC1 and BCL-xL, controlled by PGAM5 multimerization, serves as a molecular switch between mitofission/mitophagy and apoptosis.
Collapse
|
22
|
Functional role of PGAM5 multimeric assemblies and their polymerization into filaments. Nat Commun 2019; 10:531. [PMID: 30705304 PMCID: PMC6355839 DOI: 10.1038/s41467-019-08393-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 01/08/2019] [Indexed: 01/01/2023] Open
Abstract
PGAM5 is a mitochondrial protein phosphatase whose genetic ablation in mice results in mitochondria-related disorders, including neurodegeneration. Functions of PGAM5 include regulation of mitophagy, cell death, metabolism and aging. However, mechanisms regulating PGAM5 activation and signaling are poorly understood. Using electron cryo-microscopy, we show that PGAM5 forms dodecamers in solution. We also present a crystal structure of PGAM5 that reveals the determinants of dodecamer formation. Furthermore, we observe PGAM5 dodecamer assembly into filaments both in vitro and in cells. We find that PGAM5 oligomerization into a dodecamer is not only essential for catalytic activation, but this form also plays a structural role on mitochondrial membranes, which is independent of phosphatase activity. Together, these findings suggest that modulation of the oligomerization of PGAM5 may be a regulatory switch of potential therapeutic interest. PGAM5 is a mitochondrial protein phosphatase whose functions include regulation of mitophagy and cell death. Here, the authors use x-ray crystallography and EM to show that PGAM5 forms dodecameric rings and filaments in solution, and find that PGAM5 rings are essential for catalysis and for a structural effect PGAM5 has on mitochondrial membranes, independently of catalytic activity.
Collapse
|
23
|
Sugo M, Kimura H, Arasaki K, Amemiya T, Hirota N, Dohmae N, Imai Y, Inoshita T, Shiba-Fukushima K, Hattori N, Cheng J, Fujimoto T, Wakana Y, Inoue H, Tagaya M. Syntaxin 17 regulates the localization and function of PGAM5 in mitochondrial division and mitophagy. EMBO J 2018; 37:embj.201798899. [PMID: 30237312 DOI: 10.15252/embj.201798899] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 12/26/2022] Open
Abstract
PGAM5, a mitochondrial protein phosphatase that is genetically and biochemically linked to PINK1, facilitates mitochondrial division by dephosphorylating the mitochondrial fission factor Drp1. At the onset of mitophagy, PGAM5 is cleaved by PARL, a rhomboid protease that degrades PINK1 in healthy cells, and the cleaved form facilitates the engulfment of damaged mitochondria by autophagosomes by dephosphorylating the mitophagy receptor FUNDC1. Here, we show that the function and localization of PGAM5 are regulated by syntaxin 17 (Stx17), a mitochondria-associated membrane/mitochondria protein implicated in mitochondrial dynamics in fed cells and autophagy in starved cells. In healthy cells, loss of Stx17 causes PGAM5 aggregation within mitochondria and thereby failure of the dephosphorylation of Drp1, leading to mitochondrial elongation. In Parkin-mediated mitophagy, Stx17 is prerequisite for PGAM5 to interact with FUNDC1. Our results reveal that the Stx17-PGAM5 axis plays pivotal roles in mitochondrial division and PINK1/Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Masashi Sugo
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hana Kimura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Toshiki Amemiya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Naohiko Hirota
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Inoshita
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kahori Shiba-Fukushima
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
24
|
Shiba-Fukushima K, Ishikawa KI, Inoshita T, Izawa N, Takanashi M, Sato S, Onodera O, Akamatsu W, Okano H, Imai Y, Hattori N. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease. Hum Mol Genet 2018; 26:3172-3185. [PMID: 28541509 DOI: 10.1093/hmg/ddx201] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/23/2017] [Indexed: 01/07/2023] Open
Abstract
The ubiquitin (Ub) kinase PINK1 and the E3 Ub ligase Parkin, two gene products associated with young-onset Parkinson's disease (PD), participate in mitochondrial quality control. The phosphorylation of mitochondrial polyUb by PINK1, which is activated in a mitochondrial membrane potential (ΔΨm)-dependent manner, facilitates the mitochondrial translocation and concomitant enzymatic activation of Parkin, leading to the clearance of phospho-polyUb-tagged mitochondria via mitophagy. Thus, Ub phosphorylation is a key event in PINK1-Parkin-mediated mitophagy. Here, we examined the role of phospho-Ub signaling in the pathogenesis of PD using fly PD models, human brain tissue and dopaminergic neurons derived from induced pluripotent stem cells (iPSCs) containing Parkin or PINK1 mutations, as well as normal controls. We report that phospho-Ub signaling is highly conserved between humans and Drosophila, and that phospho-Ub signaling and the relocation of axonal mitochondria upon ΔΨm reduction are indeed compromised in human dopaminergic neurons containing Parkin or PINK1 mutations. Moreover, phospho-Ub signaling is prominent in tyrosine hydroxylase-positive neurons compared with tyrosine hydroxylase-negative neurons, suggesting that PINK1-Parkin signaling is more required for dopaminergic neurons. These results shed light on the particular vulnerability of dopaminergic neurons to mitochondrial stress.
Collapse
Affiliation(s)
- Kahori Shiba-Fukushima
- Department of Treatment and Research in Multiple Sclerosis and Neuro-Intractable Disease
| | - Kei-Ichi Ishikawa
- Center for Genomic and Regenerative Medicine.,Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tsuyoshi Inoshita
- Department of Treatment and Research in Multiple Sclerosis and Neuro-Intractable Disease
| | - Nana Izawa
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Masashi Takanashi
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Shigeto Sato
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Treatment and Research in Multiple Sclerosis and Neuro-Intractable Disease.,Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Desai S, Juncker M, Kim C. Regulation of mitophagy by the ubiquitin pathway in neurodegenerative diseases. Exp Biol Med (Maywood) 2018; 243:554-562. [PMID: 29316798 DOI: 10.1177/1535370217752351] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mitophagy is a cellular process by which dysfunctional mitochondria are degraded via autophagy. Increasing empirical evidence proposes that this mitochondrial quality-control mechanism is defective in neurons of patients with various neurodegenerative diseases such as Ataxia Telangiectasia, Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Accumulation of defective mitochondria and the production of reactive oxygen species due to defective mitophagy have been identified as causes underlying neurodegenerative disease pathogenesis. However, the reason mitophagy is defective in most neurodegenerative diseases is unclear. Like mitophagy, defects in the ubiquitin/26S proteasome pathway have been linked to neurodegeneration, resulting in the characteristic protein aggregates often seen in neurons of affected patients. Although initiation of mitophagy requires a functional ubiquitin pathway, whether defects in the ubiquitin pathway are causally responsible for defective mitophagy is not known. In this mini-review, we introduce mitophagy and ubiquitin pathways and provide a summary of our current understanding of the regulation of mitophagy by the ubiquitin pathway. We will then briefly review empirical evidence supporting mitophagy defects in neurodegenerative diseases. The review will conclude with a discussion of the constitutively elevated expression of ubiquitin-like protein Interferon-Stimulated Gene 15 (ISG15), an antagonist of the ubiquitin pathway, as a potential cause of defective mitophagy in neurodegenerative diseases. Impact statement Neurodegenerative diseases place an enormous burden on patients and caregivers globally. Over six million people in the United States alone suffer from neurodegenerative diseases, all of which are chronic, incurable, and with causes unknown. Identifying a common molecular mechanism underpinning neurodegenerative disease pathology is urgently needed to aid in the design of effective therapies to ease suffering, reduce economic cost, and improve the quality of life for these patients. Although the development of neurodegeneration may vary between neurodegenerative diseases, they have common cellular hallmarks, including defects in the ubiquitin-proteasome system and mitophagy. In this review, we will provide a summary of our current understanding of the regulation of mitophagy by the ubiquitin pathway and discuss the potential of targeting mitophagy and ubiquitin pathways for the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Shyamal Desai
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| | - Meredith Juncker
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| | - Catherine Kim
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
26
|
Borch Jensen M, Qi Y, Riley R, Rabkina L, Jasper H. PGAM5 promotes lasting FoxO activation after developmental mitochondrial stress and extends lifespan in Drosophila. eLife 2017; 6:26952. [PMID: 28891792 PMCID: PMC5614561 DOI: 10.7554/elife.26952] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) has been associated with long lifespan across metazoans. In Caenorhabditis elegans, mild developmental mitochondrial stress activates UPRmt reporters and extends lifespan. We show that similar developmental stress is necessary and sufficient to extend Drosophila lifespan, and identify Phosphoglycerate Mutase 5 (PGAM5) as a mediator of this response. Developmental mitochondrial stress leads to activation of FoxO, via Apoptosis Signal-regulating Kinase 1 (ASK1) and Jun-N-terminal Kinase (JNK). This activation persists into adulthood and induces a select set of chaperones, many of which have been implicated in lifespan extension in flies. Persistent FoxO activation can be reversed by a high-protein diet in adulthood, through mTORC1 and GCN-2 activity. Accordingly, the observed lifespan extension is prevented on a high-protein diet and in FoxO-null flies. The diet-sensitivity of this pathway has important implications for interventions that seek to engage the UPRmt to improve metabolic health and longevity.
Collapse
Affiliation(s)
| | - Yanyan Qi
- Buck Institute for Research on Aging, Novato, United States
| | - Rebeccah Riley
- Buck Institute for Research on Aging, Novato, United States
| | - Liya Rabkina
- Buck Institute for Research on Aging, Novato, United States
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, United States.,Immunology Discovery, Genentech, South San Francisco, United States
| |
Collapse
|
27
|
Abstract
PGAM5 is a mitochondrial membrane protein that functions as an atypical Ser/Thr phosphatase and is a regulator of oxidative stress response, necroptosis, and autophagy. Here we present several crystal structures of PGAM5 including the activating N-terminal regulatory sequences, providing a model for structural plasticity, dimerization of the catalytic domain, and the assembly into an enzymatically active dodecameric form. Oligomeric states observed in structures were supported by hydrogen exchange mass spectrometry, size-exclusion chromatography, and analytical ultracentrifugation experiments in solution. We report that the catalytically important N-terminal WDPNWD motif acts as a structural integrator assembling PGAM5 into a dodecamer, allosterically activating the phosphatase by promoting an ordering of the catalytic loop. Additionally the observed active site plasticity enabled visualization of essential conformational rearrangements of catalytic elements. The comprehensive biophysical characterization offers detailed structural models of this key mitochondrial phosphatase that has been associated with the development of diverse diseases. PGAM5 catalytic domain shares phosphoglycerate mutase fold and forms stable dimer WDPNWD motif allosterically activates the fully active dodecameric form Crystal structures reveal conformational plasticity of the PGAM5 active site
Collapse
|
28
|
Abstract
Autophagy and the ubiquitin-proteasome system are the two major quality control pathways responsible for cellular homeostasis. As such, they provide protection against age-associated changes and a plethora of human diseases. Ubiquitination is utilized as a degradation signal by both systems, albeit in different ways, to mark cargoes for proteasomal and lysosomal degradation. Both systems intersect and communicate at multiple points to coordinate their actions in proteostasis and organelle homeostasis. This review summarizes molecular details of how proteasome and autophagy pathways are functionally interconnected in cells and indicates common principles and nodes of communication that can be therapeutically exploited.
Collapse
Affiliation(s)
- Ivan Dikic
- Institute of Biochemistry II, School of Medicine, Goethe University, 60598 Frankfurt am Main, Germany; .,Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
29
|
Meng H, Yamashita C, Shiba-Fukushima K, Inoshita T, Funayama M, Sato S, Hatta T, Natsume T, Umitsu M, Takagi J, Imai Y, Hattori N. Loss of Parkinson's disease-associated protein CHCHD2 affects mitochondrial crista structure and destabilizes cytochrome c. Nat Commun 2017; 8:15500. [PMID: 28589937 PMCID: PMC5467237 DOI: 10.1038/ncomms15500] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 04/03/2017] [Indexed: 01/25/2023] Open
Abstract
Mutations in CHCHD2 have been identified in some Parkinson's disease (PD) cases. To understand the physiological and pathological roles of CHCHD2, we manipulated the expression of CHCHD2 in Drosophila and mammalian cells. The loss of CHCHD2 in Drosophila causes abnormal matrix structures and impaired oxygen respiration in mitochondria, leading to oxidative stress, dopaminergic neuron loss and motor dysfunction with age. These PD-associated phenotypes are rescued by the overexpression of the translation inhibitor 4E-BP and by the introduction of human CHCHD2 but not its PD-associated mutants. CHCHD2 is upregulated by various mitochondrial stresses, including the destabilization of mitochondrial genomes and unfolded protein stress, in Drosophila. CHCHD2 binds to cytochrome c along with a member of the Bax inhibitor-1 superfamily, MICS1, and modulated cell death signalling, suggesting that CHCHD2 dynamically regulates the functions of cytochrome c in both oxidative phosphorylation and cell death in response to mitochondrial stress. Mutations in CHCHD2 are associated with Parkinson's disease. Here the authors investigate the physiological and pathological roles of CHCHD2 in Drosophila and mammalian cells, and find that it regulates mitochondrial respiration through stabilizing cytochrome c.
Collapse
Affiliation(s)
- Hongrui Meng
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Chikara Yamashita
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kahori Shiba-Fukushima
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tsuyoshi Inoshita
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Manabu Funayama
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Shigeto Sato
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tomohisa Hatta
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Masataka Umitsu
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
30
|
He GW, Günther C, Kremer AE, Thonn V, Amann K, Poremba C, Neurath MF, Wirtz S, Becker C. PGAM5-mediated programmed necrosis of hepatocytes drives acute liver injury. Gut 2017; 66:716-723. [PMID: 27566130 DOI: 10.1136/gutjnl-2015-311247] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 07/12/2016] [Accepted: 07/31/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Autoimmune hepatitis (AIH) is a severe necroinflammatory liver disease associated with significant mortality. Although loss of hepatocytes is generally recognised as a key trigger of liver inflammation and liver failure, the regulation of hepatic cell death causing AIH remains poorly understood. The aim of this study was to identify molecular mechanisms that drive hepatocyte cell death in the pathogenesis of acute liver injury. DESIGN Acute liver injury was modelled in mice by intravenous administration of concanavalin A (ConA). Liver injury was demonstrated by serum transaminases and histological assessment of liver sections. PGAM5-deficient mice (PGAM5-/-) were used to determine its role in experimental hepatitis. Mdivi-1 was used as an inhibitor of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. Mitochondrial fission and the expression of PGAM5 were compared between liver biopsies derived from patients with AIH and control patients. RESULTS PGAM5 was highly expressed in hepatocytes of patients with AIH and in mice with ConA-induced experimental hepatitis. Deficiency of PGAM5 protected mice from ConA-induced hepatocellular death and liver injury. PGAM5 regulated ConA-induced mitochondrial fission in hepatocytes. Administration of the Drp1-inhibitor Mdivi-1 blocked mitochondrial fission, diminished hepatocyte cell death and attenuated liver tissue damage induced by ConA. CONCLUSIONS Our data demonstrate for the first time that PGAM5 plays an indispensable role in the pathogenesis of ConA-induced liver injury. Downstream of PGAM5, Drp1-mediated mitochondrial fission is an obligatory step that drives the execution of hepatic necrosis and tissue damage. Our data highlight the PGAM5-Drp1 axis as a potential therapeutic target for acute immune-mediated liver injury.
Collapse
Affiliation(s)
- Gui-Wei He
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Andreas E Kremer
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Veronika Thonn
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander-University, Erlangen, Germany
| | | | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| |
Collapse
|
31
|
Inoshita T, Shiba-Fukushima K, Meng H, Hattori N, Imai Y. Monitoring Mitochondrial Changes by Alteration of the PINK1-Parkin Signaling in Drosophila. Methods Mol Biol 2017; 1759:47-57. [PMID: 28324489 DOI: 10.1007/7651_2017_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondrial quality control is a key process in tissues with high energy demands, such as the brain and muscles. Recent studies using Drosophila have revealed that the genes responsible for familial forms of juvenile Parkinson's disease (PD), PINK1 and Parkin regulate mitochondrial function and motility. Cell biological analysis using mammalian cultured cells suggests that the dysregulation of mitophagy by PINK1 and Parkin leads to neurodegeneration in PD. In this chapter, we describe the methods to monitor mitochondrial morphology in the indirect flight muscles of adult Drosophila and Drosophila primary cultured neurons and the methods to analyze the motility of mitochondria in the axonal transport of living larval motor neurons.
Collapse
Affiliation(s)
- Tsuyoshi Inoshita
- Department of Treatment and Research in Multiple Sclerosis and Neuro-Intractable Disease, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Kahori Shiba-Fukushima
- Department of Treatment and Research in Multiple Sclerosis and Neuro-Intractable Disease, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Hongrui Meng
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Hongo, Bunkyo, Tokyo, Japan
| | - Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| |
Collapse
|
32
|
Lenhausen AM, Wilkinson AS, Lewis EM, Dailey KM, Scott AJ, Khan S, Wilkinson JC. Apoptosis Inducing Factor Binding Protein PGAM5 Triggers Mitophagic Cell Death That Is Inhibited by the Ubiquitin Ligase Activity of X-Linked Inhibitor of Apoptosis. Biochemistry 2016; 55:3285-302. [PMID: 27218139 DOI: 10.1021/acs.biochem.6b00306] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apoptosis inducing factor (AIF) plays a well-defined role in controlling cell death but is also a critical factor for maintaining mitochondrial energy homeostasis; how these dueling activities are balanced has remained largely elusive. To identify new AIF binding partners that may define the continuum of AIF cellular regulation, a biochemical screen was performed that identified the mitochondrial phosphoglycerate mutase 5 (PGAM5) as an AIF associated factor. AIF binds both the short and long isoforms of PGAM5 and can reduce the ability of PGAM5 to control antioxidant responses. Transient overexpression of either PGAM5 isoform triggers caspase activation and cell death, and while AIF could reduce this caspase activation neither AIF expression nor caspase activity is required for PGAM5-mediated death. PGAM5 toxicity morphologically and biochemically resembles mitophagic cell death and is inhibited by the AIF binding protein X-linked inhibitor of apoptosis (XIAP) in a manner that depends on the ubiquitin ligase activity of XIAP. The phosphatase activity of PGAM5 was not required for cell death, and comparison of phosphatase activity between short and long PGAM5 isoforms suggested that only the long isoform is catalytically competent. This property correlated with an increased ability of PGAM5L to form dimers and/or higher order oligomers in intact cells compared to PGAM5S. Overall this study identifies an AIF/PGAM5/XIAP axis that can regulate PGAM5 activities related to the antioxidant response and mitophagy.
Collapse
Affiliation(s)
- Audrey M Lenhausen
- Department of Biochemistry, Wake Forest School of Medicine , Winston-Salem, North Carolina 27157, United States
| | - Amanda S Wilkinson
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108, United States
| | - Eric M Lewis
- Department of Biochemistry, Wake Forest School of Medicine , Winston-Salem, North Carolina 27157, United States
| | - Kaitlin M Dailey
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108, United States
| | - Andrew J Scott
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108, United States
| | - Shahzeb Khan
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108, United States
| | - John C Wilkinson
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108, United States
| |
Collapse
|
33
|
Moriwaki K, Farias Luz N, Balaji S, De Rosa MJ, O'Donnell CL, Gough PJ, Bertin J, Welsh RM, Chan FKM. The Mitochondrial Phosphatase PGAM5 Is Dispensable for Necroptosis but Promotes Inflammasome Activation in Macrophages. THE JOURNAL OF IMMUNOLOGY 2015; 196:407-15. [PMID: 26582950 DOI: 10.4049/jimmunol.1501662] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022]
Abstract
The cytokine IL-1β is intimately linked to many pathological inflammatory conditions. Mature IL-1β secretion requires cleavage by the inflammasome. Recent evidence indicates that many cell death signal adaptors have regulatory roles in inflammasome activity. These include the apoptosis inducers FADD and caspase 8, and the necroptosis kinases receptor interacting protein kinase 1 (RIPK1) and RIPK3. PGAM5 is a mitochondrial phosphatase that has been reported to function downstream of RIPK3 to promote necroptosis and IL-1β secretion. To interrogate the biological function of PGAM5, we generated Pgam5(-/-) mice. We found that Pgam5(-/-) mice were smaller compared with wild type littermates, and male Pgam5(-/-) mice were born at sub-Mendelian ratio. Despite these growth and survival defects, Pgam5(-/-) cells responded normally to multiple inducers of apoptosis and necroptosis. Rather, we found that PGAM5 is critical for IL-1β secretion in response to NLRP3 and AIM2 inflammasome agonists. Moreover, vesicular stomatosis virus-induced IL-1β secretion was impaired in Pgam5(-/-) bone marrow-derived macrophages, but not in Ripk3(-/-) bone marrow-derived dendritic cells, indicating that PGAM5 functions independent of RIPK3 to promote inflammasome activation. Mechanistically, PGAM5 promotes ASC polymerization, maintenance of mitochondrial integrity, and optimal reactive oxygen species production in response to inflammasome signals. Hence PGAM5 is a novel regulator of inflammasome and caspase 1 activity that functions independently of RIPK3.
Collapse
Affiliation(s)
- Kenta Moriwaki
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Nivea Farias Luz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Universidade Federal da Bahia, Salvador-State of Bahia 40110-060, Brazil; and
| | - Sakthi Balaji
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Maria Jose De Rosa
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Carey L O'Donnell
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19422
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19422
| | - Raymond M Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Francis Ka-Ming Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
34
|
Herhaus L, Dikic I. Expanding the ubiquitin code through post-translational modification. EMBO Rep 2015; 16:1071-83. [PMID: 26268526 PMCID: PMC4576978 DOI: 10.15252/embr.201540891] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022] Open
Abstract
Ubiquitylation is among the most prevalent post-translational modifications (PTMs) and regulates numerous cellular functions. Interestingly, ubiquitin (Ub) can be itself modified by other PTMs, including acetylation and phosphorylation. Acetylation of Ub on K6 and K48 represses the formation and elongation of Ub chains. Phosphorylation of Ub happens on multiple sites, S57 and S65 being the most frequently modified in yeast and mammalian cells, respectively. In mammals, the PINK1 kinase activates ubiquitin ligase Parkin by phosphorylating S65 of Ub and of the Parkin Ubl domain, which in turn promotes the amplification of autophagy signals necessary for the removal of damaged mitochondria. Similarly, TBK1 phosphorylates the autophagy receptors OPTN and p62 to initiate feedback and feedforward programs for Ub-dependent removal of protein aggregates, mitochondria and pathogens (such as Salmonella and Mycobacterium tuberculosis). The impact of PINK1-mediated phosphorylation of Ub and TBK1-dependent phosphorylation of autophagy receptors (OPTN and p62) has been recently linked to the development of Parkinson's disease and amyotrophic lateral sclerosis, respectively. Hence, the post-translational modification of Ub and its receptors can efficiently expand the Ub code and modulate its functions in health and disease.
Collapse
Affiliation(s)
- Lina Herhaus
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Fiesel FC, Ando M, Hudec R, Hill AR, Castanedes-Casey M, Caulfield TR, Moussaud-Lamodière EL, Stankowski JN, Bauer PO, Lorenzo-Betancor O, Ferrer I, Arbelo JM, Siuda J, Chen L, Dawson VL, Dawson TM, Wszolek ZK, Ross OA, Dickson DW, Springer W. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Rep 2015; 16:1114-30. [PMID: 26162776 DOI: 10.15252/embr.201540514] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/25/2015] [Indexed: 11/09/2022] Open
Abstract
Mutations in PINK1 and PARKIN cause recessive, early-onset Parkinson's disease (PD). Together, these two proteins orchestrate a protective mitophagic response that ensures the safe disposal of damaged mitochondria. The kinase PINK1 phosphorylates ubiquitin (Ub) at the conserved residue S65, in addition to modifying the E3 ubiquitin ligase Parkin. The structural and functional consequences of Ub phosphorylation (pS65-Ub) have already been suggested from in vitro experiments, but its (patho-)physiological significance remains unknown. We have generated novel antibodies and assessed pS65-Ub signals in vitro and in cells, including primary neurons, under endogenous conditions. pS65-Ub is dependent on PINK1 kinase activity as confirmed in patient fibroblasts and postmortem brain samples harboring pathogenic mutations. We show that pS65-Ub is reversible and barely detectable under basal conditions, but rapidly induced upon mitochondrial stress in cells and amplified in the presence of functional Parkin. pS65-Ub accumulates in human brain during aging and disease in the form of cytoplasmic granules that partially overlap with mitochondrial, lysosomal, and total Ub markers. Additional studies are now warranted to further elucidate pS65-Ub functions and fully explore its potential for biomarker or therapeutic development.
Collapse
Affiliation(s)
| | - Maya Ando
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Roman Hudec
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | | | - Peter O Bauer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Isidre Ferrer
- Institut de Neuropatologia, Servei d'Anatomia Patològica Hospital Universitari de Bellvitge, Hospitalet del Llobregat, Spain CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Barcelona, Spain
| | - José M Arbelo
- Department of Neurology, Parkinson's and Movement Disorders Unit, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Joanna Siuda
- Department of Neurology, School of Medicine in Katowice Medical University of Silesia, Katowice, Poland
| | - Li Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA Neurobiology of Disease, Mayo Graduate School, Jacksonville, FL, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA Neurobiology of Disease, Mayo Graduate School, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA Neurobiology of Disease, Mayo Graduate School, Jacksonville, FL, USA
| |
Collapse
|
36
|
Wei H, Liu L, Chen Q. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2784-90. [PMID: 25840011 DOI: 10.1016/j.bbamcr.2015.03.013] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/17/2015] [Accepted: 03/25/2015] [Indexed: 11/29/2022]
Abstract
The efficient and selective elimination of damaged or excessive mitochondria in response to bioenergetic and environmental cues is critical for maintaining a healthy and appropriate population of mitochondria. Mitophagy is considered to be the central mechanism of mitochondrial quality and quantity control. Atg32, a mitophagy receptor in yeast, recruits mitochondria targeted for degradation into the isolation membrane via both direct and indirect interactions with Atg8. In mammals, different mitophagy effectors, including the mitophagy receptors NIX, BNIP3 and FUDNC1 and the PINK1/Parkin pathway, have been identified to participate in the selective clearance of mitochondria. One common feature of mitophagy receptors is that they harbor an LC3-interacting region (LIR) that interacts with LC3, thus promoting the sequestration of mitochondria into the isolation membrane. Additionally, both receptor- and Parkin/PINK1-mediated mitophagy have been found to be regulated by reversible phosphorylation. Here, we review the recent progress in the understanding of the molecular mechanisms involved in selective mitophagy at multiple levels. We also discuss different mitophagy receptors from an evolutionary perspective and highlight the specific functions of and possible cooperation between distinct mechanisms of mitophagy.
Collapse
Affiliation(s)
- Huifang Wei
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
37
|
Affiliation(s)
- Brigit E. Riley
- Sangamo BioSciences Inc., Richmond, California, United States of America
- * E-mail: (BER); (JAO)
| | - James A. Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail: (BER); (JAO)
| |
Collapse
|
38
|
Shiba-Fukushima K, Arano T, Matsumoto G, Inoshita T, Yoshida S, Ishihama Y, Ryu KY, Nukina N, Hattori N, Imai Y. Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS Genet 2014; 10:e1004861. [PMID: 25474007 PMCID: PMC4256268 DOI: 10.1371/journal.pgen.1004861] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/29/2014] [Indexed: 11/18/2022] Open
Abstract
The kinase PINK1 and the E3 ubiquitin (Ub) ligase Parkin participate in mitochondrial quality control. The phosphorylation of Ser65 in Parkin's ubiquitin-like (UBl) domain by PINK1 stimulates Parkin activation and translocation to damaged mitochondria, which induces mitophagy generating polyUb chain. However, Parkin Ser65 phosphorylation is insufficient for Parkin mitochondrial translocation. Here we report that Ser65 in polyUb chain is also phosphorylated by PINK1, and that phosphorylated polyUb chain on mitochondria tethers Parkin at mitochondria. The expression of Tom70MTS-4xUb SE, which mimics phospho-Ser65 polyUb chains on the mitochondria, activated Parkin E3 activity and its mitochondrial translocation. An E3-dead form of Parkin translocated to mitochondria with reduced membrane potential in the presence of Tom70MTS-4xUb SE, whereas non-phospho-polyUb mutant Tom70MTS-4xUb SA abrogated Parkin translocation. Parkin binds to the phospho-polyUb chain through its RING1-In-Between-RING (IBR) domains, but its RING0-linker is also required for mitochondrial translocation. Moreover, the expression of Tom70MTS-4xUb SE improved mitochondrial degeneration in PINK1-deficient, but not Parkin-deficient, Drosophila. Our study suggests that the phosphorylation of mitochondrial polyUb by PINK1 is implicated in both Parkin activation and mitochondrial translocation, predicting a chain reaction mechanism of mitochondrial phospho-polyUb production by which rapid translocation of Parkin is achieved. Parkinson's disease is a neurodegenerative disorder caused by degeneration of the midbrain dopaminergic system in addition to other nervous systems. PINK1 and parkin, which encode mitochondrial protein kinase and cytosolic Ub ligase, respectively, were identified as the genes responsible for the autosomal recessive form of juvenile Parkinson's disease. Activation of PINK1 upon reduction of mitochondrial membrane potential recruits Parkin from the cytosol activating its Ub ligase activity, which ensures removal of damaged mitochondria through mitophagy. However, how PINK1 recruits Parkin to the damaged mitochondria remained unclear. Here, we describe that the phosphorylation of polyUb chain by PINK1 is a key event to recruit Parkin on the mitochondria. Parkin binds to, and is activated by, phospho-polyUb generated by Parkin in collaboration with PINK1. Expression of a phospho-polyUb mimetic protein on mitochondria rescued mitochondrial degeneration caused by loss of PINK1 in Drosophila. Our study suggests the existence of an amplification cascade of Parkin activation and mitochondrial translocation, in which a ‘seed' of phosphorylated polyUb on the mitochondria, generated by PINK1 and Parkin, triggers a chain reaction of Parkin recruitment and activation.
Collapse
Affiliation(s)
| | - Taku Arano
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Gen Matsumoto
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Inoshita
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeharu Yoshida
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Nobuyuki Nukina
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
39
|
Tsai PI, Course MM, Lovas JR, Hsieh CH, Babic M, Zinsmaier KE, Wang X. PINK1-mediated phosphorylation of Miro inhibits synaptic growth and protects dopaminergic neurons in Drosophila. Sci Rep 2014; 4:6962. [PMID: 25376463 PMCID: PMC4223694 DOI: 10.1038/srep06962] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/22/2014] [Indexed: 12/02/2022] Open
Abstract
Mutations in the mitochondrial Ser/Thr kinase PINK1 cause Parkinson's disease. One of the substrates of PINK1 is the outer mitochondrial membrane protein Miro, which regulates mitochondrial transport. In this study, we uncovered novel physiological functions of PINK1-mediated phosphorylation of Miro, using Drosophila as a model. We replaced endogenous Drosophila Miro (DMiro) with transgenically expressed wildtype, or mutant DMiro predicted to resist PINK1-mediated phosphorylation. We found that the expression of phospho-resistant DMiro in a DMiro null mutant background phenocopied a subset of phenotypes of PINK1 null. Specifically, phospho-resistant DMiro increased mitochondrial movement and synaptic growth at larval neuromuscular junctions, and decreased the number of dopaminergic neurons in adult brains. Therefore, PINK1 may inhibit synaptic growth and protect dopaminergic neurons by phosphorylating DMiro. Furthermore, muscle degeneration, swollen mitochondria and locomotor defects found in PINK1 null flies were not observed in phospho-resistant DMiro flies. Thus, our study established an in vivo platform to define functional consequences of PINK1-mediated phosphorylation of its substrates.
Collapse
Affiliation(s)
- Pei-I Tsai
- Department of Neurosurgery, Stanford University School of Medicine, Stanford. CA94304
| | - Meredith M Course
- 1] Department of Neurosurgery, Stanford University School of Medicine, Stanford. CA94304 [2] Neurosciences Program, Stanford University, Stanford. CA94304
| | - Jonathan R Lovas
- Department of Neurosurgery, Stanford University School of Medicine, Stanford. CA94304
| | - Chung-Han Hsieh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford. CA94304
| | - Milos Babic
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson. AZ85721
| | - Konrad E Zinsmaier
- 1] Department of Neuroscience, University of Arizona, Tucson. AZ85721 [2] Department of Molecular and Cellular Biology, University of Arizona, TucsonAZ85721
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford. CA94304
| |
Collapse
|
40
|
Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder. Nat Commun 2014; 5:4930. [PMID: 25222142 DOI: 10.1038/ncomms5930] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/07/2014] [Indexed: 12/23/2022] Open
Abstract
Mitophagy is a specialized form of autophagy that selectively disposes of dysfunctional mitochondria. Delineating the molecular regulation of mitophagy is of great importance because defects in this process lead to a variety of mitochondrial diseases. Here we report that mice deficient for the mitochondrial protein, phosphoglycerate mutase family member 5 (PGAM5), displayed a Parkinson's-like movement phenotype. We determined biochemically that PGAM5 is required for the stabilization of the mitophagy-inducing protein PINK1 on damaged mitochondria. Loss of PGAM5 disables PINK1-mediated mitophagy in vitro and leads to dopaminergic neurodegeneration and mild dopamine loss in vivo. Our data indicate that PGAM5 is a regulator of mitophagy essential for mitochondrial turnover and serves a cytoprotective function in dopaminergic neurons in vivo. Moreover, PGAM5 may provide a molecular link to study mitochondrial homeostasis and the pathogenesis of a movement disorder similar to Parkinson's disease.
Collapse
|
41
|
Wu K, Liu J, Zhuang N, Wang T. UCP4A protects against mitochondrial dysfunction and degeneration in pink1/parkin models of Parkinson's disease. FASEB J 2014; 28:5111-21. [PMID: 25145627 DOI: 10.1096/fj.14-255802] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic mutations in parkin or pink1 are the most common causes of familial Parkinson's disease. PINK1 and Parkin are components of a mitochondrial quality control pathway that degrades dysfunctional mitochondria via autophagy. Using a candidate gene approach, we discovered that overexpression of uncoupling protein 4A (ucp4A) suppresses a range of pink1 mutant phenotypes, including male sterility, locomotor defects, and muscle degeneration that result from abnormal mitochondrial morphology and function. Furthermore, UCP4A overexpression in pink1 mutants rescued mitochondria-specific phenotypes associated with mitochondrial membrane potential, production of reactive oxygen species, resistance to oxidative stress, efficiency of the electron transport chain, and mitochondrial morphology. Consistent with its role in protecting mitochondria, UCP4A rescued mitochondrial phenotypes of parkin mutant flies, as well. Finally, the genetic deletion of ucp4A resulted in increased sensitivity to oxidative stress, a phenotype that was enhanced by the loss of PINK1. Taken together, these results indicate that UCP4A prevents mitochondrial dysfunction and that modulation of UCP activity protects cells in a situation relevant for human Parkinson's disease.
Collapse
Affiliation(s)
- Kai Wu
- National Institute of Biological Sciences, Beijing, China
| | - Jia Liu
- National Institute of Biological Sciences, Beijing, China; College of Life Sciences, Beijing Normal University, Beijing, China; and
| | - Na Zhuang
- National Institute of Biological Sciences, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China
| | - Tao Wang
- National Institute of Biological Sciences, Beijing, China;
| |
Collapse
|
42
|
Wilkins JM, McConnell C, Tipton PA, Hannink M. A conserved motif mediates both multimer formation and allosteric activation of phosphoglycerate mutase 5. J Biol Chem 2014; 289:25137-48. [PMID: 25012655 DOI: 10.1074/jbc.m114.565549] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoglycerate mutase 5 (PGAM5) is an atypical mitochondrial Ser/Thr phosphatase that modulates mitochondrial dynamics and participates in both apoptotic and necrotic cell death. The mechanisms that regulate the phosphatase activity of PGAM5 are poorly understood. The C-terminal phosphoglycerate mutase domain of PGAM5 shares homology with the catalytic domains found in other members of the phosphoglycerate mutase family, including a conserved histidine that is absolutely required for catalytic activity. However, this conserved domain is not sufficient for maximal phosphatase activity. We have identified a highly conserved amino acid motif, WDXNWD, located within the unique N-terminal region, which is required for assembly of PGAM5 into large multimeric complexes. Alanine substitutions within the WDXNWD motif abolish the formation of multimeric complexes and markedly reduce phosphatase activity of PGAM5. A peptide containing the WDXNWD motif dissociates the multimeric complex and reduces but does not fully abolish phosphatase activity. Addition of the WDXNWD-containing peptide in trans to a mutant PGAM5 protein lacking the WDXNWD motif markedly increases phosphatase activity of the mutant protein. Our results are consistent with an intermolecular allosteric regulation mechanism for the phosphatase activity of PGAM5, in which the assembly of PGAM5 into multimeric complexes, mediated by the WDXNWD motif, results in maximal activation of phosphatase activity. Our results suggest the possibility of identifying small molecules that function as allosteric regulators of the phosphatase activity of PGAM5.
Collapse
Affiliation(s)
| | | | - Peter A Tipton
- the Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Mark Hannink
- From the Bond Life Sciences Center and the Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
43
|
Affiliation(s)
- Xinde Zheng
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
44
|
PINK1-mediated phosphorylation of Parkin boosts Parkin activity in Drosophila. PLoS Genet 2014; 10:e1004391. [PMID: 24901221 PMCID: PMC4046931 DOI: 10.1371/journal.pgen.1004391] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/31/2014] [Indexed: 11/19/2022] Open
Abstract
Two genes linked to early onset Parkinson's disease, PINK1 and Parkin, encode a protein kinase and a ubiquitin-ligase, respectively. Both enzymes have been suggested to support mitochondrial quality control. We have reported that Parkin is phosphorylated at Ser65 within the ubiquitin-like domain by PINK1 in mammalian cultured cells. However, it remains unclear whether Parkin phosphorylation is involved in mitochondrial maintenance and activity of dopaminergic neurons in vivo. Here, we examined the effects of Parkin phosphorylation in Drosophila, in which the phosphorylation residue is conserved at Ser94. Morphological changes of mitochondria caused by the ectopic expression of wild-type Parkin in muscle tissue and brain dopaminergic neurons disappeared in the absence of PINK1. In contrast, phosphomimetic Parkin accelerated mitochondrial fragmentation or aggregation and the degradation of mitochondrial proteins regardless of PINK1 activity, suggesting that the phosphorylation of Parkin boosts its ubiquitin-ligase activity. A non-phosphorylated form of Parkin fully rescued the muscular mitochondrial degeneration due to the loss of PINK1 activity, whereas the introduction of the non-phosphorylated Parkin mutant in Parkin-null flies led to the emergence of abnormally fused mitochondria in the muscle tissue. Manipulating the Parkin phosphorylation status affected spontaneous dopamine release in the nerve terminals of dopaminergic neurons, the survivability of dopaminergic neurons and flight activity. Our data reveal that Parkin phosphorylation regulates not only mitochondrial function but also the neuronal activity of dopaminergic neurons in vivo, suggesting that the appropriate regulation of Parkin phosphorylation is important for muscular and dopaminergic functions. Parkinson's disease is a neurodegenerative disorder caused by degeneration of the midbrain dopaminergic system in addition to other nervous systems. PINK1 and parkin, which encode protein kinase and ubiquitin-ligase, respectively, were identified as the genes responsible for the autosomal recessive form of juvenile Parkinson's disease. These two enzymes are involved in mitochondrial maintenance. Although we previously found that Parkin is phosphorylated by PINK1 in mammalian cultured cells, the physiological significance of this interaction in vivo remained unclear. Here, we describe that the phosphorylation of Parkin altered mitochondrial morphology and function in muscle tissue through the degradation of mitochondrial GTPase proteins (such as Mitofusin and Miro) and a mitochondrial respiratory complex I subunit by increasing its ubiquitin-ligase activity. We also found that the dopaminergic expression of both constitutively phosphorylated and non-phosphorylated forms of Parkin affects the flight activity and shortens the lifespan of flies, suggesting that the appropriate phosphorylation of Parkin is important for both dopaminergic activity and the survival of dopaminergic neurons.
Collapse
|
45
|
A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol Cell 2014; 54:362-77. [PMID: 24746696 DOI: 10.1016/j.molcel.2014.02.034] [Citation(s) in RCA: 422] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/13/2013] [Accepted: 02/14/2014] [Indexed: 11/21/2022]
Abstract
Mitochondrial autophagy, or mitophagy, is a major mechanism involved in mitochondrial quality control via selectively removing damaged or unwanted mitochondria. Interactions between LC3 and mitophagy receptors such as FUNDC1, which harbors an LC3-interacting region (LIR), are essential for this selective process. However, how mitochondrial stresses are sensed to activate receptor-mediated mitophagy remains poorly defined. Here, we identify that the mitochondrially localized PGAM5 phosphatase interacts with and dephosphorylates FUNDC1 at serine 13 (Ser-13) upon hypoxia or carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) treatment. Dephosphorylation of FUNDC1 catalyzed by PGAM5 enhances its interaction with LC3, which is abrogated following knockdown of PGAM5 or the introduction of a cell-permeable unphosphorylated peptide encompassing the Ser-13 and LIR of FUNDC1. We further observed that CK2 phosphorylates FUNDC1 to reverse the effect of PGAM5 in mitophagy activation. Our results reveal a mechanistic signaling pathway linking mitochondria-damaging signals to the dephosphorylation of FUNDC1 by PGAM5, which ultimately induces mitophagy.
Collapse
|
46
|
Remijsen Q, Goossens V, Grootjans S, Van den Haute C, Vanlangenakker N, Dondelinger Y, Roelandt R, Bruggeman I, Goncalves A, Bertrand MJM, Baekelandt V, Takahashi N, Berghe TV, Vandenabeele P. Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death Dis 2014; 5:e1004. [PMID: 24434512 PMCID: PMC4040672 DOI: 10.1038/cddis.2013.531] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/28/2013] [Indexed: 11/23/2022]
Abstract
In human cells, the RIPK1–RIPK3–MLKL–PGAM5–Drp1 axis drives tumor necrosis factor (TNF)-induced necroptosis through mitochondrial fission, but whether this pathway is conserved among mammals is not known. To answer this question, we analyzed the presence and functionality of the reported necroptotic axis in mice. As in humans, knockdown of receptor-interacting kinase-3 (RIPK3) or mixed lineage kinase domain like (MLKL) blocks TNF-induced necroptosis in L929 fibrosarcoma cells. However, repression of either of these proteins did not protect the cells from death, but instead induced a switch from TNF-induced necroptosis to receptor-interacting kinase-1 (RIPK1) kinase-dependent apoptosis. In addition, although mitochondrial fission also occurs during TNF-induced necroptosis in L929 cells, we found that knockdown of phosphoglycerate mutase 5 (PGAM5) and dynamin 1 like protein (Drp1) did not markedly protect the cells from TNF-induced necroptosis. Depletion of Pink1, a reported interactor of both PGAM5 and Drp1, did not affect TNF-induced necroptosis. These results indicate that in these murine cells mitochondrial fission and Pink1 dependent processes, including Pink-Parkin dependent mitophagy, apparently do not promote necroptosis. Our data demonstrate that the core components of the necrosome (RIPK1, RIPK3 and MLKL) are crucial to induce TNF-dependent necroptosis both in human and in mouse cells, but the associated mechanisms may differ between the two species or cell types.
Collapse
Affiliation(s)
- Q Remijsen
- 1] Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| | - V Goossens
- 1] Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| | - S Grootjans
- 1] Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| | - C Van den Haute
- Center for Molecular Medicine, Laboratory for Neurobiology and Gene Therapy, Katholieke Universiteit Leuven, Leuven, Belgium
| | - N Vanlangenakker
- 1] Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| | - Y Dondelinger
- 1] Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| | - R Roelandt
- 1] Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| | - I Bruggeman
- 1] Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| | - A Goncalves
- Microscopy Core Facility, Inflammation Research Center, VIB/Ghent University, Ghent, Belgium
| | - M J M Bertrand
- 1] Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| | - V Baekelandt
- Center for Molecular Medicine, Laboratory for Neurobiology and Gene Therapy, Katholieke Universiteit Leuven, Leuven, Belgium
| | - N Takahashi
- 1] Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| | - T V Berghe
- 1] Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| | - P Vandenabeele
- 1] Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| |
Collapse
|
47
|
Zhang W, Wu H, Liu L, Zhu Y, Chen Q. Phosphorylation Events in Selective Mitophagy: Possible Biochemical Markers? CURRENT PATHOBIOLOGY REPORTS 2013. [DOI: 10.1007/s40139-013-0033-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Poddighe S, Bhat KM, Setzu MD, Solla P, Angioy AM, Marotta R, Ruffilli R, Marrosu F, Liscia A. Impaired sense of smell in a Drosophila Parkinson's model. PLoS One 2013; 8:e73156. [PMID: 24009736 PMCID: PMC3757021 DOI: 10.1371/journal.pone.0073156] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/17/2013] [Indexed: 12/03/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disease characterized by the clinical triad: tremor, akinesia and rigidity. Several studies have suggested that PD patients show disturbances in olfaction at the earliest onset of the disease. The fruit fly Drosophila melanogaster is becoming a powerful model organism to study neurodegenerative diseases. We sought to use this system to explore olfactory dysfunction, if any, in PINK1 mutants, which is a model for PD. PINK1 mutants display many important diagnostic symptoms of the disease such as akinetic motor behavior. In the present study, we describe for the first time, to the best of our knowledge, neurophysiological and neuroanatomical results concerning the olfactory function in PINK1 mutant flies. Electroantennograms were recorded in response to synthetic and natural volatiles (essential oils) from groups of PINK1 mutant adults at three different time points in their life cycle: one from 3-5 day-old flies, from 15-20 and from 27-30 days. The results obtained were compared with the same age-groups of wild type flies. We found that mutant adults showed a decrease in the olfactory response to 1-hexanol, α-pinene and essential oil volatiles. This olfactory response in mutant adults decreased even more as the flies aged. Immunohistological analysis of the antennal lobes in these mutants revealed structural abnormalities, especially in the expression of Bruchpilot protein, a marker for synaptic active zones. The combination of electrophysiological and morphological results suggests that the altered synaptic organization may be due to a neurodegenerative process. Our results indicate that this model can be used as a tool for understanding PD pathogensis and pathophysiology. These results help to explore the potential of using olfaction as a means of monitoring PD progression and developing new treatments.
Collapse
Affiliation(s)
- Simone Poddighe
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Krishna Moorthi Bhat
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | - Paolo Solla
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Anna Maria Angioy
- Department of Experimental Biology, University of Cagliari, Cagliari, Italy
| | - Roberto Marotta
- Nanobiotech Facility, Italian Institute of Technology, Genova, Italy
| | - Roberta Ruffilli
- Nanobiotech Facility, Italian Institute of Technology, Genova, Italy
| | - Francesco Marrosu
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Anna Liscia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
49
|
Atypical protein phosphatases: emerging players in cellular signaling. Int J Mol Sci 2013; 14:4596-612. [PMID: 23443160 PMCID: PMC3634448 DOI: 10.3390/ijms14034596] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/23/2022] Open
Abstract
It has generally been considered that protein phosphatases have more diverse catalytic domain structures and mechanisms than protein kinases; however, gene annotation efforts following the human genome project appeared to have completed the whole array of protein phosphatases. Ser/Thr phosphatases are divided into three subfamilies that have different structures from each other, whereas Tyr phosphatases and dual-specificity phosphatases targeting Tyr, Ser and Thr belong to a single large family based on their common structural features. Several years of research have revealed, however, the existence of unexpected proteins, designated here as “atypical protein phosphatases”, that have structural and enzymatic features different from those of the known protein phosphatases and are involved in important biological processes. In this review, we focus on the identification and functional characterization of atypical protein phosphatases, represented by eyes absent (EYA), suppressor of T-cell receptor signaling (Sts) and phosphoglycerate mutase family member 5 (PGAM5) and discuss their biological significance in cellular signaling.
Collapse
|
50
|
Zhuang M, Guan S, Wang H, Burlingame AL, Wells JA. Substrates of IAP ubiquitin ligases identified with a designed orthogonal E3 ligase, the NEDDylator. Mol Cell 2013; 49:273-82. [PMID: 23201124 PMCID: PMC3557559 DOI: 10.1016/j.molcel.2012.10.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/24/2012] [Accepted: 10/18/2012] [Indexed: 11/23/2022]
Abstract
Inhibitors of Apoptosis Protein (IAPs) are guardian ubiquitin ligases that keep classic proapoptotic proteins in check. Systematic identification of additional IAP substrates is challenged by the heterogeneity and sheer number of ubiquitinated proteins (>5,000). Here we report a powerful catalytic tagging tool, the NEDDylator, which fuses a NEDD8 E2-conjugating enzyme, Ubc12, to the ubiquitin ligase, XIAP or cIAP1. This permits transfer of the rare ubiquitin homolog NEDD8 to the ubiquitin E3 substrates, allowing them to be efficiently purified for LC-MS/MS identification. We have identified >50 potential IAP substrates of both cytosolic and mitochondrial origin that bear hallmark N-terminal IAP binding motifs. These substrates include the recently discovered protein phosphatase PGAM5, which we show is proteolytically processed, accumulates in cytosol during apoptosis, and sensitizes cells to death. These studies reveal mechanisms and antagonistic partners for specific IAPs, and provide a powerful technology for labeling binding partners in transient protein-protein complexes.
Collapse
Affiliation(s)
- Min Zhuang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shenheng Guan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Haopeng Wang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James A. Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|