1
|
Khan RA, Kumar A, Abbas N. A bHLH transcription factor AaMYC2-type positively regulates glandular trichome density and artemisinin biosynthesis in Artemisia annua. PHYSIOLOGIA PLANTARUM 2024; 176:e14581. [PMID: 39440419 DOI: 10.1111/ppl.14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
Artemisinin-based combinational therapies (ACTs) constitute the first line of malaria treatment. However, due to its trichome-specific biosynthesis, low concentration, and poor understanding of regulatory mechanisms involved in artemisinin biosynthesis and trichome development, it becomes very difficult to meet the increased demand for ACTs. Here, we have reported that a bHLH transcription factor, AaMYC2-type, plays an important role in regulating GST development and artemisinin biosynthesis in Artemisia annua. AaMYC2-type encodes a protein that is transcriptionally active and localised to the nucleus. It is prominently expressed in aerial parts like leaves, stems, inflorescence and least expressed in roots. AaMYC2-type expression is significantly increased under different hormonal treatments. In transgenic overexpression lines, AaMYC2-type OE, a significant increase in the expression of trichome development and artemisinin biosynthesis genes was observed. While in knockdown lines, Aamyc2-type, expression of trichome development and artemisinin biosynthesis genes were significantly reduced. Yeast one-hybrid assay clearly shows that the AaMYC2-type directly binds to the E-boxes in the promoter regions of ADS and CYP71AVI. The SEM microscopy depicted the number of trichomes elevated from 11 mm-2 in AaMYC2-type OE lines to 6.1 mm-2 in Aamyc2-type. The final effect of the alteration in biosynthetic and trichome developmental genes was observed in the accumulation of artemisinin. In the AaMYC2-type OE, the artemisinin content was 12 mg g-1DW, which was reduced to 3.2 mg g-1DW in the Aamyc2-type. Altogether, the above findings suggest that the AaMYC2-type play a dual regulating role in controlling both trichome developmental and artemisinin biosynthetic genes.
Collapse
Affiliation(s)
- Rameez Ahmad Khan
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Amit Kumar
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Nazia Abbas
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| |
Collapse
|
2
|
Heydarian Z, Harrington M, Hegedus DD. Defects in Glabrous 3 (GL3) functionality underlie the absence of trichomes in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1703-1719. [PMID: 38967095 DOI: 10.1111/tpj.16878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Previously, expression of the Arabidopsis thaliana GLABRA3 (GL3) induced trichome formation in Brassica napus. GL3 orthologues were examined from glabrous (B. oleracea), semi-glabrous (B. napus), moderately hirsute (B. rapa), and very hirsute (B. villosa) Brassica species. Ectopic expression of BnGL3, BrGL3 alleles, or BvGL3 induced trichome formation in glabrous B. napus with the effect on trichome number commensurate with density in the original accessions. Chimeric GL3 proteins in which the B. napus amino terminal region, which interacts with MYB proteins, or the middle region, which interacts with the WD40 protein TTG1, was exchanged with corresponding regions from A. thaliana were as stimulatory to trichome production as AtGL3. Exchange of the carboxy-terminal region containing a bHLH domain and an ACT domain did not alter the trichome stimulatory activity, although modeling of the ACT domain identified differences that could affect GL3 dimerization. B. napus A- and C-genomes orthologues differed in their abilities to form homo- and heterodimers. Modeling of the amino-terminal region revealed a conserved domain that may represent the MYB factor binding pocket. This region interacted with the MYB factors GL1, CPC, and TRY, as well as with JAZ8, which is involved in jasmonic acid-mediated regulation of MYC-like transcription factors. Protein interaction studies indicated that GL1 interaction with GL3 from B. napus and A. thaliana may underlie the difference in their respective abilities to induce trichome formation.
Collapse
Affiliation(s)
- Zohreh Heydarian
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
- Department of Biotechnology, School of Agriculture, University of Shiraz, Bajgah, Shiraz, Fars, Iran
| | - Myrtle Harrington
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Marin-Recinos MF, Pucker B. Genetic factors explaining anthocyanin pigmentation differences. BMC PLANT BIOLOGY 2024; 24:627. [PMID: 38961369 PMCID: PMC11221117 DOI: 10.1186/s12870-024-05316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Anthocyanins are important contributors to coloration across a wide phylogenetic range of plants. Biological functions of anthocyanins span from reproduction to protection against biotic and abiotic stressors. Owing to a clearly visible phenotype of mutants, the anthocyanin biosynthesis and its sophisticated regulation have been studied in numerous plant species. Genes encoding the anthocyanin biosynthesis enzymes are regulated by a transcription factor complex comprising MYB, bHLH and WD40 proteins. RESULTS A systematic comparison of anthocyanin-pigmented vs. non-pigmented varieties was performed within numerous plant species covering the taxonomic diversity of flowering plants. The literature was screened for cases in which genetic factors causing anthocyanin loss were reported. Additionally, transcriptomic data sets from four previous studies were reanalyzed to determine the genes possibly responsible for color variation based on their expression pattern. The contribution of different structural and regulatory genes to the intraspecific pigmentation differences was quantified. Differences concerning transcription factors are by far the most frequent explanation for pigmentation differences observed between two varieties of the same species. Among the transcription factors in the analyzed cases, MYB genes are significantly more prone to account for pigmentation differences compared to bHLH or WD40 genes. Among the structural genes, DFR genes are most often associated with anthocyanin loss. CONCLUSIONS These findings support previous assumptions about the susceptibility of transcriptional regulation to evolutionary changes and its importance for the evolution of novel coloration phenotypes. Our findings underline the particular significance of MYBs and their apparent prevalent role in the specificity of the MBW complex.
Collapse
Affiliation(s)
- Maria F Marin-Recinos
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and BRICS, TU Braunschweig, Braunschweig, Germany
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and BRICS, TU Braunschweig, Braunschweig, Germany.
| |
Collapse
|
4
|
Huang X, Chen W, Zhao Y, Chen J, Ouyang Y, Li M, Gu Y, Wu Q, Cai S, Guo F, Zhu P, Ao D, You S, Vasseur L, Liu Y. Deep learning-based quantification and transcriptomic profiling reveal a methyl jasmonate-mediated glandular trichome formation pathway in Cannabis sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1155-1173. [PMID: 38332528 DOI: 10.1111/tpj.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Cannabis glandular trichomes (GTs) are economically and biotechnologically important structures that have a remarkable morphology and capacity to produce, store, and secrete diverse classes of secondary metabolites. However, our understanding of the developmental changes and the underlying molecular processes involved in cannabis GT development is limited. In this study, we developed Cannabis Glandular Trichome Detection Model (CGTDM), a deep learning-based model capable of differentiating and quantifying three types of cannabis GTs with a high degree of efficiency and accuracy. By profiling at eight different time points, we captured dynamic changes in gene expression, phenotypes, and metabolic processes associated with GT development. By integrating weighted gene co-expression network analysis with CGTDM measurements, we established correlations between phenotypic variations in GT traits and the global transcriptome profiles across the developmental gradient. Notably, we identified a module containing methyl jasmonate (MeJA)-responsive genes that significantly correlated with stalked GT density and cannabinoid content during development, suggesting the existence of a MeJA-mediated GT formation pathway. Our findings were further supported by the successful promotion of GT development in cannabis through exogenous MeJA treatment. Importantly, we have identified CsMYC4 as a key transcription factor that positively regulates GT formation via MeJA signaling in cannabis. These findings provide novel tools for GT detection and counting, as well as valuable information for understanding the molecular regulatory mechanism of GT formation, which has the potential to facilitate the molecular breeding, targeted engineering, informed harvest timing, and manipulation of cannabinoid production.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Chen
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuqing Zhao
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingjing Chen
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuzeng Ouyang
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Minxuan Li
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu Gu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qinqin Wu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sen Cai
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Foqin Guo
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Panpan Zhu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Deyong Ao
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shijun You
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liette Vasseur
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Yuanyuan Liu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
5
|
Fuster-Pons A, Murillo-Sánchez A, Méndez-Vigo B, Marcer A, Pieper B, Torres-Pérez R, Oliveros JC, Tsiantis M, Picó FX, Alonso-Blanco C. The trichome pattern diversity of Cardamine shares genetic mechanisms with Arabidopsis but differs in environmental drivers. PLANT PHYSIOLOGY 2024:kiae213. [PMID: 38606947 DOI: 10.1093/plphys/kiae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Natural variation in trichome pattern (amount and distribution) is prominent among populations of many angiosperms. However, the degree of parallelism in the genetic mechanisms underlying this diversity and its environmental drivers in different species remain unclear. To address these questions, we analyzed the genomic and environmental bases of leaf trichome pattern diversity in Cardamine hirsuta, a relative of Arabidopsis (Arabidopsis thaliana). We characterized 123 wild accessions for their genomic diversity, leaf trichome patterns at different temperatures, and environmental adjustments. Nucleotide diversities and biogeographical distribution models identified two major genetic lineages with distinct demographic and adaptive histories. Additionally, C. hirsuta showed substantial variation in trichome pattern and plasticity to temperature. Trichome amount in C. hirsuta correlated positively with spring precipitation but negatively with temperature, which is opposite to climatic patterns in A. thaliana. Contrastingly, genetic analysis of C. hirsuta glabrous accessions indicated that, like for A. thaliana, glabrousness is caused by null mutations in ChGLABRA1 (ChGL1). Phenotypic genome-wide association studies (GWAS) further identified a ChGL1 haplogroup associated with low trichome density and ChGL1 expression. Therefore, a ChGL1 series of null and partial loss-of-function alleles accounts for the parallel evolution of leaf trichome pattern in C. hirsuta and A. thaliana. Finally, GWAS also detected other candidate genes (e.g. ChETC3, ChCLE17) that might affect trichome pattern. Accordingly, the evolution of this trait in C. hirsuta and A. thaliana shows partially conserved genetic mechanisms but is likely involved in adaptation to different environments.
Collapse
Affiliation(s)
- Alberto Fuster-Pons
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Alba Murillo-Sánchez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Arnald Marcer
- CREAF, Cerdanyola del Vallès 08193, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Bjorn Pieper
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Rafael Torres-Pérez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Juan Carlos Oliveros
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Francisco Xavier Picó
- Departamento de Biología evolutiva, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla 41092, Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| |
Collapse
|
6
|
Song H, Geng Q, Wu X, Hu M, Ye M, Yu X, Chen Y, Xu J, Jiang L, Cao S. The transcription factor MYC1 interacts with FIT to negatively regulate iron homeostasis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:193-208. [PMID: 36721966 DOI: 10.1111/tpj.16130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Iron (Fe) is an indispensable trace mineral element for the normal growth of plants, and it is involved in different biological processes; Fe shortage in plants can induce chlorosis and yield loss. The objective of this research is to identify novel genes that participated in the regulation of Fe-deficiency stress in Arabidopsis thaliana. A basic helix-loop-helix (bHLH) transcription factor (MYC1) was identified to be interacting with the FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) using a yeast-two-hybrid assay. Transcript-level analysis showed that there was a decrease in MYC1 expression in Arabidopsis to cope with Fe-deficiency stress. Functional deficiency of MYC1 in Arabidopsis leads to an increase in Fe-deficiency tolerance and Fe-accumulation, whereas MYC1-overexpressing plants have an enhanced sensitivity to Fe-deficiency stress. Additionally, MYC1 inhibited the formation of FIT and bHLH38/39 heterodimers, which suppressed the expressed level for Fe acquisition genes FRO2 and IRT1 during Fe-deficiency stress. These results showed that MYC1 functions as a negative modulator of the Fe-deficiency stress response by inhibiting the formation of FIT and bHLH38/39 heterodimers, thereby suppressing the binding of FIT and bHLH38/39 heterodimers to the promoters of FRO2 and IRT1 to modulate Fe intake during Fe-deficiency stress. Overall, the findings of this study elucidated the role of MYC1 in coping with Fe-deficiency stress, and provided potential targets for the developing of crop varieties resistant to Fe-deficiency stress.
Collapse
Affiliation(s)
- Hui Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qingliu Geng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xi Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Min Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Min Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xin Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yifan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jiena Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
7
|
Feng Z, Sun L, Dong M, Fan S, Shi K, Qu Y, Zhu L, Shi J, Wang W, Liu Y, Chen X, Weng Y, Liu X, Ren H. Identification and Functional Characterization of CsMYCs in Cucumber Glandular Trichome Development. Int J Mol Sci 2023; 24:ijms24076435. [PMID: 37047408 PMCID: PMC10094329 DOI: 10.3390/ijms24076435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Glandular trichomes (GTs), specialized structures formed by the differentiation of plant epidermal cells, are known to play important roles in the resistance of plants to external biotic and abiotic stresses. These structures are capable of storing and secreting secondary metabolites, which often have important agricultural and medicinal values. In order to better understand the molecular developmental mechanisms of GTs, studies have been conducted in a variety of crops, including tomato (Solanum lycopersicum), sweetworm (Artemisia annua), and cotton (Gossypium hirsutum). The MYC transcription factor of the basic helix-loop-helix (bHLH) transcription factor family has been found to play an important role in GT development. In this study, a total of 13 cucumber MYC transcription factors were identified in the cucumber (Cucumis sativus L.) genome. After performing phylogenetic analyses and conserved motifs on the 13 CsMYCs in comparison to previously reported MYC transcription factors that regulate trichome development, seven candidate MYC transcription factors were selected. Through virus-induced gene silencing (VIGS), CsMYC2 is found to negatively regulate GT formation while CsMYC4, CsMYC5, CsMYC6, CsMYC7, and CsMYC8 are found to positively regulate GT formation. Furthermore, the two master effector genes, CsMYC2 and CsMYC7, are observed to have similar expression patterns indicating that they co-regulate the balance of GT development in an antagonistic way.
Collapse
Affiliation(s)
- Zhongxuan Feng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Sun
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mingming Dong
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shanshan Fan
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kexin Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yixin Qu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liyan Zhu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jinfeng Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wujun Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yihan Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Chen
- Yantai Institute, China Agricultural University, Yantai 264670, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | - Xingwang Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huazhong Ren
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Miao T, Bao H, Ling H, Li P, Zhang Y, He Y, Hu X, Ling C, Liu Y, Tang W, Liu Y, Wang S. Comparative Transcriptomic Analysis Revealed the Suppression and Alternative Splicing of Kiwifruit ( Actinidia latifolia) NAP1 Gene Mediating Trichome Development. Int J Mol Sci 2023; 24:4481. [PMID: 36901911 PMCID: PMC10003061 DOI: 10.3390/ijms24054481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/26/2023] Open
Abstract
Kiwifruit (Actinidia chinensis) is commonly covered by fruit hairs (trichomes) that affect kiwifruit popularity in the commercial market. However, it remains largely unknown which gene mediates trichome development in kiwifruit. In this study, we analyzed two kiwifruit species, A. eriantha (Ae) with long, straight, and bushy trichomes and A. latifolia (Al) with short, distorted, and spare trichomes, by second- and third-generation RNA sequencing. Transcriptomic analysis indicated that the expression of the NAP1 gene, a positive regulator of trichome development, was suppressed in Al compared with that in Ae. Additionally, the alternative splicing of AlNAP1 produced two short transcripts (AlNAP1-AS1 and AlNAP1-AS2) lacking multiple exons, in addition to a full-length transcript of AlNAP1-FL. The defects of trichome development (short and distorted trichome) in Arabidopsis nap1 mutant were rescued by AlNAP1-FL but not by AlNAP1-AS1. AlNAP1-FL gene does not affect trichome density in nap1 mutant. The qRT-PCR analysis indicated that the alternative splicing further reduces the level of functional transcripts. These results indicated that the short and distorted trichomes in Al might be caused by the suppression and alternative splicing of AlNAP1. Together, we revealed that AlNAP1 mediates trichome development and is a good candidate target for genetic modification of trichome length in kiwifruit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yajing Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Songhu Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
9
|
MYC2: A Master Switch for Plant Physiological Processes and Specialized Metabolite Synthesis. Int J Mol Sci 2023; 24:ijms24043511. [PMID: 36834921 PMCID: PMC9963318 DOI: 10.3390/ijms24043511] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The jasmonic acid (JA) signaling pathway plays important roles in plant defenses, development, and the synthesis of specialized metabolites synthesis. Transcription factor MYC2 is a major regulator of the JA signaling pathway and is involved in the regulation of plant physiological processes and specialized metabolite synthesis. Based on our understanding of the mechanism underlying the regulation of specialized metabolite synthesis in plants by the transcription factor MYC2, the use of synthetic biology approaches to design MYC2-driven chassis cells for the synthesis of specialized metabolites with high medicinal value, such as paclitaxel, vincristine, and artemisinin, seems to be a promising strategy. In this review, the regulatory role of MYC2 in JA signal transduction of plants to biotic and abiotic stresses, plant growth, development and specialized metabolite synthesis is described in detail, which will provide valuable reference for the use of MYC2 molecular switches to regulate plant specialized metabolite biosynthesis.
Collapse
|
10
|
Arteaga N, Méndez‐Vigo B, Fuster‐Pons A, Savic M, Murillo‐Sánchez A, Picó FX, Alonso‐Blanco C. Differential environmental and genomic architectures shape the natural diversity for trichome patterning and morphology in different Arabidopsis organs. PLANT, CELL & ENVIRONMENT 2022; 45:3018-3035. [PMID: 35289421 PMCID: PMC9541492 DOI: 10.1111/pce.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Despite the adaptive and taxonomic relevance of the natural diversity for trichome patterning and morphology, the molecular and evolutionary mechanisms underlying these traits remain mostly unknown, particularly in organs other than leaves. In this study, we address the ecological, genetic and molecular bases of the natural variation for trichome patterning and branching in multiple organs of Arabidopsis (Arabidopsis thaliana). To this end, we characterized a collection of 191 accessions and carried out environmental and genome-wide association (GWA) analyses. Trichome amount in different organs correlated negatively with precipitation in distinct seasons, thus suggesting a precise fit between trichome patterning and climate throughout the Arabidopsis life cycle. In addition, GWA analyses showed small overlapping between the genes associated with different organs, indicating partly independent genetic bases for vegetative and reproductive phases. These analyses identified a complex locus on chromosome 2, where two adjacent MYB genes (ETC2 and TCL1) displayed differential effects on trichome patterning in several organs. Furthermore, analyses of transgenic lines carrying different natural alleles demonstrated that TCL1 accounts for the variation for trichome patterning in all organs, and for stem trichome branching. By contrast, two other MYB genes (TRY and GL1), mainly showed effects on trichome patterning or branching, respectively.
Collapse
Affiliation(s)
- Noelia Arteaga
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Belén Méndez‐Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Alberto Fuster‐Pons
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Marija Savic
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Alba Murillo‐Sánchez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - F. Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD)Consejo Superior de Investigaciones Científicas (CSIC)SevillaSpain
| | - Carlos Alonso‐Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| |
Collapse
|
11
|
Han G, Li Y, Yang Z, Wang C, Zhang Y, Wang B. Molecular Mechanisms of Plant Trichome Development. FRONTIERS IN PLANT SCIENCE 2022; 13:910228. [PMID: 35720574 PMCID: PMC9198495 DOI: 10.3389/fpls.2022.910228] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 05/25/2023]
Abstract
Plant trichomes, protrusions formed from specialized aboveground epidermal cells, provide protection against various biotic and abiotic stresses. Trichomes can be unicellular, bicellular or multicellular, with multiple branches or no branches at all. Unicellular trichomes are generally not secretory, whereas multicellular trichomes include both secretory and non-secretory hairs. The secretory trichomes release secondary metabolites such as artemisinin, which is valuable as an antimalarial agent. Cotton trichomes, also known as cotton fibers, are an important natural product for the textile industry. In recent years, much progress has been made in unraveling the molecular mechanisms of trichome formation in Arabidopsis thaliana, Gossypium hirsutum, Oryza sativa, Cucumis sativus, Solanum lycopersicum, Nicotiana tabacum, and Artemisia annua. Here, we review current knowledge of the molecular mechanisms underlying fate determination and initiation, elongation, and maturation of unicellular, bicellular and multicellular trichomes in several representative plants. We emphasize the regulatory roles of plant hormones, transcription factors, the cell cycle and epigenetic modifications in different stages of trichome development. Finally, we identify the obstacles and key points for future research on plant trichome development, and speculated the development relationship between the salt glands of halophytes and the trichomes of non-halophytes, which provides a reference for future studying the development of plant epidermal cells.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Dongying Institute, Shandong Normal University, Dongying, China
| | - Yuxia Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chengfeng Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
12
|
Development of Molecular Markers for Predicting Radish ( Raphanus sativus) Flesh Color Based on Polymorphisms in the RsTT8 Gene. PLANTS 2021; 10:plants10071386. [PMID: 34371589 PMCID: PMC8309288 DOI: 10.3390/plants10071386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022]
Abstract
Red radish (Raphanus sativus L.) cultivars are a rich source of health-promoting anthocyanins and are considered a potential source of natural colorants used in the cosmetic industry. However, the development of red radish cultivars via conventional breeding is very difficult, given the unusual inheritance of the anthocyanin accumulation trait in radishes. Therefore, molecular markers linked with radish color are needed to facilitate radish breeding. Here, we characterized the RsTT8 gene isolated from four radish genotypes with different skin and flesh colors. Sequence analysis of RsTT8 revealed a large number of polymorphisms, including insertion/deletions (InDels), single nucleotide polymorphisms (SNPs), and simple sequence repeats (SSRs), between the red-fleshed and white-fleshed radish cultivars. To develop molecular markers on the basis of these polymorphisms for discriminating between radish genotypes with different colored flesh tissues, we designed four primer sets specific to the RsTT8 promoter, InDel, SSR, and WD40/acidic domain (WD/AD), and tested these primers on a diverse collection of radish lines. Except for the SSR-specific primer set, all primer sets successfully discriminated between red-fleshed and white-fleshed radish lines. Thus, we developed three molecular markers that can be efficiently used for breeding red-fleshed radish cultivars.
Collapse
|
13
|
Qian Y, Zhang T, Yu Y, Gou L, Yang J, Xu J, Pi E. Regulatory Mechanisms of bHLH Transcription Factors in Plant Adaptive Responses to Various Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:677611. [PMID: 34220896 PMCID: PMC8250158 DOI: 10.3389/fpls.2021.677611] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/19/2021] [Indexed: 05/05/2023]
Abstract
Basic helix-loop-helix proteins (bHLHs) comprise one of the largest families of transcription factors in plants. They have been shown to be involved in responses to various abiotic stresses, such as drought, salinity, chilling, heavy metal toxicity, iron deficiency, and osmotic damages. By specifically binding to cis-elements in the promoter region of stress related genes, bHLHs can regulate their transcriptional expression, thereby regulating the plant's adaptive responses. This review focuses on the structural characteristics of bHLHs, the regulatory mechanism of how bHLHs are involved transcriptional activation, and the mechanism of how bHLHs regulate the transcription of target genes under various stresses. Finally, as increasing research demonstrates that flavonoids are usually induced under fluctuating environments, the latest research progress and future research prospects are described on the mechanisms of how flavonoid biosynthesis is regulated by bHLHs in the regulation of the plant's responses to abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
14
|
Arteaga N, Savic M, Méndez-Vigo B, Fuster-Pons A, Torres-Pérez R, Oliveros JC, Picó FX, Alonso-Blanco C. MYB transcription factors drive evolutionary innovations in Arabidopsis fruit trichome patterning. THE PLANT CELL 2021; 33:548-565. [PMID: 33955486 PMCID: PMC8136876 DOI: 10.1093/plcell/koaa041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/24/2020] [Indexed: 05/27/2023]
Abstract
Both inter- and intra-specific diversity has been described for trichome patterning in fruits, which is presumably involved in plant adaptation. However, the mechanisms underlying this developmental trait have been hardly addressed. Here we examined natural populations of Arabidopsis (Arabidopsis thaliana) that develop trichomes in fruits and pedicels, phenotypes previously not reported in the Arabidopsis genus. Genetic analyses identified five loci, MALAMBRUNO 1-5 (MAU1-5), with MAU2, MAU3, and MAU5 showing strong epistatic interactions that are necessary and sufficient to display these traits. Functional characterization of these three loci revealed cis-regulatory mutations in TRICHOMELESS1 and TRIPTYCHON, as well as a structural mutation in GLABRA1. Therefore, the multiple mechanisms controlled by three MYB transcription factors of the core regulatory network for trichome patterning have jointly been modulated to trigger trichome development in fruits. Furthermore, analyses of worldwide accessions showed that these traits and mutations only occur in a highly differentiated relict lineage from the Iberian Peninsula. In addition, these traits and alleles were associated with low spring precipitation, which suggests that trichome development in fruits and pedicels might be involved in climatic adaptation. Thus, we show that the combination of synergistic mutations in a gene regulatory circuit has driven evolutionary innovations in fruit trichome patterning in Arabidopsis.
Collapse
Affiliation(s)
- Noelia Arteaga
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Marija Savic
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Alberto Fuster-Pons
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Rafael Torres-Pérez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Juan Carlos Oliveros
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - F Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla 41092, Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| |
Collapse
|
15
|
Zhou NN, Tang KX, Jeauffre J, Thouroude T, Arias DCL, Foucher F, Oyant LHS. Genetic determinism of prickles in rose. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3017-3035. [PMID: 32734323 DOI: 10.1007/s00122-020-03652-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/03/2020] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE The genetic determinism of prickle in rose is complex, with a major locus on LG3 that controls the absence/presence of prickles on the rose stem. Rose is one of the major ornamental plants. The selection of glabrous cultivars is an important breeding target but remains a difficult task due to our limited genetic knowledge. Our objective was to understand the genetic and molecular determinism of prickles. Using a segregating diploid rose F1 population, we detected two types of prickles (glandular and non-glandular) in the progeny. We scored the number of non-glandular prickles on the floral and main stems for three years. We performed QTL analysis and detected four prickle loci on LG1, 3, 4 and 6. We determined the credible interval on the reference genome. The QTL on LG3 is a major locus that controls the presence of prickles, and three QTLs (LG3, 4 and 1) may be responsible for prickle density. We further revealed that glabrous hybrids are caused by the combination of the two recessive alleles from both parents. In order to test whether rose prickles could originate from a 'trichome-like structure,' we used a candidate approach to characterize rose gene homologues known in Arabidopsis, involved in trichome initiation. Four of these homologues were located within the overlapping credible interval of the detected QTLs. Transcript accumulation analysis weakly supports the involvement of trichome homologous genes, in the molecular control of prickle initiation. Our studies provide strong evidence for a complex genetic determinism of stem prickle and could help to establish guidelines for glabrous rose breeding. New insights into the relationship between prickles and trichomes constitute valuable information for reverse genetic research on prickles.
Collapse
Affiliation(s)
- N N Zhou
- INRAE, GDO-IRHS (Genetics and Diversity of Ornamental Plants, Institut de Recherche en Horticulture Et Semences), Université D'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Angers, France.
- National Engineering Research Center for Ornamental Horticulture; Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650231, China.
| | - K X Tang
- National Engineering Research Center for Ornamental Horticulture; Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650231, China
| | - J Jeauffre
- INRAE, GDO-IRHS (Genetics and Diversity of Ornamental Plants, Institut de Recherche en Horticulture Et Semences), Université D'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Angers, France
| | - T Thouroude
- INRAE, GDO-IRHS (Genetics and Diversity of Ornamental Plants, Institut de Recherche en Horticulture Et Semences), Université D'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Angers, France
| | - D C Lopez Arias
- INRAE, GDO-IRHS (Genetics and Diversity of Ornamental Plants, Institut de Recherche en Horticulture Et Semences), Université D'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Angers, France
| | - F Foucher
- INRAE, GDO-IRHS (Genetics and Diversity of Ornamental Plants, Institut de Recherche en Horticulture Et Semences), Université D'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Angers, France
| | - L Hibrand-Saint Oyant
- INRAE, GDO-IRHS (Genetics and Diversity of Ornamental Plants, Institut de Recherche en Horticulture Et Semences), Université D'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Angers, France
| |
Collapse
|
16
|
Chen Y, Su D, Li J, Ying S, Deng H, He X, Zhu Y, Li Y, Chen Y, Pirrello J, Bouzayen M, Liu Y, Liu M. Overexpression of bHLH95, a basic helix-loop-helix transcription factor family member, impacts trichome formation via regulating gibberellin biosynthesis in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3450-3462. [PMID: 32133496 PMCID: PMC7475245 DOI: 10.1093/jxb/eraa114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/28/2020] [Indexed: 05/20/2023]
Abstract
Trichomes are epidermal protuberances on aerial parts of plants known to play an important role in biotic and abiotic stresses. To date, our knowledge of the regulation of trichome formation in crop species is very limited. Through phenotyping of the Solanum pennellii×S. lycopersicum (cv. M82) introgression population, we identified the SlbHLH95 transcription factor as a negative regulator of trichome formation in tomato. In line with this negative role, SlbHLH95 displayed a very low expression in stems where trichomes are present at high density. Overexpression of SlbHLH95 resulted in a dramatically reduced trichome density in stems and a significant down-regulation of a set of trichome-related genes. In addition to the lower trichome density, overexpressing lines also showed pleiotropic alterations affecting both vegetative and reproductive development. While most of these phenotypes were reminiscent of gibberellin (GA)-deficient phenotypes, expression studies showed that two GA biosynthesis genes, SlGA20ox2 and SlKS5, are significantly down-regulated in SlbHLH95-OE plants. Moreover, in line with a decrease in active GA content, the glabrous and dwarf phenotypes were rescued by exogenous GA treatment. In addition, yeast one-hybrid and transactivation assays revealed that SlbHLH95 represses the expression of SlGA20ox2 and SlKS5 via direct binding to their promoters. Taken together, our study established a link between SlbHLH95, GA, and trichome formation, and uncovered the role of this gene in modulating GA biosynthesis in tomato.
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Dan Su
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Jie Li
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Shiyu Ying
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Xiaoqing He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Yunqi Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Ying Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Ya Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Julien Pirrello
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan, France
| | - Mondher Bouzayen
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan, France
| | - Yongsheng Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
17
|
Gupta A, Jaiswal V, Sawant SV, Yadav HK. Mapping QTLs for 15 morpho-metric traits in Arabidopsis thaliana using Col-0 × Don-0 population. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1021-1034. [PMID: 32377050 PMCID: PMC7196571 DOI: 10.1007/s12298-020-00800-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 01/24/2020] [Accepted: 03/17/2020] [Indexed: 05/13/2023]
Abstract
Genome wide quantitative trait loci (QTL) mapping was conducted in Arabidopsis thaliana using F2 mapping population (Col-0 × Don-0) and SNPs markers. A total of five linkage groups were obtained with number of SNPs varying from 45 to 59 per linkage group. The composite interval mapping detected a total of 36 QTLs for 15 traits and the number of QTLs ranged from one (root length, root dry biomass, cauline leaf width, number of internodes and internode distance) to seven (for bolting days). The range of phenotypic variance explained (PVE) and logarithm of the odds ratio of these 36 QTLs was found be 0.19-38.17% and 3.0-6.26 respectively. Further, the epistatic interaction detected one main effect QTL and four epistatic QTLs. Five major QTLs viz. Qbd.nbri.4.3, Qfd.nbri.4.2, Qrdm.nbri.5.1, Qncl.nbri.2.2, Qtd.nbri.4.1 with PVE > 15.0% might be useful for fine mapping to identify genes associated with respective traits, and also for development of specialized population through marker assisted selection. The identification of additive and dominant effect QTLs and desirable alleles of each of above mentioned traits would also be important for future research.
Collapse
Affiliation(s)
- Astha Gupta
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226 001 India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 025 India
- Department of Botany, University of Delhi, New Delhi, 110 007 India
| | - Vandana Jaiswal
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226 001 India
| | - Samir V. Sawant
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226 001 India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 025 India
| | - Hemant Kumar Yadav
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226 001 India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 025 India
| |
Collapse
|
18
|
Ali M, Cheng H, Soomro M, Shuyan L, Bilal Tufail M, Nazir MF, Feng X, Zhang Y, Dongyun Z, Limin L, Wang Q, Song G. Comparative Transcriptomic Analysis to Identify the Genes Related to Delayed Gland Morphogenesis in Gossypium bickii. Genes (Basel) 2020; 11:genes11050472. [PMID: 32357512 PMCID: PMC7290383 DOI: 10.3390/genes11050472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022] Open
Abstract
Cotton is one of the major industrial crops that supply natural fibers and oil for industries. This study was conducted to understand the mechanism of delayed gland morphogenesis in seeds of Gossypium bickii. In this study, we compared glandless seeds of G. bickii with glanded seeds of Gossypium arboreum. High-throughput sequencing technology was used to explore and classify the expression patterns of gland-related genes in seeds and seedlings of cotton plants. Approximately 131.33 Gigabases of raw data from 12 RNA sequencing samples with three biological replicates were generated. A total of 7196 differentially-expressed genes (DEGs) were identified in all transcriptome data. Among them, 3396 genes were found up-regulated and 3480 genes were down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were performed to identify different functions between genes unique to glandless imbibed seeds and glanded seedlings. Co-expression network analysis revealed four modules that were identified as highly associated with the development of glandless seeds. Here the hub genes in each module were identified by weighted gene co-expression network analysis (WGCNA). In total, we have selected 13 genes involved in transcription factors, protein and MYB-related functions, that were differentially expressed in transcriptomic data and validated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). These selected genes may play an important role for delayed gland morphogenesis. Our study provides comprehensive insight into the key genes related to glandless traits of seeds and plants, and can be further exploited by functional and molecular studies.
Collapse
Affiliation(s)
- Mushtaque Ali
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Hailiang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Mahtab Soomro
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Li Shuyan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Muhammad Bilal Tufail
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Mian Faisal Nazir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Xiaoxu Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
- Plant Genetics, Gambloux Agro Bio Tech, University of Liege, 5030 Gambloux, Belgium
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Zuo Dongyun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Lv Limin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
- Correspondence: ; Tel.: +86-3722562377
| |
Collapse
|
19
|
Chen S, Wang S. GLABRA2, A Common Regulator for Epidermal Cell Fate Determination and Anthocyanin Biosynthesis in Arabidopsis. Int J Mol Sci 2019; 20:ijms20204997. [PMID: 31601032 PMCID: PMC6834157 DOI: 10.3390/ijms20204997] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 01/18/2023] Open
Abstract
Epidermal cell fate determination—including trichome initiation, root hair formation, and flavonoid and mucilage biosynthesis in Arabidopsis (Arabidopsis thaliana)—are controlled by a similar transcriptional regulatory network. In the network, it has been proposed that the MYB-bHLH-WD40 (MBW) activator complexes formed by an R2R3 MYB transcription factor, a bHLH transcription factor and the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1) regulate the expression of downstream genes required for cell fate determination, flavonoid or mucilage biosynthesis, respectively. In epidermal cell fate determination and mucilage biosynthesis, the MBW activator complexes activate the expression of GLABRA2 (GL2). GL2 is a homeodomain transcription factor that promotes trichome initiation in shoots, mucilage biosynthesis in seeds, and inhibits root hair formation in roots. The MBW activator complexes also activate several R3 MYB genes. The R3 MYB proteins, in turn, competing with the R2R3 MYBs for binding bHLH transcription factors, therefore inhibiting the formation of the MBW activator complexes, lead to the inhibition of trichome initiation in shoots, and promotion of root hair formation in roots. In flavonoid biosynthesis, the MBW activator complexes activate the expression of the late biosynthesis genes in the flavonoid pathway, resulting in the production of anthocyanins or proanthocyanidins. Research progress in recent years suggests that the transcriptional regulatory network that controls epidermal cell fate determination and anthocyanin biosynthesis in Arabidopsis is far more complicated than previously thought. In particular, more regulators of GL2 have been identified, and GL2 has been shown to be involved in the regulation of anthocyanin biosynthesis. This review focuses on the research progress on the regulation of GL2 expression, and the roles of GL2 in the regulation of epidermal cell fate determination and anthocyanin biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Siyu Chen
- College of Life Science, Linyi University, Linyi 276005, China.
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China.
| | - Shucai Wang
- College of Life Science, Linyi University, Linyi 276005, China.
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
20
|
Fambrini M, Pugliesi C. The Dynamic Genetic-Hormonal Regulatory Network Controlling the Trichome Development in Leaves. PLANTS (BASEL, SWITZERLAND) 2019; 8:E253. [PMID: 31357744 PMCID: PMC6724107 DOI: 10.3390/plants8080253] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
Abstract
Plant trichomes are outgrowths developed from an epidermal pavement cells of leaves and other organs. Trichomes (also called 'hairs') play well-recognized roles in defense against insect herbivores, forming a physical barrier that obstructs insect movement and mediating chemical defenses. In addition, trichomes can act as a mechanosensory switch, transducing mechanical stimuli (e.g., insect movement) into physiological signals, helping the plant to respond to insect attacks. Hairs can also modulate plant responses to abiotic stresses, such as water loss, an excess of light and temperature, and reflect light to protect plants against UV radiation. The structure of trichomes is species-specific and this trait is generally related to their function. These outgrowths are easily analyzed and their origin represents an outstanding subject to study epidermal cell fate and patterning in plant organs. In leaves, the developmental control of the trichomatous complement has highlighted a regulatory network based on four fundamental elements: (i) genes that activate and/or modify the normal cell cycle of epidermal pavement cells (i.e., endoreduplication cycles); (ii) transcription factors that create an activator/repressor complex with a central role in determining cell fate, initiation, and differentiation of an epidermal cell in trichomes; (iii) evidence that underlines the interplay of the aforesaid complex with different classes of phytohormones; (iv) epigenetic mechanisms involved in trichome development. Here, we reviewed the role of genes in the development of trichomes, as well as the interaction between genes and hormones. Furthermore, we reported basic studies about the regulation of the cell cycle and the complexity of trichomes. Finally, this review focused on the epigenetic factors involved in the initiation and development of hairs, mainly on leaves.
Collapse
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
| |
Collapse
|
21
|
Zhang B, Chopra D, Schrader A, Hülskamp M. Evolutionary comparison of competitive protein-complex formation of MYB, bHLH, and WDR proteins in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3197-3209. [PMID: 31071215 PMCID: PMC6598095 DOI: 10.1093/jxb/erz155] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/25/2019] [Indexed: 05/20/2023]
Abstract
A protein complex consisting of a MYB, basic Helix-Loop-Helix, and a WDR protein, the MBW complex, regulates five traits, namely the production of anthocyanidin, proanthocyanidin, and seed-coat mucilage, and the development of trichomes and root hairs. For complexes involved in trichome and root hair development it has been shown that the interaction of two MBW proteins can be counteracted by the respective third protein (called competitive complex formation). We examined competitive complex formation for selected MBW proteins from Arabidopsis thaliana, Arabis alpina, Gossypium hirsutum, Petunia hybrida, and Zea mays. Quantitative analyses of the competitive binding of MYBs and WDRs to bHLHs were done by pull-down assays using ProtA- and luciferase-tagged proteins expressed in human HEC cells. We found that some bHLHs show competitive complex formation whilst others do not. Competitive complex formation strongly correlated with a phylogenetic tree constructed with the bHLH proteins under investigation, suggesting a functional relevance. We demonstrate that this different behavior can be explained by changes in one amino acid and that this position is functionally relevant in trichome development but not in anthocyanidin regulation.
Collapse
Affiliation(s)
- Bipei Zhang
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Divykriti Chopra
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Andrea Schrader
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Martin Hülskamp
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
- Correspondence:
| |
Collapse
|
22
|
Wang L, Zhou CM, Mai YX, Li LZ, Gao J, Shang GD, Lian H, Han L, Zhang TQ, Tang HB, Ren H, Wang FX, Wu LY, Liu XL, Wang CS, Chen EW, Zhang XN, Liu C, Wang JW. A spatiotemporally regulated transcriptional complex underlies heteroblastic development of leaf hairs in Arabidopsis thaliana. EMBO J 2019; 38:embj.2018100063. [PMID: 30842098 DOI: 10.15252/embj.2018100063] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 11/09/2022] Open
Abstract
Heteroblasty refers to a phenomenon that a plant produces morphologically or functionally different lateral organs in an age-dependent manner. In the model plant Arabidopsis thaliana, the production of trichomes (epidermal leaf hairs) on the abaxial (lower) side of leaves is a heteroblastic mark for the juvenile-to-adult transition. Here, we show that the heteroblastic development of abaxial trichomes is regulated by a spatiotemporally regulated complex comprising the leaf abaxial fate determinant (KAN1) and the developmental timer (miR172-targeted AP2-like proteins). We provide evidence that a short-distance chromatin loop brings the downstream enhancer element into close association with the promoter elements of GL1, which encodes a MYB transcription factor essential for trichome initiation. During juvenile phase, the KAN1-AP2 repressive complex binds to the downstream sequence of GL1 and represses its expression through chromatin looping. As plants age, the gradual reduction in AP2-like protein levels leads to decreased amount of the KAN1-AP2 complex, thereby licensing GL1 expression and the abaxial trichome initiation. Our results thus reveal a novel molecular mechanism by which a heteroblastic trait is governed by integrating age and leaf polarity cue in plants.
Collapse
Affiliation(s)
- Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ling-Zi Li
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Guang-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Heng Lian
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Lin Han
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Hong-Bo Tang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Hang Ren
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Fu-Xiang Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Lian-Yu Wu
- ShanghaiTech University, Shanghai, China
| | | | - Chang-Sheng Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Er-Wang Chen
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Xue-Ning Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China .,ShanghaiTech University, Shanghai, China
| |
Collapse
|
23
|
Arai H, Yanagiura K, Toyama Y, Morohashi K. Genome-wide analysis of MpBHLH12, a IIIf basic helix-loop-helix transcription factor of Marchantia polymorpha. JOURNAL OF PLANT RESEARCH 2019; 132:197-209. [PMID: 30840209 PMCID: PMC7196945 DOI: 10.1007/s10265-019-01095-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/05/2019] [Indexed: 05/08/2023]
Abstract
The evolution of plants on land required adaptation to UV radiation and dry environments, and involved the appearance and/or rewiring of genetic connections, known as gene regulatory networks (GRNs), which consist of one or more transcription factors (TFs). The liverwort, Marchantia polymorpha, is a basal land plant, with a recently sequenced genome. The number of genes encoding basic helix-loop-helix (bHLH) family members is considerably higher in M. polymorpha than in charophyte green algae, suggesting the contribution of bHLH proteins to the evolution of GRNs associated with the adaptation of plants to land. Although an understanding of the evolutionary aspects of GRNs is fundamental for elucidating the mechanisms of environmental adaptation, the evolution of GRNs that led to land adaptation in plants remains poorly understood. In this study, we isolated a single gene encoding a IIIf bHLH TF from M. polymorpha, MpBHLH12. Transgenic M. polymorpha constitutively overexpressing MpBHLH12 showed smaller and fewer gemma cups than wild type, suggesting that MpBHLH12 is involved in the regulation of morphological development. Transcriptomic analysis of MpBHLH12 overexpressor (MpBHLH12ox) lines revealed an overlap with the GRN of MpMYB14, which regulates the biosynthesis of anthocyanins and phenolic compounds. However, MpBHLH12ox did not show anthocyanin accumulation. Results of the transient reporter assay suggest that MpBHLH12 could function in repression rather than activation. Our findings suggest that although the IIIf bHLH MpBHLH12 shows highest amino acid similarity with IIIf bHLH clade and is involved in developmental process and partly biosynthesis of phenolic compounds in M. polymorpha like Arabidopsis IIIf bHLH, the GRN involving MpBHLH12 would be distinct one from those of the IIIf bHLH TFs of seed plants.
Collapse
Affiliation(s)
- Haruka Arai
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kazuya Yanagiura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yuko Toyama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kengo Morohashi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
24
|
Doroshkov AV, Konstantinov DK, Afonnikov DA, Gunbin KV. The evolution of gene regulatory networks controlling Arabidopsis thaliana L. trichome development. BMC PLANT BIOLOGY 2019; 19:53. [PMID: 30813891 PMCID: PMC6393967 DOI: 10.1186/s12870-019-1640-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND The variation in structure and function of gene regulatory networks (GRNs) participating in organisms development is a key for understanding species-specific evolutionary strategies. Even the tiniest modification of developmental GRN might result in a substantial change of a complex morphogenetic pattern. Great variety of trichomes and their accessibility makes them a useful model for studying the molecular processes of cell fate determination, cell cycle control and cellular morphogenesis. Nowadays, a large number of genes regulating the morphogenesis of A. thaliana trichomes are described. Here we aimed at a study the evolution of the GRN defining the trichome formation, and evaluation its importance in other developmental processes. RESULTS In study of the evolution of trichomes formation GRN we combined classical phylogenetic analysis with information on the GRN topology and composition in major plants taxa. This approach allowed us to estimate both times of evolutionary emergence of the GRN components which are mainly proteins, and the relative rate of their molecular evolution. Various simplifications of protein structure (based on the position of amino acid residues in protein globula, secondary structure type, and structural disorder) allowed us to demonstrate the evolutionary associations between changes in protein globules and speciations/duplications events. We discussed their potential involvement in protein-protein interactions and GRN function. CONCLUSIONS We hypothesize that the divergence and/or the specialization of the trichome-forming GRN is linked to the emergence of plant taxa. Information about the structural targets of the protein evolution in the GRN may predict switching points in gene networks functioning in course of evolution. We also propose a list of candidate genes responsible for the development of trichomes in a wide range of plant species.
Collapse
Affiliation(s)
- Alexey V. Doroshkov
- The Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), The Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University (NSU), Novosibirsk, Russia
| | - Dmitrii K. Konstantinov
- The Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), The Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University (NSU), Novosibirsk, Russia
| | - Dmitrij A. Afonnikov
- The Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), The Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University (NSU), Novosibirsk, Russia
| | - Konstantin V. Gunbin
- Novosibirsk State University (NSU), Novosibirsk, Russia
- School of Life Science, Immanuel Kant Federal Baltic University, Kaliningrad, Russia
- Center of Brain Neurobiology and Neurogenetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| |
Collapse
|
25
|
Zhang B, Hülskamp M. Evolutionary Analysis of MBW Function by Phenotypic Rescue in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:375. [PMID: 30984225 PMCID: PMC6449874 DOI: 10.3389/fpls.2019.00375] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/12/2019] [Indexed: 05/07/2023]
Abstract
The MBW complex consisting of the three proteins R2R3MYB, bHLH and WDR regulates five traits in Arabidopsis thaliana including trichome and root hair patterning, seed coat color, anthocyanidin production and seed coat mucilage release. The WDR gene TTG1 regulates each trait in specific combinations with different bHLH and R2R3MYB proteins. In this study we analyze to what extent the biochemical properties of the MBW proteins contribute to trait specificity by expressing them in appropriate A. thaliana mutants. We show that the rescue behavior of A. thaliana bHLH and R2R3MYB protein is sufficient to explain the function as derived previously from mutant analysis. When extending this rescue approach using MBW proteins from other species we find that proteins involved in anthocyanidin regulation typically show a rescue of the anthocyanidin phenotype but not of the other traits. Finally, we correlate the rescue abilities of MBW protein from different species with the A. thaliana proteins.
Collapse
|
26
|
Wu Y, Hou J, Yu F, Nguyen STT, McCurdy DW. Transcript Profiling Identifies NAC-Domain Genes Involved in Regulating Wall Ingrowth Deposition in Phloem Parenchyma Transfer Cells of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:341. [PMID: 29599795 PMCID: PMC5862824 DOI: 10.3389/fpls.2018.00341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/28/2018] [Indexed: 05/29/2023]
Abstract
Transfer cells (TCs) play important roles in facilitating enhanced rates of nutrient transport at key apoplasmic/symplasmic junctions along the nutrient acquisition and transport pathways in plants. TCs achieve this capacity by developing elaborate wall ingrowth networks which serve to increase plasma membrane surface area thus increasing the cell's surface area-to-volume ratio to achieve increased flux of nutrients across the plasma membrane. Phloem parenchyma (PP) cells of Arabidopsis leaf veins trans-differentiate to become PP TCs which likely function in a two-step phloem loading mechanism by facilitating unloading of photoassimilates into the apoplasm for subsequent energy-dependent uptake into the sieve element/companion cell (SE/CC) complex. We are using PP TCs in Arabidopsis as a genetic model to identify transcription factors involved in coordinating deposition of the wall ingrowth network. Confocal imaging of pseudo-Schiff propidium iodide-stained tissue revealed different profiles of temporal development of wall ingrowth deposition across maturing cotyledons and juvenile leaves, and a basipetal gradient of deposition across mature adult leaves. RNA-Seq analysis was undertaken to identify differentially expressed genes common to these three different profiles of wall ingrowth deposition. This analysis identified 68 transcription factors up-regulated two-fold or more in at least two of the three experimental comparisons, with six of these transcription factors belonging to Clade III of the NAC-domain family. Phenotypic analysis of these NAC genes using insertional mutants revealed significant reductions in levels of wall ingrowth deposition, particularly in a double mutant of NAC056 and NAC018, as well as compromised sucrose-dependent root growth, indicating impaired capacity for phloem loading. Collectively, these results support the proposition that Clade III members of the NAC-domain family in Arabidopsis play important roles in regulating wall ingrowth deposition in PP TCs.
Collapse
Affiliation(s)
- Yuzhou Wu
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Jiexi Hou
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Suong T. T. Nguyen
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Department of Biological Sciences, Faculty of Science, Nong Lam University, Ho Chi Minh City, Vietnam
| | - David W. McCurdy
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
27
|
Zhang B, Schrader A. TRANSPARENT TESTA GLABRA 1-Dependent Regulation of Flavonoid Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2017; 6:E65. [PMID: 29261137 PMCID: PMC5750641 DOI: 10.3390/plants6040065] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/02/2017] [Accepted: 12/16/2017] [Indexed: 12/25/2022]
Abstract
The flavonoid composition of various tissues throughout plant development is of biological relevance and particular interest for breeding. Arabidopsis thaliana TRANSPARENT TESTA GLABRA 1 (AtTTG1) is an essential regulator of late structural genes in flavonoid biosynthesis. Here, we provide a review of the regulation of the pathway's core enzymes through AtTTG1-containing R2R3-MYELOBLASTOSIS-basic HELIX-LOOP-HELIX-WD40 repeat (MBW(AtTTG1)) complexes embedded in an evolutionary context. We present a comprehensive collection of A. thalianattg1 mutants and AtTTG1 orthologs. A plethora of MBW(AtTTG1) mechanisms in regulating the five major TTG1-dependent traits is highlighted.
Collapse
Affiliation(s)
- Bipei Zhang
- Botanical Institute, University of Cologne, Zuelpicher Str 47B, 50674 Cologne, Germany.
| | - Andrea Schrader
- Botanical Institute, University of Cologne, Zuelpicher Str 47B, 50674 Cologne, Germany.
| |
Collapse
|
28
|
Davila Olivas NH, Kruijer W, Gort G, Wijnen CL, van Loon JJA, Dicke M. Genome-wide association analysis reveals distinct genetic architectures for single and combined stress responses in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2017; 213:838-851. [PMID: 27604707 PMCID: PMC5217058 DOI: 10.1111/nph.14165] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/11/2016] [Indexed: 05/20/2023]
Abstract
Plants are commonly exposed to abiotic and biotic stresses. We used 350 Arabidopsis thaliana accessions grown under controlled conditions. We employed genome-wide association analysis to investigate the genetic architecture and underlying loci involved in genetic variation in resistance to: two specialist insect herbivores, Pieris rapae and Plutella xylostella; and combinations of stresses, i.e. drought followed by P. rapae and infection by the fungal pathogen Botrytis cinerea followed by infestation by P. rapae. We found that genetic variation in resistance to combined stresses by drought plus P. rapae was limited compared with B. cinerea plus P. rapae or P. rapae alone. Resistance to the two caterpillars is controlled by different genetic components. There is limited overlap in the quantitative trait loci (QTLs) underlying resistance to combined stresses by drought plus P. rapae or B. cinerea plus P. rapae and P. rapae alone. Finally, several candidate genes involved in the biosynthesis of aliphatic glucosinolates and proteinase inhibitors were identified to be involved in resistance to P. rapae and P. xylostella, respectively. This study underlines the importance of investigating plant responses to combinations of stresses. The value of this approach for breeding plants for resistance to combinatorial stresses is discussed.
Collapse
Affiliation(s)
| | - Willem Kruijer
- BiometrisWageningen UniversityPO Box 166700 AAWageningenthe Netherlands
| | - Gerrit Gort
- BiometrisWageningen UniversityPO Box 166700 AAWageningenthe Netherlands
| | - Cris L. Wijnen
- Laboratory of EntomologyWageningen UniversityPO Box 166700 AAWageningenthe Netherlands
| | - Joop J. A. van Loon
- Laboratory of EntomologyWageningen UniversityPO Box 166700 AAWageningenthe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen UniversityPO Box 166700 AAWageningenthe Netherlands
| |
Collapse
|
29
|
Shangguan XX, Yang CQ, Zhang XF, Wang LJ. Functional characterization of a basic helix-loop-helix (bHLH) transcription factor GhDEL65 from cotton (Gossypium hirsutum). PHYSIOLOGIA PLANTARUM 2016; 158:200-12. [PMID: 27080593 DOI: 10.1111/ppl.12450] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/29/2016] [Accepted: 03/07/2016] [Indexed: 05/10/2023]
Abstract
Cotton fiber is proposed to share some similarity with the Arabidopsis thaliana leaf trichome, which is regulated by the MYB-bHLH-WD40 transcription complex. Although several MYB transcription factors and WD40 family proteins in cotton have been characterized, little is known about the role of bHLH family proteins in cotton. Here, we report that GhDEL65, a bHLH protein from cotton (Gossypium hirsutum), is a functional homologue of Arabidopsis GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) in regulating trichome development. Transcripts of GhDEL65 were detected in 0 ∼ 1 days post-anthesis (DPA) ovules and abundant in 3-DPA fibers, implying that GhDEL65 may act in early fiber development. Ectopic expression of GhDEL65 in Arabidopsis gl3 egl3 double mutant partly rescued the trichome development, and constitutive expression of GhDEL65 in wild-type plants led to increased trichome density on rosette leaves and stems, mainly by activating the transcription of two key positive regulators of trichome development, GLABRA1 (GL1) and GLABRA2 (GL2), and suppressed the expression of a R3 single-repeat MYB factor TRIPTYCHON (TRY). GhDEL65 could interact with cotton R2R3 MYB transcription factors GhMYB2 and GhMYB3, as well as the WD40 protein GhTTG3, suggesting that the MYB-bHLH-WD40 protein complex also exists in cotton fiber cell, though its function in cotton fiber development awaits further investigation.
Collapse
Affiliation(s)
- Xiao-Xia Shangguan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, P.R. China
| | - Chang-Qing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, P.R. China
| | - Xiu-Fang Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, P.R. China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, P.R. China.
| |
Collapse
|
30
|
Goossens J, Fernández-Calvo P, Schweizer F, Goossens A. Jasmonates: signal transduction components and their roles in environmental stress responses. PLANT MOLECULAR BIOLOGY 2016; 68:1333-1347. [PMID: 27927998 DOI: 10.1093/jxb/erw440] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Jasmonates, oxylipin-type plant hormones, are implicated in diverse aspects of plant growth development and interaction with the environment. Following diverse developmental and environmental cues, jasmonate is produced, conjugated to the amino acid isoleucine and perceived by a co-receptor complex composed of the Jasmonate ZIM-domain (JAZ) repressor proteins and an E3 ubiquitin ligase complex containing the F-box CORONATINE INSENSITIVE 1 (COI1). This event triggers the degradation of the JAZ proteins and the release of numerous transcription factors, including MYC2 and its homologues, which are otherwise bound and inhibited by the JAZ repressors. Here, we will review the role of the COI1, JAZ and MYC2 proteins in the interaction of the plant with its environment, illustrating the significance of jasmonate signalling, and of the proteins involved, for responses to both biotic stresses caused by insects and numerous microbial pathogens and abiotic stresses caused by adverse climatic conditions. It has also become evident that crosstalk with other hormone signals, as well as light and clock signals, plays an important role in the control and fine-tuning of these stress responses. Finally, we will discuss how several pathogens exploit the jasmonate perception and early signalling machinery to decoy the plants defence systems.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Fabian Schweizer
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
31
|
Qin M, Tian T, Xia S, Wang Z, Song L, Yi B, Wen J, Shen J, Ma C, Fu T, Tu J. Heterodimer Formation of BnPKSA or BnPKSB with BnACOS5 Constitutes a Multienzyme Complex in Tapetal Cells and is Involved in Male Reproductive Development in Brassica napus. PLANT & CELL PHYSIOLOGY 2016; 57:1643-56. [PMID: 27335346 DOI: 10.1093/pcp/pcw092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/29/2016] [Indexed: 05/07/2023]
Abstract
Multienzyme associations localized to specific subcellular sites are involved in several critical functions in cellular metabolism, such as plant survival and reproduction. To date, few multienzyme complexes involved in male fertility have been examined in Brassica napus Here, we reported that in B. napus, the members of a multienzyme complex work in an interaction pattern different from that in Arabidopsis thaliana for sporopollenin biosynthesis. 7365A, a male-sterile mutant with a relatively smooth anther cuticle, was found to have a dramatic reduction in both cutin monomers and wax composition. Proteomic comparison between the mutant 7365A and wild-type 7365B showed down-regulation of three sporopollenin biosynthetic enzymes, namely BnPKSA, BnPKSB and BnTKPR; these enzymes were tightly co-expressed with BnACOS5. BnPKSA and BnPKSB showed similar expression patterns but distinct accumulation levels, suggesting that they had partially distinct functions during sporopollenin biosynthesis. In vitro and in vivo analyses demonstrated that BnPKSB directly interacted with BnPKSA and BnACOS5, but no such interactions were found in the present investigation for BnTKPR1. Interestingly, the interaction between PKSA and PKSB has not been discovered in Arabidopsis, which may indicate a new interaction representing an additional efficient regulation method in B. napus Taken together, we propose that BnPKSA and BnPKSB may comprise a heterodimer combined with BnACOS5, constituting a sporopollenin metabolon in tapetal cells that is related to male reproductive development in B. napus.
Collapse
Affiliation(s)
- Maomao Qin
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiantian Tian
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhixin Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Song
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
32
|
Li Y, Shan X, Gao R, Yang S, Wang S, Gao X, Wang L. Two IIIf Clade-bHLHs from Freesia hybrida Play Divergent Roles in Flavonoid Biosynthesis and Trichome Formation when Ectopically Expressed in Arabidopsis. Sci Rep 2016; 6:30514. [PMID: 27465838 PMCID: PMC4964595 DOI: 10.1038/srep30514] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/06/2016] [Indexed: 11/09/2022] Open
Abstract
The MBW complex, comprised by R2R3-MYB, basic helix-loop-helix (bHLH) and WD40, is a single regulatory protein complex that drives the evolution of multiple traits such as flavonoid biosynthesis and epidermal cell differentiation in plants. In this study, two IIIf Clade-bHLH regulator genes, FhGL3L and FhTT8L, were isolated and functionally characterized from Freesia hybrida. Different spatio-temporal transcription patterns were observed showing diverse correlation with anthocyanin and proanthocyanidin accumulation. When overexpressed in Arabidopsis, FhGL3L could enhance the anthocyanin accumulation through up-regulating endogenous regulators and late structural genes. Unexpectedly, trichome formation was inhibited associating with the down-regulation of AtGL2. Comparably, only the accumulation of anthocyanins and proanthocyanidins was strengthened in FhTT8L transgenic lines. Furthermore, transient expression assays demonstrated that FhGL3L interacted with AtPAP1, AtTT2 and AtGL1, while FhTT8L only showed interaction with AtPAP1 and AtTT2. In addition, similar activation of the AtDFR promoter was found between AtPAP1-FhGL3L/FhTT8L and AtPAP1- AtGL3/AtTT8 combinations. When FhGL3L was fused with a strong activation domain VP16, it could activate the AtGL2 promoter when co-transfected with AtGL1. Therefore, it can be concluded that the functionality of bHLH factors may have diverged, and a sophisticated interaction and hierarchical network might exist in the regulation of flavonoid biosynthesis and trichome formation.
Collapse
Affiliation(s)
- Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaotong Shan
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ruifang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Song Yang
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
33
|
Cheng H, Lu C, Yu JZ, Zou C, Zhang Y, Wang Q, Huang J, Feng X, Jiang P, Yang W, Song G. Fine mapping and candidate gene analysis of the dominant glandless gene Gl 2 (e) in cotton (Gossypium spp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1347-1355. [PMID: 27053187 DOI: 10.1007/s00122-016-2707-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/17/2016] [Indexed: 05/21/2023]
Abstract
Dominant glandless gene Gl 2 (e) was fine-mapped to a 15 kb region containing one candidate gene encoding an MYC transcription factor, sequence and expression level of the gene were analyzed. Cottonseed product is an excellent source of oil and protein. However, this nutrition source is greatly limited in utilization by the toxic gossypol in pigment glands. It is reported that the Gl 2 (e) gene could effectively inhibit the formation of the pigment glands. Here, three F2 populations were constructed using two pairs of near isogenic lines (NILs), which differ nearly only by the gland trait, for fine mapping of Gl 2 (e) . DNA markers were identified from recently developed cotton genome sequence. The Gl 2 (e) gene was located within a 15-kb genomic interval between two markers CS2 and CS4 on chromosome 12. Only one gene was identified in the genomic interval as the candidate for Gl 2 (e) which encodes a family member of MYC transcription factor with 475-amino acids. Unexpectedly, the results of expression analysis indicated that the MYC gene expresses in glanded lines while almost does not express in glandless lines. These results suggest that the MYC gene probably serves as a vital positive regulator in the organogenesis pathway of pigment gland, and low expression of this gene will not launch the downstream pathway of pigment gland formation. This is the first pigment gland-related gene identification in cotton and will facilitate the research on glandless trait, cotton MYC proteins and low-gossypol cotton breeding.
Collapse
Affiliation(s)
- Hailiang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Cairui Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - John Z Yu
- USDA-ARS, Southern Plains Agricultural Research Center, Crop Germplasm Research Unit, 2881 F&B Road, College Station, TX, 77845, USA
| | - Changsong Zou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Juan Huang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaoxu Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Pengfei Jiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Wencui Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
34
|
Roux F, Bergelson J. The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana: The Challenges of Linking Evolutionary Genetics and Community Ecology. Curr Top Dev Biol 2016; 119:111-56. [PMID: 27282025 DOI: 10.1016/bs.ctdb.2016.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the context of global change, predicting the responses of plant communities in an ever-changing biotic environment calls for a multipronged approach at the interface of evolutionary genetics and community ecology. However, our understanding of the genetic basis of natural variation involved in mediating biotic interactions, and associated adaptive dynamics of focal plants in their natural communities, is still in its infancy. Here, we review the genetic and molecular bases of natural variation in the response to biotic interactions (viruses, bacteria, fungi, oomycetes, herbivores, and plants) in the model plant Arabidopsis thaliana as well as the adaptive value of these bases. Among the 60 identified genes are a number that encode nucleotide-binding site leucine-rich repeat (NBS-LRR)-type proteins, consistent with early examples of plant defense genes. However, recent studies have revealed an extensive diversity in the molecular mechanisms of defense. Many types of genetic variants associate with phenotypic variation in biotic interactions, even among the genes of large effect that tend to be identified. In general, we found that (i) balancing selection rather than directional selection explains the observed patterns of genetic diversity within A. thaliana and (ii) the cost/benefit tradeoffs of adaptive alleles can be strongly dependent on both genomic and environmental contexts. Finally, because A. thaliana rarely interacts with only one biotic partner in nature, we highlight the benefit of exploring diffuse biotic interactions rather than tightly associated host-enemy pairs. This challenge would help to improve our understanding of coevolutionary quantitative genetics within the context of realistic community complexity.
Collapse
Affiliation(s)
- F Roux
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France.
| | - J Bergelson
- University of Chicago, Chicago, IL, United States
| |
Collapse
|
35
|
Sun Y, Kong X, Li C, Liu Y, Ding Z. Potassium Retention under Salt Stress Is Associated with Natural Variation in Salinity Tolerance among Arabidopsis Accessions. PLoS One 2015; 10:e0124032. [PMID: 25993093 PMCID: PMC4438003 DOI: 10.1371/journal.pone.0124032] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/27/2015] [Indexed: 01/09/2023] Open
Abstract
Plants are exposed to various environmental stresses during their life cycle such as salt, drought and cold. Natural variation mediated plant growth adaptation has been employed as an effective approach in response to the diverse environmental cues such as salt stress. However, the molecular mechanism underlying this process is not well understood. In the present study, a collection of 82 Arabidopsis thaliana accessions (ecotypes) was screened with a view to identify variation for salinity tolerance. Seven accessions showed a higher level of tolerance than Col-0. The young seedlings of the tolerant accessions demonstrated a higher K(+) content and a lower Na(+)/K(+) ratio when exposed to salinity stress, but its Na(+) content was the same as that of Col-0. The K(+) transporter genes AtHAK5, AtCHX17 and AtKUP1 were up-regulated significantly in almost all the tolerant accessions, even in the absence of salinity stress. There was little genetic variation or positive transcriptional variation between the selections and Col-0 with respect to Na+-related transporter genes, as AtSOS genes, AtNHX1 and AtHKT1;1. In addition, under salinity stress, these selections accumulated higher compatible solutes and lower reactive oxygen species than did Col-0. Taken together, our results showed that natural variation in salinity tolerance of Arabidopsis seems to have been achieved by the strong capacity of K(+) retention.
Collapse
Affiliation(s)
- Yanling Sun
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, 250100, Shandong, China
| | - Xiangpei Kong
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, 250100, Shandong, China
| | - Cuiling Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, 250100, Shandong, China
| | - Yongxiu Liu
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, 250100, Shandong, China
| |
Collapse
|
36
|
Wu W, Wu Y, Gao Y, Li M, Yin H, Lv M, Zhao J, Li J, He K. Somatic embryogenesis receptor-like kinase 5 in the ecotype Landsberg erecta of Arabidopsis is a functional RD LRR-RLK in regulating brassinosteroid signaling and cell death control. FRONTIERS IN PLANT SCIENCE 2015; 6:852. [PMID: 26528315 PMCID: PMC4606071 DOI: 10.3389/fpls.2015.00852] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/28/2015] [Indexed: 05/20/2023]
Abstract
In plants, LRR-RLKs play central roles in regulating perception of extracellular signals and initiation of cellular responses under various environmental challenges. Arabidopsis SERK genes, including SERK1 to SERK5, constitute a LRR-RLK sub-family. SERK1, SERK2, SERK3/BAK1, and SERK4/BKK1 have been well characterized to function as crucial regulators in multiple physiological processes such as brassinosteroid signaling, cell death control, pathogenesis, and pollen development. Despite extremely high sequence identity with BKK1, SERK5 is reported to have no functional overlapping with BKK1, which is previously identified to regulate BR and cell death control pathways, probably due to a natural mutation in a highly conserved RD motif in the kinase domain of SERK5 in Col-0 ecotype. Through a gene sequencing analysis in several Arabidopsis accessions, we are able to identify SERK5 in Landsberg erecta (Ler) genome encoding a LRR-RLK with an intact RD motif. Overexpression of SERK5-Ler partially suppresses the BR defective phenotypes of bri1-5 and bak1-3 bkk1-1, indicating SERK5-Ler functions as a positive regulator in BR signaling. Furthermore, the interaction between SERK5-Ler and BRI1 is confirmed by yeast two-hybrid and BiFC assays, and the genetic result showing that elevated expression of a kinase-dead form of SERK5-Ler causes a dominant-negative phenotype in bri1-5. In addition, overexpression of SERK5-Ler is capable of delaying, not completely suppressing, the cell death phenotype of bak1-3 bkk1-1. In this study, we first reveal that SERK5-Ler is a biologically functional component in mediating multiple signaling pathways.
Collapse
Affiliation(s)
- Wangze Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
- Crop Research Institute, Anhui Academy of Agricultural SciencesHefei, China
| | - Yujun Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | - Yang Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | - Meizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | - Hongju Yin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | - Minghui Lv
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | - Jianxin Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
- *Correspondence: Kai He
| |
Collapse
|
37
|
Hauser MT. Molecular basis of natural variation and environmental control of trichome patterning. FRONTIERS IN PLANT SCIENCE 2014; 5:320. [PMID: 25071803 PMCID: PMC4080826 DOI: 10.3389/fpls.2014.00320] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/17/2014] [Indexed: 05/17/2023]
Abstract
Trichomes are differentiated epidermal cells on above ground organs of nearly all land plants. They play important protective roles as structural defenses upon biotic attacks such as herbivory, oviposition and fungal infections, and against abiotic stressors such as drought, heat, freezing, excess of light, and UV radiation. The pattern and density of trichomes is highly variable within natural population suggesting tradeoffs between traits positively affecting fitness such as resistance and the costs of trichome production. The spatial distribution of trichomes is regulated through a combination of endogenous developmental programs and external signals. This review summarizes the current understanding on the molecular basis of the natural variation and the role of phytohormones and environmental stimuli on trichome patterning.
Collapse
Affiliation(s)
- Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| |
Collapse
|
38
|
Bloomer RH, Lloyd AM, Symonds VV. The genetic architecture of constitutive and induced trichome density in two new recombinant inbred line populations of Arabidopsis thaliana: phenotypic plasticity, epistasis, and bidirectional leaf damage response. BMC PLANT BIOLOGY 2014; 14:119. [PMID: 24885520 PMCID: PMC4108038 DOI: 10.1186/1471-2229-14-119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/25/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Herbivory imposes an important selective pressure on plants. In Arabidopsis thaliana leaf trichomes provide a key defense against insect herbivory; however, trichome production incurs a fitness cost in the absence of herbivory. Previous work on A. thaliana has shown an increase in trichome density in response to leaf damage, suggesting a mechanism by which the cost associated with constitutively high trichome density might be mitigated; however, the genetic basis of trichome density induction has not been studied. RESULTS Here, we describe the mapping of quantitative trait loci (QTL) for constitutive and damage induced trichome density in two new recombinant inbred line populations of A. thaliana; mapping for constitutive and induced trichome density also allowed for the investigation of damage response (plasticity) QTL. Both novel and previously identified QTL for constitutive trichome density and the first QTL for induced trichome density and response are identified. Interestingly, two of the four parental accessions and multiple RILs in each population exhibited lower trichome density following leaf damage, a response not previously described in A. thaliana. Importantly, a single QTL was mapped for the response phenotype and allelic variation at this locus appears to determine response trajectory in RILs. The data also show that epistatic interactions are a significant component of the genetic architecture of trichome density. CONCLUSIONS Together, our results provide further insights into the genetic architecture of constitutive trichome density and new insights into induced trichome density in A. thaliana specifically and to our understanding of the genetic underpinnings of natural variation generally.
Collapse
Affiliation(s)
- Rebecca H Bloomer
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Alan M Lloyd
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, USA
| | - V Vaughan Symonds
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
39
|
Pattanaik S, Patra B, Singh SK, Yuan L. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:259. [PMID: 25018756 PMCID: PMC4071814 DOI: 10.3389/fpls.2014.00259] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 05/21/2014] [Indexed: 05/03/2023]
Abstract
Trichomes are specialized epidermal cells located on aerial parts of plants and are associated with a wide array of biological processes. Trichomes protect plants from adverse conditions including UV light and herbivore attack and are also an important source of a number of phytochemicals. The simple unicellular trichomes of Arabidopsis serve as an excellent model to study molecular mechanism of cell differentiation and pattern formation in plants. The emerging picture suggests that the developmental process is controlled by a transcriptional network involving three major groups of transcription factors (TFs): the R2R3 MYB, basic helix-loop-helix (bHLH), and WD40 repeat (WDR) protein. These regulatory proteins form a trimeric activator complex that positively regulates trichome development. The single repeat R3 MYBs act as negative regulators of trichome development. They compete with the R2R3 MYBs to bind the bHLH factor and form a repressor complex. In addition to activator-repressor mechanism, a depletion mechanism may operate in parallel during trichome development. In this mechanism, the bHLH factor traps the WDR protein which results in depletion of WDR protein in neighboring cells. Consequently, the cells with high levels of bHLH and WDR proteins are developed into trichomes. A group of C2H2 zinc finger TFs has also been implicated in trichome development. Phytohormones, including gibberellins and jasmonic acid, play significant roles in this developmental process. Recently, microRNAs have been shown to be involved in trichome development. Furthermore, it has been demonstrated that the activities of the key regulatory proteins involved in trichome development are controlled by the 26S/ubiquitin proteasome system (UPS), highlighting the complexity of the regulatory network controlling this developmental process. To complement several excellent recent relevant reviews, this review focuses on the transcriptional network and hormonal interplay controlling trichome development in Arabidopsis.
Collapse
Affiliation(s)
- Sitakanta Pattanaik
- *Correspondence: Sitakanta Pattanaik and Ling Yuan, Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA e-mail: ;
| | | | | | - Ling Yuan
- *Correspondence: Sitakanta Pattanaik and Ling Yuan, Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA e-mail: ;
| |
Collapse
|
40
|
Pesch M, Schultheiß I, Digiuni S, Uhrig JF, Hülskamp M. Mutual control of intracellular localisation of the patterning proteins AtMYC1, GL1 and TRY/CPC in Arabidopsis. Development 2013; 140:3456-67. [PMID: 23900543 DOI: 10.1242/dev.094698] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trichome and root hair patterning is governed by a gene regulatory network involving TTG1 and several homologous MYB and bHLH proteins. The bHLH proteins GL3 and EGL3 are core components that serve as a regulatory platform for the activation of downstream genes. In this study we show that a homologue of GL3 and EGL3, AtMYC1, can regulate the intracellular localisation of GL1 and TRY. AtMYC1 protein is predominantly localised in the cytoplasm and can relocate GL1 from the nucleus into the cytoplasm. Conversely, AtMYC1 can be recruited into the nucleus by TRY and CPC, concomitant with a strong accumulation of TRY and CPC in the nucleus. When AtMYC1 is targeted to the nucleus or cytoplasm by nuclear localisation or export signals (NLS or NES), respectively, the intracellular localisation of GL1 and TRY also changes accordingly. The biological significance of this intracellular localisation is suggested by the finding that the efficiency of rescue of trichome number is significantly altered in NES and NLS fusions as compared with wild-type AtMYC1. Genetic analysis of mutants and overexpression lines supports the hypothesis that AtMYC1 represses the activity of TRY and CPC.
Collapse
Affiliation(s)
- Martina Pesch
- Biocenter, Cologne University, Botanical Institute, Zülpicher Straße 47b, 50674 Cologne, Germany.
| | | | | | | | | |
Collapse
|
41
|
Bartlett ME, Whipple CJ. Protein change in plant evolution: tracing one thread connecting molecular and phenotypic diversity. FRONTIERS IN PLANT SCIENCE 2013; 4:382. [PMID: 24124420 PMCID: PMC3794426 DOI: 10.3389/fpls.2013.00382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/06/2013] [Indexed: 05/29/2023]
Abstract
Proteins change over the course of evolutionary time. New protein-coding genes and gene families emerge and diversify, ultimately affecting an organism's phenotype and interactions with its environment. Here we survey the range of structural protein change observed in plants and review the role these changes have had in the evolution of plant form and function. Verified examples tying evolutionary change in protein structure to phenotypic change remain scarce. We will review the existing examples, as well as draw from investigations into domestication, and quantitative trait locus (QTL) cloning studies searching for the molecular underpinnings of natural variation. The evolutionary significance of many cloned QTL has not been assessed, but all the examples identified so far have begun to reveal the extent of protein structural diversity tolerated in natural systems. This molecular (and phenotypic) diversity could come to represent part of natural selection's source material in the adaptive evolution of novel traits. Protein structure and function can change in many distinct ways, but the changes we identified in studies of natural diversity and protein evolution were predicted to fall primarily into one of six categories: altered active and binding sites; altered protein-protein interactions; altered domain content; altered activity as an activator or repressor; altered protein stability; and hypomorphic and hypermorphic alleles. There was also variability in the evolutionary scale at which particular changes were observed. Some changes were detected at both micro- and macroevolutionary timescales, while others were observed primarily at deep or shallow phylogenetic levels. This variation might be used to determine the trajectory of future investigations in structural molecular evolution.
Collapse
Affiliation(s)
| | - Clinton J. Whipple
- *Correspondence: Clinton J. Whipple, Biology Department, Brigham Young University, 401 WIDB, Provo, UT 84602, USA e-mail:
| |
Collapse
|
42
|
Yang C, Ye Z. Trichomes as models for studying plant cell differentiation. Cell Mol Life Sci 2013; 70:1937-48. [PMID: 22996257 PMCID: PMC11113616 DOI: 10.1007/s00018-012-1147-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 08/19/2012] [Accepted: 08/21/2012] [Indexed: 01/10/2023]
Abstract
Trichomes, originating from epidermal cells, are present on nearly all terrestrial plants. They exist in diverse forms, are readily accessible, and serve as an excellent model system for analyzing the molecular mechanisms in plant cell differentiation, including cell fate choices, cell cycle control, and cell morphogenesis. In Arabidopsis, two regulatory models have been identified that function in parallel in trichome formation; the activator-inhibitor model and the activator-depletion model. Cotton fiber, a similar unicellular structure, is controlled by some functional homologues of Arabidopsis trichome-patterning genes. Multicellular trichomes, as in tobacco and tomato, may form through a distinct pathway from unicellular trichomes. Recent research has shown that cell cycle control participates in trichome formation. In this review, we summarize the molecular mechanisms involved in the formation of unicellular and multicellular trichomes, and discuss the integration of the cell cycle in its initiation and morphogenesis.
Collapse
Affiliation(s)
- Changxian Yang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhibiao Ye
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
43
|
Ryu KH, Zheng X, Huang L, Schiefelbein J. Computational modeling of epidermal cell fate determination systems. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:5-10. [PMID: 23287386 DOI: 10.1016/j.pbi.2012.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/21/2012] [Accepted: 12/05/2012] [Indexed: 05/10/2023]
Abstract
Cell fate decisions are of primary importance for plant development. Their simple 'either-or' outcome and dynamic nature has attracted the attention of computational modelers. Recent efforts have focused on modeling the determination of several epidermal cell types in the root and shoot of Arabidopsis where many molecular components have been defined. Results of integrated modeling and molecular biology experimentation in these systems have highlighted the importance of competitive positive and negative factors and interconnected feedback loops in generating flexible yet robust mechanisms for establishing distinct gene expression programs in neighboring cells. These models have proven useful in judging hypotheses and guiding future research.
Collapse
Affiliation(s)
- Kook Hui Ryu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
44
|
Zhao H, Li X, Ma L. Basic helix-loop-helix transcription factors and epidermal cell fate determination in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2012; 7:1556-60. [PMID: 23073001 PMCID: PMC3578892 DOI: 10.4161/psb.22404] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cell fate determination is an important process in multicellular organisms. Plant epidermis is a readily-accessible, well-used model for the study of cell fate determination. Our knowledge of cell fate determination is growing steadily due to genetic and molecular analyses of root hairs, trichomes, and stomata, which are derived from the epidermal cells of roots and aerial tissues. Studies have shown that a large number of factors are involved in the establishment of these cell types, especially members of the basic helix-loop-helix (bHLH) superfamily, which is an important family of transcription factors. In this mini-review, we focus on the role of bHLH transcription factors in cell fate determination in Arabidopsis.
Collapse
Affiliation(s)
- Hongtao Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering; Center of Agricultural Resources; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Shijiazhuang, P.R. China
| | - Xia Li
- State Key Laboratory of Plant Cell and Chromosome Engineering; Center of Agricultural Resources; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Shijiazhuang, P.R. China
| | - Ligeng Ma
- College of Life Sciences; Capital Normal University; Beijing, P.R. China
- Correspondence to: Ligeng Ma,
| |
Collapse
|
45
|
Bloomer RH, Juenger TE, Symonds VV. Natural variation in GL1 and its effects on trichome density in Arabidopsis thaliana. Mol Ecol 2012; 21:3501-15. [PMID: 22625421 DOI: 10.1111/j.1365-294x.2012.05630.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ultimate understanding of how biological diversity arises, is maintained, and lost depends on identifying the genes responsible. Although a good deal has been discovered about gene function over the past few decades, far less is understood about gene effects, that is, how natural variation in a gene contributes to natural variation in phenotypes. Trichome density in Arabidopsis thaliana is an ideal trait for studies of natural molecular and phenotypic variation, as trichome initiation is genetically well-characterized and trichome density is highly variable in and among natural populations. Here, we show that variation at GLABRA1 (GL1), an R2R3 MYB transcription factor gene, which has a role in trichome initiation, has qualitative and likely quantitative effects on trichome density in natural accessions of A. thaliana. Specifically, we characterize four independent loss-of-function alleles for GL1, each of which yields a glabrous phenotype. Further, we find that a pattern of common polymorphisms confined to the GL1 locus is associated with quantitative variation for trichome density. While mutations resulting in a glabrous phenotype are primarily coding changes, the pattern resulting in quantitative variation spans both coding and regulatory regions. These data show that GL1 is an important source of trichome density variation within A. thaliana and, along with recent reports, suggest that the TTG1 epidermal cell fate pathway generally may be the key molecular genetic source of natural trichome density variation and an important model for the study of molecular evolution.
Collapse
Affiliation(s)
- R H Bloomer
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | |
Collapse
|
46
|
Zhao H, Wang X, Zhu D, Cui S, Li X, Cao Y, Ma L. A single amino acid substitution in IIIf subfamily of basic helix-loop-helix transcription factor AtMYC1 leads to trichome and root hair patterning defects by abolishing its interaction with partner proteins in Arabidopsis. J Biol Chem 2012; 287:14109-21. [PMID: 22334670 DOI: 10.1074/jbc.m111.280735] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Plant trichomes and root hairs are powerful models for the study of cell fate determination. In Arabidopsis thaliana, trichome and root hair initiation requires a combination of three groups of proteins, including the WD40 repeat protein transparent TESTA GLABRA1 (TTG1), R2R3 repeat MYB protein GLABRA1 (GL1), or werewolf (WER) and the IIIf subfamily of basic helix-loop-helix (bHLH) protein GLABRA3 (GL3) or enhancer of GLABRA3 (EGL3). The bHLH component acts as a docking site for TTG1 and MYB proteins. Here, we isolated a mutant showing defects in trichome and root hair patterning that carried a point mutation (R173H) in AtMYC1 that encodes the fourth member of IIIf bHLH family protein. Genetic analysis revealed partial redundant yet distinct function between AtMYC1 and GL3/EGL3. GLABRA2 (GL2), an important transcription factor involved in trichome and root hair control, was down-regulated in Atmyc1 plants, suggesting the requirement of AtMYC1 for appropriate GL2 transcription. Like its homologs, AtMYC1 formed a complex with TTG1 and MYB proteins but did not dimerized. In addition, the interaction of AtMYC1 with MYB proteins and TTG1 was abrogated by the R173H substitution in Atmyc1-1. We found that this amino acid (Arg) is conserved in the AtMYC1 homologs GL3/EGL3 and that it is essential for their interaction with MYB proteins and for their proper functions. Our findings indicate that AtMYC1 is an important regulator of trichome and root hair initiation, and they reveal a novel amino acid necessary for protein-protein interactions and gene function in IIIf subfamily bHLH transcription factors.
Collapse
Affiliation(s)
- Hongtao Zhao
- Hebei Key Laboratory of Molecular Cell Biology, College of Biological Sciences, Hebei Normal University, Shijiazhuang 050016 Hebei, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Grebe M. The patterning of epidermal hairs in Arabidopsis--updated. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:31-7. [PMID: 22079786 DOI: 10.1016/j.pbi.2011.10.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/11/2011] [Accepted: 10/19/2011] [Indexed: 05/06/2023]
Abstract
Epidermal hairs of Arabidopsis thaliana emerge in regular spacing patterns providing excellent model systems for studies of biological pattern formation. A number of root-hair and leaf-trichome patterning mutants and tools for cell-specific and tissue-specific manipulation of patterning protein activities have been combined in cycles of experimentation and mathematical modelling. These approaches have provided insight into molecular mechanisms of epidermal patterning. During the last two years, endoreplication has, unexpectedly, been found to control cell-fate maintenance during trichome patterning. New genetic interactions between a downstream, positive transcriptional regulator and lateral inhibitors of trichome or non-root-hair fate specification have been uncovered. A lateral inhibitor and a new positive regulator have been identified as major loci affecting trichome patterning in natural Arabidopsis populations. Finally, factors that modify root-hair patterning from the underlying cell layer have been discovered.
Collapse
Affiliation(s)
- Markus Grebe
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden.
| |
Collapse
|
48
|
Weigel D. Natural variation in Arabidopsis: from molecular genetics to ecological genomics. PLANT PHYSIOLOGY 2012; 158:2-22. [PMID: 22147517 PMCID: PMC3252104 DOI: 10.1104/pp.111.189845] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/05/2011] [Indexed: 05/18/2023]
Affiliation(s)
- Detlef Weigel
- Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany.
| |
Collapse
|